
ON THE FRONTIERS OF POLYNOMIAL COMPUTATIONS

IN TROPICAL GEOMETRY
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Abstract. We study some basic algorithmic problems concerning the intersection of
tropical hypersurfaces in general dimension: deciding whether this intersection is non-
empty, whether it is a tropical variety, and whether it is connected, as well as counting
the number of connected components. We characterize the borderline between tractable
and hard computations by proving NP-hardness and #P-hardness results under various
strong restrictions of the input data, as well as providing polynomial time algorithms for
various other restrictions.

1. Introduction

Geometry over the tropical semiring (R,⊕,⊙) := (R, min, +) has received much atten-
tion in the last years (see the surveys [15, 20, 25] and the references therein) with applica-
tions in counting curves [14], studying phylogenetic trees [16], and the analysis of amoebas
of algebraic varieties [15]. From the viewpoint of polynomial equations, the modern birth
of tropical geometry originates in the book [26] which pinpoints the central role of tropical
geometry as a link between algebraic geometry, symbolic computation, and discrete geom-
etry, thus providing computationally-accessible methods for studying algebraic-geometric
problems. Indeed, one of the early roots of the developments in tropical geometry can
be seen in the polyhedral homotopy methods by Huber and Sturmfels [9], providing a
state-of-the-art technique for numerically solving systems of polynomial equations based
on a deformation to a (discrete) tropical problem.

Some major algorithmic results in tropical geometry are based on Gröbner basis com-
putations and thus may become intractable already for small dimensions [3]. On the
positive side, there also exist some algorithmic problems (such as computing the tropical
determinant) which can be efficiently solved using techniques from linear programming,
polyhedral computation and combinatorial optimization (see, e.g., [10, 20]). For many
tropical problems, their computational complexity has not been clarified yet.

In this paper, we make a first step towards systematically studying the frontiers of
polynomial time computations in tropical geometry. For this, we consider three natu-
ral algorithmic problems concerning the intersection of tropical hypersurfaces, so-called
tropical prevarieties. The algorithmic problems are to decide whether this intersection
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P is nonempty (Tropical Intersection), whether P is a tropical variety (Tropical

Consistency), and whether P is connected (Tropical Connectivity).
Our results refer to the the standard Turing machine model, and we mainly aim at

characterizing the borderline between tractable (in the sense of polynomial time solvable)
and hard (in the sense of NP-hard) computations. Our main results can roughly be
stated as follows. If the number of hypersurfaces is part of the input then the three
problems become NP-hard or co-NP-hard, and this hardness persists even under various
restrictions to the input data. As a particular example, already for quadratic input
polynomials it is co-NP-hard to decide whether a tropical prevariety is a tropical variety.
Hence, efficient algorithms cannot be expected in this setting. We contrast these hardness
results by polynomial time algorithms for a fixed number of tropical hypersurfaces. For a
precise statement of the results see Theorems 3.1–3.3.

The paper is structured as follows. In Section 2 we introduce the relevant notation from
tropical geometry and computational complexity. In Section 3 we formally state our main
results, and Section 4 contains the proofs of these theorems. We close the paper with a
short discussion of related computational aspects on amoebas.

2. preliminaries

2.1. Tropical geometry. One of the original motivations for tropical varieties was a
combinatorial approach to certain problems from enumerative geometry suggested by
Kontsevich, and that program has been realized by Mikhalkin [14]. Tropical varieties
are also related to the observation that algebraic varieties have very simple behavior
at infinity when plotted on “log paper” [2, 28]. While these roots come from algebraic
geometry and valuation theory, tropical varieties are profitably approached via polyhedral
combinatorics.

Tropical hypersurfaces can be defined in a combinatorial and in an algebraic way (for
general background we refer to [15], [20], [26, Chapter 9]). For the combinatorial definition,
let (R,⊕,⊙) denote the tropical semiring, where

x ⊕ y = min{x, y} and x ⊙ y = x + y .

Sometimes the underlying set R of real numbers is augmented by ∞.
A tropical monomial is an expression of the form c ⊙ xα = c ⊙ xα1

1 ⊙ · · · ⊙ xαn
n where

the powers of the variables are computed tropically as well (e.g., x3
1 = x1 ⊙x1 ⊙x1). This

tropical monomial represents the classical linear function

Rn → R , (x1, . . . , xn) 7→ α1x1 + · · · + αnxn + c .

A tropical polynomial is a finite tropical sum of tropical monomials and thus represents
the (pointwise) minimum function of linear functions. At each given point x ∈ Rn the
minimum is either attained at a single linear function or at more than one of the linear
functions (“at least twice”). The tropical hypersurface T (f) of a tropical polynomial f is
defined by

T (f) = {x ∈ Rn : the minimum of the tropical monomials of f

is attained at least twice at x} .
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Rather than simply intersecting tropical hypersurfaces, the definition of tropical va-
rieties of arbitrary codimension involves a valuation theoretic construction (Section 2.2

explains this subtlety.) Let K = C(t) denote the algebraically closed field of Puiseux
series, i.e., series of the form

p(t) = c1t
q1 + c2t

q2 + c3t
q3 + · · ·

with ci ∈ C\{0} and rational q1 < q2 < · · · with common denominator (see, e.g., [1]). The
order ord p(t) is the exponent of the lowest-order term of p(t). The order of an n-tuple of
Puiseux series is the n-tuple of their orders. This gives a map

(2.1) ord : (K∗)n → Qn ⊂ Rn ,

where K∗ = K \ {0}.
We are extending T to allow also ideals in the polynomial ring K[x1, . . . , xn] as argu-

ment. Let I be an ideal in K[x1, . . . , xn], and consider its affine variety V (I) ⊂ (K∗)n

over K. The image of V (I) under the map (2.1) is a subset of Qn. The tropical variety

T (I) is defined as the topological closure of this image, T (I) = ord V (I). It is well-known
that for principal ideals I = 〈g〉 the two definitions of tropical varieties coincide (see [11]
or, e.g., [20, Lemma 3.2]):

Proposition 2.1. If f is a tropical polynomial in x1, . . . , xn then there exists a polynomial
g ∈ K[x1, . . . , xn] such that T (f) = T (〈g〉), and vice versa.

For a polynomial f =
∑

α∈A cα(t)xα ∈ K[x1, . . . , xn] with a finite support set A ⊂ Nn
0

and cα(t) 6= 0 for all α ∈ A, the tropicalization of f is defined by

trop f =
⊕

α∈A

ord(cα(t)) ⊙ xα ,

where
⊕

denotes a tropical summation. Whenever there is no possibility of confusion we
also write · instead of ⊙.

For every tropical variety T (I) there exists a finite subset B ⊂ I such that T (I) =
⋂

f∈B T (f). (However, we remark that Corollary 2.3 in [24], which claims that any uni-

versal Gröbner basis of I satisfies this condition, is not correct. See [20].)

1
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Figure 1. The tropical variety of a linear polynomial f in two variables
and the Newton polygon of f .
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2.2. The geometry of tropical hypersurfaces. Let A ⊂ Nn
0 be finite and f(x1, . . . , xn) =

⊕

α∈A cα · xα be a tropical polynomial with cα ∈ R for all α ∈ A. Then T (f) is a polyhe-
dral complex in Rn which is geometrically dual to the following regular subdivision of the
Newton polytope New(f) of f . Let P̂ be the convex hull conv{(α, cα) ∈ Rn+1 : α ∈ A}.
Then the lower faces of P̂ project bijectively onto convA under deletion of the last coor-
dinate, thus defining a subdivision of A. Such subdivisions are called regular or coherent
(see, e.g., [13]). We say that a tropical polynomial is of degree at most d if every term has
(total) degree at most d. See Figure 1 for an example of a tropical line (i.e., the tropical
variety of a linear polynomial in two variables) and Figure 2 for an example of a tropical
cubic curve, as well as their dual subdivisions (whose coordinate axes are directed to the
left and to the bottom to visualize the duality).

1

1

x1

x2

Figure 2. An example of a tropical cubic curve T (f) and the dual subdi-
vision of the Newton polygon of f .

Following the notation in [20], a tropical prevariety is the intersection of tropical hyper-
surfaces. If f1, . . . , fm are linear polynomials then the tropical prevariety P =

⋂m

i=1 T (fi)
is called linear. If additionally P is a tropical variety, then it is called a linear tropical
variety. In dimension 2, a linear tropical variety is either a translate of the left-hand set
in Figure 1, a classical line (in the x1-, x2-, or the main diagonal direction), a single point,
or the empty set. A tropical prevariety in R2 can also be a one-sided infinite ray. Under-
standing the geometry and combinatorics of tropical prevarieties or varieties in general
dimension is still a widely open problem. Even for the case of linear tropical varieties,
the maximum number of bounded i-dimensional faces of such polyhedral complexes is
unknown. The recent f-vector conjecture in [23] conjectures that (in our affine setting)
the number of bounded i-dimensional faces of a k-dimensional linear tropical variety in
Rn is at most

(

n−2i+1
k−i+1

)(

n−i

i−1

)

and that this bound is tight.
With respect to our investigations on the consistency problem, we remark that there

are linear tropical spaces of dimension n − 2 which are not complete intersections, i.e.,
which are not the intersection of two tropical hypersurfaces (see [24, Proposition 6.3]).

2.3. Model of computation. Our model of computation is the binary Turing machine:
all relevant data are presented by certain rational numbers, and the size of the input is
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defined as the length of the binary encoding of the input data. A rational number is
specified as the concatenation of the numerator a and the denominator b, and we may
assume without loss of generality that a and b are relatively prime. Polynomials of degree d

are specified by the binary encoding of all
(

n+d

n

)

coefficients (even if a coefficient is zero);
this encoding is sometimes referred as the dense encoding. For general background on
algorithms and complexity theory we refer to [6, 17], and in particular for complexity
aspects of geometric problems to [8].

In the realm of the complexity classes P and NP, complexity theory usually deals with
decision problems: those whose answers are Yes or No. The class P denotes the set
of all decision problems which can be solved in polynomial time in the input size. The
class NP (nondeterministic polynomial time) denotes the class of all problems such that
every Yes-instance has a short (i.e. polynomial-size) certificate that can be verified in
polynomial time. Recall that a problem is called co-NP-hard if its complement is NP-
hard, where the complement of a problem is defined by switching the answers Yes and
No for all inputs.

In this paper, we also deal with counting problems, which refer to problems whose
answer is a bit string encoding an integer. A counting problem Π is in the class #P if
there is a decision problem Π′ ∈ NP such that, for all inputs I, the output of Π is exactly
the number of accepting solutions to Π′ on input I. A counting problem Π is #P-hard if
every problem in #P can be reduced in polynomial time to Π, i.e., if for every problem
Π ∈ #P there is a polynomial-time computable function f such that for any input I to
Π′

(1) f(I) is a valid input to Π,
(2) the output of Π′ on input I is exactly the output of Π on input f(I).

3. Statement of problems and main results

We consider three basic problems on the intersection of tropical hypersurfaces. Let
Q[x1, . . . , xn]⊕ denote the set of tropical polynomials with rational coefficients in n vari-
ables. Given n, m, d1, . . . , dm and a set of tropical polynomials f1, . . . , fm ∈ Q[x1, . . . , xn]⊕

of degrees at most d1, . . . , dm, respectively, the first problem asks whether the tropical
prevariety

⋂m

i=1 T (fi) is nonempty. For the complexity results it is quite crucial which
information is part of the input of the problem. In particular, note that in the formal
definitions of the three problems the dimension and the number of hypersurfaces is part
of the input.

Problem Tropical Intersection:

Instance: n, m, d1, . . . , dm, polynomials f1, . . . , fm ∈ Q[x1, . . . , xn]⊕ of degrees
at most d1, . . . , dm.

Question: Decide whether there exists a point in
m
⋂

i=1

T (fi).

The next problem asks whether an intersection of tropical hypersurfaces (i.e., a preva-
riety) is a tropical variety.

Problem Tropical Consistency:
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Instance: n, m, d1, . . . , dm, polynomials f1, . . . , fm ∈ Q[x1, . . . , xn]⊕ of degrees
at most d1, . . . , dm.

Question: Decide whether
m
⋂

i=1

T (fi) is a tropical variety.

We also consider the variant Tropical m-Consistency which asks whether
⋂m

i=1 T (fi)
is a tropical variety of codimension m. The third problem asks for topological connectivity
of the set

⋂m

i=1 T (fi).

Problem Tropical Connectivity:

Instance: n, m, d1, . . . , dm, polynomials f1, . . . , fm ∈ Q[x1, . . . , xn]⊕ of degrees

at most d1, . . . , dm with
m
⋂

i=1

T (fi) 6= ∅.

Question: Decide whether
m
⋂

i=1

T (fi) is connected.

Besides these decision problems, we consider the counting problem #Connected

Components whose input is the same one as for Tropical Intersection and whose
task is to determine the number of connected components of

⋂m

i=1 T (fi).
Our main results can be stated as follows.

Theorem 3.1. The problem Tropical Intersection is NP-complete, and the prob-
lems Tropical Consistency and Tropical Connectivity are co-NP-hard. For
Tropical Intersection and Tropical Connectivity these hardness results persist
if the instances are restricted to those where

⋂m

i=1 T (fi) is a tropical variety.
Moreover, for Tropical Intersection and Tropical Consistency the hardness

persists if all polynomials are restricted to be of degree at most 2. For Tropical Con-

nectivity, the hardness persists if all polynomials are restricted to be of degree at most 3.

These hardness results are contrasted by the following positive algorithmic results for
restricted input classes.

Theorem 3.2. (i) If the number m of tropical hypersurfaces is a fixed constant, then
Tropical Intersection can be solved in polynomial time.

(ii) For fixed m and if all input polynomials are restricted to be linear polynomials then
the problem Tropical m-Consistency can be solved in polynomial time.

(iii) If the number m of tropical hypersurfaces is a fixed constant, then Tropical Con-

nectivity can be solved in polynomial time. Moreover, any linear tropical prevariety is
connected; hence, if all polynomials are restricted to be linear polynomials, the output of
Tropical Connectivity is always Yes.

Finally, we show #P-hardness of counting the number of solutions.

Theorem 3.3. #Connected Components is #P-hard. This statement persists if all
polynomials are restricted to be of degree at most 2.
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Remark 3.4. Obviously, Tropical Intersection (and similarly, Tropical Con-

nectivity and Connected Components) can be solved (not necessarily efficiently)
by explicitly constructing the polyhedral complexes T (f1), . . . , T (fm) in Rn and intersect-
ing them.

Solving Tropical Consistency in a similar way can be done based on a synthetic
definition of the tropical varieties under investigation. For tropical hypersurfaces such a
definition can be found in [14, Prop. 3.15] and for tropical lines in Rn in [20, Example
3.8].

Several questions remain open. In particular, the question of polynomial time solvability
remains open for the following restrictions.

Open problem 3.5. Can Tropical Intersection and Tropical Consistency be
solved in polynomial time if the input polynomials are restricted to be linear? Can
Tropical Connectivity for quadratic polynomials be solved in polynomial time?

4. Proofs of the results

4.1. Linear tropical prevarieties. We begin with a statement on Tropical Consis-

tency and Tropical m-Consistency for linear varieties.

Lemma 4.1. Let all input polynomials f1, . . . , fm ∈ Q[x1, . . . , xn]⊕ be restricted to be
linear polynomials.

(a) If m ≤ n then the output of Tropical Consistency is always Yes.
(b) For a fixed constant m, the problems Tropical m-Consistency can be solved

in polynomial time.

Before providing the proof, we recall and collect some statements about linear tropical
varieties. Let f1, . . . , fm be linear tropical polynomials in x1, . . . , xn. If m ≤ n and the
tropical hyperplanes T (fi) are in general position then P is a linear tropical variety of
dimension n−m. Moreover, P always contains a well-defined stable intersection which is
a linear tropical variety of dimension n−m (see [20, 23]). In particular, this implies that
for m ≤ n the answer to Tropical Consistency is always Yes.

For a matrix A = (aij) ∈ (R ∪ {∞})k×k, the tropical determinant is defined by

(4.1) dettrop(A) =
⊕

σ∈Sk

(a1,σ1
⊙ · · · ⊙ ak,σk

) = min
σ∈Sk

(a1,σ1
+ · · ·+ ak,σk

) ,

where Sk denotes the symmetric group on {1, . . . , k}. It was observed in [20] that the com-
putation of the tropical determinant can be phrased as an assignment problem from com-
binatorial optimization. Hence, using well-known algorithms (see [22, Corollary 17.4b]),
a tropical determinant can be computed in polynomial time.

A tropical k × k-matrix is singular if the minimum in (4.1) is attained at least twice.
In order to decide in polynomial time whether a k × k-matrix is singular, first compute
the tropical determinant of A. Let σ ∈ Sk be a permutation of {1, . . . , k} for which the
minimum in (4.1) is attained. For every j ∈ {1, . . . , k} let Aj be the matrix which is
obtained from A by replacing the entry (j, σj) by an arbitrary larger value. Then A is
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tropically singular if and only if dettrop Aj = dettrop A for some j ∈ {1, . . . , k}. Hence, this
can be decided in polynomial time.

Proof of Lemma 4.1. It just remains to prove b). Let fi =
⊕n

j=1 aij ·xj⊕ai,n+1, 1 ≤ i ≤ m,

and A = (aij) ∈ Rm×(n+1) be the coefficient matrix of f1, . . . , fm. Since for m > n + 1
the answer of Tropical m-Consistency is always No, we can assume m ≤ n + 1. For
m = n + 1, the problem is equivalent to ask whether the tropical prevariety is empty,
which will be treated in Lemma 4.8. For m ≤ n, by Theorem 5.3 in [20] the tropical
prevariety

⋂m

i=1 T (fi) is a linear tropical variety of codimension m if and only if none of
the m×m-submatrices of A is tropically singular. For each of the m×m-submatrices of
A it can be checked in polynomial time (in the binary length of the input data) whether
it is singular. Since for fixed m, the number

(

n

m

)

of those submatrices is polynomial in n,
the claim follows. �

4.2. Tropical intersection and tropical consistency.

Lemma 4.2. Tropical Intersection is NP-hard. This statement persists if the in-
stances are restricted to those where

⋂m

i=1 T (fi) is a tropical variety. Moreover, this state-
ment persists if all polynomials are restricted to be of degree at most 2.

In order to prove NP-hardness of Tropical Intersection, we provide a polynomial
time reduction from the well-known NP-complete 3-satisfiability (3-Sat) problem [6].
Let ∧ and ∨ denote the Boolean conjunction and disjunction, respectively, and let C =
C1∧ . . .∧Ck denote an instance of 3-Sat with clauses C1, . . . , Ck in the variables y1, . . . , yn.
Furthermore, let yi denote the complement of a variable yi, and let the literals y1

i and y0
i

be defined by y1
i = yi, y0

i = yi. Let the clause Ci be of the form

(4.2) Ci = y
τi1

i1
∨ y

τi2

i2
∨ y

τi3

i3
,

where τi1 , τi2 , τi3 ∈ {0, 1} and i1, i2, i3 ∈ {1, . . . , n} are pairwise different indices.
The reduction consists of two ingredients. First we construct an intersection of suitable

tropical hypersurfaces
⋂n

i=1 T (hi) in Rn with
⋂n

i=1 T (hi) = {0, 1}n (see Figure 3). We call
these hypersurfaces “structural” tropical hypersurfaces.

T (h1) T (h1)

T (h2)

T (h2)

0 1

1

x1

x2

Figure 3. Structural hypersurfaces T (hi), 1 ≤ i ≤ n, for n = 2.
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In the second step, we relate satisfying assignments of a given clause (4.2) to solu-
tions of some “clause hypersurface”. Let s : {True,False} → {0, 1} be defined by
s(True) = 1 and s(False) = 0. We utilize the correspondence between a truth as-
signment a = (a1, . . . , an)T ∈ {True,False}n to the variables y1, . . . , yn and the point
(s(a1), . . . , s(an))T ∈ {0, 1}n of the tropical prevariety

⋂n

i=1 T (hi). To achieve this, we
construct one or, in some cases, several tropical hypersurfaces representing the clause.

In order to construct the structural tropical hypersurfaces, let h′
i ∈ K[x1, . . . , xn] be the

polynomial

h′
i(x) = (t0 · xi + t1) · (t0 · xi + t0) = t0 · x2

i + (t0 + t1) · xi + t1

over K, 1 ≤ i ≤ n. Since the tropical hypersurface of a product of polynomials is the
union of the tropical hypersurfaces of the factors, we have T (h′

i) = {x ∈ Rn : xi ∈ {0, 1}},
and h′

i tropicalizes to

(4.3) hi := trop(h′
i) = 0 · x2

i ⊕ 0 · xi ⊕ 1 .

Hence,
⋂n

i=1 T (hi) = {0, 1}n.
Now we construct the quadratic polynomials which represent the 3-clauses. In order

to illustrate the construction, and since this will be needed explicitly later on, we begin
with a 2-clause. Let Ci denote the 2-clause Ci = y

τi1

i1
∨ y

τi2

i2
. Let f ′

i = (xi1 + tτi1 )(xi2 + tτi2 ),
which tropicalizes to

fi = (0 · xi1 ⊕ τi1) · (0 · xi2 ⊕ τi2)

= 0 · xi1 · xi2 ⊕ τi1 · xi1 ⊕ τi2 · xi2 ⊕ τi1 · τi2 .

Hence, T (fi) = {x ∈ R2 : xi1 = τi1 or xi2 = τi2}. In particular, for any x ∈ {0, 1}n we
have x ∈ T (fi) if and only if xi1 = τi1 or xi2 = τi2 . Figure 4 (a) shows the clause curve
for the case n = 2, τ1 = τ2 = 1.

Now consider a 3-clause Ci of the form (4.2). Here, the straightforward approach to

consider T (fi) =
∏3

j=1(0 ·xij ⊕ τij ) leads to cubic polynomials. In order to show hardness
even for quadratic polynomials we distinguish several cases corresponding to the number
p of positive literals in Ci.

Case p ∈ {0, 1}: Here we can use the following more general lemma.

Lemma 4.3. Let C(y1, . . . , yk, z1, . . . , zl) be the clause in the variables y1, . . . , yk, z1, . . . , zl

defined by
C(y1, . . . , yk, z1, . . . , zl) = y1 ∨ · · · ∨ yk ∨ z1 ∨ · · · ∨ zl .

Then for (a1, . . . , ak, b1, . . . , bl) ∈ {True,False}k+l we have C(a1, . . . , ak, b1, . . . , bl) =
True if and only if

(4.4) (s(a1), . . . , s(ak), s(b1), . . . , s(bl)) ∈ T

(〈

k
∏

i=1

(

t0 · yi + t1
)

·

(

l
∑

j=1

t0 · zj + t0

)〉)

.

Proof. Let Ci(yi) = yi, 1 ≤ i ≤ k. Then for ai ∈ {True,False}, we have Ci(ai) = True

if and only if s(ai) ∈ T (〈t0 · yi + t1〉). Let Ck+1(z1, . . . , zl) = z1 ∨ · · · ∨ zl. Then for
(b1, . . . , bl) ∈ {True,False}l, we have Ck+1(z1, . . . , zl) = True if and only if s(b1, . . . , bl) ∈

T (〈
∑l

j=1 t0 · zj + t0〉). Considering the disjunction C1 ∨ · · · ∨ Ck+1 proves the claim. �



10 THORSTEN THEOBALD

For every clause Ci which contains 0 or 1 positive literals, we associate a tropical hy-
persurface T (fi) as defined in (4.4). Since p ∈ {0, 1} the degree of fi is at most 2.

In particular, for the case p = 0 and i1 = 1, i2 = 2, i3 = 3, we have Ci = y1 ∨ y2 ∨ y3,
and the hypersurface in (4.4) is T (〈t0 · y1 + t0 · y2 + t0 · y3 + t0〉), which is the hypersurface
given by the linear tropical polynomial 0 · y1 ⊕ 0 · y2 ⊕ 0 · y3. Figure 4(b) visualizes this
situation for the smaller-dimensional case of a 2-clause.

T (f)

T (f)

0 1

1

x1

x2

T (f)

0 1

1

x1

x2

(a) (b)

Figure 4. Figure (a) shows a quadratic clause curve for the 2-clause y1∨y2

in R2. Figure (b) shows a linear clause curve for the 2-clause y1 ∨ y2 in R2.

For the case p = 1 and the clause y1 ∨ y2 ∨ y3, the hypersurface in (4.4) is

T
(〈

(t0 · y1 + t1) · (t0 · y2 + t0 · y3 + t0)
〉)

,

which is the hypersurface of the tropical polynomial 0·y1·y2⊕0·y1·y3⊕0·y1⊕1·y2⊕1·y3⊕1.

Case p = 2: By renumbering the variables, we can assume Ci = yi1 ∨ yi2 ∨ yi3. Let fi be
the quadratic tropical polynomial defined by

fi = 0 · xi1 · xi2 ⊕ 1 · xi1 ⊕ 1 · xi2 ⊕ 0 · xi3 ⊕ 0 · x2
i3
⊕ 1 .

Then for (xi1 , xi2 , xi3) ∈ {0, 1}3 we have fi(xi1 , xi2 , xi3) = 1 if and only if xi1 = 1 or xi2 = 1
or xi3 = 0.

Case p = 3: Let Ci = yi1 ∨ yi2 ∨ yi3. The following lemma (in the spirit of the nine
associated points theorem for complex cubic curves) states that it is not possible to find
a single polynomial fi for the clause Ci.

Lemma 4.4. If f = f(x1, x2, x3) is a tropical quadratic polynomial with

(4.5) {x ∈ {0, 1}3 : x1 = 1 or x2 = 1 or x3 = 1} ⊂ T (f) ,

then T (f) also contains (0, 0, 0).
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Proof. Assume that there exists a tropical quadratic polynomial f satisfying (4.5) such
that the minimum of the linear forms at (0, 0, 0) is attained only once. Let l be the linear
form where the minimum is attained. Since f is quadratic, l depends on at most two
variables, and the exponents of these variables are 1 or 2. Let xk be a variable which does
not occur in l, and let x′ be obtained from x by switching xk from 0 to 1. Then the value
of each linear form at x′ is larger than or equal to the value of that linear form of x. Since
the value of the linear form l at x′ is equal to the value of l at x, the minimum of all linear
forms at x′ is the same one as at x, and it is attained only once. �

In order to encode a clause with three positive literals into tropical quadrics, we embed
it into higher-dimensional space by introducing an additional variable z. Let C′

i be the
Boolean formula

C′
i = (yi1 ∨ yi2 ∨ z) ∧ (yi3 ∨ z) ∧ (yi3 ∨ z)

in the variables yi1 , yi2, yi3, z. The last two clauses of this formula imply that any satisfying
assignment of C′

i has the property yi3 = z. Hence, there exists a satisfying assignment
for the original clause Ci if and only if the formula C′

i can be satisfied. C′
i consists of

one 3-clause that belongs to the case p = 2 and of two 2-clauses, which can be encoded
into tropical geometry as described above. Hence, there exist three tropical quadratic
polynomials g1, g2, g3 in yi1, yi2, yi3 , z such that Ci can be satisfied if and only if T (g1),
T (g2), and T (g3) have a common point in {0, 1}4.

For p ∈ {0, . . . , 3} let #p(C) denote the number of clauses in the 3-Sat formula C with
p positive terms. Then the construction for the clauses yields k′ := k + 2#3(C) tropical
hypersurfaces, which we denote by f1, . . . , fk′. Moreover, due to the additional auxiliary
variables the actual number of total variables is n′ := n + #3(C). Let P be the tropical
prevariety

(4.6) P = T (h1) ∩ . . . ∩ T (hn′) ∩ T (f1) ∩ . . . ∩ T (fk′) ⊂ Rn′

.

Lemma 4.5. P is nonempty if and only if C can be satisfied.

Proof. Let y ∈ {True,False}n be a satisfying assignment for C and x := s(y) ∈ {0, 1}n′

.

By construction, x is contained in all the structural hypersurfaces and in all the clause
surfaces.

Conversely, let x ∈ P . Since x ∈
⋂n′

i=1 T (hi) we have x ∈ {0, 1}n′

. Set y = s−1(x) ∈
{True,False}n′

. Since x is contained in all clause hypersurfaces representing the clause
Ci, the truth assignment y satisfies the clause Ci, 1 ≤ i ≤ k. Hence, C can be satisfied. �

All the polynomials in the construction of the tropical prevariety P are of degree at
most 2. Moreover, P is a finite set and therefore even a tropical variety. Since the
reduction from 3-Sat to Tropical Intersection is doable in polynomial time, this
finishes the proof of Lemma 4.2 and hence of the NP-hardness statement for Tropical

Intersection in Theorem 3.1.

Corollary 4.6. #Connected Components is #P-hard.

Proof. It suffices to observe that the reduction given above is parsimonious, i.e., the
number of solutions of the tropical prevariety is the number of satisfying assignments of
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the 3-Sat formula C. Since counting the number of satisfying assignments of a 3-Sat

formula is a #P-hard problem [27], the statement follows. �

Lemma 4.7. Tropical Intersection ∈ NP.

Proof. We have to show that for every Yes instance of Tropical Intersection, there
exists a certificate of polynomial size, as well as a polynomial time verification procedure
for these certificates.

Let fi be of the form fi = fi(x1, . . . , xn) =
⊕

α∈Ai
cα · xα for some support set Ai,

1 ≤ i ≤ m. If there exists a point z in the intersection of tropical varieties, then there
exist (β1, γ1) ∈ A2

1, . . . , (βm, γm) ∈ A2
m such that the minimum in fi at z is attained at the

terms given by (βi, γi). Hence, z is a solution of system of linear equations and inequalities

cβi
+

n
∑

j=1

βijxj = cγi
+

n
∑

j=1

γijxj ≤ cα +
n
∑

j=1

αjxj for all α ∈ Ai, 1 ≤ i ≤ m .

The size of this linear program is linear in the size of the input. Moreover, checking
whether a given point z is contained in a given tropical hypersurface can be done in
polynomial time. Consequently, checking whether z is contained in the intersection of
tropical hypersurfaces can be done in polynomial time. �

Hence, by Lemmas 4.2 and 4.7, Tropical Intersection is NP-complete. In contrast
to this, the following theorem provides a positive complexity result and yields a linear
programming-based algorithm.

Lemma 4.8. If the number m of tropical hypersurfaces is a fixed constant, then Tropical

Intersection can be solved in polynomial time.

Proof. Let Ai = {α ∈ Nn
0 :

∑dj

j=1 αj ≤ di} and fi = fi(x1, . . . , xn) =
⊕

α∈Ai
cα · xα,

1 ≤ i ≤ m. If L denotes the binary encoding length of the Tropical Intersection-
instance then the size |Ai| of Ai satisfies |Ai| ≤ L. Hence, for any i ∈ {1, . . . , m} the
polynomial f has at most L terms, and thus there are at most

(

L

2

)

choices of two terms

where the minimum in fi is attained. Since there are at most
(

L

2

)m
choices of two terms in

all the polynomials f1, . . . , fm, it suffices to show that for any fixed choice of two vectors
βi, γi ∈ Ai where the minimum is attained in fi, 1 ≤ i ≤ m, the resulting linear program

cβi
+

n
∑

j=1

βijxj = cγi
+

n
∑

j=1

γijxj ≤ cα +

n
∑

j=1

αjxj for all α ∈ Ai, 1 ≤ i ≤ m

can be solved in polynomial time. However, since the size of the linear program is polyno-
mial in the size of the input of Tropical Intersection, this follows from the polynomial
solvability of linear programming [12]. �

Lemma 4.9. Tropical Consistency is co-NP-hard. This hardness persists if all
polynomials are restricted to be of degree at most 2.

Proof. Since the empty set is a tropical variety, it suffices to provide a polynomial time
reduction from 3-Sat with the following properties. For every No-instance of 3-Sat the
constructed tropical prevariety is the empty set. For every Yes-instance of 3-Sat, the



COMPUTATIONS IN TROPICAL GEOMETRY 13

constructed prevariety is not a tropical variety. In order to simplify notation, we assume
from now on that all clauses contain at most 2 positive literals, since otherwise we can
apply the same auxiliary construction as in the proof of Lemma 4.2.

We embed the construction from the proof of Lemma 4.5 into Rn+1 by considering all
polynomials formally to be polynomials in n + 1 variables. Since the definition of the
structural hypersurfaces in (4.3) and the definition of the clause hypersurfaces do not
depend on xn+1, the embedding of the tropical prevariety P from (4.6) into Rn+1 gives a
prevariety P ′ = P × Rn ⊂ R. Recall that the structural hypersurfaces are given by the
tropical polynomials hi = 0 · x2

i ⊕ 0 · xi ⊕ 1. Let

gi = 0 · x2
i ⊕ 0 · xi ⊕ 1 ⊕ 1 · xn+1

for 1 ≤ i ≤ n. For i = 1 and n + 1 = 2, the tropical variety T (gi) is shown in Figure 5.

x1

x2

1

1

1

1

x1

x2

Figure 5. Newton polygon of the polynomial gi for i = 1, n + 1 = 2 and T (gi).

The intersection of T (gi) and T (hi) is

T (gi) ∩ T (hi) =
{

x ∈ Rn+1 : (xi = 0 and xn+1 ≥ −1) or (xi = 1 and xn+1 ≥ 0)
}

.

If we imagine the xn+1-axis to be pointing upwards, the intersection of all structural
hypersurfaces with the hypersurfaces defined by g1, . . . , gn is a union of 2n half rays which
are unbounded in the upward pointing directions,

n
⋂

i=1

gi ∩
n
⋂

i=1

hi = {({0, 1}n \ (0, . . . , 0)) × R+ ∪ (0, . . . , 0) × {xn+1 ∈ R : xn+1 ≥ −1}} .

Using the same clause hypersurfaces as in the proof of Lemma 4.2, embedded into Rn+1,
we obtain the empty set for every No-instance of 3-Sat. Moreover, every Yes-instance
of 3-Sat gives a finite union of disjoint half rays which is not a tropical variety. All the
polynomials in the construction are of degree at most 2. Since the reduction is polynomial
time, the statement follows. �
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4.3. Connectivity. In order to concentrate on the aspect of connectivity (rather than a
non-emptiness test in disguise), note that in the definition of Tropical Connectivity

we have excluded inputs leading to an empty prevariety.

Lemma 4.10. Tropical Connectivity is co-NP-hard. This statement persists if the
instances are restricted to those where

⋂m

i=1 T (fi) is a tropical variety. Moreover, this
statement persists if all polynomials are restricted to be of degree at most 3.

Proof. We choose a point q which is always contained in the tropical variety and modify
the construction from the proof of Lemma 4.2. In order to achieve that our choice of q

does not interfere with the remaining construction, we embed the construction into Rn+1,
similar to the proof of Lemma 4.9.

In the modification, the structural hypersurfaces are now given by the polynomials

h′
i(x) = (t0 · xi + t1) · (t0 · xi + t0) · (t0 · xi + t2) , 1 ≤ i ≤ n .

Hence, the intersection of all hypersurfaces gives {0, 1, 2}n+1. By constructing additional
polynomials of the form

(t0 · xi + t1) · (t0 · xi + t0) · g′
i(x)

with linear forms g′
i as well as of the form

(t0 · xn+1 + t0) · (t0 · xn+1 + t2) ,

we can easily achieve that the intersection of all theses hypersurfaces is the set {0, 1}n ×
{0} ∪ {(2, 2, 2)}.

By multiplying all polynomials of the clause surfaces by the polynomials t0 · xn+1 + t2,
we can achieve that the point (2, 2, 2) remains contained in the prevariety. Note that
the degree of all polynomials is increased by only 1. Altogether, the constructed tropical
prevariety P is always nonempty. If the 3-Sat-formula can be satisfied, then there are at
least two connected components in P . If the 3-Sat-formula cannot be satisfied then P

has exactly one component.
All the constructed polynomials are of degree at most 3. The resulting tropical preva-

riety is a finite set and therefore a tropical variety. Moreover, the reduction is polynomial
time. �

Lemma 4.11. If the number m of tropical prevarieties is a fixed constant, then Tropical

Connectivity can be solved in polynomial time.

Proof. Similar to the proof of Lemma 4.8, for fixed m we can compute in polynomial time
faces F1, . . . , Ft of the polyhedral complex P =

⋂m

i=1 T (fi) such that P =
⋃t

i=1 Fi. Hence,
we can construct a graph G with vertices F1, . . . , Ft in which two faces Fi and Fj are
connected by an edge if and only if they intersect. Then one computes the number of
connected components of G. This can be done in polynomial time. �

The hardness result 4.11 is also contrasted by the statement that linear tropical preva-
rieties are always connected.

Lemma 4.12. Every nonempty linear tropical prevariety P ⊂ Rn is connected.
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Proof. Let P :=
⋂m

i=1 T (fi) and x, y ∈ P . The notions ⊕, ⊙, previously defined for
scalars, can also be defined for vectors, by applying the operations componentwise. With
this notation it suffices to show that for every λ, µ ∈ R, the point z := λ ⊙ x ⊕ µ ⊙ y is
contained in each T (fi), 1 ≤ i ≤ m. Fix an i ∈ {1, . . . , m}, and let fi = a0 ⊕

⊕n

i=1 ai · xi.
For convenience of notation set x0 = y0 = z0 = 0, and let r be an index which minimizes
{aj + zj : 0 ≤ j ≤ n}. By definition of z, we have zr = λ + xr or zr = µ + yr. Without
loss of generality we can assume zr = λ + xr. Note that then ar + xr ≤ as + xs for every
index s.

Since x ∈ T (fi), there exists an index s 6= r with ar + xr = as + xs. The definition
of z implies as + zs ≤ as + λ + xs = ar + λ + xr = ar + zr. Hence, by the choice of r,
ar + zr = as + zs. In other words, the minimum in fi is attained at least twice at the
point z, i.e., z ∈ T (fi). �

Remark 4.13. Using the framework of tropical convexity from [4], Lemma 4.12 also
follows from the fact that tropical hyperplanes are tropically convex [4, Proposition 6] in
connection with the observations that the intersection of tropically convex sets is tropically
convex and that tropically convex sets are connected.

Statements 4.1–4.12 prove all claims in Theorems 3.1–3.3

5. Related aspects on amoebas

Our work is related to (and was partially inspired by) questions on algorithmic com-
plexity of basic problems on the amoebas that were introduced in by Gel’fand, Kapranov,
Zelevinsky [7]. Let I be an ideal in the ring R[x1, . . . , xn] of Laurent polynomials. Then
the amoeba of I is defined by the image of the complex subvariety V (I) ⊂ (C∗) under the
mapping

Log : (C∗)n → Rn ,

z 7→ (log |z1|, . . . , log |zn|) ,

where |·| denotes the absolute value of a complex number and log is the natural logarithm.
Since any hypersurface amoeba contains a tropical variety (the so-called spine) that is
a strong deformational retract of the amoeba (see, e.g., [15, Theorem 2.6]), algorithmic
questions on amoebas are closely related to algorithmic questions on tropical varieties (see
[26, Chapter 9]).

A central question by Einsiedler and Lind asks for an efficient algorithm to test whether
the complex amoeba of an ideal contains the origin [5]. This comes from applications in
dynamical systems, where this test determines whether a dynamical system has a finiteness
condition called expansiveness. Only little is known about the computational hardness of
algorithmic problems on amoebas, and the computational complexity of the membership
problem for amoebas (with rational input data and the dimension being part of the input)
is still open. If the polynomials are given in sparse encoding (i.e., only the non-vanishing
coefficients are listed in the input), then the problem becomes NP-hard even for n =
1 ([18], see also [21]). Recently, Rojas and Stella [21] have established an algorithmic
fewnomial theory providing further hardness results for amoebas in sparse encoding (e.g.,
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NP-hardness of deciding whether an amoeba intersects a coordinate hyperplane.) For
some Nullstellensatz-type algorithmic results see [19].

Acknowledgment. Thanks to Maurice Rojas for pointing out reference [18] and to the
anonymous referees for very detailed criticism and comments.
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