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ABSTRACT

The rapid fixation of an advantageous allele leads to a reduction in linked neutral variation around the
target of selection. The genealogy at a neutral locus in such a selective sweep can be simulated by first
generating a random path of the advantageous allele’s frequency and then a structured coalescent in this
background. Usually the frequency path is approximated by a logistic growth curve. We discuss an alternative
method that approximates the genealogy by a random binary splitting tree, a so-called Yule tree that does not
require first constructing a frequency path. Compared to the coalescent in a logistic background, this
method gives a slightly better approximation for identity by descent during the selective phase and a much
better approximation for the number of lineages that stem from the founder of the selective sweep. In
applications such as the approximation of the distribution of Tajima’s D, the two approximation methods
perform equally well. For relevant parameter ranges, the Yule approximation is faster.

THE model of genetic hitchhiking, introduced in
Maynard Smith and Haigh (1974), has become

an increasingly important tool for detecting loci under
strong positive directional selection in a genome
(Nurminsky 2005). During the fixation of a beneficial
allele, neutral variation around the target of selection is
partially eliminated. This leads to the reduction of
sequence diversity at neutral loci linked to a site under
strong positive selection, a phenomenon known as a
selective sweep. The reduction of diversity can be used
to infer regions in the genome affected by selection in
the recent past (Sabeti et al. 2002; Glinka et al. 2003;
Beisswanger et al. 2006).

A reduction in sequence diversity caused by a selective
sweep can be observed only if selection is strong, linkage
between a neutral marker and the selective site corre-
lates the histories of the selected and the neutral locus,
and the fixation of the beneficial allele is recent. On the
one hand the rare coincidence of these three factors
restricts the number of selective sweeps in sequence
data. On the other hand the reduction in diversity is easy
to observe, which makes selective sweeps a powerful tool
for detecting selected regions even if functional in-
formation is absent.

A detailed analysis of the diversity patterns caused by
genetic hitchhiking leads to a deeper understanding of
the effect of underlying evolutionary forces. This can be

used to predict how well tests of neutrality perform
under strong directional selection and to differentiate
between sequence data obtained under strong direc-
tional selection and under other demographic scenar-
ios. After the first description of the hitchhiking effect
by Maynard Smith and Haigh (1974), several authors
have attempted to approximate the diversity pattern
that is formed by a selective sweep (Kaplan et al. 1989;
Stephan et al. 1992; Barton 1998; Durrett and
Schweinsberg 2004; Etheridge et al. 2006).

Initiated by the ‘‘revisiting’’ of the hitchhiking effect
by Kaplan et al. (1989), coalescent theory has helped to
understand diversity patterns formed by selective
sweeps: the ancestry of a sample at a neutral locus that
is linked to the selected one is modeled as a structured
coalescent; its background is the frequency curve of the
selectively advantageous allele that increases from 0 to 1
during the sweep. To account for all random effects in a
finite population, one would ideally model the evolu-
tion of this frequency curve by a Wright–Fisher process
with selection and use the structured coalescent with
recombination in this background. However, simulation
of this stochastic model is prohibitively slow, especially
for large populations.

For this reason, several approximations of the
Wright–Fisher model have been proposed. Most in-
fluential has been the idea that for strong selection the
increase in frequency of the beneficial allele is almost
deterministic. Kaplan et al. (1989) suggested that
the evolution of the frequency of the beneficial allele
in a selective sweep can be described by a logistic curve
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and that this curve be used as the background for a
structured coalescent. This is what we call the logistic
approximation. However, fluctuations caused by ge-
netic drift might have an impact at the very beginning
of the sweep (Kaplan et al. 1989, p. 889). This point was
taken up by Barton (1998), who approximated the
frequency curve of the beneficial allele in the early
phase of a selective sweep by a supercritical branching
process. In such a process the genealogies are generated
forward in time. A line splits in two or dies indepen-
dently of other lines; supercriticality refers to the
property that a line is more likely to split than to die.

To account for all random effects, Coop and Griffiths

(2004) use a diffusion approximation for the frequency
path of the selected allele. As the resulting diffusion can
be time reversed, they can simulate genealogies ‘‘back-
ward only.’’ However, it was not clear whether this method
also works for strong selection.

Schweinsberg and Durrett (2005) analyzed a
model in which the evolution at the selective locus is
described by a Moran process. They showed that in a
large population and strong selection the genealogy of
those lines at the selective locus that make it from the
founder to the end of the sweep can be approximated by
a so-called Yule process, that is, a pure birth process with
a binary splitting with constant rate, and used this to
derive an approximation for the genealogy at the linked
neutral locus as well. Etheridge et al. (2006) started
from a diffusion approximation of the frequency curve
at the selective locus as background for the structured
coalescent at the neutral locus and obtained results
similar to those of Schweinsberg and Durrett (2005).
Under strong selection, a Yule process appears in the
genealogy of the selective locus. On top of this Yule
process an approximation of the genealogy at the
neutral locus can be described, which is analogous to
the approximation in Schweinsberg and Durrett

(2005). In addition, this approach is even simpler than
the elegant backward-only simulation approach of Coop

and Griffiths (2004) for the structured coalescent,
since it does not require us to simulate the frequency
curve at the selected locus. This Yule approximation—
including a slight but important modification—is ex-
plained and discussed in more detail below.

In this article we perform a simulation study to com-
pare three processes: (i) a Wright–Fisher model with a
stochastic frequency path for the beneficial allele and
a structured coalescent for a linked neutral variant, (ii) a
structured coalescent in which the frequency path is
modeled by a logistic curve (Kaplan et al. 1989), and
(iii) a Yule approximation that elaborates on the ver-
sions described in Schweinsberg and Durrett (2005)
and Etheridge et al. (2006).

The logistic and the Yule approximation are evalu-
ated with respect to their deviations from the Wright–
Fisher model. Recent analytical results have shown
that the logistic approximation of a selective sweep is

worse than the Yule approximation in certain respects
(Durrett and Schweinsberg 2004). However, the qua-
lity of the approximation of genealogies under hitch-
hiking by a marked Yule process was reported only for
strong selection, irrespectively of other parameters, e.g.,
sample size. So one might ask which approximation
performs better if all model parameters are taken into
account. It turns out that the Yule approximation out-
performs the logistic approximation also in simulation
studies of this kind. To be specific, we take a sample of
moderate size at the end of the sweep. The sample is
partitioned into families of individuals whose neutral
lineages trace back to the same ancestor at the begin-
ning of the sweep and in this sense are identical by descent
from the beginning of the sweep at the neutral locus. For
example, the sample in Figure 1 consists of three fam-
ilies, two recombinant ones and the one tracing back to
the founder of the sweep. In our simulations we com-
pute the distribution of (i) the sizes of the two largest
families in the sample and (ii) the number of lineages
going back to the founder of the sweep and the size of
the largest recombinant family. While the Yule model
gives a slightly better approximation of the former, it
gives much better results for the latter. To check how
large the errors are in the context of genetic data anal-
ysis we use our approximations to obtain (i) the esti-
mated distribution of Tajima’s D (Tajima 1989), which
is a widely applied statistic to test the neutral hypothesis,
and (ii) a maximum-likelihood estimator for the position
of the selected site in a genome. Here both approxima-
tions work equally well. In our simulations, run times for
the Yule approximation are shorter than for the logistic
one at least as long as selection is not too strong.

MODELS AND METHODS

Consider a population of N haploid individuals and
two linked loci, a selected one and a neutral one. At the

Figure 1.—(A) The coalescent for the neutral locus is gen-
erated conditioned on the frequency X of the beneficial al-
lele. (B) The time change dt ¼ (1 � Xt)dt transforms the
process X to a supercritical branching process. The coalescent
is also time changed. See text for explanation.
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selected locus there are two alleles, a beneficial one and
the wild type. The selected allele has a selective advan-
tage of s compared to the wild type.

We study the selective phase of evolution by sampling
at the end of a selective sweep. At the selected locus the
founder of the selective sweep is an ancestor of all
individuals in the sample. In contrast, the linked neutral
loci are clustered into families that are identical by
descent from the time the beneficial allele entered the
population.

The Wright–Fisher model: The benchmark to which
we compare our approximations is a standard Wright–
Fisher model with selection and recombination and
model parameters (e.g., N ¼ 105 and s between 0.005
and 0.1) whose order of magnitude seems appropriate
for certain real populations, e.g., Drosophila.

Simulations consist of a forward and a backward
phase: first we generate the frequency path of a
population that evolves according to the Wright–Fisher
dynamics under selection forward in time. The starting
frequency of the selected allele is 1/N. Denote by Xt the
frequency of the beneficial allele in generation t. Con-
ditioned on Xt�1, the number of beneficial alleles at
time t is binomially distributed with parameters N and

ð1 1 sÞXt�1

1 1 sXt�1
: ð1Þ

If X eventually hits 1, we have generated a frequency
path conditioned on fixation; otherwise, i.e., if X hits
zero, we restart it from 1/N. We note that a Wright–
Fisher path conditioned on fixation could in principle
be simulated using transition probabilities for the
frequencies of the beneficial allele that are conditioned
to reach 1. These transition probabilities can be ex-
pressed in terms of the fixation probabilities, which,
however, are known only approximately (Bürger and
Ewens 1995). Since we want to use the Wright–Fisher
model as an exact benchmark, we refrain from using
this approximation here.

In the backward phase we take a sample of size n at the
(random) time of fixation, which we trace back in time
conditioned on the frequency path generated in the
forward phase. Initially (i.e., at the end of the selective
sweep forward in time) all lineages are linked to the
advantageous allele. As the process moves from gener-
ation t to t � 1 (note that time t is measured forward), a
lineage linked to a beneficial allele changes to a wild-
type allele with probability r(1 � Xt�1), where r is the
probability of recombination in one generation. Simi-
larly, a lineage linked to the wild-type allele changes to
the beneficial background with probability rXt�1.

In addition, all lineages that are in the beneficial
background choose their parents among all NXt�1

individuals in generation t � 1. This determines the
number of coalescences that occur. Similarly, the line-
ages in the wild-type background may also coalesce.

Observe that this implies that an arbitrary number of
coalescences in each time step may occur.

For large N, time measured in N generations and in
the scaling a ¼ sN, the Wright–Fisher model has a
diffusion limit. In this limit the frequency path of the
beneficial allele becomes the solution of the stochastic
differential equation

dX ¼ aX ð1� X Þdt 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X ð1� X Þ

p
dW ; ð2Þ

where W denotes a Brownian motion. [This uniquely
defines a diffusion with infinitesimal mean m ¼ ax(1 �
x) and infinitesimal variance s2 ¼ x(1 � x).] Con-
ditioned on the fixation of X we can study the coalescent
for a linked neutral variant backward in time using (2).
In this coalescent each pair of lineages carrying the
beneficial allele coalesces with rate 1=Xt at time t and
each lineage changes from the beneficial to the wild-
type background with rate r(1 � Xt), where r ¼ rN is
the scaled recombination rate (Kaplan et al. 1989).

We focus on two approximations of the Wright–Fisher
model or its diffusion limit. The first is the logistic model,
and the second is the Yule approximation.

The logistic approximation: The structured coales-
cent process in a logistic background, which we simply
call the logistic model, was introduced in Kaplan et al.
(1989). It has been implemented since then in a
number of programs for simulating selective sweeps
(Braverman et al. 1995; Kim and Stephan 2002;
Przeworski 2002; Li and Stephan 2005).

The logistic model relies on the assumption that
genetic drift is negligible under strong selection. The
frequency path of the beneficial allele is modeled by
the logistic growth curve

dX ¼ aX ð1� X Þdt; ð3Þ

which is (2) without genetic drift. Kaplan et al. (1989)
consider a time-continuous version of the structured
coalescent, but conditioned on the deterministic lo-
gistic frequency path given by (3), to describe the
hitchhiking effect. As time is continuous in the logistic
model, it is appropriate to specify rates at which events
happen. Lineages at the neutral locus coalesce at time t
with rate 1/Xt in the beneficial background and with
rate 1/(1�Xt) in the wild-type background. Any lineage
at time t switches background from the beneficial to the
wild type (backward in time) with rate r(1 � Xt) and
from the wild type to the beneficial with rate rXt.

To obtain positive frequencies in (3) the initial value
X(0) ¼: e must be .0. Various values of e appear in the
literature. Using a ¼ sN as the scaled selection coeffi-
cient, Kaplan et al. (1989) and Braverman et al. (1995)
suggest e ¼ 5=a as a rule of thumb, while Stephan et al.
(1992) as well as Przeworski (2002) use e ¼ 1=N . In
the logistic model, sample lineages that are in the bene-
ficial background at time t ¼ 0 are forced to coalesce
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immediately. This is the approach implemented in the
above-mentioned programs for simulating selective
sweeps. For more details on our implementation of
the logistic approximation see the appendix.

The Yule approximation: In recent mathematical
studies (Schweinsberg and Durrett 2005; Etheridge

et al. 2006) genealogies under hitchhiking have been
approximated by a Yule process. This is a pure birth
process in which lines independently split into two with
rate a (Athreya and Ney 1972). The genealogical tree
arising in this way is called a Yule tree.

We start off with a short description of the Yule pro-
cess approximation: for large a, the random tree that
arises by stopping the Yule process as soon as it reaches
level b2ac proves to be a good approximation of the
genealogy at the selective locus. A lineage at the neutral
locus, traced back from the end of the sweep, is linked to
its companion lineage at the selective locus. Recombi-
nation events separating the neutral from the beneficial
locus in the Yule tree appear with a constant rate.

An essential step in the approximation is to ignore (i)
back-recombinations from the wild-type to the benefi-
cial background and (ii) coalescences in the wild-type
background. An intuitive reason for this is that, viewed
backward in time, recombination becomes effective
only as long as the frequency X is low. Consequently
lines may be found in the wild-type background only if X
is low, which implies that the rate rX for back-recombi-
nations as well as the rate 1/(1 � X) for coalescences in
the wild-type background is low. A mathematical justi-
fication of the approximation neglecting events in the
wild-type background and an analysis of the order of
convergence of the various error terms has been given
in Schweinsberg and Durrett (2005) and Etheridge

et al. (2006) and is complemented by numerical studies
in this article.

A big conceptual and algorithmic advantage of this
approximation is that it allows us to describe the
genealogy at the neutral locus by a tree marked by
points (recombination events) along its branches rather
than a coalescent that is conditioned on a (random)
frequency path of the beneficial allele. In the Yule
process approximation, two individuals in the sample
(two leaves of the tree) are identical by descent at the
neutral locus from the beginning of the sweep if and
only if they are not separated by a recombination event
along their lineages.

This simple scheme of generating a genealogy under
a selective sweep is based on the time transformation
dt ¼ (1 � Xt)dt (see Figure 1). It takes the frequency
path X from (2) into a stochastic process Yt ¼ Xt that
follows the stochastic dynamics

dY ¼ aY dt 1
ffiffiffiffi
Y
p

dW̃; ð4Þ

where W̃ is again a Brownian motion. The relation Yt ¼
Xt is valid until Y hits frequency 1. The process Y given

by (4) is known as a continuous-state branching pro-
cess (Athreya and Ney 1972). It is the diffusion
approximation of a supercritical Galton–Watson pro-
cess in which, at times 0; 1=N ; 2=N ; . . . , a line splits in
two lines with probability (1 1 s)/2 and dies with prob-
ability (1 � s)/2. Once born, a line behaves indepen-
dently from all other lines present.

Every birth in such a supercritical branching pro-
cess has an infinite line of descent with probability 2s
(Athreya and Ney 1972). Using this result, the gene-
alogy of the infinite lines of descent in the diffusion
approximation was established by O’Connell (1993)
and Evans and O’Connell (1994). Viewed forward in
time, this is a Yule process with parameter a, i.e., a pure
birth process in which every line splits in two lines with
rate a. [This process was originally invented by the
Scottish scientist and statistician Udny Yule (1871–
1951) to study the evolution of species (Yule 1924).]
When the Yule process has i lines, the process Y has
frequency

Y � i

2sN
¼ i

2a
ð5Þ

in expectation. Thus, when Y reaches frequency 1, the
Yule process has 2Ns ¼ 2a lines. To approximate the
time-changed genealogy at the selective locus, we thus
use the Yule process stopped when it has b2ac lines.

The genealogy of a sample at the selective locus
appears as a subtree of this Yule tree; see Figure 2. On
this subtree, recombination events along the sample
genealogy are marked by solid circles. In this example,
the sample is partitioned into four families of sizes 4, 2,
4, and 2, respectively.

Next, we describe how the sample’s approximate
genealogy is extracted from the Yule tree. By the time
transformation the coalescence rate of a pair of lineages
changes from 1/Xdt to 1/(Y(1� Y)) dt, see Figure 1. As
a consequence, if there are k lineages left in the sample
genealogy and the Yule tree has i lineages, then using
(5), the rate at which k decreases to k � 1 is

ð k
2 Þ

Y ð1� Y Þ � ia
ð k

2 Þ
ð i

2 Þ
1

1� ðði � 1Þ=2aÞ: ð6Þ

Since the Yule tree shrinks from i to i � 1 lineages with
rate ia, this suggests to embed the sample genealogy at
the selective locus into the Yule tree backward in time as
follows: when the Yule tree goes from i to i� 1 lineages, a
pair of the sample lineages coalesces with probability

pk
i :¼ min 1;

ð k
2 Þ
ð i

2 Þ
1

1� ðði � 1Þ=2aÞ

 !
: ð7Þ

Since the time transformation changes the recombina-
tion rate from r(1 � X)dt to rdt, the recombination
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events are mapped on the Yule tree in a particularly
simple way, making it easy to generate recombination
events along the lineages: consider a branch between
the times when the Yule tree has i1 and i2 lines. The time
interval when the Yule tree has i lines is exponentially
distributed with rate ia. As recombination events occur
at constant rate r, the probability that no recombination
event hits the branch is

qi2
i1 ¼

Yi2
i¼i111

ia

ia 1 r
¼ exp

Xi2

i¼i111

log 1� r

ia 1 r

� � !

� exp �r

a

Xi2

i¼i111

1

i 1 r=a

 !
� exp �r

s

Xi2

i¼i111

1

i

 !
;

ð8Þ

the approximation being accurate if r>s or more pre-
cisely if r/s is of the order 1/log(Ns) (Etheridge et al.
2006). The Yule approximation thus allows us to simu-
late the random partition of a sample (with respect to
identity by descent at the neutral locus) in two stages:
first, generate the sample genealogy by the coalescence
mechanism (7), and then generate recombination events
along the sample lineages with probabilities (8). Note
that this method does not require any explicit simulation
of the frequency curve X or that of the full Yule tree.
A thorough description of the implementation of the
Yule process approximation is given in the appendix.

Connections with previous work: A precursor of the Yule
approximation described above was introduced in a
diffusion setting by Etheridge et al. (2006). It generates
the same genealogies as the Yule approximation given
by Schweinsberg and Durrett (2005) for the Moran
model. The modification we make here deals with the
way to extract the sample tree out of the Yule tree. In
Schweinsberg and Durrett (2005) and Etheridge

et al. (2006) the pair coalescence probability for k
sample lineages when the Yule tree has i lines is
ð k

2 Þ=ð
i
2 Þ, which corresponds to absence of the factor

(1 � Y ) in (6).
We included neither the procedure for taking a

sample out of the full Yule tree that ignores the factor
(1 � Y) nor the approximate sampling formula from

Etheridge et al. (2006) into our numerical studies. The
reason is that these approaches produce accurate results
only for small samples; i.e., n # 5 (results not shown).
For the special case of n ¼ 2 in a Moran model,
simulation studies by Schweinsberg and Durrett

(2005) already showed that the Yule approximation
outperforms the logistic one.

RESULTS

Using simulations for data analysis requires accurate
and fast algorithms. Although the simulation of the
coalescent for the Wright–Fisher model is still much
faster compared to forward simulations of the whole
population, it is much slower compared to the logistic
(e.g., a factor 200 for N¼ 105, s¼ 0.01, r¼ 0.001, n¼ 12)
and the Yule (a factor 1000 for the same parameters)
approximations. It becomes especially slow for large
populations.

The need for approximations leads directly to the
question of which approximation to use. The logistic
approximation is appealing because it is exact except for
the deterministic frequency path. This approximation
seems reasonable for strong selection. The Yule approx-
imation has the advantage that no simulation of a
frequency path is necessary; in fact, this approximation
arose through an averaging over the frequency paths.
Moreover, it can be implemented with no more effort
than the logistic model (see Algorithm 2 in the appendix).

Both accuracy and speed are necessary for the
quality of an approximation. The speed for the two
approximations is comparable for relevant parameter
ranges, e.g., a , 4000, n ¼ 12. The accuracy of the Yule
approximation turns out to be better than that of the
logistic model. However, in both approximations the
error is small, e.g., for the distribution of Tajima’s D or
for a maximum-likelihood estimator of the position of
the selective locus in the genome.

Our simulation results are shown in the following
sections. First we comment on the speed of both ap-
proximations. Then we proceed with an analysis of
relevant parameter ranges where we also derive a pre-
diction for the reduction in heterozygosity from the Yule

Figure 2.—A Yule tree approximating the ge-
nealogy of a selective sweep. The thick lines rep-
resent the genealogy of the sample; solid circles
correspond to recombination events along the
branches. See text for explanation.
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approximation. Afterward, the analysis of the quality of
the logistic and Yule approximations is carried out.
Recall that the Yule approximation neglects events that
happen in the wild-type background. We check numer-
ically for which parameter ranges this particular ap-
proximation step is justified. Then we compare the
error of the Yule and the logistic approximations, and
finally we test how big the error is in applications.

Run times: For the logistic model, we follow the
algorithm from Braverman et al. (1995) and Kim and
Stephan (2002) and discretize the logistic growth curve
into 1000 intervals. The Yule approximation has been
described above. As this process stops when the Yule tree
has b2ac lines, run times increase with a. The run time
of the logistic model does not depend on a.

For N ¼ 105 and s ¼ 0.01 the simulations using a
Wright–Fisher model are 200 times slower than the
logistic approximations. Figure 3 illustrates the differ-
ence in speed for the two approximations.

Parameter ranges: Usually a reduction in heterozy-
gosity is used to infer strong directional selection. We
therefore investigate which parameter combinations of
N, s, and r lead to a significant reduction in variation. As
a selective sweep is very short, it is unlikely that two
lineages would coalesce in that time under neutral
evolution. However, by directional selection, the chance
of coalescence in the sweep increases as the recombi-
nation distance to the selected site decreases. We look
at the probability h of coalescence of two lineages in
the sweep as a measure of the strength of selection. As
Stephan et al. (1992) observe, h equals the factor by
which the expected heterozygosity at linked neutral sites
during the selective sweep is reduced.

Apart from simulating the Wright–Fisher model to
approximate h, known approximations to the probabil-
ity of coalescence in the sweep can be derived by (i)
direct simulation or computation in the logistic model
or (ii) the Yule approximation. In the logistic model
such approximations have been obtained in Equation
19 of Stephan et al. (1992) (see also Wieheand Stephan

1993, Equation 1b). In the Yule approximation there is a
random number J of lineages in the Yule tree at the time
when the two sample lineages coalesce. The probability
of coalescence within k sample lineages at the time when
the full Yule tree goes from i to i � 1 lineages is given by
(6); we can therefore calculate for k ¼ 2

P½ J ¼ j � ¼
Y

j11,i,2a

1� 1

ð i
2 Þ

1

1� ðði � 1Þ=2aÞ

 !
1

ð j 1 1
2 Þ

1

1� ð j=2aÞ:

A sample of two lineages at a neutral locus linked to the
selected one shares the history of the corresponding
lineages at the selected locus if no recombination
occurs. To a good approximation, if recombination
pushes one of the two lineages out of the beneficial
background, the two neutral lineages are not identical
by descent at the beginning of the sweep.

Therefore, given J ¼ j, the two lineages at the neutral
locus coalesce during the sweep if no recombination
occurs on either branch leading from j to b2ac. The
probability that no recombination event falls on a
branch was given in Equation 8. So

h �
Xb2ac

j¼1

P½ J ¼ j �exp �2
r

s

Xb2ac

i¼j11

1

i

 !
:

This is the approximation of h based on the Yule model.
Figure 4 shows that the analytic formulas for the

reduction of heterozygosity obtained from the logistic

Figure 3.—Run-time ratios for simulating the logistic and
Yule approximations. Run time depends on (A) the selection
strength a and (B) the sample size n.
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and Yule approximations are numerically sound. Addi-
tionally, we can read parameter ranges for r and s where
the hitchhiking effect determines patterns of sequence
diversity. Hitchhiking cannot be observed if the re-
duction in sequence variation is too low. For r/s¼ r/a¼
0.1, the factor by which heterozygosity is reduced is as
high as 0.7. This is reflected in simulations carried out
by Fay and Wu (2000), who showed that neutrality tests
can detect a recent selective sweep only as long as r/a ,

0.1. In other words, selection intensity has to be one
order of magnitude larger than recombination to detect
a hitchhiking effect. This agrees with the condition
that recombination is weaker than selection by a factor
of log a that was used by Etheridge et al. (2006) in a
theoretical study of the Yule approximation. Our results
show that in this regime (and for moderate sample sizes
n) the Yule approximation becomes accurate for large a

also from a practical point of view. If one wants to go
beyond this regime, say to recombination rates that
are of the same order of magnitude as the selection
strength, back-recombinations into the favorable back-
ground cannot be neglected any more. Back-recombi-
nations could be incorporated by another refinement of
the Yule approximation: one can estimate the back-
recombination rate rXt dt ¼ rYt/(1 � Yt)dt from the
current state i of the Yule process in the same manner
as the coalescence rate was estimated in Equation 6.
In this study, we do not pursue this further. Instead,
we show in the next section that for the regime r/a ,

0.1, and for a moderate sample size n ¼ 12, it is in-

deed justified to neglect the events in the wild-type
background.

Events in the wild-type background: Several assump-
tions underlie the Yule approximation of a selective
sweep. We argued that both coalescences in the wild-
type background and back-recombinations into the
beneficial background occur with negligible probability.
These events are excluded in the Yule approximation.
This is in contrast to the logistic model by Kaplan et al.
(1989), which allows for events in the wild-type back-
ground. As Figure 5 shows, the assumptions that none of
these events happen in the wild-type background is
reasonable, at least for a wide range of parameters.

In the wild-type background the average number of
back-recombinations is larger than the number of
coalescence events. The number of back-recombina-
tions rapidly increases for r . 0.1a (see Figure 5A). For
such parameter combinations the reduction in hetero-
zygosity is low and a selective sweep does not leave a
distinct footprint (Figure 4). If r/a # 0.1, the average
number of events in the wild-type background never
exceeds 0.2 in a sample of size 12 (Figure 5B). In all
cases, the logistic model approximates the Wright–
Fisher model well.

Comparing the approximation error: To check how
close the approximations are to the Wright–Fisher
model, we need quantitative measures. For our sample,
two factors determine the shape of sequence diversity:
first, the times of coalescence and second, which pairs
of lines coalesce. As a selective sweep is short compared
to the neutral expectation of time of coalescence of
two lines, only the latter quantity determines observable
diversity patterns.

Identity by descent partitions the n lineages into
families with a common ancestor at the beginning of the
sweep. We study two statistics in our simulations that are
related to this concept. First, we check whether the
distribution of the sizes of the largest and the second-
largest families are approximated well; second, we study
the distribution of the number of lineages that trace
back to the founder of the selective sweep and the size of
the largest recombinant family. It turns out that the Yule
approximation is superior to the logistic approximation
in both cases (see Figures 6 and 7).

We perform simulations to follow n ¼ 12 lineages
back during the sweep. A special role is played by the
founder of the sweep. Lineages that are not hit by a
recombination event during the sweep descend from
the founder of the sweep. Conversely, all lineages that
do not trace back to the founder of the sweep must have
been hit by a recombination event. However, these
lineages may still have coalesced and thus be identical by
descent from the beginning of the sweep. So identity by
descent gives (i) the number of lineages that trace back
to the founder of the sweep and (ii) sizes of recombi-
nant families that trace back to individuals in the wild-
type background. We define

Figure 4.—Heterozygosity is reduced by a factor h depend-
ing on the selection strength, a, and the recombination rate,
r, during a selective sweep. Both theoretical predictions for
the logistic and Yule model work well.
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F1 :¼number of lineages that descend from the founder
of the sweep;

F2 :¼ size of the biggest recombinant family

and

F 91 :¼ size of the biggest family;
F 92 :¼ size of the second-biggest family:

We compute the error in the approximations compared
to the Wright–Fisher model for the distribution of pairs

(F1, F2) as well as (F 91, F 92). By this we mean the following:
probabilities P[F1¼ f1, F2¼ f2] are approximated in the
Wright–Fisher model by the Monte Carlo estimates

P̂WF½F1 ¼ f1; F2 ¼ f2�
¼ frequency of simulations with F1 ¼ f1; F2 ¼ f2:

Figure 6.—Approximation errors eL9 and eY9 for the sizes of
the two biggest families that are identical by descent during
the sweep for the Yule and the logistic models. Every point
is based on 105 simulations of a sample of size 12 in the
Wright–Fisher model with population size 105 and the corre-
sponding approximating Yule and logistic models. (A) The
ratio of recombination rate and selection strength r/a ¼
0.03 is fixed and a varies. (B) Several ratios r/a were consid-
ered. For each of these ratios, a ¼ 500, 1000, 2000, and 4000
are considered. The values for r/a ¼ 0.03 are based on the
simulations shown in A.

Figure 5.—Two kinds of events may occur backward in time
in the genealogy of the linked neutral variant in the wild-type
background: (I) coalescence events and (II) recombinations
with a beneficial allele denoted by back-recombinations. (A) The
average number of these events increases with the recombina-
tion rate r, but (B) for fixed r/a stays bounded for a wide
range of values of the selection strength a. The Yule approx-
imation does not allow for any of these events.
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Analogously we may use our approximations and obtain
estimates P̂Y ½:� and P̂L½:� for the Yule approximation and
the logistic approximation. Then consider the errors

eh :¼
X
f1;f2

j P̂h½F1 ¼ f1; F2 ¼ f2� � P̂WF½F1 ¼ f1; F2 ¼ f2� j ;

e9h :¼
X
f1;f2

j P̂h½F 91 ¼ f1; F 92 ¼ f2� � P̂WF½F 91 ¼ f1; F 92 ¼ f2� j ; ð9Þ

where h is Y or L, standing for either the Yule or the
logistic approximation. We consider only two random
variables simultaneously (i.e., either F1 and F2 or F 91 and
F 92) because of limitations of computational power. The

outcomes for fixed and variable r/a are illustrated in
Figures 6 and 7 for eY, eL and e9Y , e9L, respectively.

For the approximation errors eY and eL the Yule
model performs slightly better than the logistic model
for a wide range of parameters. Indeed, the frequencies
of the two largest families that are identical by descent
are better approximated by the Yule model as can be
seen from Figure 6. In the case of r/a ¼ 0.03, only for
selection strengths a . 2000 does the logistic model
have an approximation error similar to the Yule approx-
imation. For larger recombination rates, i.e., r/a $ 0.05,
the Yule approximation becomes worse. For values a .

4000 and N¼ 105, the diffusion process (2) is not a good
approximation of the Wright–Fisher model, which as-
sumes a scaling s ¼ a=N with a of the order of 1. For
larger populations the diffusion approximation works
better. However, we did not pursue the study for larger
populations because run times for the Wright–Fisher
model increase linearly with population size.

As far as the distribution of the number of lineages
that go back to the founder of the sweep and the size of
the largest recombinant family is concerned, the quality
of the logistic model deteriorates. A comparison of eY

and eL shows that the approximation error of the Yule
model is half the size of the error introduced by the
logistic model. Figure 7 illustrates this situation.

While errors for the Yule approximation eY and e9Y are
almost the same, this is not true for the logistic model.
The values of eL are more than twice as large as the
values of e9L.

The approximation error in applications: Any ap-
proximation, be it of the logistic or the Yule type,
introduces some error into simulations. For practical
purposes, however, it is not clear which amount of
approximation error materially affects the analysis of
real data.

The coalescent is successful in modern analysis of
sequence polymorphisms because it stores all informa-
tion inherent in the observed data. So far, we discussed
a phase in the evolution of a population only where
strong positive selection was acting. Assume now that
the population was in equilibrium when the beneficial
allele first appeared. For the coalescent this implies
that we add to the coalescent obtained under strong
selection during the sweep a neutral coalescent before
the beginning of the sweep. So we simulate both the
coalescent under hitchhiking, where some lineages
have already coalesced, and the neutral phase, where
the rest of the lineages coalesce. Here coalescence
occurs with rate ð k

2 Þ when currently k lineages are
present. Neutral mutations are added to this tree using
a Poisson process with rate u/2.

We now study the errors induced by applying the
approximations to (i) the distribution of Tajima’s D
(Tajima 1989) and (ii) the likelihood curve for the
target of selection in a genome (see Figure 8). We find
that both approximations are numerically sound.

Figure 7.—Approximation errors eL and eY for the number
of lineages going back to the founder of the sweep and the
size of the largest recombinant family for the Yule and the lo-
gistic models. The same simulations and parameter combina-
tions as in Figure 6 were used.
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The likelihood curve of the target of selection in a
genome is obtained in the following situation: sequence
data are available from two neutral loci flanking a
selected locus. The aim is to estimate the position of
the selected locus by drawing its likelihood curve. This
can be done under the assumption that the selection
strength and per site recombination rates are known
and that data from both neutral sites are independent.
This is reasonable because it was shown in Stephan et al.
(2006) that linkage disequilibrium vanishes for sites on
different sides of a selected locus at the end of the
sweep. As data from the two loci we consider the compact

frequency spectrum; i.e., we record the number of SNPs
that are singletons, doubletons, and all the others (see,
e.g., Li and Stephan 2005). So our data consist of six
numbers, three for each neutral locus.

The likelihood curve is found by simulation, either
with a logistic or with a Yule approximation. The result,
given in Figure 8, shows that both approximations
produce equal results.

DISCUSSION

The concept of genetic hitchhiking, or selective
sweeps, which goes back to Maynard Smith and Haigh

(1974), has become important for the interpretation of
DNA sequence data. Above all, selective sweeps help to
find genes under strong positive selection that are
important for an adaptive process (see, e.g., Sabeti

et al. 2002 and Beisswanger et al. 2006). We compared
two approximate models for genetic hitchhiking, the
logistic and the Yule model. Specifically, we tested by
simulation which of the two is more appropriate in
terms of its fit to the Wright–Fisher model with selection
and recombination.

The logistic model relies on the approximation that
genetic drift can be ignored under strong selection.
This approximation is useful for the theoretical un-
derstanding of genetic hitchhiking (Kaplan et al. 1989;
Stephan et al. 1992). Its analysis has recently been
extended to study two neutral loci linked to the selected
site to predict patterns of linkage disequilibrium
(Stephan et al. 2006).

The Yule approximation relates selective sweeps
with supercritical branching processes. Already Fisher

(1930) observed that the frequency path of a beneficial
allele that enters a population may be approximated
by a supercritical branching process. This insight was
applied to selective sweeps by Barton (1998) who ar-
gued that the approximation of the frequency path of a
strongly beneficial allele works only as long as its fre-
quency exceeds a certain threshold. And, in fact, his
study uses a supercritical branching process with super-
criticality 2s as an approximation of the early phase of
a selective sweep.

To study the selective sweep from start to finish using
a supercritical branching process we use the time
transformation (4). By this transformation we obtain a
one-to-one correspondence between the paths of the
Wright–Fisher diffusion with selection (2) and super-
critical branching processes. This time transform works
until the branching process hits frequency 1, where it is
stopped.

Since Kaplan et al. (1989), the genealogy of a sample
of neutral loci linked to a selected locus has been
studied using a structured coalescent. The structure is
given by the beneficial and the wild-type background
and the change in background is due to recombination
between the neutral and the selected locus.

Figure 8.—(A) The distribution of Tajima’s D estimated at
the end of a selective sweep by simulating the Wright–Fisher
model and the logistic and the Yule approximations during
the selective phase. (B) The log-likelihood curve for the po-
sition of a selected locus given data from two adjacent neutral
loci. The position of the selected site is at 0.
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The structured coalescent can also be studied for
stochastically fluctuating frequencies given by (2);
equivalently, using the one-to-one correspondence to
supercritical branching processes, we may as well con-
sider frequencies given by the Feller branching dif-
fusion (4). The reason why supercritical branching
processes are easy to handle is that their genealogies
are explicit. This applies in particular to the lines of
infinite descent, which form a Yule process. For the
genealogy at the neutral locus linked to the selected
one, recombination events can be represented as marks
on the branches of the Yule tree occurring with constant
rate (Etheridge et al. 2006).

There are two reasons why the Yule process we
consider is only an approximation to a selective sweep.
First, the time transform given above deals with diffu-
sion limits rather than finite populations. However, in a
setting using the Moran model the Yule process was
shown to be a valid approximation (Schweinsberg and
Durrett 2005). Second, the Yule tree produces the
genealogy only at the selected site and hence, events in
the wild-type background cannot be mapped onto this
tree. Fortunately, these events are rare. This was shown
by the approximate result in Schweinsberg and
Durrett (2005) and Etheridge et al. (2006) as long
as (r/a)2 is small and is also confirmed by our sim-
ulations. For parameter ranges where the reduction in
variation is still strong in a sample of size n ¼ 12
(meaning, e.g., that the heterozygosity is reduced by at
least 30% or r/a , 0.1) these events can safely be
ignored. Less than 0.2 such events occur during a sweep
with a ranging between 500 and 10,000 (see Figure 5).
This might change for larger samples, as was, e.g.,
considered in Barton (1998) because the reduction
in variation might still be high in parameter ranges
where back-recombinations are frequent. For n¼ 12, we
also see that the number of back-recombinations in-
creases drastically for r/a $ 0.1. In this parameter
regime, lines are jumping back and forth between the
beneficial and the wild-type background, but as back-
recombinations become less probable toward the be-
ginning of the sweep many will end up in the wild-type
background at the beginning of the sweep.

We check and compare the quality of the logistic
model and the Yule approximation by a simulation
study. The parameter ranges we use are chosen such that
the standard assumptions of genetic hitchhiking are
met; in addition, they should lead to observable patterns
in sequence data. By this we mean that a ¼ Ns?1, so
that we can expect a strong reduction in diversity, and
r>a to ensure that the neutral locus is in the valley
of reduction of variation. In our studies we picked a
moderate sample size of n ¼ 12. The population size
enters into the simulation of the logistic and Yule
approximation only by the factor a ¼ Ns and the scaled
recombination rate. However, for fixed a, the run time
of the Wright–Fisher model is approximately linear in

N and becomes too slow to produce enough iterations
if N . 106.

Both the logistic and the Yule approximations are fast.
However, the speed of the two procedures is controlled
by different mechanisms. For the logistic model, the
speed is mostly dependent on the number of time steps
simulated during the selective sweep. We follow the
algorithm of Kim and Stephan (2002) and use 1000
such steps. The speed of the Yule approximation de-
pends on 2a, as the Yule tree is stopped upon reaching
b2ac lines. Comparing both models with 1000 dis-
cretization steps, i.e., a ¼ 500, the Yule approximation
is faster by a factor of 4 in a sample of size 12 (see
Figure 3).

To test for the quality of the approximation we used
two different measures. The first is identity by descent
of the lineages in the sample at the beginning of the
selective sweep; these are measured by e9L and e9Y as given
by (9) for the logistic and the Yule approximations,
respectively. The second is the number of lineages
that trace back to the founder of the sweep and the size
of the largest recombinant family, given by eL and eY ,
respectively.

Part of the error in the Yule approximation comes
from neglecting events in the wild-type background. As
the logistic model accounts for these events as well and
gives good estimates for their number, it has advantages
in this respect. However, the Yule model gives a better
approximation for identity by descent over a wide range
of parameters in spite of ignoring the events in the wild-
type background. Only for large values of s and ratios
r/s . 0.05 is the logistic model superior. Hence, we
conclude that the Yule approximation gives a signifi-
cantly better approximation for events in the beneficial
background than the logistic model.

The logistic approximation does not take into ac-
count fluctuations in the frequency of the beneficial
allele in the early phase of a selective sweep. As a
consequence, it produces incorrect estimates for the
occurrence of events in that phase. This is seen in our
simulations from the fact that the number of lineages
that trace back to the founder of the sweep is estimated
less accurately than identity by descent from the
beginning of the sweep. We find that the approximation
error produced by the logistic model is twice as large as
the corresponding measure for the Yule approximation
over all parameters considered.

Consider, e.g., statistics like the frequency of the major
haplotype, the frequency distribution obtained from a
sample, Tajima’s D, or the likelihood curve of the target
of selection if data from two neutral loci are given. The
distribution of these statistics can be predicted/simu-
lated under hitchhiking once the distribution of the
genealogy of the sample is known approximately; it is
mostly controlled through identity by descent from the
beginning of the sweep. Thus, it is not too surprising
that both the simulated distribution of Tajima’s D
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and the likelihood curve for the target of selection
produce good results for both the logistic and the Yule
approximations.

Not only does the Yule approximation give accurate
results in simulations, but also it has proved to be useful
in the analytical understanding of patterns of genealo-
gies at neutral sites linked to a strongly beneficial one
(Durrett and Schweinsberg 2005; Etheridge et al.
2006). These analytical results cover the estimated de-
crease in heterozygosity and the probability that a
lineage escapes the sweep as well as an approximate
sampling formula under genetic hitchhiking and results
for a recurring sweep model.

There is justified hope that the Yule approximation
may also lead to a deeper understanding of further
questions related to hitchhiking. These might include:
genealogical trees for a model of overlapping selective
sweeps, selective sweeps in structured populations, or
the analysis of soft sweeps (Hermisson and Pennings

2005). In addition, an extension of the Yule model
to several loci is feasible (P. Pfaffelhuber and A.
Studeny, unpublished results). Here, taking multiple
neutral loci into account, one has to study the ancestral
recombination graph conditioned on the frequency
path X. Lines may not only coalesce and change their
background but also split in either background. As the
period where splits in the beneficial background occur
is separated in time from both recombinations with
wild-type individuals and coalescence events these can
be generated independently from the rest of the
genealogy.

The Yule approximation in its present forms also has
drawbacks. Events in the wild-type background are ig-
nored, which leads to approximation errors for r/s . 0.1.
However, back-recombinations as well coalescence events
can be incorporated into the Yule process. This could be
done by estimating Y from the number of lines in the
Yule process by the same procedure that leads to (6).

Another drawback of the Yule approximation is that
only one neutral locus linked to a selected one is
implemented and analyzed numerically. However, ge-
nome scans, which are used to find targets of selection,
produce multilocus data (see, e.g., Glinka et al. 2003).
In addition, statistical tests based on a full-likelihood
analysis such as those by Li and Stephan (2005) rely on
multilocus simulations of hitchhiking and therefore
cannot yet be treated by the Yule process. However,
composite-likelihood approaches such as those given in
Kim and Stephan (2002) treat different loci as un-
linked, which makes it possible to use the Yule approx-
imation here. Multilocus extensions not only allow for
more applications in simulating selective sweeps, but
also direct the way to theoretical predictions for mea-
sures of linkage disequilibrium under hitchhiking,
which were started in Stephan et al. (2006).

A further application of the Yule process approxi-
mation could be to develop methods in the spirit of

Griffiths and Tavare (1994), Stephens and Donnelly

(2000), Fearnhead and Donnelly (2001), and De

Iorio and Griffiths (2004), which work in the pres-
ence of strong selection and recombination. Here, the
Yule process approximation should help to obtain pro-
posal distributions for importance sampling of geneal-
ogies conditioned under sequence data that arose by
neutral mutation and genetic drift, followed by a loss
of diversity due to a selective sweep.
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APPENDIX: IMPLEMENTATION OF THE
APPROXIMATIONS

The logistic model was implemented using the
algorithm given by Braverman et al. (1995) and Kim

and Stephan (2002) as implemented in the program
ssw by Yuseob Kim. The coalescence and recombina-
tion events were simulated using a step function in-
stead of the logistic sweep curve. We followed the
common practice suggested by Kaplan et al. (1989)
and Braverman et al. (1995), that the frequency path
should be started with a frequency e ¼ 5=Ns and end
with frequency 1 � e. However, our conclusions are not
affected by the choice of e (results not shown). Lineages
in the beneficial background at the beginning of the
sweep were forced to coalesce.

We follow Kim and Stephan (2002) and discretize the
selective sweep into 1000 time steps with a step function
rather than a smooth curve as the frequency curve of the
beneficial allele. Tracing the ancestry backward in time,
we have to wait a random amount of time until the next
event in the coalescent happens.

The probabilities that an event happens in time dt can
be given explicitly; see, e.g., Braverman et al. (1995). We
use Algorithm 1 to generate these events. Observe that
time is running backward. The numbers p1, p2, p3, . . . ,
are the probabilities that the next event occurs in the
first, second, etc., discretization step of the sweep (back-
ward in time). Assume that we already know all events
up to time j. Set i to the current time, pick a random

number x that is uniformly distributed on [0, 1], and set
p¼ 0. During the algorithm p increases; in particular, in
the ith step, p is the probability that the event occurs
after at most i steps. So the number of steps we need for
p $ x will be the number of steps until the next event.

By this approach we have to draw as many random
numbers as there are events during the sweep. Observe
that Algorithm 1 certainly terminates in our special case
because it automatically ends after 1000 time steps by
setting p1000 ¼ 1.

Algorithm 1: How to sample from the waiting time until
the next event:

Require: pi, i ¼ 1, 2, . . ., {probabilities that an event
happens in the ith step}

Require: j {starting index}
x)RND, p)0, i)j
while p , x do

p)1� ð1� pÞð1� piÞ ¼ p 1 pi � p � pi

i)i 1 1
output i.

How the Yule approximation is implemented can be
read from the pseudocode given in Algorithm 2. Recall
that a tree can conveniently be stored as an array of
nodes. A node has a time coordinate as well as
coordinates indicating the ancestor and children. Bi-
nary trees have 2n� 1 nodes, so the array tree has length
2n � 1. The first n positions in the array encode the
leaves of the genealogical tree. The tree itself gives the
genealogy at the selected site. The tree topology arises
by coalescing two lineages at random. For this, a list of
active nodes (live) is created, starting with all leaves of
the tree. When two nodes coalesce, they are removed
from live and replaced by their ancestor. The times of
the nodes represent the number of lines in the full Yule
tree; e.g., all leaves have time 2a, as the Yule tree is
stopped upon reaching 2a lines. Generating the times
of coalescence events is done using Algorithm 1. The
probability of coalescence in step i is given by (6). As
explained above, the neutral genealogy can be gener-
ated by marking the Yule tree with a constant rate. This
can be done using the probabilities (8). Two nodes not
separated by a recombination event are identical by
descent from the beginning of the sweep.

Algorithm 2: Yule approximation to hitchhiking:
Require: tree {array of 2n� 1 nodes, first n are leaves, the

others are internal nodes}
Require: time {array of times of 2n � 1 nodes}
Require: hit {array of 0/1’s, 1 indicates that the lineage

to a node is hit by a recombination event}
{Initializing nodes}
for all 0 # i , 2n � 1 do

timei)b2ac {the Yule process is stopped with b2ac
leaves}

{Generating the tree topology}

Genealogies Under Genetic Hitchhiking 2007



live)ðtree0; . . . ; treen�1Þ
for all n # i , 2n � 1 do

pick two elements treej and treek from live at random
ancestor of treej and treek is treei

remove treej, treek from live, add treei to live
{Generating times for the nodes of the sample}
j)b2ac; k)n
while k . 1 do

{Now, use Algorithm 1 with probabilities pk
j , pj�1

k , . . . ,
from (7) and j to create the next waiting time}

i)time of the next coalescence event
time2n�k)j)i � 1

k)k � 1
{Throwing recombinations on the tree}
for all 0 # i , 2n � 2 do

i1)timeancestor of i

i2)timei

mark the branch from node i to its ancestor with
probability qi2

i1
from (8).

The program HITCHHIKING that we developed for
our numerical studies implements all three models. It can
be downloaded at http://adenine.biz.fh-weihenstephan.
de/hitchhiking.
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