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Abstra
t. We show that for n � 3 there are 3 � 2

n�1


omplex 
ommon tangent lines

to 2n � 2 general spheres in R

n

and that there is a 
hoi
e of spheres with all 
ommon

tangents real.

1. Introdu
tion

We study the following problem from (real) enumerative geometry.

Given: 2n � 2 (not ne
essarily disjoint) spheres with 
enters 


i

2 R

n

and radii r

i

,

1 � i � 2n� 2.

Question: In the 
ase of �nitely many 
ommon tangent lines, what is their maxi-

mum number?

The number of 2n�2 spheres guarantees that in the generi
 
ase there is indeed a �nite

number of 
ommon tangent lines. In parti
ular, for n = 2 the answer is 4 as two disjoint


ir
les have 4 
ommon tangents.

The reason for studying this question { whi
h, of 
ourse, is an appealing and funda-

mental geometri
 question in itself { 
ame from di�erent motivations. An essential task

in statisti
al analysis is to �nd the line that best �ts the data in the sense of minimizing

the maximal distan
e to the points (see, e.g., [3℄). More pre
isely, the de
ision variant of

this problem asks: Given m;n 2 N , r > 0, and a set of points y

1

; : : : ; y

m

2 R

n

, does there

exist a line l in R

n

su
h every point y

i

has Eu
lidean distan
e at most r from l. From

the 
omplexity-theoreti
al point of view, for �xed dimension the problem 
an be solved in

polynomial time via quanti�er elimination over the reals [5℄. However, 
urrently no pra
-

ti
al algorithms fo
using on exa
t 
omputation are known for n > 3 (for approximation

algorithms see [3℄).

From the algebrai
 perspe
tive, for dimension 3 it was shown in [1, 14℄ how to redu
e

the algorithmi
 problem to an algebrai
-geometri
 
ore problem: �nding the real lines

whi
h all have the same pres
ribed distan
e from 4 given points; or, equivalently, �nding

the real 
ommon tangent lines to 4 given unit spheres in R

3

. This problem in dimension

3 was treated in [9℄.

Proposition 1. Four unit spheres in R

3

have at most 12 
ommon tangent lines unless

their 
enters are 
ollinear. Furthermore, there exists a 
on�guration with 12 di�erent real

tangent lines.
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The same redu
tion idea to the algebrai
-geometri
 
ore problem also applies to arbi-

trary dimensions, in this 
ase leading to the general problem stated at the beginning.

From the purely algebrai
-geometri
 point of view, this tangent problem is interesting

for the following reason. In dimension 3, the formulation of the problem in terms of

Pl�u
ker 
oordinates gives 5 quadrati
 equations in proje
tive spa
e P

5

R

, whose 
ommon

zeroes in P

5

C

in
lude a 1-dimensional 
omponent at in�nity (a

ounting for the \missing"

2

5

� 12 = 20 solutions). Quite remarkably, as observed in [2℄, this ex
ess 
omponent


annot be resolved by a single blow-up. Experimental results in [16℄ for n = 4; 5, and

6, indi
ate that for higher dimensions the generi
 number of solutions di�ers from the

B�ezout number of the straightforward polynomial formulation even more. We dis
uss this

further in Se
tion 5.

Our main result 
an be stated as follows.

Theorem 2. Suppose n � 3.

(a) Let 


1

; : : : ; 


2n�2

2 R

n

aÆnely span R

n

, and let r

1

; : : : ; r

2n�2

> 0. If the 2n � 2

spheres with 
enters 


i

and radii r

i

have only a �nite number of 
omplex 
ommon

tangent lines, then that number is bounded by 3 � 2

n�1

.

(b) There exists a 
on�guration with 3 � 2

n�1

di�erent real 
ommon tangent lines.

Moreover, this 
on�guration 
an be a
hieved with unit spheres.

Thus the bound for real 
ommon tangents equals the (a priori greater) bound for


omplex 
ommon tangents, so this problem of 
ommon tangents to spheres is fully real

in the sense of enumerative real algebrai
 geometry [15, 17℄. We prove Statement (a) in

Se
tion 2 and Statement (b) in Se
tion 3, where we expli
itly des
ribe 
on�gurations with

3 � 2

n�1


ommon real tangents. Figure 1 shows a 
on�guration of 4 spheres in R

3

with 12


ommon tangents (as given in [9℄).

Figure 1. Spheres with with 12 real 
ommon tangents.

In Se
tion 4, we show that there are 
on�gurations of spheres with aÆnely dependent


enters having 3 � 2

n�1


omplex 
ommon tangents thus the upper bound of Theorem 2

also holds for spheres in this spe
ial position. Megyesi [11℄ has re
ently shown that all

3 � 2

n�1

may be real. We also show that if the 
enters of the spheres are the verti
es of
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the 
rosspolytope in R

n�1

, there will be at most 2

n


ommon tangents, and if the spheres

overlap but do not 
ontain the 
entroid of the 
rosspolytope, then all 2

n


ommon tangents

will be real. We 
onje
ture that when the 
enters are aÆnely dependent and all spheres

have the same radius, then there will be at most 2

n

real 
ommon tangents. Strong eviden
e

for this 
onje
ture is provided by Megyesi [10℄, who showed that there are at most 8 real


ommon tangents to 4 unit spheres in R

3

whose 
enters are 
oplanar but not 
ollinear.

In Se
tion 5, we put the tangent problem into the perspe
tive of 
ommon tangents to

general quadri
 hypersurfa
es. In parti
ular, we dis
uss the problem of 
ommon tangents

to 2n � 2 smooth quadri
s in proje
tive n-spa
e, and des
ribe the ex
ess 
omponent at

in�nity for this problem of spheres. In this setting, Theorem 2(a) implies that there will be

at most 3 � 2

n�1

isolated 
ommon tangents to 2n� 2 quadri
s in proje
tive n-spa
e, when

the quadri
s all 
ontain the same (smooth) quadri
 in a given hyperplane. In parti
ular,

the problem of the spheres 
an be seen as the 
ase when the 
ommon quadri
 is at in�nity

and 
ontains no real points. We 
on
lude with the question of how many of these 
ommon

tangents may be real when the shared quadri
 has real points. For n = 3, there are 5


ases to 
onsider, and for ea
h, all 12 lines 
an be real [16℄. Megyesi [11℄ has re
ently

shown that all 
ommon tangents may be real, for many 
ases of the shared quadri
.

2. Polynomial formulation with Affinely Independent Centers

For x; y 2 C

n

, let x � y :=

P

n

i=1

x

i

y

i

denote their Eu
lidean dot produ
t. We write x

2

for x � x.

We represent a line in C

n

by a point p 2 C

n

lying on the line and a dire
tion ve
tor

v 2 P

n�1

C

of that line. (For notational 
onvenien
e we typi
ally work with a representative

of the dire
tion ve
tor in C

n

n f0g.) If v

2

6= 0 we 
an make p unique by requiring that

p � v = 0.

By de�nition, a line ` = (p; v) is tangent to the sphere with 
enter 
 2 R

n

and radius

r if and only if it is tangent to the quadrati
 hypersurfa
e (x� 
)

2

= r

2

, i.e., if and only

if the quadrati
 equation (p+ tv � 
)

2

= r

2

has a solution of multipli
ity two. When ` is

real then this is equivalent to the metri
 property that ` has Eu
lidean distan
e r from 
.

`




r

For any line ` � C

n

, the algebrai
 tangent 
ondition on ` gives the equation

[v � (p� 
)℄

2

v

2

� (p� 
)

2

+ r

2

= 0 :

For v

2

6= 0 this is equivalent to

(2.1) v

2

p

2

� 2v

2

p � 
+ v

2




2

� [v � 
℄

2

� r

2

v

2

= 0 :

To prove part (a) of Theorem 2, we 
an 
hoose 


2n�2

to be the origin and set r := r

2n�2

.

Then the remaining 
enters span R

n

. Subtra
ting the equation for the sphere 
entered at
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the origin from the equations for the spheres 1; : : : ; 2n� 3 gives the system

(2.2)

p � v = 0 ;

p

2

= r

2

; and

2v

2

p � 


i

= v

2




2

i

� [v � 


i

℄

2

� v

2

(r

2

i

� r

2

) ; i = 1; 2; : : : ; 2n�3 :

Remark 3. Note that this system of equations does not have a solution with v

2

= 0.

Namely, if we had v

2

= 0 then v � 


i

= 0 for all i. Sin
e the 
enters span R

n

, this would

imply v = 0, 
ontradi
ting v 2 P

n�1

C

. This validates our assumption that v

2

6= 0 prior

to (2.1).

Sin
e n � 3, the bottom line of (2.2) 
ontains at least n equations. We 
an assume




1

; : : : ; 


n

are linearly independent. Then the matrix M := (


1

; : : : ; 


n

)

T

is invertible, and

we 
an solve the equations with indi
es 1; : : : ; n for p:

(2.3) p =

1

2v

2

M

�1

0

B

�

v

2




2

1

� [v � 


1

℄

2

� v

2

(r

2

1

� r

2

)

.

.

.

v

2




2

n

� [v � 


n

℄

2

� v

2

(r

2

n

� r

2

)

1

C

A

:

Now substitute this expression for p into the the �rst and se
ond equation of the sys-

tem (2.2), as well as into the equations for i = n + 1; : : : ; 2n � 3, and then 
lear the

denominators. This gives n � 1 homogeneous equations in the 
oordinate v, namely one


ubi
, one quarti
, and n � 3 quadri
s. By B�ezout's Theorem, this means that if the

system has only �nitely many solutions, then the number of solutions is bounded by

3 � 4 � 2

n�3

= 3 � 2

n�1

, for n � 3. For small values of n, these values are shown in Table 1.

The value 12 for n = 3 was 
omputed in [9℄, and the values for n = 4; 5; 6 were 
omputed

experimentally in [16℄.

n 3 4 5 6 7

maximum # tangents 12 24 48 96 192

Table 1. Maximum number of tangents in small dimensions.

We simplify the 
ubi
 equation obtained by substituting (2.3) into the equation p �v = 0

by expressing it in the basis 


1

; : : : ; 


n

. Let the representation of v in the basis 


1

; : : : ; 


n

be

v =

n

X

i=1

t

i




i

with homogeneous 
oordinates t

1

; : : : ; t

n

. Further let 


0

1

; : : : ; 


0

n

be a dual basis to 


1

; : : : ; 


n

;

i.e., let 


0

1

; : : : ; 


0

n

be de�ned by 


0

i

� 


j

= Æ

ij

, where Æ

ij

denotes Krone
ker's delta fun
tion.

By elementary linear algebra, we have t

i

= 


0

i

� v.

When expressing p in this dual basis, p =

P

p

0

i




0

i

, the third equation of (2.2) gives

p

0

i

=

1

v

2

�

v

2




2

i

� [v � 


i

℄

2

� v

2

(r

2

i

� r

2

)

�

:
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Substituting this representation of p into the equation

0 = 2v

2

(p � v) = 2v

2

 

n

X

i=1

p

0

i




0

i

!

� v = 2v

2

n

X

i=1

p

0

i

t

i

;

we obtain the 
ubi
 equation

n

X

i=1

(v

2




2

i

� [v � 


i

℄

2

� v

2

(r

2

i

� r

2

))t

i

= 0 :

In the 
ase that all radii are equal, expressing v

2

in terms of the t-variables yields

X

1�i 6=j�n

�

ij

t

2

i

t

j

+

X

1�i<j<k�n

2�

ijk

t

i

t

j

t

k

= 0 ;

where

�

ij

= (vol

2

(


i

; 


j

))

2

= det

�




i

� 


i




i

� 


j




j

� 


i




j

� 


j

�

;

�

ijk

= det

�




i

� 


j




i

� 


k




k

� 


j




k

� 


k

�

+ det

�




i

� 


k




i

� 


j




j

� 


k




j

� 


j

�

+det

�




j

� 


k




j

� 


i




i

� 


k




i

� 


i

�

;

and vol

2

(


i

; 


j

) denotes the oriented area of the parallelogram spanned by 


i

and 


j

. In

parti
ular, if 0


1

: : : 


n


onstitutes a regular simplex in R

n

, then we obtain the following


hara
terization.

Theorem 4. Let n � 3. If 0


1

: : : 


n

is a regular simplex and all spheres have the same

radius then the 
ubi
 equation expressed in the basis 


1

; : : : ; 


n

is equivalent to

(2.4)

X

1�i 6=j�n

t

2

i

t

j

+ 2

X

1�i<j<k�n

t

i

t

j

t

k

= 0:

For n = 3, this 
ubi
 equation fa
tors into three linear terms; for n � 4 it is irredu
ible.

Proof. Let e denote the edge length of the regular simplex. Then the form of the 
ubi


equation follows from 
omputing �

ij

= e

2

(1 � 1� 1=2 � 1=2) = 3e

2

=4, �

ijk

= 3e

2

(1=2 � 1�

1=2 � 1=2) = 3e

2

=4.

Obviously, for n = 3 the 
ubi
 polynomial fa
tors into (t

1

+t

2

)(t

1

+t

3

)(t

2

+t

3

) (
f. [13, 9℄).

For t � 4, assume that there exists a fa
torization of the form

 

t

1

+

n

X

i=2

�

i

t

i

! 

X

1�i�j�n

�

ij

t

i

t

j

!

with �

12

= 1. Sin
e (2.4) does not 
ontain a monomial t

3

i

, we have either �

i

= 0 or �

ii

= 0

for 1 � i � n.

If there were more than one vanishing 
oeÆ
ient �

i

, say �

i

= �

j

= 0, then the monomials

t

2

i

t

j


ould not be generated. So only two 
ases have to be investigated.
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Case 1 : �

i

6= 0 for 2 � i � n. Then �

ii

= 0 for 1 � i � n. Furthermore, �

ij

= 1

for i 6= j and �

i

= 1 for all i. Hen
e, the 
oeÆ
ient of the monomial t

1

t

2

t

3

is 3 whi
h


ontradi
ts (2.4).

Case 2 : There exists exa
tly one 
oeÆ
ient �

i

= 0, say, �

4

= 0. Then �

11

= �

22

= �

33

= 0,

�

44

= 1. Further, �

ij

= 1 for 1 � i < j � 3 and �

i

= 1 for 1 � i � 3. Hen
e, the 
oeÆ
ient

of the monomial t

1

t

2

t

3

is 3 whi
h is again a 
ontradi
tion. �

3. Real Lines

In the previous se
tion, we have given the upper bound of 3 � 2

n�1

for the number of


omplex solutions to the tangent problem. Now we 
omplement this result by providing a


lass of 
on�gurations leading to 3 � 2

n�1

real 
ommon tangents. Hen
e, the upper bound

is tight, and is a
hieved by real tangents.

There are no general te
hniques known to �nd and prove 
on�gurations with a maximum

number of real solutions in enumerative geometry problems like the one studied here. E.g.,

for the 
lassi
al enumerative geometry problem of 3264 
oni
s tangent to �ve given 
oni
s

(dating ba
k to Steiner in 1848 [19℄ and solved by Chasles in 1864 [4℄) the existen
e of

�ve real 
oni
s with all 3264 real was only re
ently established ([12℄ and [7, x7.2℄).

Our 
onstru
tion is based on the following geometri
 idea. For 4 spheres in R

3


entered

at the verti
es (1; 1; 1)

T

, (1;�1;�1)

T

, (�1; 1;�1)

T

, (�1;�1; 1)

T

of a regular tetrahedron,

there are [9℄

� 3 di�erent real tangents (of multipli
ity 4) for radius r =

p

2;

� 12 di�erent real tangents for

p

2 < r < 3=2;

� 6 di�erent real tangents (of multipli
ity 2) for r = 3=2.

Furthermore, based on the expli
it 
al
ulations in [9℄, it 
an be easily seen that the

symmetry group of the tetrahedron a
ts transitively on the tangents. By this symmetry

argument, all 12 tangents have the same distan
e d from the origin. In order to 
onstru
t

a 
on�guration of spheres with many 
ommon tangents, say, in R

4

, we embed the 
enters

via

(x

1

; x

2

; x

3

)

T

7�! (x

1

; x

2

; x

3

; 0)

T

into R

4

and pla
e additional spheres with radius r at (0; 0; 0; a)

T

and (0; 0; 0;�a)

T

for

some appropriate value of a. If a is 
hosen in su
h a way that the 
enters of the two

additional spheres have distan
e r from the above tangents, then, intuitively, all 
ommon

tangents to the six four-dimensional spheres are lo
ated in the hyperplane x

4

= 0 and

have multipli
ity 2 (be
ause of the two di�erent possibilities of signs when perturbing the

situation). By perturbing this 
on�guration slightly, the tangents are no longer lo
ated

in the hyperplane x

4

= 0, and therefore the double tangents are for
ed to split. The idea

also generalizes to dimension n � 5.
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Formally, suppose that the 2n � 2 spheres in R

n

all have the same radius, r, and the

�rst four have 
enters




1

:= ( 1; 1; 1; 0; : : : ; 0)

T

;




2

:= ( 1;�1;�1; 0; : : : ; 0)

T

;




3

:= (�1; 1;�1; 0; : : : ; 0)

T

; and




4

:= (�1;�1; 1; 0; : : : ; 0)

T

at the verti
es of a regular tetrahedron ins
ribed in the 3-
ube (�1;�1;�1; 0; : : : ; 0)

T

.

We pla
e the subsequent 
enters at the points �ae

j

for j = 4; 5; : : : ; n, where e

1

; : : : ; e

n

are the standard unit ve
tors in R

n

.

Theorem 5. Let n � 4, r > 0, a > 0, and 
 := a

2

(n� 1)=(a

2

+ n� 3). If

(3.1) (r

2

� 3) (3� 
) (a

2

� 2) (r

2

� 
)

�

(3� 
)

2

+ 4
 � 4r

2

�

6= 0 ;

then there are exa
tly 3 � 2

n�1

di�erent lines tangent to the 2n� 2 spheres. If

(3.2) a

2

> 2; 
 < 3; and 
 < r

2

< 
 +

1

4

(3� 
)

2

;

then all these 3 � 2

n�1

lines are real. Furthermore, this system of inequalities de�nes a

nonempty subset of the (a; r)-plane.

Given values of a and r satisfying (3.2), we may s
ale the 
enters and parameters by

1=r to obtain a 
on�guration with unit spheres, proving Theorem 2 (b).

Remark 6. The set of values of a and r whi
h give all solutions real is nonempty. To

show this, we 
al
ulate

(3.3) 
 =

a

2

(n� 1)

a

2

+ n� 3

= (n� 1)

�

1�

n� 3

a

2

+ n� 3

�

;

whi
h implies that 
 is an in
reasing fun
tion of a

2

. Similarly, set Æ := 
+(3�
)

2

=4, the

upper bound for r

2

. Then

d

d


Æ =

d

d


�


 + (3� 
)

2

4

�

p = 1 +


 � 3

2

;

and so Æ is an in
reasing fun
tion of 
 when 
 > 1. When a

2

= 2, we have 
 = 2, so Æ is

an in
reasing fun
tion of a in the region a

2

> 2. Sin
e when a =

p

2, we have Æ =

9

4

> 
,

the region de�ned by (3.2) is nonempty.

Moreover, we remark that the region is qualitatively di�erent in the 
ases n = 4 and

n � 5. For n = 4, 
 satis�es 
 < 3 for any a >

p

2. Hen
e, Æ < 3 and r <

p

3. Thus the

maximum value of 24 real lines may be obtained for arbitrarily large a. In parti
ular, we

may 
hoose the two spheres with 
enters �ae

4

disjoint from the �rst four spheres. Note

however, that the �rst four spheres do meet, as we have

p

2 < r <

p

3.

For n � 5, there is an upper bound to a. The upper and lower bounds for r

2


oin
ide

when 
 = 3, so we always have r

2

< 3. Solving 
 = 3 for a

2

, we obtain a

2

< 3(n�3)=(n�4).

When n = 5, Figure 2 displays the dis
riminant lo
us (de�ned by (3.1)) and shades the

region 
onsisting of values of a and r for whi
h all solutions are real.
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a

r

0

1

1 2 3

r =

p

3

r =

p

Æ

r =

p




a =

p

2


 = 3

(a =

p

6)

all solutions real

Figure 2. Dis
riminant lo
us and values of a; r giving all solutions real.

Proof of Theorem 5. We prove Theorem 5 by treating a and r as parameters and expli
itly

solving the resulting system of polynomials in the 
oordinates (p; v) 2 C

n

�P

n�1

C

for lines

in C

n

. This shows there are 3 � 2

n�1


omplex lines tangent to the given spheres, for the

values of the parameters (a; r) given in Theorem 5. The inequalities (3.2) des
ribe the

parameters for whi
h all solutions are real.

First 
onsider the equations (2.1) for the line to be tangent to the spheres with 
enters

�ae

j

and radius r:

v

2

p

2

� 2av

2

p

j

+ a

2

v

2

� a

2

v

2

j

� r

2

v

2

= 0;

v

2

p

2

+ 2av

2

p

j

+ a

2

v

2

� a

2

v

2

j

� r

2

v

2

= 0:

Taking their sum and di�eren
e, (and using av

2

6= 0), we obtain

p

j

= 0; 4 � j � n;(3.4)

a

2

v

2

j

= (p

2

+ a

2

� r

2

)v

2

; 4 � j � n:(3.5)

Subtra
ting the equations (2.1) for the 
enters 


1

; : : : ; 


4

pairwise gives

4v

2

(p

2

+ p

3

) = �4(v

1

v

3

+ v

1

v

2

)

(for indi
es 1,2) and analogous equations. Hen
e,

p

1

= �

v

2

v

3

v

2

; p

2

= �

v

1

v

3

v

2

; p

3

= �

v

1

v

2

v

2

:

Further, p � v = 0 implies v

1

v

2

v

3

= 0. Thus we have 3 symmetri
 
ases. We treat one,

assuming that v

1

= 0. Then we obtain

p

1

= �

v

2

v

3

v

2

; p

2

= p

3

= 0:
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Hen
e, the tangent equation (2.1) for the �rst sphere be
omes

v

2

p

2

1

� 2v

2

p

1

+ 3v

2

� (v

2

+ v

3

)

2

� r

2

v

2

= 0 :

Using 0 = v

2

p

1

+ v

2

v

3

, we obtain

(3.6) v

2

2

+ v

2

3

= v

2

(p

2

1

+ 3� r

2

) :

The 
ase j = 4 of (3.5) gives a

2

v

2

4

= v

2

(p

2

1

+ a

2

� r

2

), as p

2

= p

3

= 0. Combining these,

we obtain

v

2

2

+ v

2

3

= a

2

v

2

4

+ v

2

(3� a

2

) :

Using v

2

= v

2

2

+ v

2

3

+ (n� 3)v

2

4

yields

(a

2

� 2)(v

2

2

+ v

2

3

) = v

2

4

(3(a

2

+ n� 3)� a

2

(n� 1)):

We obtain

(3.7) (a

2

� 2)(v

2

2

+ v

2

3

) = v

2

4

(a

2

+ n� 3)(3� 
) ;

where 
 = a

2

(n� 1)=(a

2

+ n� 3).

Note that a

2

+ n � 3 > 0 as n > 3. If neither 3� 
 nor a

2

� 2 are zero, then we may

use this to 
ompute

(a

2

+ n� 3)(3� 
)v

2

= [(a

2

+ n� 3)(3� 
) + (n� 3)(a

2

� 2)℄(v

2

2

+ v

2

3

)

= (a

2

+ n� 3)(v

2

2

+ v

2

3

) ;

and so

(3.8) (3� 
)v

2

= v

2

2

+ v

2

3

:

Substituting (3.8) into (3.6) and dividing by v

2

gives

(3.9) p

2

1

= r

2

� 
 :

Combining this with v

2

p

1

+ v

2

v

3

= 0, we obtain

(3.10) p

1

(v

2

2

+ v

2

3

) + (3� 
)v

2

v

3

= 0 :

Summarizing, we have n linear equations

v

1

= p

2

= p

3

= p

4

= � � � = p

n

= 0 ;

and n� 4 simple quadrati
 equations

v

2

4

= v

2

5

= � � � = v

2

n

;

and the three more 
ompli
ated quadrati
 equations, (3.7), (3.9), and (3.10).

We now solve these last three equations. We solve (3.9) for p

1

, obtaining

p

1

= �

p

r

2

� 
 :

Then we solve (3.10) for v

2

and use (3.9), obtaining

v

2

= �

3� 
 �

p

(3� 
)

2

� 4(r

2

� 
)

2p

1

v

3

:
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Finally, (3.7) gives

v

4

p

a

2

+ n� 3 = �

s

a

2

� 2

3� 


(v

2

2

+ v

2

3

) :

Sin
e v

3

= 0 would imply v = 0 and hen
e 
ontradi
t v 2 P

n�1

C

, we see that v

3

6= 0. Thus

we 
an 
on
lude that when none of the following expressions

r

2

� 3 ; 3� 
 ; a

2

� 2 ; r

2

� 
 ; (3� 
)

2

+ 4
 � 4r

2

vanish, there are 8 = 2

3

di�erent solutions to the last 3 equations. For ea
h of these, the

simple quadrati
 equations give 2

n�4

solutions, so we see that the 
ase v

1

= 0 
ontributes

2

n�1

di�erent solutions, ea
h of them satisfying v

2

6= 0, v

3

6= 0. Sin
e there are three

symmetri
 
ases, we obtain 3 � 2

n�1

solutions in all, as 
laimed.

We 
omplete the proof of Theorem 5 and determine whi
h values of the parameters a

and r give all these lines real. We see that

(1) p

1

is real if r

2

� 
 > 0.

(2) Given that p

1

is real, v

2

=v

3

is real if (3� 
)

2

+ 4
 � 4r

2

> 0.

(3) Given this, v

4

=v

3

is real if (a

2

� 2)=(3� 
) > 0.

Suppose the three inequalities above are satis�ed. Then all solutions are real, and (3.8)

implies that 3 � 
 > 0, and so we also have a

2

� 2 > 0. This 
ompletes the proof of

Theorem 5. �

4. Affinely Dependent Centers

In our derivation of the B�ezout number 3 � 2

n�1

of 
ommon tangents for Theorem 2,

it was 
ru
ial that the 
enters of the spheres aÆnely spanned R

n

. Also, the 
onstru
tion

in Se
tion 3 of 
on�gurations with 3 � 2

n�1

real 
ommon tangents had 
enters aÆnely

spanning R

n

. When the 
enters are aÆnely dependent, we prove the following result.

Theorem 7. For n � 4, there are 3 � 2

n�1


omplex 
ommon tangent lines to 2n � 2

spheres whose 
enters are aÆnely dependent, but otherwise general. There is a 
hoi
e of

su
h spheres with 2

n

real 
ommon tangent lines.

Remark 8. Theorem 7 extends the results of [9, Se
tion 4℄, where it is shown that when

n = 3, there are 12 
omplex 
ommon tangents. Megyesi [10℄ has shown that there is a


on�guration with 12 real 
ommon tangents, but that the number of tangents is bounded

by 8 for the 
ase of unit spheres. For n � 4, we are unable either to �nd a 
on�guration of

spheres with aÆnely dependent 
enters and equal radii having more than 2

n

real 
ommon

tangents, or to show that the maximum number of real 
ommon tangents is less than

3 � 2

n�1

. Similar to the 
ase n = 3, it might be possible that the 
ase of unit spheres and

the 
ase of spheres with general radii might give di�erent maximum numbers.

Remark 9. Megyesi [11℄ re
ently showed that there are 2n � 2 spheres with aÆnely

dependent 
enters having all 3 � 2

n�1


ommon tangents real. Furthermore, all but one of

the spheres in his 
onstru
tion have equal radii.
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By Theorem 2, 3 �2

n�1

is the upper bound for the number of 
omplex 
ommon tangents

to spheres with aÆnely dependent 
enters. Indeed, if there were a 
on�guration with

more 
ommon tangents, then|sin
e the system is a 
omplete interse
tion|perturbing

the 
enters would give a 
on�guration with aÆnely independent 
enters and more 
ommon

tangents lines than allowed by Theorem 2.

By this dis
ussion, to prove Theorem 7 it suÆ
es to give 2n � 2 spheres with aÆnely

dependent 
enters having 3 �2

n�1


omplex 
ommon tangents and also su
h a 
on�guration

of 2n� 2 spheres with 2

n

real 
ommon tangents. For this, we use spheres with equal radii

whose 
enters are the verti
es of a perturbed 
rosspolytope in a hyperplane. We work

with the notation of Se
tions 2 and 3.

Let a 6= �1 and suppose we have spheres with equal radii r and 
enters at the points

ae

2

; �e

2

; and � e

j

; for 3 � j � n :

Then we have the equations

p � v = 0;(4.1)

f := v

2

(p

2

� 2ap

2

+ a

2

� r

2

)� a

2

v

2

2

= 0;(4.2)

g := v

2

(p

2

+ 2p

2

+ 1� r

2

)� v

2

2

= 0;(4.3)

v

2

(p

2

� 2p

j

+ 1� r

2

)� v

2

j

= 0; 3 � j � n :(4.4)

As in Se
tion 3, the sum and di�eren
e of the equations (4.4) for the spheres with


enters �e

j

give

p

j

= 0;

v

2

(p

2

+ 1� r

2

) = v

2

j

:

3 � j � n :

Thus we have the equations

(4.5)

p

3

= p

4

= � � � = p

n

= 0;

v

2

3

= v

2

4

= � � � = v

2

n

:

Similarly, we have

f + ag = (1 + a)

�

v

2

(p

2

� r

2

+ a)� av

2

2

�

= 0;

f � a

2

g = (1 + a)v

2

�

(1� a)(p

2

� r

2

) + 2ap

2

�

= 0:

As before, v

2

6= 0: If v

2

= 0, then (4.3) and (4.4) imply that v

2

= � � � = v

n

= 0. With

v

2

= 0, this implies that v

1

= 0 and hen
e v = 0, 
ontradi
ting v 2 P

n�1

C

. By (4.5), we

have p

2

= p

2

1

+p

2

2

, and so we obtain the system of equations in the variables p

1

; p

2

; v

1

; v

2

; v

3

:

(4.6)

p

1

v

1

+ p

2

v

2

= 0;

(1� a)(p

2

1

+ p

2

2

� r

2

) + 2ap

2

= 0;

v

2

(p

2

1

+ p

2

2

� r

2

+ a)� av

2

2

= 0;

v

2

(p

2

1

+ p

2

2

� r

2

+ 1)� v

2

3

= 0:

(For notational sanity, we do not yet make the substitution v

2

= v

2

1

+ v

2

2

+ (n� 2)v

2

3

.)
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We assume that a 6= 1 and will treat the 
ase a = 1 at the end of this se
tion. Using

the se
ond equation of (4.6) to 
an
el the terms v

2

(p

2

1

+ p

2

2

) from the third equation and

dividing the result by a, we 
an solve for p

2

:

p

2

=

(1� a)(v

2

� v

2

2

)

2v

2

:

If we substitute this into the �rst equation of (4.6), we may solve for p

1

:

p

1

= �

(1� a)(v

2

� v

2

2

)v

2

2v

2

v

1

:

Substitute these into the se
ond equation of (4.6), 
lear the denominators (4v

2

1

v

4

), and

remove the 
ommon fa
tor (1� a) to obtain the sexti


(4.7) (1� a)

2

(v

2

1

+ v

2

2

)(v

2

� v

2

2

)

2

� 4r

2

v

2

1

v

4

+ 4av

2

1

v

2

(v

2

� v

2

2

) = 0 :

Subtra
ting the third equation of (4.6) from the fourth equation and re
alling that v

2

=

v

2

1

+ v

2

2

+ (n� 2)v

2

3

, we obtain the quadrati
 equation

(4.8) (1� a)v

2

1

+ v

2

2

+ [(n� 3)� a(n� 2)℄ v

2

3

= 0 :

Consider the system 
onsisting of the two equations (4.7) and (4.8) in the homogeneous


oordinates v

1

; v

2

; v

3

. Any solution to this system gives a solution to the system (4.6),

and thus gives 2

n�3

solutions to the original system (4.1)|(4.4).

These last two equations (4.7) and (4.8) are polynomials in the squares of the variables

v

2

1

; v

2

2

; v

2

3

. If we substitute � = v

2

1

; � = v

2

2

, and 
 = v

2

3

, then we have a 
ubi
 and a

linear equation, and any solution �; �; 
 to these with nonvanishing 
oordinates gives 4

solutions to the system (4.7) and (4.8): (v

1

; v

2

; v

3

)

T

:= (�

1=2

;��

1=2

;�


1=2

)

T

, as v

1

; v

2

; v

3

are homogeneous 
oordinates.

Solving the linear equation in �; �; 
 for � and substituting into the 
ubi
 equation

gives a homogeneous 
ubi
 in � and 
 whose 
oeÆ
ients are polynomials in a; n; r

y

. The

dis
riminant of this 
ubi
 is a polynomial with integral 
oeÆ
ients of degree 16 in the

variables a; n; r having 116 terms. Using a 
omputer algebra system, it 
an be veri�ed

that this dis
riminant is irredu
ible over the rational numbers. Thus, for any �xed integer

n � 3, the dis
riminant is a nonzero polynomial in a; r. This implies that the 
ubi
 has 3

solutions for general a; r and any integer n. Sin
e the 
oeÆ
ients of this 
ubi
 similarly

are nonzero polynomials for any n, the solutions �; �; 
 will be nonzero for general a; r

and any n. We 
on
lude:

For any integer n � 3 and general a; r, there will be 3 � 2

n�1


omplex


ommon tangents to spheres of radius r with 
enters

ae

2

; �e

2

; and � e

j

; for 3 � j � n :

y

Maple V.5 
ode verifying this and other expli
it 
al
ulations presented in this manus
ript is available

at www.math.umass.edu/~sottile/pages/spheres.
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We return to the 
ase when a = 1, i.e., the 
enters are the verti
es of the 
rosspolytope

�e

j

for j = 2; : : : ; n. Then our equations (4.5) and (4.6) be
ome

(4.9)

p

2

= p

3

= � � � = p

n

= 0;

v

2

2

= v

2

3

= � � � = v

2

n

;

p

1

v

1

= 0;

v

2

(p

2

1

� r

2

+ 1)� v

2

2

= 0:

As before, v

2

= v

2

1

+ (n� 1)v

2

2

. We solve the last two equations. Any solution they have

(in C

1

� P

1

C

) gives rise to 2

n�2

solutions, by the se
ond list of equations v

2

3

= � � � = v

2

n

.

By the penultimate equation p

1

v

1

= 0, one of p

1

or v

1

vanishes. If v

1

= 0, then the last

equation be
omes

(n� 1)v

2

2

(p

2

1

� r

2

+ 1) = v

2

2

:

Sin
e v

2

= 0 implies v

2

= 0, we have v

2

6= 0 and so we may divide by v

2

2

and solve for p

1

to obtain

p

1

= �

r

r

2

� 1 +

1

n� 1

:

If instead p

1

= 0, then we solve the last equation to obtain

v

1

v

2

= �

r

1

1� r

2

+ 1� n :

Thus for general r, there will be 2

n


ommon tangents to the spheres with radius r and


enters �e

j

for j = 2; : : : ; n. We investigate when these are real.

We will have p

1

real when r

2

> 1 � 1=(n � 1). Similarly, v

1

=v

2

will be real when

1=(1� r

2

) > n� 1. In parti
ular 1� r

2

> 0 so 1 > r

2

. Using this we get

1� r

2

<

1

n� 1

so that r

2

> 1�

1

n� 1

;

whi
h we previously obtained.

We 
on
lude that there will be 2

n

real 
ommon tangents to the spheres with 
enters

�e

j

for j = 2; : : : ; n and radius r when

r

1�

1

n� 1

< r < 1 :

This 
on
ludes the proof of Theorem 7.

5. Lines Tangent to Quadri
s

Suppose that in our original question we ask for 
ommon tangents to ellipsoids, or to

more general quadri
 hypersurfa
es. Sin
e all smooth quadri
 hypersurfa
es are proje
-

tively equivalent, a natural setting for this question is the following:

\How many 
ommon tangents are there to 2n � 2 general quadri
 hypersurfa
es in

(
omplex) proje
tive spa
e P

n

C

?"
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Theorem 10. There are at most

2

2n�2

�

1

n

�

2n� 2

n� 1

�

isolated 
ommon tangent lines to 2n� 2 quadri
 hypersurfa
es in P

n

C

.

Proof. The spa
e of lines in P

n

C

is the Grassmannian of 2-planes in C

n+1

. The Pl�u
ker

embedding [8℄ realizes this as a proje
tive subvariety of P

(

n+1

2

)

�1

C

of degree

1

n

�

2n� 2

n� 1

�

:

The theorem follows from the re�ned B�ezout theorem [6, x12.3℄ and from the fa
t that the


ondition for a line to be tangent to a quadri
 hypersurfa
e is a homogeneous quadrati


equation in the Pl�u
ker 
oordinates for lines [16, x5.4℄. �

In Table 5, we 
ompare the upper bound of Theorem 10 for the number of lines tangent

to 2n�2 quadri
s to the number of lines tangent to 2n�2 spheres of Theorem 2, for small

values of n. The bound of 32 tangent lines to 4 quadri
s in P

3

C

is sharp, even under the

n 3 4 5 6 7

# for spheres 12 24 48 96 192

# for quadri
s 32 320 3580 43008 540672

Table 2. Maximum number of tangents in small dimensions.

restri
tion to real quadri
s and real tangents [18℄. In a 
omputer 
al
ulation, we found

320 lines in P

4

C

tangent to 6 general quadri
s, thus the upper bound of Theorem 10 is

sharp also for n = 4, and indi
ating that it is likely sharp for n > 4. The question arises:

what is the sour
e of the huge dis
repan
y between the se
ond and third rows of Table 5?

Consider a sphere in aÆne n-spa
e

(x

1

� 


1

)

2

+ (x

2

� 


2

)

2

+ � � �+ (x

n

� 


n

)

2

= r

2

:

Homogenizing this with respe
t to the new variable x

0

, we obtain

(x

1

� 


1

x

0

)

2

+ (x

2

� 


2

x

0

)

2

+ � � �+ (x

n

� 


n

x

0

)

2

= r

2

x

2

0

:

If we restri
t this sphere to the hyperplane at in�nity, setting x

0

= 0, we obtain

(5.1) x

2

1

+ x

2

2

+ � � �+ x

2

n

= 0 ;

the equation for an imaginary quadri
 at in�nity. We invite the reader to 
he
k that every

line at in�nity tangent to this quadri
 is tangent to the original sphere.

Thus the equations for lines in P

n

C

tangent to 2n� 2 spheres de�ne the 3 � 2

n�1

lines we


omputed in Theorem 2, as well as this ex
ess 
omponent of lines at in�nity tangent to

the imaginary quadri
 (5.1). Thus this ex
ess 
omponent 
ontributes some portion of the

B�ezout number of Theorem 10 to the total number of lines. Indeed, when n = 3, AluÆ

and Fulton [2℄ have given a 
areful argument that this ex
ess 
omponent 
ontributes 20,
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whi
h implies there are 32�20 = 12 isolated 
ommon tangent lines to 4 spheres in 3-spa
e,

re
overing the result of [9℄.

The geometry of that 
al
ulation is quite interesting. Given a system of equations on

a spa
e (say the Grassmannian) whose set of zeroes has a positive dimensional ex
ess


omponent, one method to 
ompute the number of isolated solutions is to �rst modify

the underlying spa
e by blowing up the ex
ess 
omponent and then 
ompute the number

of solutions on this new spa
e. In many 
ases, the equations on this new spa
e have

only isolated solutions. However, for this problem of lines tangent to spheres, the equa-

tions on the blown up spa
e will still have an ex
ess interse
tion and a further blow-up

is required. This problem of lines tangent to 4 spheres in proje
tive 3-spa
e is by far

the simplest enumerative geometri
 problem with an ex
ess 
omponent of zeroes whi
h

requires two blow-ups (te
hni
ally speaking, blow-ups along smooth 
enters) to resolve

the ex
ess zeroes.

It would be interesting to understand the geometry also when n > 3. For example, how

many blow-ups are needed to resolve the ex
ess 
omponent?

Sin
e all smooth quadri
s are proje
tively equivalent, Theorem 2 has the following

impli
ation for this problem of 
ommon tangents to proje
tive quadri
s.

Theorem 11. Given 2n� 2 quadri
s in P

n

C

whose interse
tion with a �xed hyperplane is

a given smooth quadri
 Q, but are otherwise general, there will be at most 3 � 2

n�1

isolated

lines in P

n

C

tangent to ea
h quadri
.

When the quadri
s are all real, we ask: how many of these 3 � 2

n�1


ommon isolated

tangents 
an be real? This question is only partially answered by Theorem 2. The point

is that proje
tive real quadri
s are 
lassi�ed up to real proje
tive transformations by the

absolute value of the signature of the quadrati
 forms on R

n+1

de�ning them. Theorem 2

implies that all lines 
an be real when the shared quadri
 Q has no real points (signature

is �n). In [16℄, it is shown that when n = 3, ea
h of the �ve additional 
ases 
on
erning

nonempty quadri
s 
an have all 12 lines real.

Re
ently, Megyesi [11℄ has largely answered this question. Spe
i�
ally, he showed that,

for any nonzero real numbers �

3

; : : : ; �

n

, there are 2n� 2 quadri
s of the form

(x

1

� 


1

)

2

+ (x

2

� 


2

)

2

+

n

X

j=3

�

j

(x

j

� 


j

)

2

= R

having all 3 � 2

n�1

tangents real. These all share the same quadri
 at in�nity

x

2

1

+ x

2

2

+ �

3

x

2

3

+ � � �+ �

n

x

2

n

= 0 ;

and thus the upper bound of Theorem 11 is attained, when the shared quadri
 is this

quadri
.
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