
LINES TANGENT TO 2n� 2 SPHERES IN R

n

FRANK SOTTILE AND THORSTEN THEOBALD

Abstrat. We show that for n � 3 there are 3 � 2

n�1

omplex ommon tangent lines

to 2n � 2 general spheres in R

n

and that there is a hoie of spheres with all ommon

tangents real.

1. Introdution

We study the following problem from (real) enumerative geometry.

Given: 2n � 2 (not neessarily disjoint) spheres with enters 

i

2 R

n

and radii r

i

,

1 � i � 2n� 2.

Question: In the ase of �nitely many ommon tangent lines, what is their maxi-

mum number?

The number of 2n�2 spheres guarantees that in the generi ase there is indeed a �nite

number of ommon tangent lines. In partiular, for n = 2 the answer is 4 as two disjoint

irles have 4 ommon tangents.

The reason for studying this question { whih, of ourse, is an appealing and funda-

mental geometri question in itself { ame from di�erent motivations. An essential task

in statistial analysis is to �nd the line that best �ts the data in the sense of minimizing

the maximal distane to the points (see, e.g., [3℄). More preisely, the deision variant of

this problem asks: Given m;n 2 N , r > 0, and a set of points y

1

; : : : ; y

m

2 R

n

, does there

exist a line l in R

n

suh every point y

i

has Eulidean distane at most r from l. From

the omplexity-theoretial point of view, for �xed dimension the problem an be solved in

polynomial time via quanti�er elimination over the reals [5℄. However, urrently no pra-

tial algorithms fousing on exat omputation are known for n > 3 (for approximation

algorithms see [3℄).

From the algebrai perspetive, for dimension 3 it was shown in [1, 14℄ how to redue

the algorithmi problem to an algebrai-geometri ore problem: �nding the real lines

whih all have the same presribed distane from 4 given points; or, equivalently, �nding

the real ommon tangent lines to 4 given unit spheres in R

3

. This problem in dimension

3 was treated in [9℄.

Proposition 1. Four unit spheres in R

3

have at most 12 ommon tangent lines unless

their enters are ollinear. Furthermore, there exists a on�guration with 12 di�erent real

tangent lines.
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The same redution idea to the algebrai-geometri ore problem also applies to arbi-

trary dimensions, in this ase leading to the general problem stated at the beginning.

From the purely algebrai-geometri point of view, this tangent problem is interesting

for the following reason. In dimension 3, the formulation of the problem in terms of

Pl�uker oordinates gives 5 quadrati equations in projetive spae P

5

R

, whose ommon

zeroes in P

5

C

inlude a 1-dimensional omponent at in�nity (aounting for the \missing"

2

5

� 12 = 20 solutions). Quite remarkably, as observed in [2℄, this exess omponent

annot be resolved by a single blow-up. Experimental results in [16℄ for n = 4; 5, and

6, indiate that for higher dimensions the generi number of solutions di�ers from the

B�ezout number of the straightforward polynomial formulation even more. We disuss this

further in Setion 5.

Our main result an be stated as follows.

Theorem 2. Suppose n � 3.

(a) Let 

1

; : : : ; 

2n�2

2 R

n

aÆnely span R

n

, and let r

1

; : : : ; r

2n�2

> 0. If the 2n � 2

spheres with enters 

i

and radii r

i

have only a �nite number of omplex ommon

tangent lines, then that number is bounded by 3 � 2

n�1

.

(b) There exists a on�guration with 3 � 2

n�1

di�erent real ommon tangent lines.

Moreover, this on�guration an be ahieved with unit spheres.

Thus the bound for real ommon tangents equals the (a priori greater) bound for

omplex ommon tangents, so this problem of ommon tangents to spheres is fully real

in the sense of enumerative real algebrai geometry [15, 17℄. We prove Statement (a) in

Setion 2 and Statement (b) in Setion 3, where we expliitly desribe on�gurations with

3 � 2

n�1

ommon real tangents. Figure 1 shows a on�guration of 4 spheres in R

3

with 12

ommon tangents (as given in [9℄).

Figure 1. Spheres with with 12 real ommon tangents.

In Setion 4, we show that there are on�gurations of spheres with aÆnely dependent

enters having 3 � 2

n�1

omplex ommon tangents thus the upper bound of Theorem 2

also holds for spheres in this speial position. Megyesi [11℄ has reently shown that all

3 � 2

n�1

may be real. We also show that if the enters of the spheres are the verties of
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3

the rosspolytope in R

n�1

, there will be at most 2

n

ommon tangents, and if the spheres

overlap but do not ontain the entroid of the rosspolytope, then all 2

n

ommon tangents

will be real. We onjeture that when the enters are aÆnely dependent and all spheres

have the same radius, then there will be at most 2

n

real ommon tangents. Strong evidene

for this onjeture is provided by Megyesi [10℄, who showed that there are at most 8 real

ommon tangents to 4 unit spheres in R

3

whose enters are oplanar but not ollinear.

In Setion 5, we put the tangent problem into the perspetive of ommon tangents to

general quadri hypersurfaes. In partiular, we disuss the problem of ommon tangents

to 2n � 2 smooth quadris in projetive n-spae, and desribe the exess omponent at

in�nity for this problem of spheres. In this setting, Theorem 2(a) implies that there will be

at most 3 � 2

n�1

isolated ommon tangents to 2n� 2 quadris in projetive n-spae, when

the quadris all ontain the same (smooth) quadri in a given hyperplane. In partiular,

the problem of the spheres an be seen as the ase when the ommon quadri is at in�nity

and ontains no real points. We onlude with the question of how many of these ommon

tangents may be real when the shared quadri has real points. For n = 3, there are 5

ases to onsider, and for eah, all 12 lines an be real [16℄. Megyesi [11℄ has reently

shown that all ommon tangents may be real, for many ases of the shared quadri.

2. Polynomial formulation with Affinely Independent Centers

For x; y 2 C

n

, let x � y :=

P

n

i=1

x

i

y

i

denote their Eulidean dot produt. We write x

2

for x � x.

We represent a line in C

n

by a point p 2 C

n

lying on the line and a diretion vetor

v 2 P

n�1

C

of that line. (For notational onveniene we typially work with a representative

of the diretion vetor in C

n

n f0g.) If v

2

6= 0 we an make p unique by requiring that

p � v = 0.

By de�nition, a line ` = (p; v) is tangent to the sphere with enter  2 R

n

and radius

r if and only if it is tangent to the quadrati hypersurfae (x� )

2

= r

2

, i.e., if and only

if the quadrati equation (p+ tv � )

2

= r

2

has a solution of multipliity two. When ` is

real then this is equivalent to the metri property that ` has Eulidean distane r from .

`



r

For any line ` � C

n

, the algebrai tangent ondition on ` gives the equation

[v � (p� )℄

2

v

2

� (p� )

2

+ r

2

= 0 :

For v

2

6= 0 this is equivalent to

(2.1) v

2

p

2

� 2v

2

p � + v

2



2

� [v � ℄

2

� r

2

v

2

= 0 :

To prove part (a) of Theorem 2, we an hoose 

2n�2

to be the origin and set r := r

2n�2

.

Then the remaining enters span R

n

. Subtrating the equation for the sphere entered at
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the origin from the equations for the spheres 1; : : : ; 2n� 3 gives the system

(2.2)

p � v = 0 ;

p

2

= r

2

; and

2v

2

p � 

i

= v

2



2

i

� [v � 

i

℄

2

� v

2

(r

2

i

� r

2

) ; i = 1; 2; : : : ; 2n�3 :

Remark 3. Note that this system of equations does not have a solution with v

2

= 0.

Namely, if we had v

2

= 0 then v � 

i

= 0 for all i. Sine the enters span R

n

, this would

imply v = 0, ontraditing v 2 P

n�1

C

. This validates our assumption that v

2

6= 0 prior

to (2.1).

Sine n � 3, the bottom line of (2.2) ontains at least n equations. We an assume



1

; : : : ; 

n

are linearly independent. Then the matrix M := (

1

; : : : ; 

n

)

T

is invertible, and

we an solve the equations with indies 1; : : : ; n for p:

(2.3) p =

1

2v

2

M

�1

0

B

�

v

2



2

1

� [v � 

1

℄

2

� v

2

(r

2

1

� r

2

)

.

.

.

v

2



2

n

� [v � 

n

℄

2

� v

2

(r

2

n

� r

2

)

1

C

A

:

Now substitute this expression for p into the the �rst and seond equation of the sys-

tem (2.2), as well as into the equations for i = n + 1; : : : ; 2n � 3, and then lear the

denominators. This gives n � 1 homogeneous equations in the oordinate v, namely one

ubi, one quarti, and n � 3 quadris. By B�ezout's Theorem, this means that if the

system has only �nitely many solutions, then the number of solutions is bounded by

3 � 4 � 2

n�3

= 3 � 2

n�1

, for n � 3. For small values of n, these values are shown in Table 1.

The value 12 for n = 3 was omputed in [9℄, and the values for n = 4; 5; 6 were omputed

experimentally in [16℄.

n 3 4 5 6 7

maximum # tangents 12 24 48 96 192

Table 1. Maximum number of tangents in small dimensions.

We simplify the ubi equation obtained by substituting (2.3) into the equation p �v = 0

by expressing it in the basis 

1

; : : : ; 

n

. Let the representation of v in the basis 

1

; : : : ; 

n

be

v =

n

X

i=1

t

i



i

with homogeneous oordinates t

1

; : : : ; t

n

. Further let 

0

1

; : : : ; 

0

n

be a dual basis to 

1

; : : : ; 

n

;

i.e., let 

0

1

; : : : ; 

0

n

be de�ned by 

0

i

� 

j

= Æ

ij

, where Æ

ij

denotes Kroneker's delta funtion.

By elementary linear algebra, we have t

i

= 

0

i

� v.

When expressing p in this dual basis, p =

P

p

0

i



0

i

, the third equation of (2.2) gives

p

0

i

=

1

v

2

�

v

2



2

i

� [v � 

i

℄

2

� v

2

(r

2

i

� r

2

)

�

:
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Substituting this representation of p into the equation

0 = 2v

2

(p � v) = 2v

2

 

n

X

i=1

p

0

i



0

i

!

� v = 2v

2

n

X

i=1

p

0

i

t

i

;

we obtain the ubi equation

n

X

i=1

(v

2



2

i

� [v � 

i

℄

2

� v

2

(r

2

i

� r

2

))t

i

= 0 :

In the ase that all radii are equal, expressing v

2

in terms of the t-variables yields

X

1�i 6=j�n

�

ij

t

2

i

t

j

+

X

1�i<j<k�n

2�

ijk

t

i

t

j

t

k

= 0 ;

where

�

ij

= (vol

2

(

i

; 

j

))

2

= det

�



i

� 

i



i

� 

j



j

� 

i



j

� 

j

�

;

�

ijk

= det

�



i

� 

j



i

� 

k



k

� 

j



k

� 

k

�

+ det

�



i

� 

k



i

� 

j



j

� 

k



j

� 

j

�

+det

�



j

� 

k



j

� 

i



i

� 

k



i

� 

i

�

;

and vol

2

(

i

; 

j

) denotes the oriented area of the parallelogram spanned by 

i

and 

j

. In

partiular, if 0

1

: : : 

n

onstitutes a regular simplex in R

n

, then we obtain the following

haraterization.

Theorem 4. Let n � 3. If 0

1

: : : 

n

is a regular simplex and all spheres have the same

radius then the ubi equation expressed in the basis 

1

; : : : ; 

n

is equivalent to

(2.4)

X

1�i 6=j�n

t

2

i

t

j

+ 2

X

1�i<j<k�n

t

i

t

j

t

k

= 0:

For n = 3, this ubi equation fators into three linear terms; for n � 4 it is irreduible.

Proof. Let e denote the edge length of the regular simplex. Then the form of the ubi

equation follows from omputing �

ij

= e

2

(1 � 1� 1=2 � 1=2) = 3e

2

=4, �

ijk

= 3e

2

(1=2 � 1�

1=2 � 1=2) = 3e

2

=4.

Obviously, for n = 3 the ubi polynomial fators into (t

1

+t

2

)(t

1

+t

3

)(t

2

+t

3

) (f. [13, 9℄).

For t � 4, assume that there exists a fatorization of the form

 

t

1

+

n

X

i=2

�

i

t

i

! 

X

1�i�j�n

�

ij

t

i

t

j

!

with �

12

= 1. Sine (2.4) does not ontain a monomial t

3

i

, we have either �

i

= 0 or �

ii

= 0

for 1 � i � n.

If there were more than one vanishing oeÆient �

i

, say �

i

= �

j

= 0, then the monomials

t

2

i

t

j

ould not be generated. So only two ases have to be investigated.



6 FRANK SOTTILE AND THORSTEN THEOBALD

Case 1 : �

i

6= 0 for 2 � i � n. Then �

ii

= 0 for 1 � i � n. Furthermore, �

ij

= 1

for i 6= j and �

i

= 1 for all i. Hene, the oeÆient of the monomial t

1

t

2

t

3

is 3 whih

ontradits (2.4).

Case 2 : There exists exatly one oeÆient �

i

= 0, say, �

4

= 0. Then �

11

= �

22

= �

33

= 0,

�

44

= 1. Further, �

ij

= 1 for 1 � i < j � 3 and �

i

= 1 for 1 � i � 3. Hene, the oeÆient

of the monomial t

1

t

2

t

3

is 3 whih is again a ontradition. �

3. Real Lines

In the previous setion, we have given the upper bound of 3 � 2

n�1

for the number of

omplex solutions to the tangent problem. Now we omplement this result by providing a

lass of on�gurations leading to 3 � 2

n�1

real ommon tangents. Hene, the upper bound

is tight, and is ahieved by real tangents.

There are no general tehniques known to �nd and prove on�gurations with a maximum

number of real solutions in enumerative geometry problems like the one studied here. E.g.,

for the lassial enumerative geometry problem of 3264 onis tangent to �ve given onis

(dating bak to Steiner in 1848 [19℄ and solved by Chasles in 1864 [4℄) the existene of

�ve real onis with all 3264 real was only reently established ([12℄ and [7, x7.2℄).

Our onstrution is based on the following geometri idea. For 4 spheres in R

3

entered

at the verties (1; 1; 1)

T

, (1;�1;�1)

T

, (�1; 1;�1)

T

, (�1;�1; 1)

T

of a regular tetrahedron,

there are [9℄

� 3 di�erent real tangents (of multipliity 4) for radius r =

p

2;

� 12 di�erent real tangents for

p

2 < r < 3=2;

� 6 di�erent real tangents (of multipliity 2) for r = 3=2.

Furthermore, based on the expliit alulations in [9℄, it an be easily seen that the

symmetry group of the tetrahedron ats transitively on the tangents. By this symmetry

argument, all 12 tangents have the same distane d from the origin. In order to onstrut

a on�guration of spheres with many ommon tangents, say, in R

4

, we embed the enters

via

(x

1

; x

2

; x

3

)

T

7�! (x

1

; x

2

; x

3

; 0)

T

into R

4

and plae additional spheres with radius r at (0; 0; 0; a)

T

and (0; 0; 0;�a)

T

for

some appropriate value of a. If a is hosen in suh a way that the enters of the two

additional spheres have distane r from the above tangents, then, intuitively, all ommon

tangents to the six four-dimensional spheres are loated in the hyperplane x

4

= 0 and

have multipliity 2 (beause of the two di�erent possibilities of signs when perturbing the

situation). By perturbing this on�guration slightly, the tangents are no longer loated

in the hyperplane x

4

= 0, and therefore the double tangents are fored to split. The idea

also generalizes to dimension n � 5.
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Formally, suppose that the 2n � 2 spheres in R

n

all have the same radius, r, and the

�rst four have enters



1

:= ( 1; 1; 1; 0; : : : ; 0)

T

;



2

:= ( 1;�1;�1; 0; : : : ; 0)

T

;



3

:= (�1; 1;�1; 0; : : : ; 0)

T

; and



4

:= (�1;�1; 1; 0; : : : ; 0)

T

at the verties of a regular tetrahedron insribed in the 3-ube (�1;�1;�1; 0; : : : ; 0)

T

.

We plae the subsequent enters at the points �ae

j

for j = 4; 5; : : : ; n, where e

1

; : : : ; e

n

are the standard unit vetors in R

n

.

Theorem 5. Let n � 4, r > 0, a > 0, and  := a

2

(n� 1)=(a

2

+ n� 3). If

(3.1) (r

2

� 3) (3� ) (a

2

� 2) (r

2

� )

�

(3� )

2

+ 4 � 4r

2

�

6= 0 ;

then there are exatly 3 � 2

n�1

di�erent lines tangent to the 2n� 2 spheres. If

(3.2) a

2

> 2;  < 3; and  < r

2

<  +

1

4

(3� )

2

;

then all these 3 � 2

n�1

lines are real. Furthermore, this system of inequalities de�nes a

nonempty subset of the (a; r)-plane.

Given values of a and r satisfying (3.2), we may sale the enters and parameters by

1=r to obtain a on�guration with unit spheres, proving Theorem 2 (b).

Remark 6. The set of values of a and r whih give all solutions real is nonempty. To

show this, we alulate

(3.3)  =

a

2

(n� 1)

a

2

+ n� 3

= (n� 1)

�

1�

n� 3

a

2

+ n� 3

�

;

whih implies that  is an inreasing funtion of a

2

. Similarly, set Æ := +(3�)

2

=4, the

upper bound for r

2

. Then

d

d

Æ =

d

d

�

 + (3� )

2

4

�

p = 1 +

 � 3

2

;

and so Æ is an inreasing funtion of  when  > 1. When a

2

= 2, we have  = 2, so Æ is

an inreasing funtion of a in the region a

2

> 2. Sine when a =

p

2, we have Æ =

9

4

> ,

the region de�ned by (3.2) is nonempty.

Moreover, we remark that the region is qualitatively di�erent in the ases n = 4 and

n � 5. For n = 4,  satis�es  < 3 for any a >

p

2. Hene, Æ < 3 and r <

p

3. Thus the

maximum value of 24 real lines may be obtained for arbitrarily large a. In partiular, we

may hoose the two spheres with enters �ae

4

disjoint from the �rst four spheres. Note

however, that the �rst four spheres do meet, as we have

p

2 < r <

p

3.

For n � 5, there is an upper bound to a. The upper and lower bounds for r

2

oinide

when  = 3, so we always have r

2

< 3. Solving  = 3 for a

2

, we obtain a

2

< 3(n�3)=(n�4).

When n = 5, Figure 2 displays the disriminant lous (de�ned by (3.1)) and shades the

region onsisting of values of a and r for whih all solutions are real.
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a

r

0

1

1 2 3

r =

p

3

r =

p

Æ

r =

p



a =

p

2

 = 3

(a =

p

6)

all solutions real

Figure 2. Disriminant lous and values of a; r giving all solutions real.

Proof of Theorem 5. We prove Theorem 5 by treating a and r as parameters and expliitly

solving the resulting system of polynomials in the oordinates (p; v) 2 C

n

�P

n�1

C

for lines

in C

n

. This shows there are 3 � 2

n�1

omplex lines tangent to the given spheres, for the

values of the parameters (a; r) given in Theorem 5. The inequalities (3.2) desribe the

parameters for whih all solutions are real.

First onsider the equations (2.1) for the line to be tangent to the spheres with enters

�ae

j

and radius r:

v

2

p

2

� 2av

2

p

j

+ a

2

v

2

� a

2

v

2

j

� r

2

v

2

= 0;

v

2

p

2

+ 2av

2

p

j

+ a

2

v

2

� a

2

v

2

j

� r

2

v

2

= 0:

Taking their sum and di�erene, (and using av

2

6= 0), we obtain

p

j

= 0; 4 � j � n;(3.4)

a

2

v

2

j

= (p

2

+ a

2

� r

2

)v

2

; 4 � j � n:(3.5)

Subtrating the equations (2.1) for the enters 

1

; : : : ; 

4

pairwise gives

4v

2

(p

2

+ p

3

) = �4(v

1

v

3

+ v

1

v

2

)

(for indies 1,2) and analogous equations. Hene,

p

1

= �

v

2

v

3

v

2

; p

2

= �

v

1

v

3

v

2

; p

3

= �

v

1

v

2

v

2

:

Further, p � v = 0 implies v

1

v

2

v

3

= 0. Thus we have 3 symmetri ases. We treat one,

assuming that v

1

= 0. Then we obtain

p

1

= �

v

2

v

3

v

2

; p

2

= p

3

= 0:
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Hene, the tangent equation (2.1) for the �rst sphere beomes

v

2

p

2

1

� 2v

2

p

1

+ 3v

2

� (v

2

+ v

3

)

2

� r

2

v

2

= 0 :

Using 0 = v

2

p

1

+ v

2

v

3

, we obtain

(3.6) v

2

2

+ v

2

3

= v

2

(p

2

1

+ 3� r

2

) :

The ase j = 4 of (3.5) gives a

2

v

2

4

= v

2

(p

2

1

+ a

2

� r

2

), as p

2

= p

3

= 0. Combining these,

we obtain

v

2

2

+ v

2

3

= a

2

v

2

4

+ v

2

(3� a

2

) :

Using v

2

= v

2

2

+ v

2

3

+ (n� 3)v

2

4

yields

(a

2

� 2)(v

2

2

+ v

2

3

) = v

2

4

(3(a

2

+ n� 3)� a

2

(n� 1)):

We obtain

(3.7) (a

2

� 2)(v

2

2

+ v

2

3

) = v

2

4

(a

2

+ n� 3)(3� ) ;

where  = a

2

(n� 1)=(a

2

+ n� 3).

Note that a

2

+ n � 3 > 0 as n > 3. If neither 3�  nor a

2

� 2 are zero, then we may

use this to ompute

(a

2

+ n� 3)(3� )v

2

= [(a

2

+ n� 3)(3� ) + (n� 3)(a

2

� 2)℄(v

2

2

+ v

2

3

)

= (a

2

+ n� 3)(v

2

2

+ v

2

3

) ;

and so

(3.8) (3� )v

2

= v

2

2

+ v

2

3

:

Substituting (3.8) into (3.6) and dividing by v

2

gives

(3.9) p

2

1

= r

2

�  :

Combining this with v

2

p

1

+ v

2

v

3

= 0, we obtain

(3.10) p

1

(v

2

2

+ v

2

3

) + (3� )v

2

v

3

= 0 :

Summarizing, we have n linear equations

v

1

= p

2

= p

3

= p

4

= � � � = p

n

= 0 ;

and n� 4 simple quadrati equations

v

2

4

= v

2

5

= � � � = v

2

n

;

and the three more ompliated quadrati equations, (3.7), (3.9), and (3.10).

We now solve these last three equations. We solve (3.9) for p

1

, obtaining

p

1

= �

p

r

2

�  :

Then we solve (3.10) for v

2

and use (3.9), obtaining

v

2

= �

3�  �

p

(3� )

2

� 4(r

2

� )

2p

1

v

3

:
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Finally, (3.7) gives

v

4

p

a

2

+ n� 3 = �

s

a

2

� 2

3� 

(v

2

2

+ v

2

3

) :

Sine v

3

= 0 would imply v = 0 and hene ontradit v 2 P

n�1

C

, we see that v

3

6= 0. Thus

we an onlude that when none of the following expressions

r

2

� 3 ; 3�  ; a

2

� 2 ; r

2

�  ; (3� )

2

+ 4 � 4r

2

vanish, there are 8 = 2

3

di�erent solutions to the last 3 equations. For eah of these, the

simple quadrati equations give 2

n�4

solutions, so we see that the ase v

1

= 0 ontributes

2

n�1

di�erent solutions, eah of them satisfying v

2

6= 0, v

3

6= 0. Sine there are three

symmetri ases, we obtain 3 � 2

n�1

solutions in all, as laimed.

We omplete the proof of Theorem 5 and determine whih values of the parameters a

and r give all these lines real. We see that

(1) p

1

is real if r

2

�  > 0.

(2) Given that p

1

is real, v

2

=v

3

is real if (3� )

2

+ 4 � 4r

2

> 0.

(3) Given this, v

4

=v

3

is real if (a

2

� 2)=(3� ) > 0.

Suppose the three inequalities above are satis�ed. Then all solutions are real, and (3.8)

implies that 3 �  > 0, and so we also have a

2

� 2 > 0. This ompletes the proof of

Theorem 5. �

4. Affinely Dependent Centers

In our derivation of the B�ezout number 3 � 2

n�1

of ommon tangents for Theorem 2,

it was ruial that the enters of the spheres aÆnely spanned R

n

. Also, the onstrution

in Setion 3 of on�gurations with 3 � 2

n�1

real ommon tangents had enters aÆnely

spanning R

n

. When the enters are aÆnely dependent, we prove the following result.

Theorem 7. For n � 4, there are 3 � 2

n�1

omplex ommon tangent lines to 2n � 2

spheres whose enters are aÆnely dependent, but otherwise general. There is a hoie of

suh spheres with 2

n

real ommon tangent lines.

Remark 8. Theorem 7 extends the results of [9, Setion 4℄, where it is shown that when

n = 3, there are 12 omplex ommon tangents. Megyesi [10℄ has shown that there is a

on�guration with 12 real ommon tangents, but that the number of tangents is bounded

by 8 for the ase of unit spheres. For n � 4, we are unable either to �nd a on�guration of

spheres with aÆnely dependent enters and equal radii having more than 2

n

real ommon

tangents, or to show that the maximum number of real ommon tangents is less than

3 � 2

n�1

. Similar to the ase n = 3, it might be possible that the ase of unit spheres and

the ase of spheres with general radii might give di�erent maximum numbers.

Remark 9. Megyesi [11℄ reently showed that there are 2n � 2 spheres with aÆnely

dependent enters having all 3 � 2

n�1

ommon tangents real. Furthermore, all but one of

the spheres in his onstrution have equal radii.
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By Theorem 2, 3 �2

n�1

is the upper bound for the number of omplex ommon tangents

to spheres with aÆnely dependent enters. Indeed, if there were a on�guration with

more ommon tangents, then|sine the system is a omplete intersetion|perturbing

the enters would give a on�guration with aÆnely independent enters and more ommon

tangents lines than allowed by Theorem 2.

By this disussion, to prove Theorem 7 it suÆes to give 2n � 2 spheres with aÆnely

dependent enters having 3 �2

n�1

omplex ommon tangents and also suh a on�guration

of 2n� 2 spheres with 2

n

real ommon tangents. For this, we use spheres with equal radii

whose enters are the verties of a perturbed rosspolytope in a hyperplane. We work

with the notation of Setions 2 and 3.

Let a 6= �1 and suppose we have spheres with equal radii r and enters at the points

ae

2

; �e

2

; and � e

j

; for 3 � j � n :

Then we have the equations

p � v = 0;(4.1)

f := v

2

(p

2

� 2ap

2

+ a

2

� r

2

)� a

2

v

2

2

= 0;(4.2)

g := v

2

(p

2

+ 2p

2

+ 1� r

2

)� v

2

2

= 0;(4.3)

v

2

(p

2

� 2p

j

+ 1� r

2

)� v

2

j

= 0; 3 � j � n :(4.4)

As in Setion 3, the sum and di�erene of the equations (4.4) for the spheres with

enters �e

j

give

p

j

= 0;

v

2

(p

2

+ 1� r

2

) = v

2

j

:

3 � j � n :

Thus we have the equations

(4.5)

p

3

= p

4

= � � � = p

n

= 0;

v

2

3

= v

2

4

= � � � = v

2

n

:

Similarly, we have

f + ag = (1 + a)

�

v

2

(p

2

� r

2

+ a)� av

2

2

�

= 0;

f � a

2

g = (1 + a)v

2

�

(1� a)(p

2

� r

2

) + 2ap

2

�

= 0:

As before, v

2

6= 0: If v

2

= 0, then (4.3) and (4.4) imply that v

2

= � � � = v

n

= 0. With

v

2

= 0, this implies that v

1

= 0 and hene v = 0, ontraditing v 2 P

n�1

C

. By (4.5), we

have p

2

= p

2

1

+p

2

2

, and so we obtain the system of equations in the variables p

1

; p

2

; v

1

; v

2

; v

3

:

(4.6)

p

1

v

1

+ p

2

v

2

= 0;

(1� a)(p

2

1

+ p

2

2

� r

2

) + 2ap

2

= 0;

v

2

(p

2

1

+ p

2

2

� r

2

+ a)� av

2

2

= 0;

v

2

(p

2

1

+ p

2

2

� r

2

+ 1)� v

2

3

= 0:

(For notational sanity, we do not yet make the substitution v

2

= v

2

1

+ v

2

2

+ (n� 2)v

2

3

.)
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We assume that a 6= 1 and will treat the ase a = 1 at the end of this setion. Using

the seond equation of (4.6) to anel the terms v

2

(p

2

1

+ p

2

2

) from the third equation and

dividing the result by a, we an solve for p

2

:

p

2

=

(1� a)(v

2

� v

2

2

)

2v

2

:

If we substitute this into the �rst equation of (4.6), we may solve for p

1

:

p

1

= �

(1� a)(v

2

� v

2

2

)v

2

2v

2

v

1

:

Substitute these into the seond equation of (4.6), lear the denominators (4v

2

1

v

4

), and

remove the ommon fator (1� a) to obtain the sexti

(4.7) (1� a)

2

(v

2

1

+ v

2

2

)(v

2

� v

2

2

)

2

� 4r

2

v

2

1

v

4

+ 4av

2

1

v

2

(v

2

� v

2

2

) = 0 :

Subtrating the third equation of (4.6) from the fourth equation and realling that v

2

=

v

2

1

+ v

2

2

+ (n� 2)v

2

3

, we obtain the quadrati equation

(4.8) (1� a)v

2

1

+ v

2

2

+ [(n� 3)� a(n� 2)℄ v

2

3

= 0 :

Consider the system onsisting of the two equations (4.7) and (4.8) in the homogeneous

oordinates v

1

; v

2

; v

3

. Any solution to this system gives a solution to the system (4.6),

and thus gives 2

n�3

solutions to the original system (4.1)|(4.4).

These last two equations (4.7) and (4.8) are polynomials in the squares of the variables

v

2

1

; v

2

2

; v

2

3

. If we substitute � = v

2

1

; � = v

2

2

, and  = v

2

3

, then we have a ubi and a

linear equation, and any solution �; �;  to these with nonvanishing oordinates gives 4

solutions to the system (4.7) and (4.8): (v

1

; v

2

; v

3

)

T

:= (�

1=2

;��

1=2

;�

1=2

)

T

, as v

1

; v

2

; v

3

are homogeneous oordinates.

Solving the linear equation in �; �;  for � and substituting into the ubi equation

gives a homogeneous ubi in � and  whose oeÆients are polynomials in a; n; r

y

. The

disriminant of this ubi is a polynomial with integral oeÆients of degree 16 in the

variables a; n; r having 116 terms. Using a omputer algebra system, it an be veri�ed

that this disriminant is irreduible over the rational numbers. Thus, for any �xed integer

n � 3, the disriminant is a nonzero polynomial in a; r. This implies that the ubi has 3

solutions for general a; r and any integer n. Sine the oeÆients of this ubi similarly

are nonzero polynomials for any n, the solutions �; �;  will be nonzero for general a; r

and any n. We onlude:

For any integer n � 3 and general a; r, there will be 3 � 2

n�1

omplex

ommon tangents to spheres of radius r with enters

ae

2

; �e

2

; and � e

j

; for 3 � j � n :

y

Maple V.5 ode verifying this and other expliit alulations presented in this manusript is available

at www.math.umass.edu/~sottile/pages/spheres.



LINES TANGENT TO 2n � 2 SPHERES IN R

n

13

We return to the ase when a = 1, i.e., the enters are the verties of the rosspolytope

�e

j

for j = 2; : : : ; n. Then our equations (4.5) and (4.6) beome

(4.9)

p

2

= p

3

= � � � = p

n

= 0;

v

2

2

= v

2

3

= � � � = v

2

n

;

p

1

v

1

= 0;

v

2

(p

2

1

� r

2

+ 1)� v

2

2

= 0:

As before, v

2

= v

2

1

+ (n� 1)v

2

2

. We solve the last two equations. Any solution they have

(in C

1

� P

1

C

) gives rise to 2

n�2

solutions, by the seond list of equations v

2

3

= � � � = v

2

n

.

By the penultimate equation p

1

v

1

= 0, one of p

1

or v

1

vanishes. If v

1

= 0, then the last

equation beomes

(n� 1)v

2

2

(p

2

1

� r

2

+ 1) = v

2

2

:

Sine v

2

= 0 implies v

2

= 0, we have v

2

6= 0 and so we may divide by v

2

2

and solve for p

1

to obtain

p

1

= �

r

r

2

� 1 +

1

n� 1

:

If instead p

1

= 0, then we solve the last equation to obtain

v

1

v

2

= �

r

1

1� r

2

+ 1� n :

Thus for general r, there will be 2

n

ommon tangents to the spheres with radius r and

enters �e

j

for j = 2; : : : ; n. We investigate when these are real.

We will have p

1

real when r

2

> 1 � 1=(n � 1). Similarly, v

1

=v

2

will be real when

1=(1� r

2

) > n� 1. In partiular 1� r

2

> 0 so 1 > r

2

. Using this we get

1� r

2

<

1

n� 1

so that r

2

> 1�

1

n� 1

;

whih we previously obtained.

We onlude that there will be 2

n

real ommon tangents to the spheres with enters

�e

j

for j = 2; : : : ; n and radius r when

r

1�

1

n� 1

< r < 1 :

This onludes the proof of Theorem 7.

5. Lines Tangent to Quadris

Suppose that in our original question we ask for ommon tangents to ellipsoids, or to

more general quadri hypersurfaes. Sine all smooth quadri hypersurfaes are proje-

tively equivalent, a natural setting for this question is the following:

\How many ommon tangents are there to 2n � 2 general quadri hypersurfaes in

(omplex) projetive spae P

n

C

?"
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Theorem 10. There are at most

2

2n�2

�

1

n

�

2n� 2

n� 1

�

isolated ommon tangent lines to 2n� 2 quadri hypersurfaes in P

n

C

.

Proof. The spae of lines in P

n

C

is the Grassmannian of 2-planes in C

n+1

. The Pl�uker

embedding [8℄ realizes this as a projetive subvariety of P

(

n+1

2

)

�1

C

of degree

1

n

�

2n� 2

n� 1

�

:

The theorem follows from the re�ned B�ezout theorem [6, x12.3℄ and from the fat that the

ondition for a line to be tangent to a quadri hypersurfae is a homogeneous quadrati

equation in the Pl�uker oordinates for lines [16, x5.4℄. �

In Table 5, we ompare the upper bound of Theorem 10 for the number of lines tangent

to 2n�2 quadris to the number of lines tangent to 2n�2 spheres of Theorem 2, for small

values of n. The bound of 32 tangent lines to 4 quadris in P

3

C

is sharp, even under the

n 3 4 5 6 7

# for spheres 12 24 48 96 192

# for quadris 32 320 3580 43008 540672

Table 2. Maximum number of tangents in small dimensions.

restrition to real quadris and real tangents [18℄. In a omputer alulation, we found

320 lines in P

4

C

tangent to 6 general quadris, thus the upper bound of Theorem 10 is

sharp also for n = 4, and indiating that it is likely sharp for n > 4. The question arises:

what is the soure of the huge disrepany between the seond and third rows of Table 5?

Consider a sphere in aÆne n-spae

(x

1

� 

1

)

2

+ (x

2

� 

2

)

2

+ � � �+ (x

n

� 

n

)

2

= r

2

:

Homogenizing this with respet to the new variable x

0

, we obtain

(x

1

� 

1

x

0

)

2

+ (x

2

� 

2

x

0

)

2

+ � � �+ (x

n

� 

n

x

0

)

2

= r

2

x

2

0

:

If we restrit this sphere to the hyperplane at in�nity, setting x

0

= 0, we obtain

(5.1) x

2

1

+ x

2

2

+ � � �+ x

2

n

= 0 ;

the equation for an imaginary quadri at in�nity. We invite the reader to hek that every

line at in�nity tangent to this quadri is tangent to the original sphere.

Thus the equations for lines in P

n

C

tangent to 2n� 2 spheres de�ne the 3 � 2

n�1

lines we

omputed in Theorem 2, as well as this exess omponent of lines at in�nity tangent to

the imaginary quadri (5.1). Thus this exess omponent ontributes some portion of the

B�ezout number of Theorem 10 to the total number of lines. Indeed, when n = 3, AluÆ

and Fulton [2℄ have given a areful argument that this exess omponent ontributes 20,
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whih implies there are 32�20 = 12 isolated ommon tangent lines to 4 spheres in 3-spae,

reovering the result of [9℄.

The geometry of that alulation is quite interesting. Given a system of equations on

a spae (say the Grassmannian) whose set of zeroes has a positive dimensional exess

omponent, one method to ompute the number of isolated solutions is to �rst modify

the underlying spae by blowing up the exess omponent and then ompute the number

of solutions on this new spae. In many ases, the equations on this new spae have

only isolated solutions. However, for this problem of lines tangent to spheres, the equa-

tions on the blown up spae will still have an exess intersetion and a further blow-up

is required. This problem of lines tangent to 4 spheres in projetive 3-spae is by far

the simplest enumerative geometri problem with an exess omponent of zeroes whih

requires two blow-ups (tehnially speaking, blow-ups along smooth enters) to resolve

the exess zeroes.

It would be interesting to understand the geometry also when n > 3. For example, how

many blow-ups are needed to resolve the exess omponent?

Sine all smooth quadris are projetively equivalent, Theorem 2 has the following

impliation for this problem of ommon tangents to projetive quadris.

Theorem 11. Given 2n� 2 quadris in P

n

C

whose intersetion with a �xed hyperplane is

a given smooth quadri Q, but are otherwise general, there will be at most 3 � 2

n�1

isolated

lines in P

n

C

tangent to eah quadri.

When the quadris are all real, we ask: how many of these 3 � 2

n�1

ommon isolated

tangents an be real? This question is only partially answered by Theorem 2. The point

is that projetive real quadris are lassi�ed up to real projetive transformations by the

absolute value of the signature of the quadrati forms on R

n+1

de�ning them. Theorem 2

implies that all lines an be real when the shared quadri Q has no real points (signature

is �n). In [16℄, it is shown that when n = 3, eah of the �ve additional ases onerning

nonempty quadris an have all 12 lines real.

Reently, Megyesi [11℄ has largely answered this question. Spei�ally, he showed that,

for any nonzero real numbers �

3

; : : : ; �

n

, there are 2n� 2 quadris of the form

(x

1

� 

1

)

2

+ (x

2

� 

2

)

2

+

n

X

j=3

�

j

(x

j

� 

j

)

2

= R

having all 3 � 2

n�1

tangents real. These all share the same quadri at in�nity

x

2

1

+ x

2

2

+ �

3

x

2

3

+ � � �+ �

n

x

2

n

= 0 ;

and thus the upper bound of Theorem 11 is attained, when the shared quadri is this

quadri.
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