Statistisches Praktikum im SS 2014

Prof. Dr. Gaby Schneider
unter Mitarbeit von Benjamin Straub, Matthias Gärtner und Dr. Michael Messer

Im Rahmen des DFG-Schwerpunkts SPP-1665 'Resolving and manipulating neuronal networks in the mammalian brain - from correlative to causal analysis'

in Kooperation mit Prof. Dr. Jochen Roeper, Dr. Sevil Duvarci, Dr. Torfi Sigurdsson, Institut für Neurophysiologie, Goethe-Universität Frankfurt

Wann:
Wo:
Beginn:
Di. 12:15 Uhr
Seminarraum 711 (klein), Robert-Mayer-Str. 10
22.4.2013

Vortragsprogramm der Abschlusspräsentation

Dienstag, 15. Juli, 10 Uhr c.t. bis 14 Uhr, 711 (klein)

10:15 Gaby Schneider - Begrüßung und Einleitung

Wir diskutieren stochastische Modelle, statistische Methoden und Algorithmen zur Analyse spezieller Muster in Punktprozessen, die in der neuronalen Informationsverarbeitung insbesondere in dopaminergen Neuronen eine Rolle spielen können. Speziell betrachten wir (1) sog. Bursts (Intervalle mit überraschend vielen Events), (2) überraschend lange Intervalle (Pausen) sowie (3) die Irregularität der zugrundeliegenden Rhythmizität. Die Methoden werden auf vier Datensätze aus Einzelzellableitungen zweier Areale (SN bzw. VTA) an anästhesierten und wachen Mäusen aus dem Labor von Prof. Roeper angewandt (erhoben von Kaue Costa, Dr. Sevil Duvarci, Dr. Sabine Krabbe, Dr. Julia Schiemann).

10:30 Michael Messer - Detektion von Ratenänderungen mit multiplen Filtern

mit Heiko Jung und Frederic Matter

Zur Vorverarbeitung der empirischen Spiketrains benutzen wir in vielen Anwendungen (z.B. Poisson Surprise) eine Zerlegung der Spiketrains in Stücke annähernd konstanter Feuerrate mit Hilfe eines Multiple-Filter-Algorithmus zur Detektion von Ratenänderungen [1].
[1] Messer, M., Kirchner, M., Schiemann, J., Roeper, J., Neininger, R., Schneider, G. (eingereicht) A multiple filter test for change point detection in renewal processes. arXiv, 1303.3594

10:45 Arthur Kadkalov - Detektion von Bursts und Pausen mit Poisson Surprise

mit Laura Arnold

Eine Ansammlung von Spikes, die im Verhältnis zum restlichen Spiketrain überraschend dicht beieinander liegen, wird als 'Burst' bezeichnet, ein Intervall mit vergleichsweise wenigen Spikes 'Pause' genannt. Um Bursts und Pausen automatisch zu identifizieren, nutzen wir die Poisson Surprise-Methode [1,2]. Grundannahme ist, dass das Feuern der Neuronen einem Poisson-Prozess folgt. Dadurch kann man jeder Ansammlung von Spikes (bzw. langen Intervallen) eine Wahrscheinlichkeit zuordnen, mit der sie durch Zufall auftritt. Je kleiner die Wahrscheinlichkeit, desto größer der Überraschungswert, die 'Surprise'. Ist diese groß genug, wird eine Spikeansammlung als Burst (bzw. Pause) klassifiziert.    
Wir wenden die Methode auf oben genannte Spiketrains an und analysieren Unterschiede hinsichtlich der Anzahl und Dichte an Bursts und Pausen zwischen den Arealen bzw. zwischen wachen und anästhesierten Tieren.

[1] C.R. Legendy and M. Salcman (1985) Bursts and Recurrences of Bursts in the Spike Trains of Spontaneously Active Striate Cortex Neurons. Journal of Neurophysiology, Vol. 53 (4), pp. 926-939
[2] S. Elias, M. Joshua, J. A. Goldberg, G. Heimer, D. Arkadir, G. Morris & H. Bergman (2007) Statistical Properties of Pauses of the High-Frequency Discharge Neurons in the External Segment of the Globus Pallidus. The Journal of Neuroscience 27(10): 2525-2538

11:15 Michael Messer - Rank Surprise Burst Detection

mit Christian Besenbruch und Iris Schott

Die Rank-Surprise-Methode [RS, 1] ist eine algorithmische Definition für Bursts, die keine Verteilungsannahme trifft. Stattdessen werden aufsteigende Ränge für die Inter-Spike-Intervalle (ISIs) vergeben und ein Burst als 'Zusammenhängende Folge kleiner Ränge' angesehen. In einem Erneuerungsprozess wäre eine zufällige Permutation aller Ränge zu beobachten. Unter dieser Annahme kann einer Folge von ISIs eine Wahrscheinlichkeit zugeordnet werden, mit der eine Ansammlung solche kleiner Ränge durch Zufall auftreten kann. Der sogenannte Exhaustive Surprise Maximization Algorithmus bestimmt die Surprise und wählt die ISI-Folge mit maximaler Surprise.
Die Idee der RS-Methode, spezielle Verteilungsannahmen zu vermeiden, ist zunächst eine interessante Erweiterung anderer Verfahren. Leider stimmten in den gegebenen Spiketrains die mit ihr detektierten Bursts zum Teil wenig mit den visuell nahegelegten Bursts überein. Zum Beispiel muss beachtet werden, dass durch die Umwandlung von ISIs in Ränge auch in nicht-burstigen Spiketrains ISI-Folgen als Bursts deklariert werden, obwohl ihre ISIs kaum kürzer sind als ihre Umgebung. Analog können in stark burstigen Spiketrains zu wenige Bursts detektiert werden, da ihre Anzahl von den Parametern des Algorithmus abhängt.

[1] Gourevitch, Eggermont (2007) A nonparametric approach for detection of bursts in spike trains. Journal of Neuroscience Methods 160:349-358

11:30 Cenk Kuscu, Matthias Gärtner - Ein stochastisches Modell zur Quantifizierung von Burstiness und Irregularität

mit Mike Gschwilm

Algorithmen zur Burstdetektion erfassen die Bursteigenschaften von Spiketrains durch Zuordnung von Spikes zu Bursts, enthalten aber keine formale Definition eines Bursts. Im Gegensatz dazu verwenden wir ein stochastisches Modell [GLO - Gaussian Locking to a free Oscillator, 1, siehe Figur], das die typischen Spikemuster der oszillierenden Prozesse beschreibt und die Eigenschaften der Bursts mit einfachen Parametern quantifiziert. Das GLO modelliert einen unsichtbaren Hintergrundrhythmus mit normalverteilten Zuwächsen, auf dessen Events je zufällige Anzahlen normalverteilter Spikes platziert werden.
   Zur Parameterschätzung wird die theoretische Autokorrelationsfunktion, die von den GLO-Parametern abhängt, an das empirische Autokorrelogramm angepasst. Die Parameter dienen der Klassifikation des Spiketrains in vier Kategorien 'regulär bzw. irregulär burstig' und 'regulär bzw. irregulär single spike' und der detaillierten Beschreibung der Spikemuster bezüglich Regularität und Burstiness.

[1] M. Bingmer, J. Schiemann, J. Roeper & G. Schneider (2011): Measuring burstiness and regularity in oscillatory spike trains. Journal of Neuroscience Methods Vol. 201: 426-437

12:00 Pause

12:30 Elisabeth Stenschke - Pausenanalyse

mit Alexander Molitor, Lukas Roller und Matthias Gärtner
Wir untersuchen und vergleichen zwei Methoden zur Analyse von 'Pausen', d.h. überraschend langer Interspike Intervalle (ISIs) in Einzelspiketrains. Die Robust-Gaussian-Surprise-Methode [RGS, 1] modelliert ISIs als log-normalverteilt und identifiziert Pausen als lange ISIs mit kleinen Wahrscheinlichkeiten. Aufgrund großer Glättungsfenster, Löschung überlappender Pausen und spezieller Modellannahmen finden sich geringe Übereinstimmungen der RGS-Pausen mit denen, die bei visueller Inspektion auffallen. Im Gegensatz dazu zeigt ein einfacher Pausen-Detektionsalgorithmus, der die Länge eines ISIs mit den Längen benachbarter ISIs vergleicht, passendere Resultate. Wir analysieren Parameter und zeitliche Koordination der so identifizierten Pausen in den VTA Spiketrains wacher Mäuse.   
[1] D. Ko, C.J. Wilson, C.J. Lobb, C.A. Paladini (2012) Detection of bursts and pauses in spike trains. Journal of Neuroscience Methods 211(1):145-58.

13:00 Philipp Klein - Ein zweistufiges stochastisches Pausenmodell

Wir verwenden ein einfaches stochastisches Modell für die Beschreibung vorwiegend irregulärer Spiketrains in wachen Mäusen: Wir nehmen an, dass jedes ISI unabhängig aus einer Mischverteilung von zwei Gamma-Verteilungen gezogen wird. Zur Schätzung der fünf Parameter zerlegen wir zunächst den Spiketrain in Abschnitte annähernd konstanter Rate und verwenden dann den EM-Algorithmus [1] zur Anpassung der Verteilungen der einzelnen Abschnitte.
Wir verwenden die geschätzten Modellparameter zur Analyse von Unterschieden zwischen Arealen bzw. anästhesierten und wachen Tieren und diskutieren Stärken und Schwächen des Modells. So werden in Prozessen mit niedrigen seriellen Korrelationen die Verteilungen der ISI-Längen gut approximiert und visuell ähnliche Spiketrains erzeugt. Bei Prozessen mit negativen seriellen Korrelationen (z.B. regulär bursty) oder positiven seriellen Korrelationen (z.B. längeren Abschnitten mit langen bzw. kürzeren Intervallen) hingegen sind die Modellannahmen verletzt, so dass dort die simulierten Prozesse den Anteil detektierter Pausen in den empirischen Prozessen noch nicht ausreichend abbilden können.
  
[1] Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B 39 (1): pp. 1-38.

13:30 Gaby Schneider - Zusammenfassung und Ausblick




Vortragsübersicht während des Semesters und Literatur

22. April      Heiko Jung, Frederic Matter

Messer M., Kirchner M., Schiemann J., Roeper J., Neininger R. & Schneider G.: A multiple filter test for the detection of rate changes in renewal processes with varying variance. arXiv: stat.AP/1303.3594.

29. April      Guangyuan Chen, Artur Kadkalov

C.R. Legendy and M. Salcman (1985) Bursts and Recurrences of Bursts in the Spike Trains of Spontaneously Active Striate Cortex Neurons. Journal of Neurophysiology, Vol. 53 (4), pp. 926-939

6. Mai      Laura Arnold

S. Elias, M. Joshua, J. A. Goldberg, G. Heimer, D. Arkadir, G. Morris & H. Bergman (2007) Statistical Properties of Pauses of the High-Frequency Discharge Neurons in the External Segment of the Globus Pallidus. The Journal of Neuroscience 27(10): 2525-2538

13. Mai      Alexander Molitor, Lukas Roller

D. Ko, C.J. Wilson, C.J. Lobb, C.A. Paladini (2012) Detection of bursts and pauses in spike trains. Journal of Neuroscience Methods 211(1):145-58.

20. Mai      Christian Besenbruch, Iris Schott

Gourevitch, Eggermont (2007) A nonparametric approach for detection of bursts in spike trains. Journal of Neuroscience Methods 160:349-358

27. Mai      Elisabeth Stenschke

3. Juni      Mike Gschwilm, Cenk Kuscu

Bingmer M., Schiemann J., Roeper J. & Schneider G. (2011) Measuring burstiness and regularity in oscillatory spike trains. Journal of Neuroscience Methods 201: 426-437

10. Juni      Alle!

Organisationstreffen, Zusammenstellung der Analyseergebnisse

17. Juni      Philipp Klein




Hauptseite Statistisches Praktikum




Impressum      Datenschutzerklärung