Statistisches Praktikum im SS 2012

Seminarthema: "Hirnaktivität im Schlaf"

Dr. Gaby Schneider, unter Mitarbeit von Markus Bingmer und Michael Messer
in Kooperation mit Dr. Verena Brodbeck und Dr. Helmut Laufs, Zentrum für Neurologie und Neurochirurgie

Wann:
Wo:
Beginn:
Vorbesprechung:
 
Abschlusspräsentation:
Mi. 12:15 Uhr
Seminarraum 711 (groß), Robert-Mayer-Str. 10
18.4.2012
Mittwoch, 25. Januar 2012, 10:15 Uhr, Raum 711 (groß)
Ankündigung
Mittwoch, 4. Juli 2012, ab ca. 12 Uhr, 711 (groß), RM 10

Vortragsprogramm der Abschlusspräsentation

1. Rebecca Seeger - EEG-Microstates - Die Atome der Gedanken sichtbar machen

Das elektrische Feld der Hirnaktivität, messbar an der Kopfoberfläche, verändert sich in schneller Folge verschiedener Amplituden und Wechel von geringen zu großen Spannungsunterschieden. Die Verteilung der Feldtopographie zu den Zeitpunkten mit großen Spannungsunterschieden (sogenannte "EEG-Microstates") ist nicht zufällig, sondern lässt sich in allen Schlafphasen in vier Schablonen ("Karten") einteilen, die sich in den verschiedenen Schlafphasen und im Wachen ähneln. Damit lassen sich die hochdimensionalen Zeitreihen des EEGs auf Abfolgen von Karten reduzieren, die Informationen über die Informationsverarbeitung des Hirns enthalten könnten. Wir präsentieren die Methodik, Datenbasis und Fragestellung der entsprechenden Studie von Verena Brodbeck und Kollegen (Neuroimage, in press), in der auf diese Weise funktionelle Unterschiede und Gemeinsamkeiten verschiedener Schlafphasen untersucht wurden.

EEG Microstates of wakefulness and NREM sleep. Brodbeck V, Kuhn A., von Wegner F., Morzelewski A., Tagliazucchi E., Borisov S., Michel C.M., Laufs H. (Neuroimage, in press)

2. Xiao Yin - Clusteranalyse zur Bestimmung der Karten

Clusteranalyse ist ein multivariates statistisches Verfahren. Es identifiziert mehrere Gruppen einer Grundgesamtheit so, dass die Elemente innerhalb der Gruppen möglichst "ähnlich" und die Elemente verschiedener Gruppen möglichst "unähnlich" sind. Wir illustrieren verschiedene Ansätze der Clusteranalyse und diskutieren ihre Anwendbarkeit auf den vorliegenden Datensatz. Aufgrund der Größe des Datensatzes und des speziellen Ähnlichkeitsmaßes kommen hier nur wenige Verfahren in Frage. In der Clusterlösung, die wir durch die ersten beiden Hauptkomponenten illustrieren, spiegelt sich das Ähnlichkeitsmaß direkt wider. Klare Gruppenstrukturen, d.h. Trennungen zwischen den identifizierten Clustern, sind dagegen kaum zu erkennen. Die Güte der Clusterung wird verglichen mit simulierten Daten unterschiedlicher Clusterstärke.


    

3. Anne Heppner - Dimensionsreduktion im Tiefschlaf (Hauptkomponentenanalyse)

      Wir verwenden die Hauptkomponentenanalyse (Principle Component Analysis, PCA), um den hochdimensionalen Datensatz der 30 parallelen Zeitreihen im EEG auf möglichst wenige Dimensionen zu reduzieren und so die Darstellung zu erleichtern. Die PCA entspricht einer Hauptachsentransformation, deren neue Basisvektoren anhand der Daten so bestimmt sind, dass sie sukzessive die nächst größte Varianz im Datensatz abbilden können. Wegen hoher Korrelationen in den 30 Signalen können ca. 75% der Gesamtvarianz in nur drei Dimensionen erfasst werden, mit zunehmender Schlaftiefe sogar noch mehr. Einzelne Hauptkomponenten zeigen hohe Übereinstimmungen mit den per Clusteranalyse ermittelten Karten.



4. Max Riedel - Ein universelles Koordinatensystem - Ähnlichkeitsmaße von Unterräumen

Eine Schwierigkeit bei der globalen Analyse der Microstates ist es, eine gemeinsame Datendarstellung über alle Versuchspersonen und Schlafstadien hinweg zu finden. Auch mit der PCA (s.o.) wurden pro Versuchsperson und Schlafstadium getrennte Hauptkomponenten gewonnen. Wir untersuchen die Ähnlichkeit der durch diese Hauptkomponenten aufgespannten Unterräume mit Hilfe zweier Distanzmaße. Ziel ist es, möglichst alle Daten in demselben Raum zu beschreiben. Während die zweite und dritte Hauptkomponente zwischen (W, N1) und tieferem Schlaf (N2, N3) vertauscht zu sein scheinen, spannen die ersten drei Hauptkomponenten zusammen einen Unterraum auf, der bei allen Versuchspersonen und Schlafstadien annähernd identisch ist.


     

5. Christian Baer - Frequenzanalyse der EEG-Hauptkomponenten


Die Spektralanalyse zerlegt eine Zeitreihe in eine Überlagerung harmonischer Schwingungen verschiedener Frequenzen. Dies erlaubt beispielsweise, die Frequenzen mit der höchsten Amplitude zu extrahieren. Anstatt wie üblich die Signale der Elektroden zu analysieren, schlagen wir eine Zerlegung der Hauptkomponenten vor, um die Komplexität des Datensatzes weiter zu reduzieren. Mit den wichtigsten ca. 2% der Frequenzen lassen sich ca. 40% der Varianz darstellen (siehe Figur). Alle Hauptkomponenten zeigen ähnliche Spektraldarstellungen, wobei wie üblich im Tiefschlaf im allgemeinen niedrigere Frequenzen dominieren.




6. Stefan Albert - Die EEG-Werte im Schlaf als selbsterklärender Prozess (Autoregressive Prozesse)

Zur Modellung der oszillativen Schwankungen der EEG-Daten verwenden wir ein stationäres autoregressives Modell. Bei einem autoregressiven Prozess der Ordnung p wird der Wert zum Zeitpunkt t (bis auf einen additiven Fehler) aus der Vergangenheit des Prozesses zu den Zeitpunkten (t-1,...,t-p) vorhergesagt und ein direkter Bezug zwischen Modellparametern und Autokorrelation hergestellt. Wir diskutieren die Wahl der Anzahl der Modellparameter p und deren Zusammenhang mit der Oszillation des zugrundeliegenden Prozesses. So wird z.B. im Tiefschlaf durch die niedrige Grundfrequenz eine längere Vergangenheit zur Modellierung benötigt. Insgesamt suggeriert allerdings die hohe Variabilität der Parameter und geringe Passung des Modells, dass eine Erweiterung nötig wäre, die mindestens auftretende Nichtstationaritäten einbezieht.

7. Olga Zavraznov - Wieviel Gedächtnis ist nötig? (Markovketten höherer Ordnung)

Wir modellieren eine Kartenfolge als homogene Markovkette höherer Ordnung r=0,1,2,3,... Ähnlich wie beim autoregressiven Prozess, in dem aber das EEG-Signal modelliert wurde, müssen in diesem Modell r vorhergehende Zustände (Karten) im Gedächtnis behalten werden, um den aktuellen Zustand stochastisch zu modellieren. Mit Hilfe eines Likelihood-Quotiententests bestimmen wir die Ordnung r und damit die Anzahl der memorierten Zustände.
    Ein Problem dieser Analyse ist, dass die Anzahl Kartenkombinationen exponentiell mit der getesteten Ordnung r wächst. Dadurch können in kurzen Datenstücken nur kleine Ordnungen getestet werden, hier maximal r=3. Entsprechend werden bei Analyse der Einzelpersonen (kurze Datenstücke) die Nullhypothesen niedriger Ordnung eher beibehalten: im Schlaf etwa Ordnung 1, im Wachzustand findet sich bei ca. 50% der Versuchspersonen eine höhere Ordnung von mindestens 3. Eine gepoolte Analyse über alle Personen legt jedoch auch in allen Schlafzuständen eine Ordnung von mindestens drei nahe. Weitere Analysen für höhere Ordnungen müssten daher auf längeren Datenstücken basieren.



8. Iran Sandoghdar - Welche Sprache sprechen Microstates? (Hidden Markov Modelle)

"Hidden Runs"     Wir modellieren die Zustandsabfolgen der vier festgestellten Karten als Hidden-Markov-Modell (HMM). Hierbei wird angenommen, dass der Prozess der "wahren" Microstates im Hintergrund abläuft und nur durch die Kartenabfolgen beobachtbar ist. Speziell nehmen wir an, dass mit geringer Wahrscheinlichkeit z.B. in Zustand A eine andere Karte als A beobachtbar ist. Darauf deutet die Anwesenheit von "hidden Runs" hin - so bezeichnen wir längere Intervalle mit hohem Anteil einer Karte, in denen aber nicht ausschließlich diese Karte emittiert wird (siehe Figur). Dieses Phänomen könnte eine Erklärung für das in Vortrag 7 beschriebene längere Gedächtnis der Markov Kette sein. Zusätzlich könnte es eine versteckte "Wortstruktur" der Microstates zugänglich machen, die auf Ebene der Kartenabfolgen nicht sichtbar ist. Mit Hilfe spezieller HMM-Algorithmen versuchen wir, den versteckten Prozess der Microstates zu detektieren und insbesondere für N3 ein geeignetes Modell für die Beschreibung der zugrunde liegenden Syntax zu identifizieren.

Jochen Frey (Poster) - Ratenschätzung per Histogrammmethode

Wir betrachten eine Methode von Shimazaki und Shinomoto, um die Intensität der GFP-Maxima in der zeitlichen Abfolge zu schätzen. Sie basiert auf einer speziellen Wahl der Balkenbreite im Ratenhistogramm. Diese wird ermittelt durch das Minimum einer geschätzten Kostenfunktion, deren Güte unter bestimmten Modellannahmen mit der Anzahl Versuchsdurchgänge zunimmt. Bei den vorliegenden Daten betrachtet man jedoch nur einzelne Versuchsdurchgänge ohne Wiederholungen. So kann die optimale Balkenbreite nur ungenau geschätzt werden.

Shimazaki, Shinomoto (2007): A Method for Selecting the Bin Size of a Time Histogram. Neural Computation 19, 1503-27




Semesterprogramm

18. April

25. April

2. Mai

9. Mai

16. Mai

23. Mai

30. Mai

6. Juni

13. Juni

20. Juni

27. Juni

4. Juli

11. Juli
Rebecca Seeger

Anne Heppner

Max Riedel

Christian Baer

KEIN SEMINAR

Xiao Yin

KEIN SEMINAR

Stefan Albert

Olga Zavraznov

Iran Sandoghdar

Jochen Frey

ABSCHLUSSPRÄSENTATION

Namrata Mohapatra
Einführung, Datenbasis und Grafische Darstellung

Hauptkomponentenanalyse

Vergleich von Vektoren, Ebenen und Unterräumen

Spektralanalyse



Clusteranalyse



Autoregressive Modelle

Markov-Ketten höherer Ordnung

Hidden-Markov-Modelle

Optimal bin size estimation



Measuring burstiness and regularity in oscillatory spike trains

Hauptseite Statistisches Praktikum

Impressum      Datenschutzerklärung