|
Prof. Dr. Wakolbinger
Preprints |
-
F. Hermann, A. González Casanova, R. dos Santos, A. Tóbiás and A. Wakolbinger, From clonal interference to Poissonian interacting trajectories, arXiv:2407.00793 [math.PR], submitted.
Publikationen |
-
J. L. Igelbrink, A. González Casanova, Ch. Smadi and A. Wakolbinger, Muller's ratchet in a near-critical regime: tournament versus fitness proportional selection, Theor. Popul. Biol. 158, 121-138 (2024), part of special issue celebrating Alison Etheridge's contribution to mathematical population genetics, edited by A. Véber, S. Pennington, A. Sturm. arXiv:2306.00471 [q-bio.PE])
-
A. González Casanova, Ch. Smadi and A. Wakolbinger, Quasi-equilibria and click times for a variant of Muller's ratchet, Electron. J. Probab. 28, 1-37 (2023), Oberwolfach preprint OWP-2022-18 (v2), arXiv:2211.13109 [math.PR] (v5)
-
A. Blancas, S. Gufler, S.Kliem, V. C.Tran and A. Wakolbinger, Evolving genealogies for branching populations under selection and competition, Ann. Appl. Probab. 33 (2023), 4528-4569,
arXiv:2106.16201 [math.PR]
-
P. Pfaffelhuber and A. Wakolbinger, A diploid population model for copy number variation of genetic elements, Electron. J. Probab. 28 (2023), paper no. 47, 1-15;
arXiv:2204.11140 [math.PR]
-
J. L. Igelbrink and A. Wakolbinger, Asymptotic Gaussianity via coalescence probabilities in the Hammond-Sheffield urn, ALEA Lat. Am. J. Probab. Math. Stat. 20 (2023), 53-74 ,
arxiv:2201.06576 [math.PR]
-
Z. Li, E. Pardoux and A. Wakolbinger, The height process of a continuous state branching process with interaction, J. Theor. Probab. 35 (2022) 142-185,
arXiv:1904.04151 [math.PR]
-
F. Boenkost, A. González Casanova, C. Pokalyuk and A. Wakolbinger, Haldane's formula in Cannings models: The case of moderately strong selection, J. Math. Biol. 83, 70 (2021),
arXiv:2008.02225 [math.PR]
-
E. Baake and A. Wakolbinger (eds.), Probabilistic Structures in Evolution , EMS Press, Berlin, 2021.
-
E. Baake and A. Wakolbinger, Microbial populations under selection, in Probabilistic Structures in Evolution, in E. Baake, A. Wakolbinger, eds.,
EMS Press, Berlin, 2021, pp. 43-68.
arXiv:2004.01011 [q-bio.PE]
-
G. Kersting and A. Wakolbinger, Probabilistic aspects of Λ-coalescents in equilibrium and in evolution, in Probabilistic Structures in Evolution, E. Baake, A. Wakolbinger, eds., EMS Press, Berlin, 2021, pp. 223-246 .
arXiv:2002.05250 [math.PR]
-
F. Boenkost, A. González Casanova, C. Pokalyuk and A. Wakolbinger, Haldane's formula in Cannings models: The case of moderately weak selection, Electron. J. Probab. 26 (2021), paper no. 4 (31 pages),
arXiv:1907.10049 [math.PR]
-
C. Pokalyuk and A. Wakolbinger, Maintenance of diversity in a hierarchical host-parasite model with balancing selection and reinfection, Stoch. Proc. Appl. 30 (2020) 1119-1158.
arXiv:1802.02429 [math.PR]
-
S.N. Evans and A. Wakolbinger, PATRICIA bridges. In: Genealogies of Interacting Particle Systems, eds. M. Birkner, R. Sun and J. Swart, Lecture Note Series, Institute for Mathematical Sciences, National University of Singapore, Vol. 38, pp. 233-267, World Scientific, 2020. arXiv:1806.06256 [math.PR]
-
E. Baake, A. González Casanova, S. Probst and A. Wakolbinger, Modelling and simulating Lenski's long-term evolution experiment, Theor. Popul. Biol. 127 (2019), 58-74.
arXiv:1803.09995 [q-bio.PE]. Winner of the Feldman prize 2022
-
P. Pfaffelhuber and A. Wakolbinger, Fixation probabilities and hitting times under low levels of frequency-dependent selection, Theor. Popul. Biol. 124 (2018), 61-69.
arXiv:1801.01584 [math.PR]
-
G. Kersting and A. Wakolbinger, On the time to absorption in Λ-coalescents, Adv. Appl. Probab. 50(A) (2018), 177-190.
arXiv:1712.07553 [math.PR]
-
G. Kersting, J. Schweinsberg and A. Wakolbinger, The size of the last merger and time reversal in Λ-coalescents, Ann. Inst. H. Poincaré Probab. Statist. 54 (2018),1527-1555.
arXiv:1701.00549 [math.PR]
-
E. Baake and A. Wakolbinger, Lines of descent under selection, J. Stat. Phys. 172 (2018),156-174.
arXiv:1710.08209 [math.PR].
-
S. N. Evans and A. Wakolbinger, Radix sort trees in the large, Electron. Commun. Probab. 22 (2017),
paper no. 68.
-
S. N. Evans, R. Gruebel and A. Wakolbinger, Doob--Martin boundary of R\'emy's tree growth chain, Ann. Probab. 45 (2017), 225-277.
arXiv:1411.2526 [math.PR].
-
A. Greven, P. Pfaffelhuber, C. Pokalyuk and A. Wakolbinger, The fixation time of a strongly beneficial allele in a structured population, Electron. J. Probab. 21 (2016), paper no. 61, 42 pp. arXiv:1402.1769 [math.PR]
-
E. Baake, U. Lenz and A. Wakolbinger, The common ancestor type distribution of a Λ-Wright-Fisher process with selection and mutation, Electron. Commun. Probab. 21 (2016), paper no. 59, 16 pp.
arXiv:1603.03605 [math.PR]
-
A. González Casanova, N. Kurt, A. Wakolbinger and L. Yuan,
An individual-based model for the Lenski experiment, and the deceleration of the relative fitness, Stoch. Processes Appl. 126 (2016), 2211-2252.
arXiv:1505.01751 [math.PR]. Winner of the Itô prize 2017
-
E. Baake and A. Wakolbinger, Feller's Contributions to Mathematical Biology, in: Schilling, R.L., Vondracek, Z., Woyczynski, W.A.: The Selected Papers of William Feller, vol. 2, pp. 25-43, Springer Verlag, 2015. arXiv:1501.05278 [math.HO]
-
U. Lenz, S. Kluth, E. Baake and A. Wakolbinger, Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution, Theor. Popul. Biol. 103 (2015), 27-37. arXiv:1409.0642 [q-bio.PE]
-
E. Pardoux and A. Wakolbinger, A path-valued Markov process indexed by the ancestral mass, ALEA Lat. Am. J. Probab. Math. Stat. 12 (2015), 193-212. arXiv:1409.1901 [math.PR]
-
A. Veber and A. Wakolbinger, The spatial Lambda-Fleming-Viot process: an event-based construction and a lookdown representation, Ann. Inst. H.
Poincaré Probab. Statist.
51 (2015), 570-598, arXiv:1212.5909 [math.PR]
-
I. Dahmer, R. Knobloch and A. Wakolbinger, The Kingman tree length process has infinite quadratic variation, Electron. Comm. Probab. 19 (2014) paper no 87 , 12 pp.
-
G. Kersting und A.Wakolbinger, Stochastische Prozesse, Birkhäuser, Oktober 2014.
-
I. Dahmer, G. Kersting, and A.Wakolbinger, The total external branch length of Beta-coalescents, Combinatorics, Probability and Computing 23 (2014), 1010-1027, arXiv:1212.5909 [math.PR]
-
G. Kersting, J. Schweinsberg and A.Wakolbinger, The evolving beta coalescent, Electron. J. Probab. 19 (2014), paper no 64, 27 pp.
-
V. Le, E. Pardoux and A. Wakolbinger, "Trees under attack": a Ray-Knight representation of Feller's branching diffusion with logistic growth, Probab
Theory Relat Fields 155 (2013) 583-619.
arXiv:1603.03605 [math.PR]
-
P. Pfaffelhuber, P. Staab and A. Wakolbinger, Muller's ratchet with compensatory mutations, Ann. Appl. Probab. 22 (2012), 2108-2132, arXiv:1108.4059v2 [math.PR].
-
S. N. Evans, R. Gruebel and A. Wakolbinger, Trickle-down processes and their boundaries, Electron. J. Probab. 17 (2012)
paper no 1, 58 pp.
-
E. Pardoux and A. Wakolbinger, From Brownian motion with a local time drift to Feller's branching diffusion with logistic growth, Electron. Commun. Probab.16 (2011), paper 63, 720-731.
-
E. Pardoux and A Wakolbinger, From exploration paths to mass excursions - variations on a theme of Ray and Knight, in: Surveys in Stochastic Processes, Proceedings of the 33rd SPA Conference in Berlin, 2009, J. Blath, P. Imkeller, S. Roelly (eds.), EMS 2011. [pdf]
-
P. Pfaffelhuber, A. Wakolbinger and H. Weisshaupt, The tree length of an evolving coalescent, Probab
Theory Relat Fields 151 (2011) 529-557,
arXiv:0908.2444v1 [math.PR]
- A. Etheridge,
P. Pfaffelhuber and A. Wakolbinger, How often does the ratchet
click? Facts, heuristics, asymptotics. in: "Trends in Stochastic Analysis" (Jochen Blath, Peter Mörters and Michael Scheutzow, eds), pp. 365-390, London Mathematical Society Lecture Note Series 353,
Cambridge University Press 2009,
arXiv:0709.2775v1
[math.PR].
- G. Kersting und A. Wakolbinger, Elementare Stochastik, Birkhäuser 2008 (1st ed.), 2010 (2nd ed.)
- M. Hutzenthaler and A. Wakolbinger: Ergodic behaviour of locally
regulated branching populations, Ann. Appl. Probab. 17 (2007),
no. 2, 474 - 501, arXiv:math/0509612v2
[math.PR].
- P. Pfaffelhuber and A. Wakolbinger,
The process of most recent common ancestors in an evolving coalescent, [ArXiv
math.PR/0511743], Stoch. Processes Appl.
116 (2006), 1836-1859.
- P. Pfaffelhuber, B. Haubold and A. Wakolbinger, Approximate
genealogies under genetic hitchhiking, Genetics 174 (2006),
1995-2008.[pdf]
- A. Etheridge, P. Pfaffelhuber and A. Wakolbinger, An approximate
sampling formula under genetic hitchhikng, [ArXiv
math.PR/0503485], [ESI
preprint 1636], Ann. Appl. Probab. 16 (2006),
685-729.
- D.A. Dawson, L.G. Gorostiza and A. Wakolbinger, Degrees of
transience and recurrence and hierarchical random walks, [ArXiv
math.PR/0401422], Potential Analysis (2005)
22: 305-350.
- M. Birkner, J. Blath, M. Capaldo, A. Etheridge, M. Möhle,
J. Schweinsberg and A. Wakolbinger, Alpha-stable branching and
Beta coalescents, Electron. J. Probab. 10 (2005), 303-325 [paper]
- M. Birkner, J.A. López Mimbela, A. Wakolbinger,
Comparison results and steady states for the Fujita equation
with fractional
Laplacian, [ESI
preprint 1265], [ArXiv
math.AP/0302353], Annales Insitut Henri
Poincaré (Analyse non lineaire) 22 (2005)
83-97.
- D. Metzler, R. Fleißner, A. Wakolbinger, A. von Haeseler,
Stochastic Insertion-Deletion Processes and Statistical Sequence
Alignment [MFWvH04.pdf],
in: "Interacting Stochastic Systems" (J. D. Deuschel,
A. Greven, eds), pp. 247-267, Springer-Verlag Berlin Heidelberg
2005.
- D.A. Dawson, L.G. Gorostiza and A. Wakolbinger, Hierarchical
random walks, in: Asymptotic Methods in Stochastics: Festschrift
for Miklós
Csörgö. (L. Horváth, B. Szyszkowicz, eds) AMS,
2004 [ps 584k]
- D.A. Dawson, L.G. Gorostiza and A. Wakolbinger, Hierarchical
Equilibria of Branching populations, Electron. J. Probab 9 (2004) 316-381 (Paper 12)
- K.
Fleischmann, V. Vatutin, A. Wakolbinger, Branching systems with
long living particles at the critical dimension. Theory
Probab. Appl. 47 (3) (2002) 417-451 [ps 428k]
- M. Birkner, J.A. López Mimbela, A. Wakolbinger, Blow-up
of semilinear PDE's at the critical dimension. A probabilistic
approach. Proc.
Amer. Math. Soc. 130 (2002), no. 8, 2431-2442, [pdf
232k]
- D. Metzler, S. Grossmann, A. Wakolbinger, A Poisson model
for gapped local alignments.
Statist. Probab. Lett. 60 (2002),
no. 1, 91-100 [pdf 165k] [ps 230k]
- A. Greven, A. Klenke, A. Wakolbinger, Interacting
diffusions in a random medium: comparison and longtime behavior,
Stoch. Proc. Appl. 98 (1) (2002) 23-41.
-
D.Metzler, R.Fleißner , A. Wakolbinger, A.v.Haeseler,
Assessing variability by joint sampling of alignments and mutation
rates. J. Mol. Evol. 53 (2001) 660-669
[pdf 310k] [ps 1150k]
-
D. Dawson , L. Gorostiza, A. Wakolbinger, Occupation
time fluctuations in branching systems. J. Theoretical
Probab. 14 (2001) 729-796.
A. Greven, A.Klenke, A. Wakolbinger, Interacting
Fisher-Wright diffusions in a catalytic medium , Probab
Theory Relat Fields 120 (2001) 1, 85-117
-
J.A. López-Mimbela, A. Wakolbinger, A probabilistic
proof of non-explosion of a non-linear pde system, J. Appl.
Prob 37 (2000) 635-641.
-
M. Birkner, A. Wakolbinger, A Comparison of Free Branching
and Stepping Stone Models, in: "Stochastic Models"
(L. Gorostiza, B.G. Ivanoff, eds), pp. 15-23, CMS Conference
Proceedings vol 26, AMS 2000.
-
A. Greven, A. Klenke, A. Wakolbinger, The
longtime behavior of branching random walk in a catalytic medium,
Electronic Journal of Probability, Vol 4
(1999) , paper 12, pages 1-80.
-
V. Vatutin, A. Wakolbinger, Spatial branching populations
with long individual lifetimes, Theory Probab. Appl.
43 (1998) 620-632.
-
J.A. López-Mimbela, A. Wakolbinger, Length of Galton-Watson
trees and blow up of semilinear systems, J. Appl. Probab.
35 (1998) 802 - 811.
-
K. Matthes, R. Siegmund-Schultze, A. Wakolbinger, Recurrence
of ancestral lines and offspring trees in time stationary branching
populations, Math. Nachr. 185 (1997),
163-211.
-
J.A. López-Mimbela, A. Wakolbinger, Which critically
branching populations persist? in: Classical and Modern Branching
Processes (K. B. Athreya, P. Jagers, eds), IMA Vol. in Math.
and its Appl. 84, p. 203-216, Springer
1997.
-
G. Leha, G. Ritter, A. Wakolbinger, An improved Lyapunov-function
approach to the behavior of diffusion processes in Hilbert spaces,
Stoch. Anal. Appl. 15 (1997) 59-89.
-
J.A. López-Mimbela, A. Wakolbinger, Clumping in Multitype-Branching
Trees, Adv. Appl. Probab. 28 (1996)
1034-1050.
-
L.G. Gorostiza , K. Hochberg, A. Wakolbinger, Persistence
of a critical super-2 process, J. Appl. Probab. 32
(1995) 534-540.
-
A. Wakolbinger, Limits of spatial branching populations, Bernoulli
1(1/2) (1995) 171-189.
-
K. Hochberg, A. Wakolbinger, Non-persistence of two-level
branching particle systems in low dimensions, in: A. Etheridge
(ed.), Stochastic Partial Differential Equations, London
Math. Soc. Lecture Note Series 216 (1995),
126-140.
-
A. Wakolbinger, Poblaciones aleatorias ramificadas y sus equilibrios,
Notas de investigación 9, Sociedad
Matemática Mexicana 1994.
-
L.G. Gorostiza, A. Wakolbinger, Long time behavior of critical
branching particle systems and applications, in: "Measure-Valued
Processes, Stochastic Partial Differential Equations, and Interacting
Systems" (D. A. Dawson, ed.), pp. 119
- 137, CMS
Conference Proceedings vol 5, AMS 1994.
-
A. Stöckl, A. Wakolbinger, On clan recurrence and -transience
in time stationary branching Brownian particle systems, in: "Measure-Valued
Processes, Stochastic Partial Differential Equations, and Interacting
Systems" (D. A. Dawson, ed.), pp. 213 - 219, CMS Conference
Proceedings vol 5, AMS 1994.
-
L.G. Gorostiza, A. Wakolbinger, Asymptotic behavior of a reaction-diffusion
system. A probabilistic approach. Random&Computational
Dynamics 1 (1993), 445-463.
-
K. Matthes, R. Siegmund-Schultze, A. Wakolbinger, Equilibrium
distributions of age-dependent Galton Watson processes II, Math.
Nachr. 160 (1993) 313-324.
-
K. Matthes, R. Siegmund-Schultze, A. Wakolbinger, A spatial
zero-one law for equilibria of branching particle systems, J.
Theor. Probab. 6 (1993) 699-711.
-
A. Wakolbinger, Schrödinger Bridges from 1931 to 1991,
in: E. Cabaña et al. (eds) , Proc. of the 4th Latin
American Congress in Probability and Mathematical Statistics,
Mexico City 1990, Contribuciones en probabilidad y estadística
matemática 3 (1992) , pp. 61-79.
-
L.G.Gorostiza, S. Roelly, A. Wakolbinger, Persistence of critical
multitype particle and measure branching processes, Probab.
Theory Relat. Fields 92 (1992), 313-335.
-
K. Matthes, R. Siegmund-Schultze, A. Wakolbinger, Equilibrium
distributions of age dependent Galton Watson processes I , Math.
Nachr. 156 (1992), 233 - 267.
-
L. G. Gorostiza, A. Wakolbinger, Convergence to equilibrium
of critical branching particle systems and superprocesses, and
related nonlinear partial differential equations, Acta Applicandae
Mathematicae 27 (1992), 269-291.
-
B. Chauvin, A. Rouault, A. Wakolbinger, Growing conditioned
trees, Stoch. Processes Appl. 39 (1991),
117-130.
-
M. Pavon, A. Wakolbinger, On free energy, stochastic control,
and Schrödinger processes, in:Modeling, Estimation
and Control of Systems with Uncertainty, G.B. Di Masi,
A. Gombani, A. Kurzhanski (eds.), pp. 334-348 Birkhäuser,
Boston, 1991.
-
A. Wakolbinger, On the structure of entrance laws in discrete
spatial critical branching processes, Math. Nachr.
151 (1991), 51-57.
-
L. Gorostiza, A. Wakolbinger, Persistence criteria for a class
of critical branching particle systems in continuous time, Ann.
Probability. 19 (1991), 266-288.
-
D. Dawson, L. Gorostiza, A. Wakolbinger, On Schrödinger
processes and large deviations, J. Math. Phys. 31
(10) (1990), 2385-2388.
-
A. Wakolbinger, Interchange of large time and scaling limits
in stable Dawson-Watanabe processes: a probabilistic proof,
Bol. Soc. Mat. Mexicana, 33 (1990),
45-55.
-
L. Gorostiza , S. Roelly, A. Wakolbinger, Sur la persistance
du processus de Dawson-Watanabe stable. L'interversion de la
limite en temps et de la renormalisation. In: Seminaire
de Probabilité XXIV (Lect. Notes Math.,
vol. 1426, pp. 275-281), Springer Verlag 1990
-
A. Wakolbinger, Welche kritisch verzweigenden Populationen
überleben? Österr. Zeitschrift für Statistik
und Informatik 20 (1990), 315-318.
-
A. Wakolbinger, A simplified variational characterization
of Schrödinger processes, J. Math.Phys. 30
(12) (1989), 2943-2946.
-
A. Wakolbinger, Los procesos estocásticos de Schrödinger,
Ciencia (Revista de la Academia de la Investigación
Científica, México) 40 (1989),
199-208.
-
A. Wagner, A. Wakolbinger, E. Glötzl, Towards a method
of smog prediction, Österr. Zeitschrift für Statistik
und Informatik 19 (1989), 18-29.
-
A. Liemant, K. Matthes, A. Wakolbinger, Equilibrium Distributions
of Branching Processes, Akademie Verlag, Berlin, and
Kluwer Academic Publishers, Dordrecht, 1988.
-
W. Römisch, A. Wakolbinger, On convergence rates of approximate
solutions of stochastic equations, in: H.J. Engelbert, W. Schmidt
(Hrsg.) Stochastic Differential Systems, Lecture Notes in
Control and Information Sciences 96, pp.
204-212, Springer Verlag, 1987.
-
W. Römisch, A. Wakolbinger, Obtaining convergence rates
for approximations in Stochastic Programming, in: J. Guddat
(Hrsg.) Parametric Optimization and Related Topics, pp.
327-343, AkademieVerlag Berlin, 1987.
-
E. Lindner, G. Oberaigner und Hj. Wacker, A. Wakolbinger,
The hydroelectric storage power plant Partenstein: Forecasting
models for the influxand efficiency determination, in: Proc.der
18. Jahrestagung ``Mathematische Optimierung'', Rostock/Diedichshagen,
1986, Seminarbericht Nr. 85 der Humboldt-Univ. zu Berlin, ,
pp. 59-69 (1986).
-
H. Föllmer, A. Wakolbinger, Time reversal of infinite-dimensional
diffusions, Stoch. Processes Appl. 22
(1986), 59-77.
-
H.W. Engl, A. Wakolbinger, Continuity properties of the extension
of a locally Lipschitz continuous map to the space of probability
measures, Monatshefte f. Math. 100
(1985), 85-103.
-
W. Römisch, A. Wakolbinger, On Lipschitz dependence in
systems with differentiated inputs,Math. Ann. 272
(1985), 237-248.
-
A. Wakolbinger, G. Eder, A condition Σλc for point processes,
Math. Nachr. 116 (1984),209- 232.
-
A. Wakolbinger, G. Eder, Balance equations and Σ'-type conditions
for point processes, Proc. of the 3rd Pannonian Symp. on Math.
Statistics, Visegrad, 1982, Akadémiai Kiadó, Budapest,
pp. 363-376, 1984
-
H.W. Engl, A. Wakolbinger, On weak limits of probability distributions
on Polish spaces, Stoch. Anal. and Appl. 1
(1983), 197-203.
-
M.P. Ershov, A. Wakolbinger, On the existence of Markov processes
with given transition functions, Stochastics 6
(1982), 139-145.
-
E. Glötzl, A. Wakolbinger, Bayes estimators and ergodic
decomposability with an application to Cox processes, Ann.
Probability 6 (1982), 872-876.
-
J. Kerstan, A. Wakolbinger, Ergodic decomposition of probability
laws, Z. Wahrscheinlichkeitsth.verw. Gebiete 56
(1981), 399-414.
-
J. Kerstan, A. Wakolbinger, Opérateurs markoviens et
l'ensemble de leurs lois de probabilité invariantes,
C.R.Acad. Sci. Paris Ser. A., t. 219,
163-166 (1980)
-
B. Rauchenschwandtner, A. Wakolbinger, Some aspects of the
Papangelou kernel, in: P. Bártfai and J. Tomkó
(eds.), Point Processes and Queuing Problems, North-Holland,
Amsterdam-Oxford-New York, pp. 325-336,1981.
-
E. Glötzl, B. Rauchenschwandtner, A. Wakolbinger, On
point processes with tail measurable conditional intensity kernels,
Math. Nachr. 93 (1979), 151-158.
|
|
|