
TROPICAL BASES BY REGULAR PROJECTIONS
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Abstract. We consider the tropical variety T (I) of a prime ideal I generated
by the polynomials f1, . . . , fr and revisit the regular projection technique intro-
duced by Bieri and Groves from a computational point of view. In particular,
we show that I has a short tropical basis of cardinality at most r+codim I +1
at the price of increased degrees, and we provide a computational description
of these bases.

1. Introduction

Given a field K endowed with a non-trivial real valuation ord : K → R̄ :=
R∪ {∞}, the tropical variety T (I) of an ideal I ⊳ K[x1, . . . , xn] is defined as the
topological closure of the set

(1) ordV(I) = {(ord(z1), . . . , ord(zn)) : z ∈ V(I)} ⊆ Rn ,

where V(I) denotes the zero set of I in (K∗)n. Tropical varieties have been the
subject of intensive recent studies ([2, 4, 7, 8, 10]; see [9] for a general introduc-
tion.)

A basis F = {f1, . . . , fr} of I is called a tropical basis of I if
⋂r

i=1 T (fi) =
T (I). Bogart, Jensen, Speyer, Sturmfels, and Thomas initiated the systematic
computational investigation of tropical bases [2, 7], by providing both Gröbner-
related techniques for computing tropical bases as well as by providing lower
bounds on the size. They consider the field of Puiseux series K = C{{t}} with
the natural valuation and concentrate on the “constant coefficient case”, i.e.,
I ⊳ C[x1, . . . , xn]. As a lower bound, they show that for 1 ≤ d ≤ n there is a
d-dimensional linear ideal I in C[x1, . . . , xn] such that any tropical basis of linear
forms in I has size at least 1

n−d+1

(

n

d

)

.
In this note we explain that by dropping the assumption on the degree of the

polynomials there always exists a small tropical basis for a prime ideal I, thus
contrasting that lower bound.

Theorem 1.1. Let I⊳K[x1, . . . , xn] be a prime ideal generated by the polynomials

f1, . . . , fr. Then there exist g0, . . . , gn−dim I ∈ I with

(2) T (I) =
n−dim I

⋂

i=0

T (gi)

and thus G := {f1, . . . , fr, g0, . . . , gn−dim I} is a tropical basis for I of cardinality

r + codim I + 1.
1
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In particular, this also implies the universal (i.e., independent of dim I) bound
of n + 1 polynomials in the representation (2).

The statement comes as a consequence of the regular projection technique in-
troduced by Bieri and Groves [1]. The purpose of this note is to revisit this
approach from the computational point of view, with the goal to provide an ex-
plicit and constructive description of the resulting tropical bases. Specifically,
we apply tropical elimination on a particular class of ideals; for a general treat-
ment of tropical elimination see the recent papers of Sturmfels, Tevelev, and Yu
[11, 12].

Based on this construction, we characterize the Newton polytopes of the poly-
nomials gi in the tropical bases for the special case of ideals generated by two
linear polynomials. The tradeoff between the cardinality and the degree of a
tropical bases in the general case is subject to further study.

This paper is structured as follows. In Section 2 we introduce the relevant
notation from tropical geometry and their relation to valuations. In Section 3
we provide the computational treatment of regular projections and prove Theo-
rem 1.1. Section 4 provides some results on the characterization of the resulting
Newton polytopes of the basis polynomials.

2. Tropical geometry

For a field K, a real valuation is a map ord : K → R̄ = R ∪ {∞} with
K \ {0} → R and 0 7→ ∞ such that ord(ab) = ord(a) + ord(b) and ord(a + b) ≥
min{ord(a), ord(b)}. Thus ord = − log ||·|| for a non-archimedean norm ||·|| on K.
Examples include K = Q with the p-adic valuation or the field K = C{{t}} of
Puiseux series with the natural valuation. We can extend the valuation map to
Kn via

ord : Kn → R̄n, (a1, . . . , an) 7→ (ord(a1), . . . , ord(an)) .

We always assume that ord is non-trivial, i.e., ord(K \ {0}) 6= {0}.
Let f =

∑

α cαxα be a polynomial in K[x1, . . . , xn]. The tropicalization of f is
defined as

trop(f) = min
α

{ord(cα) + α1x1 + · · ·+ αnxn} ,

and the tropical hypersurface of f is

T (f) = {w ∈ Rn : the minimum in trop(f) is attained at least twice in w} .

For an ideal I ⊳ K[x1, . . . , xn], the tropical variety of I can be defined either by

T (I) =
⋂

f∈I

T (f)

or equivalently by (1); see [4].
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We shortly review the link between tropical geometry and classical valuation
theory. If I is a prime ideal then we have the field extension

K(y1, . . . , yn) = Quot(K[x1, . . . , xn]/I) =: L

of K. It is well known (see, e.g., [5]) that each valuation on K can be extended
to a valuation of L. Let ∆ord

L be defined by

∆ord
L = {(w(y1), . . . , w(yn)) ∈ Rn | w : L → R̄ a valuation with w|K = ord} .

This subset of Rn coincides with the tropical variety of I,

∆ord
L = T (I)

(see [4]). Bieri and Groves [1] showed that ∆ord
L (and thus T (I) as well) is a pure

polyhedral complex of dimension equal to the transcendence degree of L over K,
and rationally defined over the value group ord(K∗) of ord.

3. Projections and the main theorem

Let I ⊳ K[x1, . . . , xn] be an m-dimensional prime ideal. The main geometric
idea is to consider n−m + 1 different (rational) projections π0, . . . , πn−m : Rn →
Rm+1. If these projections are sufficiently generic (as specified below) then we
obtain

n−m
⋂

i=0

π−1
i (πi(T (I))) = T (I) ,

and each of the sets π−1
i (πi(T (I))) is a tropical hypersurface.

First we consider the image of the tropical variety T (I) under a single (rational)
projection

π : Rn → Rm+1 ,

x 7→ Ax

with a regular rational matrix A whose rows are denoted by a(1), . . . , a(m+1). Let
u(1), . . . , u(l) ∈ Qn with l := n− (m+1) be a basis of the orthogonal complement
of span{a(1), . . . , a(m+1)}.

Set R = K[x1, . . . , xn, λ1, . . . , λl], and define the ideal J ⊳ R by

J =
〈

g ∈ R : g = f(x1

l
∏

j=1

λj
u
(j)
1 , . . . , xn

l
∏

j=1

λj
u
(j)
n ) for some f ∈ I

〉

.

We show the following characterization of π−1(π(T (I))) in terms of elimination.

Theorem 3.1. Let I ⊳ K[x1, . . . , xn] be an m-dimensional prime ideal and π :
Rn → Rm+1 be a rational projection. Then π−1(π(T (I))) is a tropical variety

with

(3) π−1(π(T (I))) = T (J ∩ K[x1, . . . , xn]) .
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In order to prove Theorem 3.1, we first consider algebraically regular projections
(as defined below). At the end of this section we also cover the remaining special
cases.

We start with an auxiliary statement which holds for an arbitrary rational
projection π.

Lemma 3.2. For any w ∈ T (J ∩ K[x1, . . . , xn]) and u ∈ span{u(1), . . . , u(l)} we

have w + u ∈ T (J ∩ K[x1, . . . , xn]).

Proof. Let u =
∑l

i=1 µju
(j) with µ1, . . . , µl ∈ Q. The case of real µi then follows

as well.
Let w ∈ T (J ∩ K[x1, . . . , xn]). Since T (J ∩ K[x1, . . . , xn]) is closed, we can

assume without loss of generality that there exists z ∈ V(J ∩K[x1, . . . , xn]) with
ord z = w. Define y = (y′, y′′) ∈ Kn+l by

y = (y′, y′′) =
(

z1t
Pl

j=1 µju
(j)
1 , . . . , znt

Pl
j=1 µju

(j)
n , t−µ1 , . . . , t−µl

)

.

For any f ∈ I, the point y is a zero of the polynomial

f(x1

l
∏

j=1

λj
u
(j)
1 , . . . , xn

l
∏

j=1

λj
u
(j)
n ) ∈ R ,

and thus y ∈ V(J). Hence, y′ ∈ V(J ∩ K[x1, . . . , xn]). Moreover,

ord y′ = (w1 +

l
∑

j=1

µju
(j)
1 , . . . , wn +

l
∑

j=1

µju
(j)
n ) = w +

l
∑

j=1

µju
(j) = w + u ,

which proves our claim. �

Lemma 3.3. Let I ⊳ K[x1, . . . , xn] be an ideal. Then J ∩ K[x1, . . . , xn] ⊆ I.

Proof. Let p =
∑

i higi be a polynomial in J ∩ K[x1, . . . , xn] with

gi = fi(x1

l
∏

j=1

λj
u
(j)
1 , . . . , xn

l
∏

j=1

λj
u
(j)
n ) ∈ R and fi ∈ I .

Since p is independent of λ1, . . . , λl we have

p = p|λ1=1,...,λl=1 =
∑

i

hi|λ1=1,...,λl=1 fi ∈ I.

�

We call a projection algebraically regular for I if for each i ∈ {1, . . . , l} the
elimination ideal J ∩ K[x1, . . . , xn, λ1, . . . , λi] has a finite basis Fi such that in
every polynomial f ∈ Fi the coefficients of the powers of λi (when considering f
as a polynomial in λi) are monomials in x1, . . . , xn, λ1, . . . , λi−1.

The following statement shows that the set of algebraically regular projections
is dense in the set of all real projections π : Rn → Rm+1.
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Lemma 3.4. The set of projections which are not algebraically regular is con-

tained in a finite union of hyperplanes within the space all projections π : Rn →
Rm+1

Proof. It suffices to show that for the choice of u(l), we just have to avoid a lower-
dimensional subset of Rn \ {0}. For u(1), . . . , u(l−1) we can then argue inductively
(however, an explicit description then becomes more involved). Assume that J
is generated by the polynomials

fj(x1

l
∏

i=1

λ
u
(i)
1

i , . . . , xn

l
∏

i=1

λu
(i)
n

i ) , 1 ≤ j ≤ s ,

where f1, . . . , fs ∈ I. Let fj be any of these polynomials. fj is of the form

fj =
∑

α∈Aj

cαxαλ
P

αiu
(1)
i

1 · · ·λ
P

αiu
(l)
i

l

with Aj ⊂ Zn finite. Thus all λk
l have monomial coefficients if

∑

αiu
(l)
i 6=

∑

βiu
(l)
i

for all α, β ∈ Aj with α 6= β. So we have to choose u(l) from the subset
⋂

j

{u ∈ Rn :
∑

αiu
(l)
i 6=

∑

βiu
(l)
i for all α, β ∈ Aj with α 6= β} .

Hence, the algebraically non-regular projections are contained in a finite number
of hyperplanes. �

Theorem 3.5. Let I ⊳ K[x1, . . . , xn] be a prime ideal and π : Rn → Rm+1 be an

algebraically regular projection. Then π−1π(T (I)) is a tropical variety with

(4) π−1π(T (I)) = T (J ∩ K[x1, . . . , xn]) .

Proof. Let w ∈ π−1π(T (I)). Since the right hand set of (4) is closed, we
can assume without loss of generality that there exists z′ ∈ V(I) and u ∈
span{u(1), . . . , u(l)} with ord z′ = w + u. For any f ∈ I, the point

z := (z′, 1)

is a zero of the polynomial

f(x1

l
∏

j=1

λj
u
(j)
1 , . . . , xn

l
∏

j=1

λj
u
(j)
n ) ∈ R ,

and thus z ∈ V(J). Hence, z′ ∈ V(J ∩ K[x1, . . . , xn]). By Lemma 3.2, w ∈
T (J ∩ K[x1, . . . , xn]) as well.

Let now w ∈ T (J ∩ K[x1, . . . , xn]). Again we can assume that there is a
z ∈ V(J ∩ K[x1, . . . , xn] ⊆ (K∗)n with w = ord(z). The projection is al-
gebraically regular which means that the generators of the elimination ideals
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J ∩ K[x1, . . . , xn, λ1, . . . , λi] have only monomials as coefficients with respect to
λi. By the Extension Theorem (see, e.g., [3]), we can extend the root z induc-
tively to a root z̃ ∈ V(J) with the same first n entries. The definition of J says
that

z′ := (z1z̃
u
(1)
1

n+1 · · · z̃
u
(l)
1

n+l, . . . , znz̃
u
(1)
n

n+1 · · · z̃
u
(l)
n

n+l)

is a root of I. Then

ord(z′) = ord(z) +

l
∑

i=1

ord(z̃n+i)u
(i)

which means that ord(z) = w ∈ π−1π(T (I)). �

This completes the proof of Theorem 3.1 for the case of algebraically regular
projections.

In the following, we consider the notion of geometric regularity.

Definition 3.6. Let C be a polyhedral complex in Rn. A projection π : Rn →
Rm+1 is called geometrically regular if the following two conditions hold.

(1) For any k-face σ of C we have dim(π(σ)) = k, 0 ≤ k ≤ dim C .
(2) If π(σ) ⊆ π(τ) then σ ⊆ τ for all σ, τ ∈ C .

These conditions ensure that we can recover the whole complex C from the
projections.

Corollary 3.7. In the situation of Theorem 3.1, if dim π(T (I)) = m then

π−1π(T (I)) is a tropical hypersurface.

In particular, this holds when the projection is geometrically regular.

Proof. dim π−1π(T (I)) = dim π(T (I))+dim ker π = m+(n−(m+1)) = n−1 . �

Let I ⊳K[x1, . . . , xn] be a prime ideal and m = dim I. Then T (I) is a pure m-
dimensional polyhedral complex. Bieri and Groves [1] used the following geomet-
ric technique (which actually was also used to prove that T (I) has this polyhedral
property).

There exists a finite family X = {X1, . . . ,Xs} of m-dimensional affine subspaces
with T (I) ⊆

⋃s

i=1 Xs. By the finiteness of X , for a sufficiently generic choice of n−
m+1 geometrically regular projections π0, . . . , πn−m the set-theoretic intersection
of the inverse projections exactly yields the original polyhedral complex:

Proposition 3.8 (Bieri, Groves [1]). Let I⊳K[x1, . . . , xn] be a prime ideal. Then

there exist codim I + 1 projections π0, . . . , πcodim I such that

T (I) =
codim I
⋂

i=0

π−1
i πi(T (I)) .
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By considering algebraically regular projections, and combining this proposi-
tion with Theorems 3.1 (so far only proved for algebraically regular projections)
and 3.5 yields Theorem 1.1. Note that by Lemma 3.3 the generators gi are actu-
ally contained in I.

Using this knowledge about the existence of some tropical basis, we can also
provide the proof of Theorem 3.1 for arbitrary rational projections.

Theorem 3.9 (Tropical Extension Theorem). Let I ⊳ K[x0, . . . , xn] be an ideal

and I1 = I ∩K[x1, . . . , xn] be its first elimination ideal. For any w ∈ T (I1) there

exists a point w̃ = (w0, . . . , wn) ∈ Rn+1 with wi = w̃i for 1 ≤ i ≤ n and w̃ ∈ T (I).

Proof. First let w ∈ ord(V(I1)), so that there exists z ∈ V(I1) with ord(z) =
w. Let G = {g1, . . . , gs} be a reduced Gröbner basis of I with respect to a
lexicographical term order with x0 > xi, 1 ≤ i ≤ n. I.e.,

gi = hi(x1, . . . , xn)x
degx0

gi

0 + terms of lower degree in x0 .

There are two cases to consider:

(1) z /∈ V(h1, . . . , hs). Then by the classical Extension Theorem there is a
root z̃ of I which extends z, so ord(z̃) =: w̃ extends w.

(2) z ∈ V(h1, . . . , hs). Then w = ord(z) ∈ T (h1, . . . , hs). Let P = {p1, . . . , pt}
be a tropical basis of I.

Let pj be any of these polynomials. pj has the form

pj = qj(x1, . . . , xn)x
degx0

pj

0 + terms of lower degree in x0 .

Since G is a lexicographic Gröbner basis, we have qj(x1, . . . , xn) =:
∑

kαxα

∈ 〈h1, . . . , hs〉. Hence, the minimum

min
α

{ord(kα) + α1x1 + · · · + αnxn}

is attained twice at w. We can pick a sufficiently small value w
(j)
0 ∈ R so

that all terms xm1
1 · · ·xmn

n xm0
0 of pj with m0 < degx0

pj have a larger value

m1w1 + · · · + mnwn + m0w
(j)
0 . But then the minimum of all values of all

terms of pj is attained at least twice; it is

min
α

{ord(kα) + α1x1 + · · · + αnxn} + degx0
pj · w

(j)
0 .

So (w
(j)
0 , w1, . . . , wn) ∈ T (hj).

By setting w0 = minj{w
(j)
0 } and w̃ := (w0, . . . , wn) ∈ T (I), we obtain

the desired extension of w.

Let now w = limi→∞ w(i) be in the closure of ord(V(I1)). Then there exist w̃(i) ∈

T (I) with w̃
(i)
j = w

(i)
j for 1 ≤ j ≤ n. Let P = {p1, . . . , pt} be again a tropical

basis of I. Then we can assume w.l.og. that the minimum of trop(pk), 1 ≤ k ≤ t

for w̃(i) is attained at the same terms. This gives us conditions for the w̃
(i)
0 :

k(i) ≤ w̃
(i)
0 ≤ l(i) (one of them can be ±∞) .
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These bounds vary continuously with w(i). So we can choose w̃0 arbitrarily in
[lim k(i), lim l(i)] (only one of the limites can be ±∞). �

4. The Newton polytopes for the linear case

As mentioned earlier, an ideal generated by linear forms may not have a small
tropical basis if we restrict the basis to consist of linear forms. Using our results
from Section 3, we can provide a short basis at the price of increased degrees.
A natural question is to provide a good characterization for the Newton polytopes
of the resulting basis polynomials. Here, we briefly discuss the special case of
a prime ideal I generated by two linear polynomials F =

∑n

i=1 aixi + an+1,
G =

∑n

i=1 bixi + bn+1 ∈ K[x1, . . . , xn].
In order to characterize the Newton polytope of the additional polynomials in

the tropical basis, we consider the resultant of the polynomials f, g

f = a1x1λ
v1 + · · ·+ anxnλvn + an+1 ,

g = b1x1λ
v1 + · · · + bnxnλvn + bn+1

in K[x1, . . . , xn, λ]. Assume that the components vi are distinct. Then w.l.o.g.
we can assume v1 > v2 > · · · > vn > vn+1 := 0.

In order to apply the results of Gelfand, Kapranov and Zelevinsky [6] regarding
the Newton polytope of the resultant, we consider the representation

Resλ(f, g) =
∑

p,q

cp,qa
pbqxp+q

with p = (p1, . . . , pn+1), q = (q1, . . . , qn+1) ∈ Zn+1
+ . The Newton polytope is

contained in the set Qn ⊂ Z2n+2 of nonnegative integer points (p, q) with

(1)
n+1
∑

i=1

pi =
n+1
∑

j=1

qj = v1 ,

(2)
n+1
∑

i=1

vipi +
n+1
∑

j=1

vjqj = v2
1 ,

(3)
∑

1≤k≤n

0≤v1−vk≤i

(i − v1 + vk)pk +
∑

1≤l≤n

0≤v1−vl≤j

(j − v1 + vl)ql ≥ ij (0 ≤ i, j ≤ v1) .

Hence, we can conclude:

Corollary 4.1. The set of integer points in the Newton polytope New(Resλ(f, g))
⊂ Zn is contained in the image of Qn under the mapping

(p1, . . . , pn+1, q1, . . . , qn+1) 7→ (p1 + q1, . . . , pn + qn) .

Example 4.2. Let I = 〈2x+y−4, x+2y+z−1〉 and ord(·) be the 2-adic valuation
(see Figure 4 for a figure of T (I)). Actually, the first projection can be chosen
arbitrarily (even geometrically non-regular). We choose a projection π1 whose
kernel is generated by (0, 0, 1). Then the tropical hypersurface π−1

1 π1(T (I)) sat-
isfies π−1

1 π1(T (I)) = T (2x+ y−4), and the Newton polytope of that polynomial
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is a triangle (so the projection is geometrically non-regular). By choosing π2 and
π3 with kernels generated by (1, 2, 0) and (1, 0, 1), respectively, we obtain the
polynomials 6x2 +6x2z +49y +14yz + yz2 and 3xy +2x− yz +4z. Both Newton
polytopes are quadrangles.

Adding these three nonlinear polynomials to the basis of I yields a tropical
basis.
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-4

1
y-10

6
10

5

-5

0 11
x

z

-5

0

-10

5

10

Figure 1. Tropical line T (I) in 3-space
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