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Abstract. The classes of sums of arithmetic-geometric exponentials (SAGE) and of sums of
nonnegative circuit polynomials (SONC) provide nonnegativity certificates which are based on
the inequality of the arithmetic and geometric means. We study the cones of symmetric SAGE
and SONC forms and their relations to the underlying symmetric nonnegative cone.

As main results, we provide several symmetric cases where the SAGE or SONC property
coincides with nonnegativity and we present quantitative results on the differences in various
situations. The results rely on characterizations of the zeroes and the minimizers for symmet-
ric SAGE and SONC forms, which we develop. Finally, we also study symmetric monomial
mean inequalities and apply SONC certificates to establish a generalized version of Muirhead’s
inequality.

1. Introduction

The inequality of the arithmetic and geometric means (AM/GM inequality) is one of the clas-
sical topics in calculus which also can be applied in various contexts. Building on work of Reznick
[33] and further developed by Pantea, Koeppl and Craciun [31], Iliman and de Wolff [20] as well
as Chandrasekaran and Shah [7], there has recently been renewed interest in polynomials and
more generally signomials (i.e., exponential sums), whose nonnegativity results from applying the
weighted AM/GM inequality. For example, given α0, . . . , αm ∈ Rn and λ = (λ1, . . . , λm) ∈ Rn+
with

∑m
i=1 λi = 1 and

∑m
i=1 λiαi = α0, the signomial

m∑
i=1

λi exp(〈αi, x〉)− exp(〈α0, x〉)

is nonnegative on Rn and a similar results holds for polynomials. To simplify notation, we
abbreviate polynomials and signomials shortly as forms.

Since sums of nonnegative forms are nonnegative as well, this basic idea defines certain convex
cones of nonnegative forms. For signomials with support set T , that cone is denoted as the SAGE
cone CSAGE(T ) (Sums of Arithmetic-Geometric Exponentials [7]) and for polynomials, it is
denoted as the SONC cone CSONC(T ) (Sums of Nonnegative Circuits [20]). These nonnegativity
certificates enrich and can be combined with other nonnegativity certificates such as sums of
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squares in the polynomial setting. In optimization, the cones based on the AM/GM inequality
can be used to determine lower bounds of signomials (and polynomials) through

fSAGE = sup{λ ∈ R : f − λ ∈ CSAGE(T )},

which can be numerically computed using relative entropy programming. These techniques rely
on the fact that every SONC form p (and similarly, SAGE forms) can be written as a sum
of nonnegative circuit polynomials supported on the support of p ([38], see also [27, 32]). The
AM/GM techniques can also be extended to constrained settings ([13, 28, 29, 37]). For the
second-order representability of the SAGE cone and the SONC cone see [4, 24, 30] and for
combining the SONC cone with the cone of sums of squares see [12].

So far, only few theoretical results are known concerning when the bounds are exact and how
good are the bounds when they are not exact. Concerning exactness, Wang [38] presented a class
of polynomials with several negative terms, for which the SONC bound coincides with the true
minimum. A main case of this class is a Newton simplex whose supports of the negative terms
are contained in the interior of the simplex, see also [20, 27] for the characterization of this class.
Moreover, in [38, Theorem 4.1] a generalization of that main class is given.

In many related areas, the use of symmetries is a key technique to extend the scope of ap-
plicability of methods (see, for example, [5, 15, 23, 26, 34, 35]). In the current paper, we study
symmetric SAGE and SONC forms. For the cone of sums of squares, symmetry has been studied
in [6]. In [25], it was initiated to exploit symmetries in the computation of the SAGE and SONC
lower bounds for linear group actions of a group G on Rn. At the core is a symmetric decom-
position of the SAGE and SONC forms in the symmetric cones CGSAGE(T ) and CGSONC(T ), see
Proposition 2.1 in Section 2 below. Depending on the symmetry, this can lead to large gains in
computation time. For the special case of the symmetric group, Heuer, de Wolff and Tran [18]
gave an alternative derivation of some of the results using a generalized Muirhead inequality.

The goal of the current paper is to provide theoretical results on the structure and on the
quantitative aspects concerning the cones of symmetric SAGE and SONC forms and on the
SAGE relaxations. On the one hand, this is motivated by the question to understand further the
symmetry reduction for AM/GM-based optimization. On the other hand, symmetry provides a
natural framework to tackle the exactness question and the quantitative questions mentioned
above, thus enabling to provide new non-trivial classes of signomials and polynomials for which
exactness results or exact quantitative gaps can be shown.

Our contributions.

1. As a starting point, we characterize the structure of symmetry-induced circuit decomposi-
tions and the structure of the zeroes of symmetric SAGE and SONC forms with respect to the
symmetric group. These results on the zeroes provide symmetric analogs of the characterizations
of the zeroes in [11] and [14]. Our treatment departs from the known result that the zero set
of a SAGE exponential constitutes a subspace and is therefore convex and that every SONC
polynomial with a finite number of zeroes has at most one zero in the positive orthant.

In sharp contrast to this, for the rather structured class of SONC polynomials and SAGE
exponentials, the minimal solutions of symmetric optimization problems are in general not sym-
metric. We say that these functions have the minimum outside of the diagonal, see Example 3.5.

2. The symmetric decomposition in [25] raised the natural question whether a symmetric
version of Wang’s result applies for certain classes of symmetric polynomials. We show in The-
orem 4.1 that such a symmetric generalization holds for a class with one orbit of exterior and
several orbits of interior points. For this class, we have SAGE exactness and we can explicitly
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characterize the minimizer of such a polynomial or signomial in terms of the unique positive
zero of a univariate signomial.

3. We provide several quantitative results concerning the question how far is the notion of
being SAGE or SONC from being nonnegative.

(a) We classify the difference of SAGE polynomials to nonnegative polynomials for symmetric
quadratic forms.

(b) We prove that already in a very restricted setting of quartic polynomials with two inte-
rior support points in the Newton polytope, the cone of symmetric SONC polynomials differs
from the cone of all symmetric polynomials with that support. See Theorem 4.8. Moreover, for
the underlying parametric class of quartic polynomials, we give a full characterization of the
SONC/SAGE bounds and the true minima.

(c) We give a detailed study of SONC certificates in the context of monomial symmetric
inequalities. On the one hand, we show that the normalized setup of such inequalities can be
well certified with SONC certificates. We study this phenomenon especially in the case of the
classical Muirhead inequality, which as we show can be seen as a SONC certificate. Based on this
observation we also give a slight generalization of this classical inequality. On the other hand, we
demonstrate a significant disparity between the capability of SONC and the potential of sums
of squares in certifying the nonnegativity of symmetric inequalities which are not normalized.

The paper is structured as follows. Section 2 collects background on the SAGE and the SONC
cone and symmetry techniques. Section 3. In Section 4, we compare the symmetric SAGE cone
and the symmetric SONC cone with the symmetric nonnegative cone.

2. Preliminaries

Throughout the article, we use the notation N = {0, 1, 2, 3, . . .}. For a finite subset T ⊂ Rn,
let RT be the set of |T |-tuples whose components are indexed by the set T . We denote by 〈·, ·〉
the standard Euclidean inner product in Rn.

2.1. The SAGE and the SONC cone. For a given non-empty finite set T ⊂ Rn, the SAGE
cone refers to signomials supported on T . Formally, the SAGE cone CSAGE(T ) is defined as

CSAGE(T ) :=
∑
β∈T

CAGE(T \ {β}, β),

where for A := T \ {β}

CAGE(A, β) :=
{
f =

∑
α∈A

cαe
〈α,x〉 + cβe

〈β,x〉 : cα > 0 for α ∈ A, cβ ∈ R, f > 0 on Rn
}

denotes the nonnegative signomial which may only have a negative coefficient in the term indexed
by β (see [7]). The elements in these cones are called SAGE signomials and AGE signomials,
respectively. If f ∈ CAGE(A, β) and A and β are clear from the context, we write in brief just f
is AGE. Similarly, but only for T ⊂ Nn, define CSONC(T ) as

CSONC(T ) :=
∑
β∈T

CAG(T \ {β}, β),
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where for A := T \ {β}

CAG(A, β) :=
{
f =

∑
α∈A

cαx
α + cβx

β : cα > 0 for α ∈ A, cβ ∈ R,

cγ = 0 for all γ ∈ A with γ 6∈ (2N)n, f > 0 on Rn
}

denotes the nonnegative polynomials which may only have a negative coefficient in the term
indexed by β. The elements in these cones are called SONC polynomials and AG polynomials,
where the acronym SONC comes from the circuit decompositions discussed further below [20]
and the equivalence of the definition given here was shown in [27, 38]. Note that CAG(A, β) refers
to polynomials, whereas CAGE(A, β) refers to signomials. The cones CSAGE(T ) and CSONC(T )
are closed convex cones in RT (see [22, Proposition 2.10]). Membership in the convex cones can
be decided in terms of relative entropy programming [27], see also [22] or [25].

2.2. Circuit decompositions. A simplicial circuit is a non-zero vector ν ∈ RT , whose positive
support (denoted by ν+) is affinely independent, whose components sum to zero and whose
unique negative support element β satisfies (

∑
α∈ν+ να)β =

∑
α∈ν+ ναα. A simplicial circuit

is normalized when the nonnegative components sum to 1, and hence the negative component
is −1. Let Λ(T ) denote the set of normalized simplicial circuits of T . In geometric terms, a
normalized circuit λ ∈ Λ(T ) can be interpreted as the barycentric coordinates of λ− = β in
terms of the vectors in λ+.

Murray, Chandrasekaran and Wierman [27] have shown the following circuit decomposition
theorem for the SAGE cone (see also Wang [38] for the variant regarding the SONC variant).

Proposition 2.1. The cone CSAGE(T ) decomposes as the finite Minkowski sum

(2.1) CSAGE(T ) =
∑

λ∈Λ(T )

CSAGE(T , λ) +
∑
α∈A

R+ · exp(〈α, x〉).

where CSAGE(T , λ) denotes the λ-witnessed cone, that is, with β := λ−,

CSAGE(T , λ) =

∑
α∈T

cα exp(〈α, x〉) :
∏
α∈λ+

(
cα
λα

)λα
> −cβ, cα > 0 for α ∈ T \ {β}

 .

Since the SONC setting refers to nonnegativity of polynomials on the whole space Rn, the
circuit concept has to be slightly adapted. Namely, in the definition of a circuit we have to add
the requirements that support vectors in λ+ and λ− have nonnegative integer coordinates and
that the vectors in λ+ can only have even coordinates. See [22] for an exact characterization of
the extreme rays of CSAGE(T ) and CSONC(T ) in terms of the circuits.

For disjoint sets ∅ 6= A ⊂ Rn and B ⊂ Rn, it is convenient to denote by

(2.2) CSAGE(A,B) :=
∑
β∈B

CAGE(A ∪ B \ {β}, β)

the signed SAGE cone, which allows negative coefficients only in a certain subset B of the support
A ∪ B (see, e.g., [21, 27]).

Finally, in the case where all the exponent vectors have nonnegative coordinates, the decom-
position in Proposition 2.1 can be refined with some further information on the possible positive
coefficients used in the decomposition for a given β. For α ∈ Rn, we introduce its support

supp(α) = {i ∈ {1, . . . , n} : αi 6= 0}.



SYMMETRIC SAGE AND SONC FORMS, EXACTNESS AND QUANTITATIVE GAPS 5

Then we have:

Proposition 2.2. Let f =
∑

α∈A cαe
αx − deβx where cα > 0 and d > 0. Assume that every

α ∈ A is a nonnegative vector and set A′ = {α ∈ A : supp(α) ⊂ supp(β)}. Then

f is AGE ⇔ f̃ =
∑
α∈A′

cαe
αx − deβx is AGE.

Proof. One direction is obvious. Suppose now that f is AGE, and let λ be a normalized simplicial
circuit appearing in the decomposition. Since∑

α∈λ+
λαα = β,

for i /∈ supp(β), we must have
∑

α∈λ+ λααi = 0, which forces αi = 0 because by assumption
αi > 0 for every α ∈ λ+. �

2.3. Optimizing over the SAGE and SONC cones. Since the SAGE cone is contained in
the cone of nonnegative signomials, relaxing to the SAGE cone gives an approximation of the
global infimum f∗ of a signomial f supported on T :

fSAGE = sup{λ ∈ R : f − λ ∈ CSAGE(T )}
satisfying fSAGE 6 f∗. The following statement is closely related to the strong duality statement
for the SAGE bound in [27, Proposition 2]:

Proposition 2.3. Let

f =
∑
α∈A

cα exp(〈α, x〉) +
∑
β∈B

cβ exp(〈β, x〉)

with cα > 0 for α ∈ A. Assume B ⊂ relint(conv(A ∪ {(0, . . . , 0)T })). Then fSAGE > −∞.

Proof. The finiteness of B and [27, Theorem 3] allow to assume |B| = 1. In the special case
β = (0, . . . , 0)T , consider f without its constant term f0 is a SAGE signomial and thus fSAGE >
f0 > −∞.

Hence, we may assume that β 6= (0, . . . , 0)T . Then, the ray with initial point (0, . . . , 0)T and
passing through β meets a facet of the convex hull of A at a point γ. We can express γ as

γ =
∑
α∈A′

ν ′αα,

where ν ′α > 0 for α ∈ A′,
∑

α∈A′ ν
′
α = 1, and A′ ⊂ A\{(0, . . . , 0)T }. In turn, since β 6= γ, we can

write
β =

∑
α∈A′∪{(0,...,0)}

ναα,

where να > 0, for α ∈ A′, ν(0,...,0) > 0 and
∑

α∈A′∪{(0,...,0)} να = 1. To conclude, it is enough to

verify that for λ small enough, the relative entropy conditions for the SAGE containment [7] in
the version of [25, Prop. 2.1] are satisfied by f − λ: the first condition follows from the previous
decomposition of β, while the third one is trivially satisfied when |B| = 1. For the second one,
we observe that the function

l(λ) =
∑
α∈A′

να ln
να
e · cα

+ ν(0,...,0) ln
ν(0,...,0)

e · (c(0,...,0) − λ)

tends to −∞ when λ→ −∞. Hence, there exists λ such that l(λ) < cβ. �
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The finiteness of fSAGE in Proposition 2.3 can be seen as an advantage with respect to the
sum of squares analogue fSOS. Indeed, the Motzkin polynomial f = x4 +y4 +x2 +y2−3x2y2 +1
satisfies fSOS = −∞ while fSAGE = f∗ = 0.

Remark 2.4. When β 6∈ conv(A ∪ {(0, . . . , 0)T }), the hyperplane separation theorem implies
inf f = −∞, forcing fSAGE = −∞. If β is on the boundary of conv(A ∪ {(0, . . . , 0)T }), then we
cannot conclude in general. For example, consider the function

f(x, y) = µ+ e2x + e2y − δex+y.

Then fSAGE = µ when δ 6 2, while fSAGE = −∞ when δ > 2.

In the same spirit, in the corresponding setting for polynomials, we can define fSONC as

fSONC = sup{λ ∈ R : f − λ ∈ CSONC(A)}.

2.4. Relations between SAGE and SONC. Since the two notions come from the arith-
metic mean/geometric mean inequality, SONC and SAGE forms are closely related, and most
of the statements for SAGE forms can be transferred to the SONC setting, following [27]: For a
polynomial f =

∑
α∈A cαx

α, with A ⊂ Nn, let

sig(f) := f(exp(y1), . . . , exp(yn)) =
∑
α∈A

cα exp(〈α, y〉)

be the the signomial associated with f . Studying sig(f) on Rn is equivalent to studying f on
the positive open orthant {x ∈ Rn : xi > 0, 1 6 i 6 n}. In general, for ω ∈ {±1}n, studying the
restriction of f to the open orthant {x ∈ Rn : ωixi > 0, 1 6 i 6 n} boils down to studying the
signomial sig(fω), where

fω(x) = f(ω1x1, . . . , ωnxn).

Finally, we define

f̃ =
∑

α∈A∩(2N)n

cαx
α −

∑
γ∈A\(2N)n

|cγ |xγ ,

and we call f orthant-dominated if there is some ω ∈ {±1}n such that fω = f̃ . In this case, f is

nonnegative on Rn if and only if f̃ is nonnegative on the positive orthant, namely if and only if
sig(f̃) is nonnegative on Rn. In general, we only have sig(f̃) 6 sig(fω) for every ω ∈ {±1}n.

According to [27], the polynomial f admits a SONC certificate if and only if the signomial

sig(f̃) admits a SAGE certificate. From an optimization point of view, this discussion can be
summed up in the following proposition:

Proposition 2.5. Let f(x) =
∑

α cαx
α be a polynomial. Then

fSONC = sig(f̃)SAGE 6 min
ω∈{−1,1}n

sig(fω)SAGE 6 f∗,

where the first inequality is an equality when f is orthant-dominated.

It follows immediately from the definition that CSAGE(T ) is a full-dimensional cone in the
vector space of signomials supported by T . In the SONC case, we need some additional con-
dition on the support. Using the SONC characterization in terms of the circuit number [20] in
connection with Carathéodory’s Theorem implies:

Proposition 2.6. Let T ⊂ Nn and T + = T ∩ (2N)n. Assume that for every β ∈ T \ T +,
β ∈ conv(T + ∪ {0}). Then CSONC(T ) is a full-dimensional cone in the space of polynomials
supported by T .
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2.5. The symmetric cones and circuit decompositions. Finally, we provide the symmetric
setup for the SAGE and the SONC cones. We summarize and revisit the results from [25], in
particular the symmetric circuit decomposition, see Theorem 2.8.

A linear action of a finite group G on Rn naturally induces an action on the dual space of
exponent vectors and an action on the signomials. With a small abuse of notation, for σ ∈ G,
we will denote respectively by σ(x) for a variable vector x ∈ Rn, σ(α) for an exponent vector
α ∈ Rn, and by σf for a signomial f the action of σ on these elements, even if these actions are
slightly different. For a detailed discussion of these actions, we refer to [25].

Define, for aG-invariant support T , the cone CGSAGE(T ) ofG-invariant signomials in CSAGE(T ).
Here, we write a G-invariant signomial f supported on T = A ∪ B in the form

(2.3) f =
∑
α∈A

cα exp(〈α, x〉) +
∑
β∈B

cβ exp(〈β, x〉)

with cα > 0 for α ∈ A and cβ < 0 for β ∈ B.
For a set S ⊂ Rn of exponent vectors, the orbit of S under G is

G · S = {σ(s) : s ∈ S, σ ∈ G},
simply denoted G ·α when S = {α}. Then, a subset Ŝ ⊂ S is a set of orbit representatives for S
if Ŝ is an inclusion-minimal set with (G · Ŝ) = S. Moreover, let Stabβ := {σ ∈ G : σ(β) = β}
denote the stabilizer of an exponent vector β. For a given G-invariant signomial, the following
symmetric decomposition was shown in [25].

Proposition 2.7. [25] Let f be a G-invariant signomial of the form (2.3) and B̂ be a set of

orbit representatives for B. Then f ∈ CGSAGE(A,B) if and only if for every β̂ ∈ B̂, there exists

an AGE signomial hβ̂ ∈ CSAGE(A, β̂) such that

(2.4) f =
∑
β̂∈B̂

∑
ρ∈G/ Stab(β̂)

ρhβ̂.

The functions hβ̂ can be chosen to be invariant under the action of Stab(β̂).

This result implies an additional structure in the decomposition of CGSAGE(T ) with respect
to Proposition 2.1. For a circuit λ with β = λ−, we then introduce CGSAGE(λ) the symmetrized
λ-witnessed cone

CGSAGE(λ) :=

∑
ρ∈G

ρg, g ∈ CAGE(λ+, λ−)

 .

In Proposition 2.7, every hβ̂ comes from the symmetrization under Stab β̂ of a sum of signo-

mials supported on circuits λ with λ− = β̂. Hence, we obtain the following symmetric version of
Proposition 2.1.

Theorem 2.8 (Symmetry-adapted circuit decomposition). Let T̂ be a set of orbit representatives
for the whole support set T . Then the G-symmetric cone CGSAGE(T ) decomposes as

CGSAGE(T ) =
∑
β̂∈T̂

∑
λ∈Λ(T )

λ−=β̂

CGSAGE(λ) +
∑
α̂∈T̂

R+

∑
ρ∈G/Stab(α̂)

ρ exp(〈α̂, x〉).

Even if these statements are valid for any linear group action, from now on, we restrict our
attention to the most natural case: the action of the symmetric group by permutation of variables.
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3. Zeroes and minimizers of symmetric SAGE and SONC forms

One of the goals of the paper is to provide information on the gap between the SAGE and
SONC bounds and the minimum of a symmetric signomial/polynomial, and in particular to find
situations in which there is no gap. In this case, f−f∗ is a SAGE respectively SONC form whose
infimum is 0. This encourages to understand the structure of the zeroes of symmetric forms of
this kind, that will lead to examples and counterexamples about the exactness of the bounds.

In general, the set of all zeros of any SAGE exponential is convex and when finite, this zero
set has cardinality at most one (see [14, Theorem 4.1]). Similarly, any SONC polynomial in
f ∈ R[x1, . . . , xn] with a finite number of zeroes has at most 2n real zeroes in (R\{0})n (see [11,
Corollary 4.1]), because it has at most one zero in each open orthant. The invariance under the
action of the symmetric group forces additional structure on the zeroes of SAGE signomials:

Lemma 3.1. Let f be a non-constant SAGE signomial in n > 2 variables that is invariant
under the action of Sn. If the zero set VR(f) of f is non-empty, then there are three possibilities:

(1) VR(f) is a singleton on the diagonal.
(2) VR(f) is the diagonal.
(3) VR(f) is an affine hyperplane of the form {x :

∑n
i=1 xi = τ} for some constant τ ∈ R.

In particular, if a symmetric SAGE signomial has a zero, then it has at least one zero on the
diagonal.

Proof. Recall that the set of zeroes of any SAGE signomial is an affine subspace, see ([14, The-
orem 3.1]). Clearly, the zero set of f is invariant under Sn. The only non-empty invariant affine
subspaces which are invariant under the symmetric group are: a single point on the diagonal,
the diagonal or an affine hyperplane {x :

∑n
i=1 xi = τ} for some τ ∈ R. �

Example 3.2. All three cases in Lemma 3.1 can occur. Let g(x) = ex + e−x− 2. The signomial
g is a univariate AGE form, whose only zero is x = 0. Then

∑n
i=1 g(xi − γ) vanishes only in (γ, . . . , γ), γ ∈ R,∑n
i,j=1 g(xi − xj) vanishes on the diagonal,

g((
∑n

i=1 xi)− τ) vanishes on {x :
∑n

i=1 xi = τ}, τ ∈ R,

and they are all symmetric SAGE forms.

Following Section 2.4, for ω ∈ {−1, 1}n, the zeros of p in the open orthant {x ∈ Rn : ωixi >
0, 1 6 i 6 n} correspond with the zeros of pω in the positive orthant. Denote by V>0(p) the zero
set of a polynomial p in the positive orthant.

Corollary 3.3. Let p be a non-constant SONC polynomial in n variables that is Sn-invariant.
For ω ∈ {±1}n:

(1) If pω 6= p̃, then V>0(pω) is empty.
(2) If pω = p̃, then V>0(pω) = V>0(p̃), which can be, if non-empty,

(a) a singleton on the diagonal in Rn>0,
(b) the diagonal in Rn>0,
(c) an hypersurface of the form {x :

∏n
i=1 xi = τ} intersected with Rn>0, for some

constant τ > 0.
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Proof. For ω ∈ {±1}n, write pω =
∑

α∈A cαx
α. If pω 6= p̃, then there is κ ∈ A \ (2N)n, such that

cκ > 0. Then we have, for every x ∈ Rn>0,

pω(x)− p̃(x) =
∑

γ∈A\(2N)n

(cγ + |cγ |)xγ > (cκ + |cκ|)xκ > 0.

Now recall that if p is SONC, then p̃ is a SONC as well, which implies that p̃(x) > 0, and
therefore pω(x) > 0, proving the first part of the statement. Since p is Sn-invariant, then so is p̃,
and the second part follows from Lemma 3.1, after the exponential change of variable. �

The previous results give an understanding of the zeroes of SONC polynomials in the open
orthants, but we might have zeroes on the coordinate hyperplanes. Any zero of p on a hyperplane
and which is not the origin itself can be viewed (by permuting the coordinates) as a zero in
(R 6=0)k×{0}n−k for some k ∈ {1, . . . , n−1}. The characterization of all zeroes in (R 6=0)k×{0}n−k
can be done by considering

q(x1, . . . , xk) = p(x1, . . . , xk, 0, . . . , 0)

and applying the SAGE version in Lemma 3.1.
Lemma 3.1 as well as Corollary 3.3 can be used as a criterion to show that certain signomials

cannot be SAGE signomials or certain polynomials cannot be SONC polynomials.

Example 3.4. Consider the nonnegative, symmetric polynomial p = (1− x2
1− x2

2)2 ∈ R[x1, x2].
Its zero set is {x ∈ R2 : 1 − x2

1 − x2
2 = 0}, which does not fall into any of the classes in

Corollary 3.3. Hence, p cannot be a SONC polynomial.

As a next question, it is natural to wonder whether in general, when the minimum is not zero,
the set of minimizers of a SAGE and SONC form still offers a strong structure. However, the
next example shows that there is no reason for the diagonal to contain minimizers of such forms:

Example 3.5. If f is an even, univariate SAGE signomials with several minimizers different
from the origin, like

f(x) = 4ex − 4e2x + e3x + (4e−x − 4e−2x + e−3x),

which has two minimizers outside of the origin. Then the function g(x, y) := f(x − y) is a
symmetric SAGE signomial with several minimizers and the minimizers of g are outside of the
diagonal.

Even if this example is degenerated in the sense that it has no isolated minimizers and that
the negative support points are contained in the boundary of the Newton polytope, Section 4.2
will provide non-degenerate examples.

4. Comparison of the symmetric cones with the symmetric nonnegative cone

We come to the main topic of the paper: in a symmetric situation, how far is the notion of
being SAGE or SONC from being nonnegative? This evaluation can be formulated with several
questions of slightly different flavors: Are there cases in which the two notions are equivalent?
When this is not the case, how far is the relaxation bound from the infimum of the function?
Can we evaluate precisely the difference between the two cones?

After providing a new case where SAGE and SONC methods give the infimum of a function,
we will focus on two cases in which Sums Of Squares coincide with nonnegative polynomials and
see that this is not the case for SONC polynomials, even in the symmetric case. Finally, we open
a discussion on the comparison between the symmetric SONC cone and the cone of nonnegative
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polynomials in the setup of symmetric inequalities and symmetric mean inequalities. This line
of questions had been studied, for example, in the context of Sums Of Squares in [6, 1]. In
the normalized setup, we study the classical Muirhead inequality and give a generalization and
show that in the non-normalized setup SONC certificates are not always able to recover a full
dimensional fraction of valid inequalities.

4.1. A case of exactness. As described in the introduction, there are several situations in
which SAGE and SONC methods provide the infimum of a function, like in the work of Wang [38]
(see also [20, 27]). In this section, we provide a new class of symmetric signomials, where the
two values coincide, precisely when there is a unique orbit in the support corresponding with
positive coefficients.

Theorem 4.1. Let α̂ ∈ Rn and β̂i ∈ Rn for 1 6 i 6 m be such that β̂i ∈ int(conv(G · α̂ ∪ {0}))
and α̂, β̂1, . . . , β̂m are in distinct orbits under G = Sn. Let A = G · α̂, Bi = G · β̂i and

(4.1) f(x) = c
∑
α∈A

exp(〈α, x〉)−
m∑
i=1

di
∑
β∈Bi

exp(〈β, x〉) + w

with c, di > 0 and w ∈ R. Then f∗ = fSAGE.

Remark 4.2. Even in the restriction to nonnegative integer exponents, Theorem 4.1 covers
situations which are not covered by Wang’s result [38, Theorem 4.1] (which is stated in the
language of polynomials). This happens as soon as there are hyperplanes H determined by
positive support points, for which both corresponding halfspaces contain interior points of the
Newton polytope of f . Moreover, this result generalizes [20, Corollary 7.5], where the outer orbit
had to be a simplex.

Proof. Without loss of generality, we may assume that c = 1. Set a :=
∑n

j=1 αj and for i ∈
{1, . . . , n} set bi :=

∑n
j=1 βj for any arbitrarily chosen α ∈ A and β ∈ Bi. We have a 6= 0,

since otherwise A is contained in the linear hyperplane with normal vector (1, . . . , 1)T and
thus int(conv(G · α̂∪{0})) would be empty. Further, we have b 6= 0, since otherwise β cannot be
contained in int(conv(G · α̂∪{0})). Let g(t) be the univariate signomial describing the restriction
of f to the diagonal,

(4.2) g(t) = f(t, . . . , t) =
∑
α∈A

eta −
m∑
i=1

di
∑
β∈Bi

etbi = |A|eta −
m∑
i=1

di|Bi|etbi + w.

By Descartes’ rule of signs for signomials [8] applied to the derivative g′, we see that g′ has a
unique root t0. Let fdiag = g(t0). We show that t0 is a global minimizer for f by showing that
f − fdiag is a SAGE signomial.

First, since β̂i ∈ int(conv(Gα̂ ∪ {0})), there exists λ
(i)
0 > 0, and λ

(i)
α > 0 for every α ∈ A

that satisfy λ
(i)
0 +

∑
α∈A λ

(i)
α = 1 and

∑
α∈A λ

(i)
α α = β̂i. We can even assume that these λ

(i)
α are

invariant under the action of Stab β̂i, by taking if necessary µ
(i)
α = 1

| Stab β̂i|

∑
σ∈Stab β̂i

λ
(i)
σ(α).

We observe that λ
(i)
0 = a−bi

a , because summing over the n coordinate equations gives

bi =

n∑
j=1

β̂i,j =

n∑
j=1

∑
α∈A

λ(i)
α αj =

∑
α∈A

λ(i)
α a = (1− λ(i)

0 )a.
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We introduce some notation. Let mi = a|A|
bi|Bi| = | Stab β̂i|

|Stab α̂|(1−λ(i)0 )
, and ui = di

mi
et0(bi−a), and set

{
ν

(i)
0 = diλ

(i)
0 and ν

(i)
α = diλ

(i)
α ,

c
(i)
0 = ν

(i)
0 et0bi and c

(i)
α = uimiλ

(i)
α .

Finally, consider for any 1 6 i 6 m,

hi = c
(i)
0 +

∑
α∈A

c(i)
α exp(〈α, x〉)− di exp(〈β̂i, x〉).

It is clear that ν
(i)
0 , ν

(i)
α , c

(i)
0 and c

(i)
α are all nonnegative. We claim that

f − fdiag =

m∑
i=1

∑
σ∈G/Stab β̂i

σhi

is a SAGE decomposition of f − fdiag. In order to prove it, we show that the relative entropy
characterization in [25, Theorem 4.1] applies. The equation (4.1) therein is trivially verified by

definition of ν(i). For equation (4.2), compute the relative entropy expression

D(ν(i), e · c(i)) = ν
(i)
0 ln

ν
(i)
0

e · c(i)
0

+
∑
α∈A

ν(i)
α ln

ν
(i)
α

e · c(i)
α

= diλ
(i)
0 ln

ν
(i)
0

eν
(i)
0 et0bi

+ di
∑
α∈A

λ(i)
α ln

diλ
(i)
α

euimiλ
(i)
α

= −diλ(i)
0 − diλ

(i)
0 bit0 − di

∑
α∈cA

λ(i)
α + di

∑
α∈A

λ(i)
α (a− bi)t0

= −diλ(i)
0 − diλ

(i)
0 bit0 − di(1− λ(i)

0 ) + di(1− λ(i)
0 )(a− bi)t0

= −di + di

(
(1− λ(i)

0 )(a− bi)− λ(i)
0 bi

)
t0

= −di.

It remains to show that (4.3) are satisfied. For i ∈ {1, . . . ,m}, we have

∑
σ∈Stab β̂i\G

c
(i)
σ(0) = |Bi|diλ(i)

0 et0bi = di|Bi|
a− bi
a

et0bi = di|Bi|et0bi −
di|Bi|biet0bi

a
.

Since t0 is a root of g′(t) = a|A|eta −
∑m

i=1 dibi|Bi|etbi , we obtain

(4.3)
m∑
i=1

∑
σ∈Stab β̂i\G

c
(i)
σ(0) =

m∑
i=1

di|Bi|et0bi − |A|et0a = w − g(t0) = w − fdiag.
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Now let α ∈ A. For i ∈ {1, . . . ,m}, we have∑
σ∈Stab β̂i\G

c
(i)
σ(α) =

1

|Stab β̂i|

∑
τ∈Stab β̂i

∑
σ∈Stab β̂i\G

c
(i)
τσ(α) =

1

|Stab β̂i|

∑
ρ∈Sn

c
(i)
ρ(α)

=
| Stab α̂|
|Stab β̂i|

∑
σ∈Sn/ Stab α̂

c
(i)
σ(α) =

| Stab α̂|
|Stab β̂i|

∑
α∈A

c(i)
α =

|Bi|
|A|

∑
α∈A

uimiλ
(i)
α

=
a

bi
ui
∑
α∈A

λ(i)
α =

a

bi
ui(1− λ(i)

0 ) = ui.

Here, we used the bijections Stab α̂ × G/ Stab α̂ → G and Stab β̂\G × Stab β̂ → G, combined

with the fact that (c
(i)
α )α is stable under the action of Stab β̂i. Hence, for α ∈ A,

(4.4)

m∑
i=1

∑
σ∈Stab β̂i\G

c
(i)
σ(α) =

m∑
i=1

ui =
1

a|A|et0a
m∑
i=1

dibi|Bi|et0bi = 1.

Equations (4.3) and (4.4) show (4.3), which completes the proof. �

Remark 4.3. In the proof of Theorem 4.1, we could define the same quantities even if β̂i was
on the boundary of the convex polytope conv(G · α̂ ∪ {0}), except the vertices. Moreover, the
Descartes rule of signs would still apply if |A| −

∑
i,bi=a

di|Bi| > 0. So, under some additional

conditions on the coefficients di for those β̂i ∈ conv(G · α̂), we can relax the condition of β̂i being
in the interior of the convex hull, and the theorem would still be true.

One can notice the connection between Theorem 4.1 and Section 3: we show that f∗ = fSAGE

by showing that there is a point x0 such that f − f(x0) is SAGE. This implies in particular that
x0 is a zero of a SAGE form, and Section 3 encourages to look for such a point on the diagonal.
The assumptions of the theorem lead to a unique candidate for x0, and we can show that it is
indeed the minimum of f . We can reformulate Theorem 4.1 in the following way: it gives a large
class of signomials whose nonnegativity can be detected via SAGE certificates.

Corollary 4.4. For a G-symmetric signomial f of the form (4.1), the following are equivalent:

(1) f is nonnegative.
(2) f ∈ CSAGE(A,B).

(3) w > −h(t0), where h(t) := |A|et
∑n
j=1 α̂j −

∑m
i=1 di|Bi|e

t
∑n
j=1(β̂i)j and t0 is the unique real

zero of the derivative h′(t).

Condition (3) in (4.4) can be viewed as a symmetric analog of the circuit number condition.

Proof. The equivalence of (1) and (2) follows immediately from Theorem 4.1. For the equivalence
to (3), observe that the function h coincides with the function g defined in (4.2) in the proof of
Theorem 4.1 up to the constant w. In the critical situation w := −h(t0), the signomial f has a
zero at the diagonal point (t0, . . . , t0)T . �

Example 4.5. Let

f = e4x1 + e4x2 + e4x3 − 5(ex1+x2 + ex1+x3 + ex2+x3)− 6ex1+x2+x3 + w

with some constant w. In Corollary 4.4, we have h(t) = 3e4t− 15 · e2t− 6 · e3t and t0 = ln 5
2 . The

minimum of f is taken at the diagonal point (ln 5
2 , ln

5
2 , ln

5
2)T . Hence, f is nonnegative if and

only if w > −(3e4t0 − 15 · e2t0 − 6 · e3t0), i.e., if and only if w > 1125/16.
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We cannot directly transfer Theorem 4.1 and Corollary 4.4 to an equality of cones, because of
the assumption on the sign of the coefficients di. Our result is true only when these coefficients
are negative, while both in CSAGE(T ) and CSAGE(A,B), coefficients corresponding with B might
be positive.

This discussion remains valid when going to the SONC situation. Theorem 4.1 and Corol-
lary 4.4 have natural analogues when α̂ is required to be in (2N)n and β̂i ∈ Nn, still with the
assumption that the coefficients corresponding with B are negative. However, this assumption
is very natural when we hope for an equivalence between nonnegativity and SONC, since a
polynomial f is SONC if and only if f̃ is SAGE, see the discussion in Section 2.4.

4.2. Study of the Hilbert cases. Following the previous discussion, if it is hard to provide
new general conditions on the support of a form to detect its nonnegativity through SAGE and
SONC certificates, additional conditions on the coefficients can be sufficient to get new criteria.

Here, we focus on two natural cases: we restrict our attention to polynomials, and look at the
cases where nonnegativity can be decided with Sums Of Squares certificates: quadratic forms,
and degree 4 polynomials in 2 variables. We show that in these two situations, even for symmetric
polynomials, nonnegativity cannot always be certified by SONC methods. We provide a precise
comparison between f∗ and fSONC depending on the coefficients of the polynomials.

We start by the case of symmetric quadratic forms. For studying the difference between f∗

and fSONC, it is enough to consider polynomials of the form

f(x) =
n∑
i=1

x2
i + a

n∑
i=1

xi + b
∑
i<j

xixj ,

where a, b ∈ R. We then have:

Proposition 4.6. Let f(x) =
∑n

i=1 x
2
i + a

∑n
i=1 xi + b

∑
i<j xixj with a, b ∈ R. Then

(1) If b > 2 or b < −2
n−1 , then f∗ = fSONC = −∞.

(2) If −2
n−1 6 b 6 0, then f∗ = fSONC = −a2n

4+2b(n−1) .

(3) If 0 6 b 6 2
n−1 , then f∗ = −a2n

4+2b(n−1) and fSONC = −a2n
4−2b(n−1) .

(4) If 2
n−1 < b 6 2, then f∗ = −a2n

4+2b(n−1) and fSONC = −∞.

Proof. We have the decomposition

f(x) =
2− b
2n

∑
i<j

(xi − xj)2 +
2 + b(n− 1)

2n

(
n∑
i=1

xi +
na

2 + b(n− 1)

)2

− a2n

4 + 2b(n− 1)
,

which directly shows that if b > 2, then f(t,−t, 0, . . . , 0) goes to −∞ when t grows, while if
b < −2

n−1 , then f(t, t, t, . . . , t) goes to −∞ when t grows, proving the first assertion. Moreover,

when −2
n−1 6 b 6 2, this decomposition shows that f∗ = −a2n

4+2b(n−1) , achieved for x = (t0, . . . , t0),

where t0 = −a
2+b(n−1) .

It remains to understand fSONC, by looking for the maximal λ such that f−λ admits a SONC
decomposition. Since f is symmetric, according to Theorem 2.7 and Proposition 2.2, we have a
SONC decomposition

f(x) =
n∑
i=1

(τx2
i + axi + δ) +

∑
i<j

(
σ(x2

i + x2
j ) + bxixj

)
+R(x),
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where σ, τ, δ are positive, R(x) can only contain squares of variables and a constant term, and
the inequalities

(4.5) τ + (n− 1)σ 6 1 and nδ 6 −λ

are satisfied. Moreover, the second term is a SONC if and only if 4σ2 > b2, that is σ > |b|2 . Then

(4.5) forces (n−1)|b|
2 6 1, so that if 2

n−1 < b 6 2, then f cannot be a SONC, proving the last case.

Finally, assume that (n−1)|b|
2 6 1. Since we want to maximize λ (which corresponds to mini-

mizing δ), the best decomposition will be given by the smallest σ, that is |b|2 . Then, the largest τ

we can have is 1− (n−1)|b|
2 . Furthermore, the first term is a SONC if and only if a2 6 4τδ, which

yields

δ >
a2

4− 2(n− 1)|b|
and the second part of (4.5) gives

fSONC =
na2

4− 2(n− 1)|b|
,

proving the second and the third statement. �

We initiate a similar study for symmetric polynomials of degree 4 in two variables, depending
on their support. The possible coefficients lie in the simplex whose vertices are (0, 0), (4, 0) and
(0, 4). In particular, there are only three possible interior points (1, 1), (1, 2), (2, 1). If the only
interior point is (1, 1), then we know that there is equivalence between being SONC and being
nonnegative [38]. The next case to consider is then when the support of our polynomial f contains
the orbit made of (1, 2) and (2, 1). If the positive support is only (0, 0), (4, 0), (0, 4), then we
can apply Theorem 4.1: we also have equivalence in this case. Then the most natural next case
is to add the diagonal point (2, 2) to the positive support. In other words, we are considering
polynomials of the form

f = (x4 + y4) + ax2y2 − b(x2y + xy2)

and we want to understand and compare, depending on the coefficients a and b, the minimum
f∗ of f and the value fSONC. As intuited by Example 3.5, these values do not always agree.

Proposition 4.7. Let f = (x4 + y4) + ax2y2 − b(x2y + xy2) with a, b ∈ R. Then:

(1) If a > 22, then f∗ = −(a2 + 14a+ 22 + 2(2a+ 5)δ)b4

64(a− 2)3(a+ 2)
, fSONC = − b4

8a2
, where δ =

√
5 + 2a.

(2) If 4 6 a 6 22, then f∗ = − 27b4

16(a+ 2)3
, fSONC = − b4

8a2
.

(3) If −2 < a 6 4, then f∗ = fSONC = 27b4

16(a+2)3
.

(4) If a 6 −2, then f∗ = fSONC = −∞, except for a = −2 and b = 0, where f∗ = fSONC = 0.

Note that for the two particular cases a = 4 and a = 22, the corresponding values agree.

Proof. To verify the claimed values for f∗, the idea is to decompose f − f∗ as a sum of squares,
and show that f − f∗ attains 0 in some point. We treat the case a > 22 first. In this case, since

−f∗ =
(a2 + 14a+ 22 + 2(2a+ 5)δ)b4

64(a− 2)3(a+ 2)
> 0,
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we can set µ =
√
−f∗. Defining the polynomials

P1 = µ

(
1 +

8(3δ − a− 7)

b2
(x+ y)2

)
,

P2 =

√
1 + a+ δ

4(a2 − 4)
(b(x+ y) + 2(δ − 1− a)xy) ,

P3 =

√
2(δ − 1)

a+ 2

(
x2 + y2 +

3− δ
2

xy

)
,

one can check the decomposition f − f∗ = P 2
1 +P 2

2 +P 2
3 , which vanishes in (x0, y0) and (y0, x0)

for the real values

x0 =
b

8(a− 2)

(
3 + δ +

√
2a2 − 36− 22a− (20 + 2a)δ

a+ 2

)
,

y0 =
b

8(a− 2)

(
3 + δ −

√
2a2 − 36− 22a− (20 + 2a)δ

a+ 2

)
.

For the case −2 < a < 22, by considering

g(x, y) = f(x, y)−

(√
22− a

24
(x2 − y2)

)2

we can write

g(x, y) =
a+ 2

24

(
(x4 + y4) + 22x2y2 − 24b

a+ 2
(x2y + xy2)

)
,

and from the previous case, we know that

g∗ = − 27b4

16(a+ 2)3
,

achieved for x0 = y0 = 3b
2(a+2) , so that we have decomposed f into a sum of 4 squares, which

attains a zero on the diagonal.

For the case a 6 −2,

f(x, x) = (2 + a)x4 − 2bx3.

When a < −2, f(x, x) goes to −∞ when x grows. When a = −2 and b 6= 0, f(x, x) tends to −∞
whenever x→ ±∞, depending on the sign of b. Thus f∗ = −∞ and therefore fSONC = −∞. In
the special case a = −2 and b = 0, f(x, y) = (x2 − y2)2, with f∗ = fSONC = 0.

Now we look at fSONC for the remaining cases. From Theorem 2.7, f−λ is a SONC polynomial
if and only if there exists 0 6 t 6 1 such that the polynomial

tx4 + (1− t)y4 +
a

2
x2y2 − bx2y − λ

2

is a SONC polynomial. And now, since we just have one interior point, this function is a SONC
polynomial if and only if it is nonnegative. Hence,

fSONC = max{λ : f − λ is SONC}

= 2 max{ρ : tx4 + (1− t)y4 +
a

2
x2y2 − bx2y − ρ > 0 for some 0 6 t 6 1}.
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Let jt(x, y) = tx4 + (1− t)y4 + a
2x

2y2− bx2y− 1
2ω, where ω is the value of fSONC claimed in the

statement. The strategy is to exhibit a 0 6 t0 6 1 and a decomposition into sum of squares and
circuit polynomials of jt0 , such that it attains a zero, and such that for all other 0 6 t 6 1, jt
has a negative value.

We start with the case 0 6 a 6 4, where ω = − 27b4

16(a+2)3
. Let x0 = 3b

2(a+2) . Then jt(x0, x0) =
1
2(f(x0, x0)− fSONC) = 0 for every 0 6 t 6 1. Let t0 = a+8

12 . Then we have

jt0(x, y) =

(
4− a

12
(x2 − y2)2

)
+

(
a+ 2

6
x4 + 2

a+ 2

6
x2y2 − bx2y +

27b4

32(a+ 2)3

)
.

The second summand a+2
6 x4 + 2a+2

6 x2y2− bx2y+ 27b4

32(a+2)3
is a circuit polynomial, whose circuit

number is precisely |b|, it is therefore nonnegative. Because a 6 4, it follows that jt0 is non-
negative, with a zero in (x0, x0). Now, let t ∈ [0, 1]\{t0}. We show that the value 0 achieved at
(x0, x0) is not a local minimum. The partial derivatives at that point are given by

∂jt
∂x

(x0, x0) = −∂jt
∂y

(x0, x0) = −9b3(a+ 8− 12t)

8(a+ 2)3
,

and one of them is strictly negative as soon as t 6= t0, proving that jt takes negative values.

Consider now the case a > 4, where ω = − b4

8a2
. Setting x1 = b

2
√
a
, y1 = b

a , we obtain

jt(x1, y1) = −(a− 4)(a+ 4)(1− t)
16a4

.

Consequently, jt(x1, y1) = 0 if and only if t = 1, and jt(x1, y1) < 0 when t < 1. Moreover, the
polynomial j1 is a circuit polynomial, since its circuit number is also | b |.

Finally, the case −2 < a < 0 is a direct application of Remark 4.3 and Proposition 2.5, since
f is orthant dominated. Thus fSONC = f∗. �

Proposition 4.6 already shows that there might be a large gap between fSONC and f∗: for b
growing towards 2

n−1 , the bound fSONC goes to −∞, while f∗ does not, and for 2
n−1 < b 6 2,

the SONC method does not provide any bound. This can happen because the negative term
corresponds to a point on the boundary of the Newton polytope. However, even with a negative
term corresponding with a point in the relative interior of the Newton polytope, Proposition 4.7
implies that the gap between fSONC and f∗ can be arbitrarily large:

Corollary 4.8. For f ∈ R[x, y], denote by ‖f‖ the supremum of the absolute values of the
coefficients of f . There exists a sequence of polynomials (fk(x, y))k of degree 4 such that

lim
k→+∞

f∗k − fSONC
k

‖fk‖
= −∞.

Proof. Take

fk(x, y) =
1

k

(
(x4 + y4) + 8x2y2 − k(x2y + xy2)

)
.

As soon as k > 8, we have ‖fk‖ = 1. Moreover, according to Proposition 4.7,

f∗ =
1

k

−27k4

16000
=
−27k3

16000
, fSONC =

1

k

−k4

512
=
−k3

512

and the difference −17k3

64000 goes to −∞ with k. �
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4.3. Monomial symmetric inequalities and mean inequalities. A key feature of sym-
metric polynomials is their stable behavior with respect to increasing the number of variables.
In the context of an increasing number of variables, the concept of nonnegativity in symmet-
ric polynomials can be linked to so called symmetric polynomial inequalities. For example, the
simple polynomial identity x2

1 + x2
2 + · · · + x2

n > 0 is clearly valid for all number of variables.
Related to such symmetric inequalities are inequalities of symmetric means, which arise when
the polynomial identity is normalized, to ensure it takes, for every n, the same value at the point
(1, . . . , 1). Classical examples of such inequalities are attributed to renowned mathematicians
like Muirhead, Maclaurin, and Newton (see [9]) and are still an active area of research [36].
Furthermore, the well-known inequality of the arithmetic and geometric mean also falls into this
category of symmetric inequalities. It is interesting to notice that Hurwitz [19] demonstrated
that this fundamental inequality could be established through representation in terms of sums
of squares. Recent works have further shed light on the potency of the sum of squares approach
as a tool for establishing or disproving such inequalities [17, 6, 1, 2, 10]. Thus, our work on
symmetric SAGE/SONC certificates naturally leads to the question whether these certificates
can be used to prove symmetric inequalities for arbitrary or a large number of variables. We will
focus here on the following setup with monomial symmetric functions, as these naturally fit into
the framework of controlled (sparse) support of SONC polynomials.

Definition 4.9. For α, β ∈ Nn we write α ∼ β if β is obtained from α through a permutation.
For a fixed α ∈ Nn0 we define the associated monomial symmetric polynomial by

M (n)
α :=

∑
β∼α

xβ11 · x
β2
2 · · ·x

βn
n

and the monomial mean by

m(n)
α :=

M
(n)
α

M
(n)
α (1, . . . , 1)

.

Remark 4.10. Noticing that the value of M
(n)
α (1, . . . , 1) equals the number of monomials in

M
(n)
α , which is given by n!

| Stab(α)| , we obtain directly the following identity for the normalized

monomial symmetric polynomial:

(4.6) m(n)
α =

1

n!

∑
σ∈Sn

σ(xα).

Let T ⊂ Nn be an Sn-invariant support, with T̂ a set of representatives. Then, clearly the
sets

{M (n)
λ : λ ∈ T̂ } and {m(n)

λ : λ ∈ T̂ }
are bases of the space V n(T ) of symmetric polynomials supported on T . By extending λ by a

0 one obtains a natural identification between T ⊂ Nn and its induced support T̃ ⊂ Nn+1, and
we can naturally define, for k > n, the space

V k(T ) = span({M (k)
λ : λ ∈ T̂ }) = span({m(k)

λ : λ ∈ T̂ }),

and we define, for k > n, the cones

Ck>0(T ) = {f ∈ V k(T ) : f > 0},
and CkSONC(T ) = {f ∈ V k(T ) : f is SONC}.
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Since for k > n, the resulting vector spaces are isomorphic, we can identify them with R|T̂ |. This
identification depends on the chosen basis and depending on this choice, we obtain a sequence of

cones in R|T̂ |, which we will denote by CM,k
>0 (T ) respectively CM,k

SONC(T ) for the non-normalized

monomial symmetric cones and Cm,k>0 (T ) respectively Cm,kSONC(T ) for their counterparts in the
normalized setup.

The choice of identification gives raise to different behaviors in the different setups: We start
our investigation in the normalized setup.

Definition 4.11. Let λ, µ be partitions of n. If

λ1 + · · ·+ λi > µ1 + · · ·+ µi for all i > 1

we say that λ dominates µ and write λ � µ.

With this definition, the following classical inequality due to Muirhead (see [16, Sec. 2.18,
Thm. 45] falls into the setup of normalized symmetric means introduced above.

Proposition 4.12 (Muirhead inequality). Let λ, µ ` d. If λ � µ, then for all n > len(µ),

m
(n)
λ (x)−m(n)

µ (x) > 0 for all x ∈ Rn>0.

Example 4.13. The Muirhead inequality yields that for all x ∈ Rn>0, we have m
(n)
3 > m

(n)
1,1,1.

We want to certify this inequality with SONC certificates. With the standard change of variable
xi = eyi , we can actually use SAGE certificates, by observing that for n = 3 we have f3 :=
1
3(e3y1 + e3y2 + e3y3) − ey1+y2+y3 is indeed a SAGE certificate. Moreover, by (4.6) we find that
fn =

∑
σ∈Sn σf3 is therefore a SAGE and in particular nonnegative. �

As for example the AM/GM inequality is a special case of Muirhead’s inequality, this classical
result is connected to SONC certificates. For example, the authors in [18] derive a version of
the symmetric decomposition shown in [25] using a version of this inequality. We now want to
show that Muirhead’s inequality can in fact be seen as a symmetric SONC certificate, i.e., that
indeed one can always certify this inequality with SONC certificates. To this end, we use SONC
techniques to prove the following version of the inequality. Notice that a SONC certificate is
defined for the whole of Rn whereas the Muirhead certificate is restricted to Rn>0. As seen above,
this difference can be consolidated by a change of variables leading to SAGE certificates. In order
to keep notation simple, we will just speak of SONC certificates on the open positive orthant
without transferring to SAGE.

SONC proof of Muirhead’s inequality. We can assume that λ � µ since in the case λ = µ nothing
is to show. By a theorem of Hardy, Littlewood and Polya ([3, Thm 2.1.1] and the discussion
thereafter) this is equivalent to saying that µ can be represented as a convex combination of the
permutations of λ, i.e., that there exists a vector (ζσ)σ∈Sn of nonnegative reals summing to 1
which satisfies

µ =
∑
σ∈Sn

ζσσλ.

Consider the orbits of λ and µ under Sn, denoted A = Sn · λ and B = Sn · µ. For each α ∈ A,
we define

cα = να =
∑
σ∈Sn
σλ=α

ζσ.
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Then consider

f =
∑
α∈A

cαx
α − xµ.

We claim that this polynomial is SONC on the open positive orthant. Indeed, we have
∑

α∈A ναα =
β and ∑

α∈A
να ln

να
e · cα

= −
∑
α∈A

να = −1.

Now, taking the sum
∑

σ∈Sn σf and considering the definition of the coefficients cα we find∑
σ∈Sn

σf =
∑
σ∈Sn

σxλ −
∑
σ∈Sn

σxµ,

and obtain that f is SONC and have thus shown that the Muirhead inequality can be expressed
as a SONC condition. �

Remark 4.14. Note that the condition in λ � µ is both necessary and sufficient. Indeed, if
λ 6� µ then µ is not in the convex hull of Sn · λ, so by the hyperplane separation theorem, we
can show that the function f in the proof has −∞ as infimum.

Actually, Theorem 4.1 provides a slight generalization of Muirhead’s inequality in two respects:
first it allows to consider exponents that are not partitions of the same integer, and second we
can add coefficients in the inequality. More precisely, we can prove inequalities of the form

cλm
(n)
λ − cµm

(n)
µ > δ on Rn>0

where the coefficients cλ, cµ and δ do not depend on n. As usual, up to rescaling, we may assume
that cλ = 1.

Definition 4.15. Let λ, µ be two integer partitions, not necessarily of the same integer. We say
that λ dominates µ, denoted by λ �∗ µ if µ is in the convex hull of {0} ∪ {σλ : σ ∈ Slen(µ)}.

Note that this dominance is a partial order on partitions of possibly different integers, that
generalizes the usual dominance order on partitions from Definition 4.11. More precisely, if we
denote |λ| =

∑
i λi and |µ| =

∑
i µi, then λ (resp µ) is a partition of |λ| (resp |µ|). The condition

λ �∗ µ then implies |λ| > |µ|, and when |λ| = |µ|, then λ �∗ µ precisely means λ � µ.
With this notion we obtain the following generalization of Muirhead inequality, which is also a
generalization of [18, Lemma 3.1]:

Theorem 4.16 (Generalized Muirhead inequality). Let λ, µ be two integer partitions such that
λ �∗ µ, and c > 0. Let

δ = −c
(
|λ| − |µ|
|λ|

)(
c
|µ|
|λ|

) |µ|
|λ|−|µ|

.

Then for any n > |λ|, the inequality

m
(n)
λ − c m

(n)
µ > δ on Rn>0

is valid for:

(1) any c > 0 if |λ| > |µ|. In this case, the inequality is an equality if and only if

x1 = · · · = xn =

(
c
|µ|
|λ|

) 1
|λ|−|µ|

.
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(2) any 1 > c > 0 if |λ| = |µ|. The inequality is then always strict except if c = 1. In this
case, equality occurs {

on Rn>0, if λ = µ,

on the diagonal, otherwise.

Remark 4.17. In the second situation where |λ| = |µ|, and therefore δ = 0, we recover a
version of [18, Lemma 3.1] with the only restriction c 6 1 on the coefficients, necessary for the
polynomial to be nonnegative.

Proof. We consider the polynomial

f = m
(n)
λ −m

(n)
µ =

| Stabn λ|
n!

∑
α∈A

xα − |Stabn µ|
n!

∑
α∈B

xβ.

In the first case, the condition on λ and µ allow us to apply Theorem 4.1 to the signomial g
associated to f to see that infRn>0

f = gSAGE = g∗. Then, Corollary 4.4 gives that g∗ is given by
the infimum on R>0 of the polynomial

h(t) = t|λ| − c t|µ|,

which occurs for t =
(
c |µ||λ|

) 1
|λ|−|µ|

with h(t) = δ. This provides the claimed inequality, and the

unique minimizer of f on the open positive orthant is (t, . . . , t).
The second situation corresponds with Remark 4.3: In this situation we have

h(t) = (1− c)t|λ|,

which provides the result in the second situation. The case c = 1 being the Muirhead inequality
proved above. �

We see that the property of symmetrization highlighted in (4.6) gives an identification between
the cones in n and n+ 1 variables, which yields an increasing sequence of cones and moreover,
this symmetrization is very favorable to SONC decompositions and can in fact be used quite
nicely. In contrast to this, in the non-normalized setup, there is a natural identification from

n + 1 to n variables by setting xn+1 = 0. This map sends M
(n+1)
α to M

(n)
α and maps both

Cn+1
>0 (T ) and Cn+1

SONC(T ) into Cn>0(T ) and CnSONC(T ), respectively. Therefore, in this context we

obtain a decreasing sequence of cones in R|T̂ |. In the setup of polynomials of fixed degrees it can
be shown (see for example [10, Theorem II.2.5]) that both the sequences of cones of symmetric
nonnegative forms as well as the cones of symmetric sums of squares approach a full dimensional
limit. The next example shows however, that this may fail for the SONC cone:

Example 4.18. Consider the set of representatives T = {(6), (3, 3)} and for n > 6, we take

M
(n)
(6) =

∑n
i=1 x

6
i and M

(n)
(3,3) =

∑
16i<j6n x

3
ix

3
j . Defining fn := αM

(n)
(6) + βM

(n)
(3,3) we would like to

know for which values of α and β the resulting family of symmetric polynomials fn is nonneg-
ative for all values of n, and for which values this nonnegativity can be established by SONC

certificates. Since
(∑k

i=1 x
3
i

)2
= Mn

(6) + 2Mn
(3,3), it is clear that for all n the set of α and

β such that fn > 0 is two-dimensional. However, by Propositions 2.2 and 2.7 we find that

αM
(n)
(6) +βM

(n)
(3,3) ∈ C

n
SONC(T ) if and only if there exists αn > 0 such that αn(x6

1 +x6
2)+βx3

1x
3
2 >

0 and
∑

16i<j6n αn 6 α. However, the first condition implies that αn >
β2

4 , and therefore, for
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n � 6, we have
∑

16i<j6n αn >
(
n
2

)β2

4 > α. This is, however, impossible and we can thus con-
clude that β = 0. So the set of all SONC certifiable symmetric inequalities in this setup is of
lower dimension. �

These investigations give the following theorem.

Theorem 4.19. Let T ⊂ Nn be Sn-invariant and T + = T ∩ (2N)n. Assume that for every

β ∈ T̂ \ T + we have β ∈ conv(T + ∪ {0}). Then:

(1) The sequence of cones Cm,kSONC(T ) is increasing and full-dimensional.

(2) The cones CM,k
SONC(T ) can be of strictly lower dimension than the corresponding cones

CM,k
>0 (T ).

Proof. The proof for (1) follows since we get the inclusions from (4.6) and the full-dimensionality
after symmetrization from Proposition 2.6, while (2) is established by Example 4.18. �

Theorem 4.19 gives some indications that in the setup of symmetric inequalities given by
monomial symmetric polynomials that are not normalized, the SONC approach may in general
not be able to certify nonnegativity for a large fraction of nonnegative forms if n is large. We leave

it as a future task to study the relation of the cones CM,k
SONC(T ) anc CM,k

>0 (T ) in Theorem 4.19(2)
in more detail.
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