
COMMON TANGENTS TO FOUR UNIT BALLS IN R3
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Abstract. We answer a question of David Larman, by proving the following result.
Any four unit balls in 3-dimensional space, whose centers are not collinear, have at
most twelve common tangent lines. This bound is tight.

1. Introduction

The screen of a computer monitor consists of small pixels. Suppose that we are given
a 3-dimensional scene consisting of several objects and a viewpoint. Generating an
image of this scene (“rendering” the scene) is a basic task in computer graphics and in
computational geometry, which amounts to determining the visible object(s) at each
pixel. The methods developed for the solution of such problems have an extensive
literature under the labels “ray tracing” and “hidden surface removal” (see, e.g.,
[7, 20]). This field has served as a rich source of problems on geometric, combinatorial,
and algebraic properties of systems of lines in their interaction with geometric objects.

For instance, we can assume that all of our objects are unit balls in a region A,
and we want to determine which balls are not visible from any viewpoint outside of A
(see [29]). This leads to the following problem, first formulated by David Larman [19],
and later discussed by Durand [9], Karger [17], and Verschelde [30]. Here, B(c, r)
denotes the (closed) ball with center c and radius r.

Given: Four balls B(ci, r) with centers ci ∈ R
3 and radius r, 1 ≤ i ≤ 4.

Question: Under what conditions can we guarantee that the balls permit only a
finite number of common tangent lines? If these conditions are satisfied, what
is the maximum number of common tangents?

Equivalently, we can ask for the circular cylinders with radius r circumscribing the
tetrahedron with vertices c1, . . . , c4 [25, 17, 1]. Note that in the original formulation
of the problem, the balls are not necessarily disjoint. In the second formulation, this
means that r may be larger than or equal to diam{c1, c2, c3, c4}/2.

The above problem belongs to enumerative geometry [27, 14]. For some rigorous
modern treatises using the framework of algebraic geometry, see ([18, 11]). One of
the most famous results in this field is the enumeration by Cayley and Salmon of the
27 lines on a smooth cubic surface (see [14, 13]). According to another famous result,
misstated by Steiner [28] and correctly proved first by Chasles (cf. [27]), there can be
3264 conics tangent to five given conics. It turns out that all of them can be real (see
[22] and [11], §7.2).

There are two other results in enumerative geometry, somewhat related to the above
problem:
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(1) The number of balls touching four given balls in 3-space is at most sixteen in
the generic case [26, 16]. (This can be regarded as the 3-dimensional version
of the Apollonius problem).

(2) The number of lines intersecting four given lines in 3-space is at most two in
the generic case [27, 15, 12].

The following result provides an answer to the above mentioned question of Larman.

Theorem 1. Any four unit balls in 3-dimensional space, whose centers are not
collinear, have at most twelve common tangent lines. This bound is tight.

The second statement of this theorem answers a question of Karger [17], who asked
whether there exist configurations with more than eight common tangents.

In the case when the centers are affinely independent, we will represent the common
tangents by common solutions of a cubic and a quartic equation. We use the method
from [3, 24] to characterize all lines equidistant from the four centers, by a cubic
curve in projective plane. We also present an alternative approach to deduce a cubic
equation, using a classical construct in projective geometry: the pedal surface of a
tetrahedron. The condition on the radius, i.e., the actual distance of the lines from
the centers, leads to a quartic equation.

If the cubic equation is irreducible, a detailed geometric inspection ensures that
the cubic and the quartic cannot have a common component; hence, the desired
result is implied by Bézout’s Theorem. In case of a reducible cubic, we can find
suitable parametrizations of the quadratic or linear factors (cf. [24]). Substituting
the parametrization into the radius condition gives a univariate polynomial equation
whose leading coefficient can be explicitly analyzed.

In the case when the centers of the balls are affinely dependent, we give a direct
argument using the ellipses passing through the four centers, whose shorter half-axis
is fixed.

The paper is structured as follows. Section 2 deals with the case where the centers
of the balls are affinely independent. In Section 3 we show that 12 tangents can indeed
be established in real space, and we exhibit a whole class of these configurations based
on c1, . . . , c4 constituting an equifacial tetrahedron. Finally, Section 4 contains the
proof for the affinely dependent case.

After reading an earlier draft of this paper, William Fulton found an alternative
proof of Theorem 1 in the generic case, using techniques from intersection theory [10].

2. Affinely Independent Centers

2.1. A cubic and a quartic equation. Let c1, . . . , c4 ∈ R3 be affinely independent,
and let T be the tetrahedron with vertices c1, . . . , c4. Further, let Ai be the area of
the face of T which is opposite to ci, 1 ≤ i ≤ 4. First we describe the set of lines
which are tangent to the balls B(ci, r) for some radius r > 0.

First method (based on elementary geometry [24]): A line l in R3 can be characterized
by its closest point p to the origin, and by its direction s. More precisely, it can
be described by l = {p + µs : µ ∈ R}, where p and s 6= 0 are perpendicular
vectors (in notation, p ⊥ s). The direction vector s = (s1, s2, s3)

T can be regarded
as homogeneous coordinate, i.e., multiplying s by any nonzero constant still gives the
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same direction of the line. Since p ⊥ s, the distance of l from the origin is given by
||p||, where || · || refers to the Euclidean norm.

The line l has distance r from some point ci if and only if the line l − p (which
passes through the origin) has distance r from ci − p. Therefore, we have

((ci − p)× s)2 = r2s2

(see Figure 1). Introducing the moment vector m := p× s yields

(ci × s)2 − 2〈ci × s, p× s〉+m2 − r2s2 = 0,

whence

(1) (ci × s)2 − 2〈ci, p〉s2 +m2 − r2s2 = 0.

Choosing c4 to be at the origin, Equation (1) implies m2 − r2s2 = 0. Moreover, for
c1, c2, c3, we obtain linear equations in p:

(2) 〈ci, p〉 =
1

2s2
(ci × s)2, 1 ≤ i ≤ 3.

Setting M := (c1, c2, c3)
T , we obtain the vector equation

(3) p =
1

2s2
M−1





(c1 × s)2

(c2 × s)2

(c3 × s)2



 6= 0.

By Cramer’s rule,

(4) M−1 =
1

6V
(c2 × c3, c3 × c1, c1 × c2),

where V := det(c1, c2, c3)/6 denotes the oriented volume of T . In particular, any
direction vector s of a line l satisfying the four distance conditions determines the
corresponding vector p and the radius r = ||p|| uniquely. By introducing the normal
vectors

(5) n1 := (c2 × c3)/2, n2 := (c3 × c1)/2, n3 := (c1 × c2)/2,

and substituting (3) into 〈p, s〉 = 0, we can eliminate p and obtain a homogeneous
cubic condition for the direction vector s:

(6)

3
∑

i=1

(ci × s)2〈ni, s〉 = 0.

ci − p

0

l − p = {µs : µ ∈ IR}

r

Figure 1. Distance of the line l − p from ci − p
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In order to simplify this equation, we express s in terms of the three centers c1, c2, c3,
i.e.,

(7) s =

3
∑

j=1

tjcj

with homogeneous coordinates t1, t2, t3. This yields

〈ni, s〉 = 〈ni,
3

∑

j=1

tjcj〉 = ti〈ni, ci〉.

As the scalar triple product 〈ni, ci〉 is invariant for 1 ≤ i ≤ 3, Equation (6) simplifies
to

(8)
3

∑

i=1

ti(ci × s)2 = 0.

By using A1 = ||n1||, A2 = ||n2||, A3 = ||n3||, A4 = ||(c1 − c2) × (c3 − c2)||/2, and
setting F := (A2

1
+A2

2
+A2

3
−A2

4
)/2 = −(〈n1, n2〉+ 〈n2, n3〉+ 〈n3, n1〉), the expansion

of this sum yields

(9) A2

1
t2t3(t2 + t3) + A2

2
t3t1(t3 + t1) + A2

3
t1t2(t1 + t2) + 2Ft1t2t3 = 0.

Second method (based on classical projective geometry): Note that the numbers in (7)
can be interpreted as barycentric coordinates of s in the projective space relative to
c1, c2, c3 (cf. [6]). If we allow c4 to be an arbitrary vector again, the representation in
barycentric coordinates is

(10) s =

4
∑

j=1

tjcj .

Then the equation of Π∞, the plane at infinity in three-dimensional projective space
P3, is

(11) t1 + t2 + t3 + t4 = 0

(cf. [6]). The locus of all points x with the property that the feet of the perpendiculars
from x on the planes supporting the faces of T lie in a plane, is a cubic surface Σ ([23],
p. 118, Exercise 17). In the appendix we provide a proof of this statement. Namely,
Σ is given by

(12) A2

1
t2t3t4 + A2

2
t1t3t4 + A2

3
t1t2t4 + A2

4
t1t2t3 = 0,

or, in a nicer (but slightly imprecise) form

(13)
A2

1

t1
+

A2

2

t2
+

A2

3

t3
+

A2

4

t4
= 0.

Obviously, all six lines defined by the edges cicj, 1 ≤ i 6= j ≤ 4, belong to Σ. Consider
now any circular cylinder C circumscribing T and let x(C) denote the point at infinity
of the axis of C. We claim that x(C) ∈ Σ, i.e., its barycentric coordinates satisfy (12).
By the Wallace-Simson Theorem, the feet of the perpendiculars from c4 on the planes
c1c2x(C), c1c3x(C), c2c3x(C) are collinear ([6], p. 16, Exercise 11; [8]). Consequently,
the feet of the perpendiculars from c4 on the four planes supporting the faces of the
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tetrahedron c1c2c3x(C) lie in a plane. But then x(C) is in the same relation to the
tetrahedron c1c2c3c4, i.e., x(C) ∈ Σ (see [2], p. 25).

By solving (11) for t4 and substituting this expression into (12), we obtain a cubic
equation in t1, t2, t3. It can be easily checked that for c4 = 0 this equation is equivalent
to (9).

Consequently, the set of lines tangent to the balls B(ci, r) for some radius r can
be characterized by the homogeneous cubic equation (9) in s. In addition, for a fixed
radius r, Equation (3) in conjunction with p2 = r2 leads to a homogeneous equation
of degree 4 in s. Hence, unless the cubic curve C and the quartic curve Q in projective
plane P2 have a common component, Bézout’s Theorem implies there are 12 (possibly
complex) solutions including multiplicities (see, e.g., [5]).

2.2. The irreducible case. Assume first that C is irreducible. Then C and Q have
a common component if and only if C ⊂ Q. Now observe that any solution of (9)
uniquely defines a radius r via (3). Hence, if C ⊂ Q then the radius is constant for
all elements in C. Since we know six points on C, namely the six edge directions, it
suffices to prove the following lemma.

Lemma 2. If all six edge directions give the same radius, then C is reducible.

Proof. Consider two directions, parallel to two skew edges of T , say s := c1 − c4 and
s′ := c3 − c2. Using (3) and (4), we can compute the corresponding radii rs and rs′ .
We obtain

rs =
2A2A3||n1 + n2||

3V c2
1

,

rs′ =
||(c1 × (c3 − c2))

2(c2 × c3) + 4A2

1
(c3 × c1) + 4A2

1
(c1 × c2)||

12V (c3 − c2)2
.

Applying the relation A4 = ||(c1 − c2) × (c3 − c2)||/2, the latter expression can be
compactly written as

rs′ =
2A1A4||n1 + n2||
3V (c3 − c2)2

.

Now rs = rs′ implies

(14) c2
1
A1A4 = (c3 − c2)

2A2A3.

Let aij = ||ci−cj ||, i 6= j. Further, let Ri denote the circumradius of the face opposite
to ci, 1 ≤ i ≤ 4. In view of the well-known triangle formula “R = (abc)/4A”, we have
R1 = a23a24a34/4A1 and three analogous equations for R2, R3, and R4. Hence, (14)
becomes

(15) R1R4 = R2R3.

By our assumptions, the radii corresponding to the directions c2 − c4 and c3 − c1 as
well as the radii corresponding to the directions c3 − c4 and c2 − c1 coincide. Thus,
we obtain

(16) R2R4 = R1R3, R3R4 = R1R2,
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and hence R1 = R2 = R3 = R4. Therefore, the four faces of the tetrahedron are
equidistant from the center of the sphere through c1, . . . , c4. In other words, the in-
center of T coincides with its circumcenter. Hence, the circumcenter of a face is the
point at which the inscribed sphere of T touches that face. In particular, it lies inside
the face, which implies that every face of T has only acute angles.

Let αij denote the angle at ci in the face opposite to cj. By the Law of Sines ([6],
p. 13), a23 = 2R1 sinα41 = 2R4 sinα14, so that

sinαij = sinαji, 1 ≤ i 6= j ≤ 4.

Altogether, any pair of faces have a common edge, identical acute angles opposite to
this edge, and the same circumradius. Consequently, the two faces are congruent and
have the same area, i.e., A1 = A2 = A3 = A4. However, if all four faces have the same
area, the cubic C is reducible; this will be discussed in detail in Section 2.3. �

2.3. The reducible cases. Now let C be reducible. We distinguish between the case
A1 = A2 = A3 = A4 and the case that not all of A1, A2, A3, A4 are equal.

2.3.1. The case of an equifacial tetrahedron. If A1 = A2 = A3 = A4 then the tetrahe-
dron with vertices c1, . . . , c4 defines a (not necessarily regular) equifacial tetrahedron.
The cubic equation (9) decomposes into the union of three lines,

(17) (t1 + t2)(t2 + t3)(t3 + t1) = 0.

We consider the line t1+t2 = 0, the other two cases are symmetric. The line t1+t2 = 0
can be parametrized by

(18) t1 = 1, t2 = −1, t3 = λ, −∞ < λ ≤ ∞.

Substituting these expressions into the square of (3) yields a polynomial equation
P4(λ) = 0 of degree at most 4 in λ. We show that the polynomial P4 cannot degenerate
to zero; hence, the equation has at most 4 solutions. For a polynomial q in the variable
λ, let Coeffλ,k(q), denote the coefficient of λk in the polynomial q. In the following
computations no higher power in λ than the inspected one can occur. Since in (18)
the degree of t3 is larger than the degree of t2, we obtain

Coeffλ,2

(

(c1 × s)2
)

= 4A2

2
, Coeffλ,2

(

(c2 × s)2
)

= 4A2

1
, Coeffλ,2

(

(c3 × s)2
)

= 0.

Hence, (4) implies

Coeffλ,4

(

(

M−1((c1 × s)2, (c2 × s)2, (c3 × s)2)T
)2
)

=

(

4A1A2||n1 + n2||
3V

)2

.

Since Coeffλ,2(s
2) = c2

3
, the coefficient of degree 4 in P4 vanishes if and only if

(19)
2A1A2||n1 + n2||

3V
= rc2

3
.

Let r0 > 0 be the radius defined by this equation. For 0 < r 6= r0, the leading
coefficient of P4 does not vanish, and P4 has exactly 4 zeroes in C counted with
multiplicity.

For r = r0, the polynomial P4 is of degree at most 3. However, it cannot degenerate
to the zero polynomial, since the polynomials for r 6= r0 have (possibly complex)
zeroes. In particular, at any of these zeroes λ the polynomial P4 for r = r0 does not
evaluate to 0. Hence, for r = r0 there are at most 3 solutions in C. Additionally, in this
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P1

P2

P3

P4

P5

P6

X14

X23

X24

X34

X13

X12

(a) Complete quadrilateral (b) Configuration of the points Xij

Figure 2. A complete quadrilateral consists of 4 lines and 6 vertices
P1, . . . , P6; the three diagonals are drawn by dashed lines. Figure (b)
shows a complete quadrilateral stemming from the reducible case.

case we have to consider the solution λ = ∞. More precisely, r0 can be interpreted as
follows. For λ = ∞ within the parametrization, the resulting radius r∞ is computed
– in the same way as r0 – by using the leading coefficients. This implies r∞ = r0.

Altogether, for any given radius r > 0, there are at most 3·4 = 12 common tangents
to the four balls B(ci, r).

2.3.2. The remaining reducible cases. Now consider the case that not all of the faces
have the same area. We can interpret the homogeneous cubic equation (6) as a cubic
curve in projective plane P2 (for the theory of plane algebraic curves the reader is
referred to [4, 31], see also [5]).

We discuss and parametrize the plane algebraic curve C defined by (9). As already
mentioned, the directions of the six tetrahedron edges give points on C. In particular,
let Xij := ci − cj , 1 ≤ i < j ≤ 4.

Following [24], we characterize the relationships between those six points on C.
Due to (7) the t-coordinates of X14, X24, X34, X12, X13, X23 are (1, 0, 0)T , (0, 1, 0)T ,
(0, 0, 1)T , (1,−1, 0)T , (1, 0,−1)T , and (0, 1,−1)T , respectively.

For any of the four tetrahedron faces, the set of directions parallel to that face
defines a hyperplane through the origin (excluding the origin itself); hence, this set
of directions defines a line in P2. Of course, this remains true even after applying the
linear variable transformations.

In order to characterize this configuration of four lines, the following notation will
be useful. A complete quadrilateral in projective plane consists of four lines in general
position and the six points in which the lines intersect [6], see Figure 2(a); here, general
position means that no three lines have a common point of intersection.

Since there does not exist a vector which is parallel to more than two faces,
the four lines define a complete quadrilateral. One line contains the set of
points {X12, X23, X34}, another one contains {X12, X24, X14}, the third one contains
{X13, X34, X24}, and the fourth one contains {X23, X34, X24}. In particular, the points
Xij are the 6 vertices of the complete quadrilateral. Figure 2(b) illustrates this con-
figuration.
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Since the cubic C is reducible, it can be decomposed into a line and a (not necessarily
irreducible) conic section. An irreducible conic section intersects with any given line
in at most two points; this implies that an irreducible conic section does not contain
three collinear points. Hence, one of the factors of C is a line l that contains at least
two of the six points Xij.

Whenever some direction vector s of a common tangent is parallel to a face of the
tetrahedron, s can only take the direction of an edge; otherwise, the tangent cannot
have the same distance from all three vertices of that face. For this reason, l cannot
contain two points from the same line of the complete quadrilateral. Hence, l must
be one of the three diagonals of the complete quadrilateral. Any of these diagonals
contains two points Xij, Xkl which do not have any common index.

Without loss of generality we can assume that l contains X13 and X24. First we
show that this implies A1 = A3 and A2 = A4. Since the t-coordinates of X13 and
X24 are (1, 0,−1)T and (0, 1, 0)T , l is given by t1 + t3 = 0. The coefficient τ of t2

2

in the remaining conic section must be nonzero, because the coefficient of t1t
2

2
in (9)

is nonzero. Comparing the coefficients of t1t
2

2
and t3t

2

2
in (9) with the corresponding

coefficients in the decomposed representation yields τ = A2

1
= A2

3
; hence A1 = A3.

Furthermore, let τ1 and τ2 denote the coefficients of t1t2 and t2t3 in the remaining
conic section, respectively. Comparing the coefficients of t2

1
t2 yields τ1 = A2

3
= A2

1
.

In the same way, with regard to t2t
2

3
and t1t2t3 we obtain τ1 = A2

1
, and 2F = 2A2

1
,

whence (by definition of F ): A2 = A4. Hence, the remaining conic section results to

(20) A2

1
(t1t2 + t2

2
+ t2t3) + A2

2
t1t3 = 0.

Since, by assumption, not all of the faces have the same area, we have A1 6= A2.
Furthermore, it can be verified that for A1 6= A2 the conic section (20) is irreducible.

Parametrizing the line l can be done like in the case A1 = A2 = A3 = A4. In
particular, the line l gives at most 4 common tangents.

In order to parametrize (20), we intersect the conic with a suitable pencil of lines.
First observe that X14 is a regular point on the conic with tangent A2

1
t2 + A2

2
t3 = 0.

Then consider the pencil of lines

λA2

1
t2 − (A2

1
t2 + A2

2
t3) = 0, −∞ < λ ≤ ∞

with apex X14. In particular, solving for t3 gives t3 = A2

1
(λ−1)t2/A

2

2
. The parameter

value λ = 0 gives the tangent in X14; the parameter value λ = ∞ yields t2 = 0,
which is the line through X14 and X34. Replacing t3 in (20) via the pencil equation
and eliminating the linear factor t2 caused by the apex (1, 0, 0)T yields (A2

1
(λ− 1) +

A2

2
)t2 + A2

2
λt1 = 0. This gives the parametrization

(t1, t2, t3)
T = (−A2

1
(λ− 1)−A2

2
, A2

2
λ,A2

1
(λ− 1)λ)T , −∞ < λ ≤ ∞.

Consequently,

Coeffλ4((c1 × s)2) = 4A4

1
A2

2
, Coeffλ4((c2 × s)2) = 4A6

1
, Coeffλ4((c3 × s)2) = 0.

Here, the radius r0 where the leading coefficient vanishes is the same one as in (19)
and refers to the situation λ = ∞. Hence, the conic section gives at most 8 common
tangents. Altogether, we obtain at most 4+8 = 12 common tangents in this reducible
case.
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3. A Configuration With 12 Common Tangents

The easiest example of a construction with 12 real tangents stems from a regular
tetrahedron configuration of c1, . . . , c4. However, since in Section 4 we will relate the
affinely dependent configurations to the limit case of affinely independent configura-
tions, we exhibit a more general class of configurations with 12 real tangents.

Namely, consider an equifacial tetrahedron, as in Section 2.3.1. It is well-known
that the vertices of such a tetrahedron T can be regarded as four pairwise non-adjacent
vertices of a rectangular box. Hence, there exists a representation c1 = (λ1, λ2, λ3)

T ,
c2 = (λ1,−λ2,−λ3)

T , c3 = (−λ1, λ2,−λ3)
T , c4 = (−λ1,−λ2, λ3)

T with λ1, λ2, λ3 > 0.
By assuming s2 = 1, we have p = s×m, and Equation (1) takes the form

(21) 〈ci, s〉2 + 2〈ci, p〉 =
3

∑

j=1

λ2

j + p2 − r2.

Subtracting these equations pairwise gives

4(λ2p2 + λ3p3) = −4(λ1λ3s1s3 + λ1λ2s1s2)

(for indices 1, 2) and analogous equations, so that

λ1p1 = −λ2λ3s2s3, λ2p2 = −λ1λ3s1s3, λ3p3 = −λ1λ2s1s2.

Since 〈p, s〉 = 0, this yields s1s2s3 = 0. By assuming without loss of generality s1 = 0,
we obtain

p =

(

−λ2λ3

λ1

s2s3, 0, 0

)

.

So (21) becomes

λ2

2
s2
2
+ λ2

3
s2
3
=

3
∑

j=1

λ2

j +

(

−λ2λ3

λ1

s2s3

)2

− r2,

which, by using s2
2
+ s2

3
= 1, gives

λ2

2
λ2

3
s4
2
+ (λ2

1
λ2

2
− λ2

1
λ2

3
− λ2

2
λ2

3
)s2

2
+ λ2

1
(r2 − λ2

1
− λ2

2
) = 0.

There are two distinct real solutions for s2
2
if and only if

(22) λ2

1
λ2

2
+ λ2

1
λ2

3
+ λ2

2
λ2

3
> 2λ1λ2λ3r.

Since the volume of T is 8λ1λ2λ3/3 and the area A of a face is 2
√

λ2

1
λ2

2
+ λ2

1
λ2

3
+ λ2

2
λ2

3
,

(22) becomes A2/4 > 3V r/4. In case of reality, both solutions for s2
2
are positive if

and only if

(23) r2 > λ2

1
+ λ2

2

and

(24) λ2

1
λ2

3
+ λ2

2
λ2

3
> λ2

1
λ2

2
.

Hence, there will be 12 distinct real common tangents to B(c1, r), . . . , B(c4, r) if and
only if r satisfies (22) and the three inequalities such as (23), and if in addition the

tetrahedron c1, . . . , c4 satisfies the three inequalities such as (24). Since 2
√

λ2

1
+ λ2

2
is

the length of one of the edges, it follows that we require

e

2
< r <

A2

3V
,
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Figure 3. Construction with 12 tangents. Note that the four balls
slightly intersect with each other.

where e is the length of the longest edge; also, expressing (24) by using the area A
gives

A2 > 8λ2

1
λ2

2
.

Applying the formula “A = 1

2
ab sin γ” on the left side and the Laws of Cosines on the

right side establishes a relation among the angles α, β, and γ of the face triangle:

tanβ tan γ > 2.

Since tanα tanβ tan γ = tanα+ tan β + tan γ in a triangle and since all three angles
are acute, we can conclude:

Lemma 3. Let c1, . . . , c4 constitute an equifacial tetrahedron, and let r > 0. Then
there are exactly 12 distinct real common tangents to B(c1, r), . . . , B(c4, r) if and only
if

a) e

2
< r <

A2

3V
,

where e is the length of the longest edge, A is the area of a face, and V is the
volume of the tetrahedron; and

b) the angles in one (and hence in all) of the face triangles satisfy

(25) tan β + tan γ > tanα,

where α is the largest of the three angles.

Figure 3 depicts the configuration c1 = (4, 4, 4)T , c2 = (4,−4,−4)T , c3 =
(−4, 4,−4)T , c4 = (−4,−4, 4)T and radius

√
33, which gives 12 tangents by Lemma 3.

4. Affinely Dependent Centers

Let c1, . . . , c4 be non-collinear points in the xy-plane. We now look for circular
cylinders C with radius r, whose surface contains c1, . . . , c4. Unless the axis of C is
parallel to the xy-plane, the intersection of C with the xy-plane is an ellipse with
smaller half-axis r. We can assume that none of the given points is contained in the
convex hull of the other points; otherwise, three points are collinear (giving at most
two circular cylinders) or there is no circular cylinder.
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An axis parallel to the xy-plane is only possible if the quadrangle formed by
c1, . . . , c4 is a trapezoid. Since such an axis can be located above or below the xy-
plane, and since a parallelogram has two pairs of parallel edges, we obtain at most 4
circular cylinders with axis parallel to the xy-plane. If c1, . . . , c4 constitute a trapezoid
but not a parallelogram, this number reduces to 2.

Now any ellipse with smaller half-axis r passing through c1, . . . , c4 defines two cir-
cular cylinders with radius r, whose intersection with the xy-plane gives the ellipse;
in case of a circle these two cylinders coincide.

Consider a general ellipse

E : ax2 + 2hxy + by2 + 2gx+ 2fy + d = 0,

in other form

(26) a(x− x0)
2 + 2h(x− x0)(y − y0) + b(y − y0)

2 + d′ = 0.

Comparing the coefficients of the two forms yields
(

a h
h b

)(

x0

y0

)

=

(

−g
−f

)

.

With the standard invariants of conic section classification

I1 = tr

(

a h
h b

)

= a + b,

I2 = det

(

a h
h b

)

= ab− h2,

I3 = det





a h g
h b f
g f d



 ,

and the notation F := gh− af , G := fh − bg, we obtain x0 = G/I2, y0 = F/I2. In
particular, since E is an ellipse, we have I3 6= 0, I2 > 0, and I1I3 < 0. Consequently,
the absolute term d′ in (26) results to

d′ =
1

I2
2

(

G F I2
)





a h g
h b f
g f d









G
F
I2





=
1

I2
(gG+ fF + dI2)

=
I3
I2
.

E has smaller half-axis r if and only if both eigenvalues of the matrix

−I2
I3

(

a h
h b

)

are positive and the larger one is 1/r2, i.e., if the largest solution of the quadratic
equation in λ

I2
3
λ2 + I1I2I3λ+ I3

2
= 0

is 1/r2 and both solutions are positive.
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It is well-known that the set of ellipses passing through four given points are mem-
bers of the pencil of conics S1 + µS2, with S1, S2 equations of two arbitrary conics
passing through the four points (see, e.g., [21]). Let I1(µ), I2(µ), I3(µ) be the invari-
ants of S(µ) := S1 + µS2, so that Ii(µ) is a polynomial in µ of degree i. Any ellipse
S(µ) with smaller half-axis r passing through c1, . . . , c4 must necessarily satisfy the
condition

(27)
I3(µ)

2

r4
+

I1(µ)I2(µ)I3(µ)

r2
+ I2(µ)

3 = 0.

Equation (27) is of order 6 in µ. The two cases where the coefficient of degree 6
vanishes stem from our affine notation of a pencil and refer to the case µ = ∞.

Altogether, there are at most 12 circular cylinders with smaller half-axis r passing
through c1, . . . , c4, whose axis is not parallel to the xy-plane. It remains to show that
this number can be decreased in the case of parallelograms and trapezoids.

For the parallelogram case, suppose that the parallelogram is given by the two
pairs of parallel lines y = γ, y = −γ, and y = αx+ β, y = αx− β for some constants
α, β, γ > 0. As generators S1, S2 of the pencil of conics through the four vertices, we
can choose the two degenerated conics given by the two pairs of lines

S1 : (y − γ)(y + γ) = 0,

S2 : (y − αx− β)(y − αx+ β) = 0.

Since both the center of S1 and the center of S2 is (x0, y0) = (0, 0)T , each ellipse in
the pencil S1 + µS2 has center (0, 0)T . Hence, any ellipse S(µ) in the pencil is of the
form

ax2 + 2hxy + by2 + 1 = 0.

Since

I3(µ) = det





a1 + µa2 h1 + µh2 0
h1 + µh2 b1 + µb2 0

0 0 1 + µ



 = I2(µ)(1 + µ),

Equation (27) becomes

I2(µ)
2
(

(1 + µ)2r4 + I1(µ)(1 + µ)r2 + I2(µ)
)

= 0.

Consequently, since I2(µ) 6= 0 for any ellipse in the pencil, we obtain a quadratic
condition in µ.

For the trapezoid case, suppose that two vertices are located on the line y = 0 and
that two vertices are located on the line y = 2α with α > 0. Then S2 can be chosen
as the degenerated conic consisting of two parallel lines

S2 : y(y − 2α) = 0.

The representation matrix of the ellipse S1 + µS2 is of the form




a1 h1 f1
h1 b1 + µ g1 − αµ
f1 g1 − αµ d1



 .

Therefore I2(µ) is only linear in µ, and I3(µ) is only quadratic in µ. Hence, Equa-
tion (27) is only of degree 4 in µ. We can conclude:
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Corollary 4. Let c1, . . . , c4 be affinely dependent, and let r > 0. If c1, . . . , c4 form
a trapezoid, then there are at most 10 common tangents to B(c1, r), . . . , B(c4, r).
If c1, . . . , c4 form a parallelogram, then there are at most 8 common tangents to
B(c1, r), . . . , B(c4, r).

Concerning constructions with many real tangents in the affinely dependent case,
our best construction gives 8 real tangents. For an easy construction with 8 real
tangents, let c1, . . . , c4 constitute a square with edge length e. For e/2 < r <

√
2e/2

two neighboring balls intersect with each other, but a ball does not intersect with its
opposite partner.

Hence, the opposite pairs of the intersection circles are disjoint, and they lie on
the vertical planes bisecting opposite edges of the square. The four common tangents
to such a pair of intersection circles are common tangents to the four balls which
altogether gives 8 common tangents.

It might be possible that the bound of 12 is not tight in the affinely dependent
case. In fact, our proof replaces the condition “1/r2 is the largest eigenvalue and both
eigenvalues are positive” by the weaker condition “1/r2 is an eigenvalue”. In contrast
to the affinely independent case (where our construction with 12 tangents was based
on symmetry), Corollary 4 implies that symmetric constructions yield fewer than 12
tangents in the affinely dependent case.

Finally, we want to explain what happens to some of the tangents when trying
to approach a rectangle configuration (with at most 8 common tangents) as a limit
case of affinely independent centers. Let c1, . . . , c4 constitute a rectangle in the xy-
plane. By lifting two opposite of the four centers appropriately, we can establish a
configuration with 12 tangents by Lemma 3. By reducing the height of the resulting
box with base rectangle in the xy-plane, we can interpret the rectangle as limit case
of this flattening process. Now Lemma 3 explains where some of the 12 tangents get
lost in this limit process. Namely, flattening of the box implies that the triangular
faces of the tetrahedron tend towards rectangular triangles. However, then tanα in
(25) tends to infinity, and (25) is violated at some stage of this process. Intuitively,
this means that some of the tangents get lost even before the limit case is reached.

Appendix: The Pedal Surface of a Tetrahedron

Let c1, . . . , c4 ∈ R
3 be the vertices of a tetrahedron T , and let Ni denote the unit

outer normal vector of the face opposite to ci. Further, let Ai denote the area of that
face. An elementary computation (using (5), n4 := ((c1 − c2) × (c3 − c2))/2 and a
suitable orientation) shows

(28) A1N1 + A2N2 + A3N3 + A4N4 = 0.

We would like to write up the equation of the so-called pedal surface Σ of the tetra-
hedron, i.e., the locus of the points x such that the feet of the perpendiculars from x
to the planes supporting the faces of the tetrahedron lie in a plane.

Let vi ∈ R3 be the vector connecting x to the foot of the perpendicular from x to
the plane supporting the face opposite to ci. The feet of these perpendiculars (i.e.,
the endpoints of these vectors) are co-planar if and only if the determinant of the
4× 4-matrix with i-th row (vi, 1) vanishes. The latter condition is equivalent to

(v2 v3 v4)− (v1 v3 v4) + (v1 v2 v4)− (v1 v2 v3) = 0,
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where (a b c) = 〈a× b, c〉 is the scalar triple product. If bi is defined by vi = biNi, then
the equation becomes

(29)
(N2N3N4)

b1
− (N1N3 N4)

b2
+

(N1N2N4)

b3
− (N1 N2N3)

b4
= 0.

It follows from (28) by taking scalar products with N2 ×N3 that

A1(N1N2N3) + A4(N2N3N4) = 0,

and from the analogous relations we obtain that for some b ∈ R,

(N2N3N4) = bA1, (N1N3N4) = −bA2, (N1N2N4) = bA3, (N1N2N3) = −bA4.

Comparing this with (29) yields

(30)
A1

b1
+

A2

b2
+

A3

b3
+

A4

b4
= 0.

Let t1, . . . , t4 denote the projective barycentric coordinates of x relative to c1, . . . , c4.
Notice that ti is proportional to biAi (cf. [6]). Therefore, x satisfies the required
property if and only if

(31)
A2

1

t1
+

A2

2

t2
+

A2

3

t3
+

A2

4

t4
= 0,

as desired.
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