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Abstract

We propose and investigate bimatrix games, whose (entry-

wise) sum of the pay-off matrices of the two players is of

rank k, where k is a constant. We will say the rank of

such a game is k. For every fixed k, the class of rank k-

games strictly generalizes the class of zero-sum games, but

is a very special case of general bimatrix games. We

show that even for k = 1 the set of Nash equilibria of

these games can consist of an arbitrarily large number

of connected components. While the question of exact

polynomial time algorithms to find a Nash equilibrium

remains open for games of fixed rank, we can provide a

deterministic polynomial time algorithm for finding an ε-

approximation (whose running time is polynomial in 1

ε
)

as well as a randomized polynomial time approximation

algorithm (whose running time is similar), but which offers

the possibility of finding an exact solution in polynomial time

if a conjecture is valid. The latter algorithm is based on a

new application of random sampling methods to quadratic

optimization problems of fixed rank.

1 Introduction

Models of non-cooperative game theory serve to analyze
situations of strategic interactions. Driven by current
developments in auction theory as well as in equilibria
models for the internet, the basic model of a Nash
equilibrium has recently attracted much attention (see
for example the survey by Papadimitriou [19] or the
recent papers [1, 3, 7, 20, 22]).

In [18], von Neumann and Morgenstern introduced
the model of zero-sum games, which are described by
a single m × n-matrix A. These games always possess
an equilibrium, and the set of all equilibria (which is
a polyhedral set and thus in particular connected) can
be computed efficiently using linear programming (see,
e.g., [6]).

Nash investigated the model of bimatrix games
(A, B) (and more generally N -player games) [16, 17],
in which the gain of one player does not necessarily
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agree with the loss of the other player, thus adding
much expressive power to the model of zero-sum games.
By Nash’s results any bimatrix game has at least
one equilibrium. Concerning the question whether
an equilibrium can be computed in polynomial time
(named by Papadimitriou to be the most concrete open
question on the boundary of P [19]), Chen and Deng
recently showed that the problem is PPAD-complete
[3] and (together with Teng [4]) that the problem
of computing a 1/nΘ(1)-approximate Nash equilibrium
remains PPAD-complete. With regard to positive
approximation results, Kontogiannis, Panagopoulou,
and Spirakis have provided an algorithm for computing
a 3

4 -approximate Nash equilibrium [11]. For quasi-
polynomial time approximation algorithms see Lipton,
Markakis, and Mehta [13].

Thus, it will be of interest to impose restrictions on
bimatrix games which while preserving expressive power
of the games may admit polynomial time algorithms
or polynomial time approximation schemes. Recently,
Lipton et al. [13] investigated games where both payoff
matrices A, B are of fixed rank k. They showed that in
this restricted model a Nash equilibrium can be found
in polynomial time. However, for a fixed rank k, the
expressive power of that model is limited; in particular,
most zero-sum games do not belong to that class.

In this paper, we propose and investigate a related
model based on low-rank restrictions, but which is a
strict superset of the model of zero-sum games. The
viewpoint we start with is that in a zero-sum game, the
sum of the payoff matrices C := A + B ∈ Rm×n is the
zero matrix, which for our purposes we consider as a
matrix of rank 0. In a general bimatrix game the rank
of C can take any value up to min{m, n}. Here, we
consider the hierarchy given by the class of games in
which we restrict C to be of rank at most k for some
given k. We call these games rank k-games.

Our contributions. We show that the expressive
power of fixed rank-games is significantly larger than
that of zero-sum games. In order to provide this
separation, we exhibit a sequence of d × d-games of
rank 1 whose number of connected components of
equilibria exceeds any given constant. Our lower bound
for the maximal number of Nash equilibria of a d × d-
game is linear in d. This bound is not tight.



Although the problem of finding a Nash equilibrium
in a game of fixed rank is a very special case of the
problem of finding a Nash equilibrium in an arbitrary
bimatrix game, we do not know if there exists an exact
polynomial time algorithm for this problem. Note that
the problem strictly generalizes linear programming
(see, e.g., [6, Ch. 13.2] for the equivalence of linear
programming and zero-sum games).

From the algorithmic point of view, we provide
approximation results for two approximation models.
Firstly, we propose a model of ε-approximation for rank
k-games which is a stronger approximation model than
the one used in [4, 11] (see Section 2.2).

Using results from quadratic optimization, we show
that we can deterministically approximate Nash equi-
libria of constant rank-games in polynomial time, with
an error relative to a natural upper bound on the “max-
imum loss” of the game (as defined in Section 4.1). The
running time of this algorithm is polynomial in 1

ε .
Combining ideas of random sampling and quadratic

optimization, we then provide a randomized approxima-
tion algorithm for certain quadratic optimization prob-
lems, which yields a randomized approximation algo-
rithm for the Nash problem. The running time of the
randomized algorithm is similar to the deterministic al-
gorithm, but it has the possibility of finding an exact
solution in polynomial time if a conjecture is valid.

Finally, we present a polynomial time algorithm
for relative approximation (with respect to the payoffs
in an equilibrium) provided that the matrix C has a
nonnegative decomposition.

2 Preliminaries

We consider an m × n-bimatrix game with payoff ma-
trices A, B ∈ Zm×n. Let

S1 =
{

x ∈ Rm :
m

∑

i=1

xi = 1 , x ≥ 0
}

and S2 =
{

y ∈ Rn :

n
∑

j=1

yj = 1 , y ≥ 0
}

be the sets of mixed strategies of the two players, and
let S1 = {x ∈ Rm :

∑m
i=1 xi = 1} and S2 = {y ∈ Rn :

∑n
j=1 yj = 1} denote the underlying affine subspaces.

The first player (the row player) plays x ∈ S1 and the
second player (the column player) plays y ∈ S2. The
payoffs for player 1 and player 2 are xT Ay and xT By,
respectively.

Let C(i) denote the i-th row of a matrix C (as a row
vector), and let C(j) denote the j-th column of C (as a
column vector). A pair of mixed strategies (x, y) is a

Nash equilibrium if

(2.1) xT Ay ≥ xT Ay and xT By ≥ xT By

for all mixed strategies x, y. Equivalently, (x, y) is a
Nash equilibrium if and only if

(2.2)
xT Ay = max

1≤i≤m
A(i)y

and xT By = max
1≤j≤n

xT B(j) .

2.1 Economic interpretation of low-rank

games. If A + B = 0 then the game is called a zero-
sum game. The economic interpretation of a zero-sum
game is “What is good for player 1 is bad for player 2”.
In order to describe game-theoretic situations which
are close to that behavior, we consider a model where
aij + bij is a function which depends on i and j in
simple way, that is,

aij + bij = f(i, j)

where f is a simple function. If f : {1, . . . , m} ×
{1, . . . , n} → Z is an additive function, f(i, j) = ui + vj

with constants u1, . . . , um, v1, . . . , vn, then there is an
equivalent zero-sum game, i.e., a game having the
same set of Nash equilibria. Namely, define the payoff
matrices A′ and B′ by a′

ij = aij − vj , b′ij = bij − ui .
That is, A′ results from A by subtracting the column
vector (vj , . . . , vj)

T to the j-th column (1 ≤ j ≤ n)
and B′ results from B by subtracting the row vector
(ui, . . . , ui) to the i-th row (1 ≤ i ≤ m). Now

xT A′y − xT A′y = xT Ay −
n
∑

j=1

vjyj − xT Ay +
n
∑

j=1

vjyj

= xT Ay − xT Ay

and a similar relation w.r.t. B holds. So the zero-sum
game (A′, B′) has the same Nash equilibria as (A, B).
We remark that the case vj = 0 yields the row-constant
games introduced in [8].

If f is a multiplication function, f(i, j) = uivj with
constants u1, . . . , um, v1, . . . , vn, this is a rank 1-game.
If f is a sum of k multiplication functions, this is a game
of rank at most k.

Rank-1 games also occur under the term “multipli-
cation games” in the paper [2] by Bulow and Levin.

2.2 Approximate Nash equilibria. We also con-
sider approximate equilibria. To define them, suppose
x is not necessarily an optimal strategy for player 1
given that player 2 has played y. Then the “loss” for
player 1 (from optimum) is maxi A(i)y − xT Ay. Sim-
ilarly, if y is not optimal for player 2 given that the
first player has played x, the loss for player 2 would be



maxj xT B(j) − xT By. We will use the total of the two
losses – i.e.,

ℓ(x, y) = max
i

A(i)y + max
j

xT B(j) − xT (A + B)y

as a measure of how much (x, y) is off from equi-
librium. For a matrix X ∈ Rm×n let |X| =
max1≤i≤m,1≤j≤n |xij |.

Definition 2.1. For ε ≥ 0, a pair (x, y) of mixed
strategies is an ε-approximate equilibrium if

(2.3) ℓ(x, y) ≤ ε|A + B| .

Note that the term |A + B| on the right hand
side provides a stronger approximation model compared
to the term |A| + |B|. The latter one is essentially
the approximation model used in the papers [4, 11].
Also observe that |A + B| is an upper bound for the
term xT (A + B)y. For a game with A − B 6= 0,
a pair of strategies is an exact equilibrium if and
only if it is a 0-approximate equilibrium. Besides the
notion of “absolute” approximation in Definition 2.1, in
Section 4.3 we will also consider a notion of “relative”
approximation.

Lemma 2.1. Suppose (x, y) is an ε-approximate equi-
librium. Then

(2.4) xT Ay + xT By − xT (A + B)y ≤ ε|A + B|

for any other mixed strategies x, y. Also, conversely, if
a pair of mixed strategies (x, y) satisfies (2.4) then it is
an ε-approximate equilibrium.

Proof. The proof follows from the equivalence of the
statements (2.1) and (2.2).

2.3 Approximation of games by low rank

games. If the matrix C = A + B of a bimatrix game
is “close” to a game with rank k, then the game can be
approximated by a rank k-game (A′, B′) in such a way
that the Nash equilibria of the original game (A, B) re-
main approximate Nash equilibria in the game (A′, B′).

Definition 2.2. Let (A, B) be an (m × n)-game and
C = A+B. If a matrix C ′ ∈ Rm×n satisfies |C −C ′| <
ε|A+B| then the game (A′, B′) with A′ = A+ 1

2 (C ′−C),
B′ = B + 1

2 (C ′ − C) ε-approximates (A, B).

Note that A′ + B′ = C ′.
Under the perturbation of the game, Nash equilibria

of the original game are approximate equilibria of the
perturbed game (cf. [5, Lemma 2]).

Theorem 2.1. Let (A′, B′) be an ε-approximation of
the game (A, B) and ε < 1. If (x, y) is a Nash
equilibrium of the game (A, B), then (x, y) is a 2ε-
approximate Nash equilibrium for the game (A′, B′).

Proof. The loss ℓ′(x, y) for (x, y) with respect to the
perturbed game (A′, B′) satisfies

ℓ′(x, y) ≤ max
i

(A′ − A)(i)y + max
j

xT (B′ − B)(j)

− xT (C ′ − C)y

≤
ε

2
+

ε

2
+ ε = 2ε

We can apply the Singular Value Decomposition
(SVD) to approximate the matrix C by a matrix of some
given rank k. The approximation factor in Theorem 2.1
is then a function of the singular values of C.

3 The expressive power of low rank games

3.1 The combinatorics of Nash equilibria. One
measure for the expressive power of a game-theoretic
model is the number of Nash equilibria it can have
(depending on the number of strategies m, n). For
simplicity, we will concentrate on the case d := m = n.
If the Nash equilibria are not isolated, then we might
count the number of connected components, but we will
mainly concentrate on non-degenerate games in which
there exist only a finite number of Nash equilibria. Here,
a bimatrix game is called non-degenerate if the number
of the pure best responses of player 1 to a mixed strategy
y of player 2 never exceeds the cardinality of the support
supp y := {j : yj 6= 0} and if the same holds true for
the best pure responses of player 2 (see [24]).

If d ≤ 4, then a non-degenerate d × d-game can
have at most 2d − 1 Nash equilibria, and this bound is
tight (see [10, 15]). For d ≥ 5, determining the maximal
number of equilibria of a non-degenerate d × d-game
is an open problem (see [23]). Based on McMullen’s
Upper Bound Theorem for polytopes, Keiding [10] gave
an upper bound of Φd,2d − 1, where

Φd,k :=







k
k− d

2

(k− d

2

k−d

)

if d even ,

2
(k− d+1

2

k−d

)

if d odd .

A simple class of configurations which yields an expo-
nential lower bound of 2d − 1 is the game where the
payoff matrices of both players are the identity matrix
Id (see [21]).

The best known lower bound was given by von
Stengel [23], who showed that for even d there exists
a non-degenerate d × d-game having

(3.5) τ (d) := f(d/2) + f(d/2 − 1) − 1



Nash equilibria, where f(n) :=
∑n

k=0

(

n+k
k

)(

n
k

)

.

Asymptotically, τ grows as τ (d) ∼ 0.949 (1+
√

2)d

√
d

.

If the ranks of A and B are bounded by a fixed
constant, then the number of Nash equilibria is bounded
polynomially in d:

Theorem 3.1. For any d × d-bimatrix game (A, B) in
which the ranks of both A and B are bounded by a fixed
constant k, the number of connected components of the

Nash equilibria is bounded by
(

d
k+1

)2
. In particular, for a

non-degenerate game the number of Nash equilibria is at

most
(

d
k+1

)2
, i.e., that number is bounded polynomially

in d.

Proof. Let A and B be of rank at most k. The
column space of Ay has dimension at most k. By
applying Carathéodory’s Theorem on the columns of
Ay, it was shown in [13, Theorem 4] that for every
Nash equilibrium (x, y) there exists a Nash equilibrium
(x, y′) in which the second player plays at most k + 1
pure strategies with positive probability. The same
argument can be used to bound the number of pure
strategies which are used by player 1. It follows from
that argument that there exists a continuous path from
the original Nash equilibrium to the Nash equilibrium
with small support.

Since for a given support of the equilibria, the set
of equilibria with that support is a polyhedral set, the
number of connected components of the equilibria of

game (A, B) is at most
(

d
k+1

)2
.

Now we show that the expressive power of fixed
rank-games is significantly higher than the expressive
power of zero-sum games. In order to show this, we
prove that the number of Nash equilibria of a rank 1-
game can exceed any given constant and give a linear
lower bound.

Theorem 3.2. For any d ∈ N there exists a non-
degenerate d × d-game of rank 1 with at least 2d − 1
many Nash equilibria.

Proof of Theorem 3.2 (Sketch). We construct a
sequence (Ad, Bd) of d × d-games of rank 1 in which
all pairs (i, i) of pure strategies (1 ≤ i ≤ d) are Nash
equilibria. For convenience of notation, we omit the
index d in the notation of the game. Let A, B ∈ Rd×d

be defined by

(3.6) aij = 2ij − i2 + j2 , bij = 2ij + i2 − j2 .

Since A + B = (4ij)i,j , the matrix A + B is of rank 1.
By an explicit analysis of this construction, it can

be shown that the game is non-degenerate and that a

pair of mixed strategies (x, y) is a Nash equilibrium of
the game (A, B) if and only if x = y = ei for some
unit vector ei, 1 ≤ i ≤ d, or x = y = 1

2 (ei + ei+1) for
some i ∈ {1, . . . , d − 1}. Hence, there are 2d − 1 Nash
equilibria. �

The following questions remain unsolved.

Open problem 3.1. Is the maximal number of Nash
equilibria for non-degenerate d × d-games of rank k
smaller than the maximal number of Nash equilibria
of non-degenerate d×d-games of arbitrary rank? Is the
maximal number of Nash equilibria for non-degenerate
d × d-games of rank k polynomially bounded in d?

Combining Theorem 3.2 for rank 1-games with von
Stengel’s result, we obtain the following lower bound for
rank k-games.

Corollary 3.1. For odd d ≥ 3 and k ≤ d, there exists
a d×d-game of rank k with at least τ (k−1)·(2(d−k)+1)
Nash equilibria, where τ is defined as in (3.5). For fixed
k, this sequence converges to ∞ as d tends to ∞.

Proof. We construct a d×d-game (A, B) of rank k with

A =

(

A′ 0
0 A′′

)

and B =

(

B′ 0
0 B′′

)

where A′, B′ ∈ Rk−1 × Rk−1 define a (k − 1) × (k − 1)-
game with τ (k−1) equilibria, which exists by von Sten-
gel’s construction. Moreover, let A′′, B′′ ∈ Rd−k+1 ×
Rd−k+1 define a (d−k +1)× (d−k +1)-game of rank 1
with 2(d−k+1)−1 equilibria based on the construction
in Theorem 3.2. Then the game (A, B) is of rank k and
has at least τ (k − 1) · (2(d − k) + 1) equilibria.

4 Approximation algorithms

4.1 Deterministic ε-approximation of Nash

equilibria of low rank games. For general bi-
matrix games, no polynomial time algorithm for ε-
approximating a Nash equilibrium is known. In a re-
lated model to ours, [13] has provided the first subex-
ponential algorithm for finding an approximate equilib-
rium.

Here, we show the following result for our restricted
class of bimatrix games.

Theorem 4.1. Let k be a fixed constant and ε > 0.
If A + B is of rank k then an ε-approximate Nash
equilibrium can be found in time poly(L, 1/ε), where L
is the bit length of the input.

Set

Q =







0 1
2 (A + B)

1
2 (AT + BT ) 0






and z =

(

x
y

)



so that we the quadratic form xT (A+B)y can be written
as 1

2zT Qz with a symmetric matrix Q. We assume that
A + B has rank k for a fixed constant k; thus Q has
rank 2k. Since the trace of the matrix Q is zero, this
matrix is either the zero matrix or an indefinite matrix.
Hence, in the case Q 6= 0 the quadratic form defined by
Q is indefinite.

We use the following straightforward formulation of
a Nash equilibrium as a solution of a system of linear
and quadratic inequalities.

Lemma 4.1. A pair of mixed strategies z =
(

x
y

)

∈
S1 ×S2 is a Nash equilibrium if and only if there exists
an s ∈ R such that

zT Qz ≥ s

s ≥
(

A(i) |BT
(j)

)

z for all i ∈ {1, . . . , m},

j ∈ {1, . . . , n}.

Since zT Qz ≤ s in any feasible solution of this opti-
mization problem, we have zT Qz = s for any feasible
solution. Hence, the Nash equilibria are exactly the op-
timal solutions of the quadratic optimization problem

(4.7)

min s − zT Qz

s ≥
(

A(i) |BT
(j)

)

z ∀i ∈ {1, . . . , m},

j ∈ {1, . . . , n},
z ∈ S1 × S2 .

Vavasis has shown the following polynomial approx-
imation result for quadratic optimization problems with
compact polyhedral feasible set [25, 26].

Proposition 4.1. Let min{ 1
2xT Qx+qT x : Ax ≤ b} be

a quadratic optimization problem with compact support
set {x ∈ Rn : Ax ≤ b}, and let the rank k of Q be a fixed
constant. If x∗ and x# denote points minimizing and
maximizing the objective function f(x) := 1

2xT Qx+qT x
in the feasible region, respectively, then one can find in
time poly(L, 1/ε) a point x♦ satisfying

f(x♦) − f(x∗) ≤ ε(f(x#) − f(x∗)) ,

where L is the bit length of the quadratic problem. Such
a point x♦ is called an ε-approximation of the quadratic
problem.

Proof of Theorem 4.1. The feasible region of the
quadratic program (4.7) is unbounded. Since the value
of zT Qz is at most |A + B| for any feasible solution
z and since the objective value for a Nash equilibrium
is 0, we can add the constraint s ≤ |A + B| to (4.7),
which makes the feasible region compact. Denote the
resulting quadratic optimization problem by QP’ and

recall that the approximation ratio of the quadratic
program depends on the maximum objective value in
the feasible region.

By Proposition 4.1, we can compute in polynomial
time an ε-approximation (z♦, s♦) with z♦ = (x♦, y♦) of
QP′. Since the optimal value of QP′ is 0, we have

s♦−(z♦)T Qz♦ = f(z♦, s♦) ≤ εf(z#, s#) ≤ ε|A+B| .

Hence, (x♦, y♦) is an ε-approximate Nash equilibrium
of the game (A, B). �

Remark 4.1. The proof in [25] computes an LDLT

factorization of the matrix Q defining the quadratic
form and then constructs a sufficiently fine grid in
the fixed-dimensional space. Since the quadratic form
xT Qy is bilinear, we can also directly apply an LDUT

factorization on the matrix of the bilinear form.

4.2 Randomized approximation. By Section 4.1,
the problem of finding a Nash equilibrium in a bimatrix
game of fixed rank can be reduced to a quadratic
optimization problem

(4.8) min
x∈P

1

2
xT Qx + qT x

with compact support set P = {x ∈ Rn : Ax ≤ b}
where the rank k of Q is a fixed constant. Moreover,
we can assume that the quadratic form h(x) := 1

2xT Qx
only depends on the first k variables x1, . . . , xk. Let
f(x) := h(x) + qT x, f∗ = minx∈P f(x) and f∗ =
maxx∈P f(x).

We provide a randomized approximation algorithm
for this class of problems, which yields a randomized
approximation algorithm for a Nash equilibrium. The
performance of the randomized algorithm is similar to
the deterministic one, but we formulate a plausible
conjecture whose proof will make the running time
polynomial in log(1/ε), thus enabling us to find an exact
equilibrium.

Let π : Rn → Rk be the projection of Rn onto
the first k variables. We can formulate (4.8) as an
optimization problem over the projected polytope π(P ).
Let ϕ : π(P ) → R be defined by

ϕ(x̂) = min{qT x : x = (x̂, x), x ∈ Rn−k, Ax ≤ b} .

[It is easy to see that ϕ is a convex function.] Then our
optimization problem is equivalent to

(4.9) min{h(x̂) + ϕ(x̂) : x̂ ∈ π(P )} .

We set f̂(x̂) = h(x̂)+ϕ(x̂) and quantify the fraction
of the volume of that subset of π(P ) whose points have



objective value close to f∗. For this, we consider the
segments from some minimizer x̂∗ ∈ Rk of (4.9) to
the boundary points of π(P ), and we will show that
on each of these segments a certain fraction will lead
to sufficiently small function values of the objective
function in (4.9). We start by considering the situation
in P .

Definition 4.1. Let P be a polytope and f : P → R

continuous. We say that f is of bounded σ-variation if
there exists some δ1 such that for some minimal point
x∗ to min{f(x) : x ∈ P}, for all x ∈ bd(P ) and for all
λ ∈ [0, δ1] the function f satisfies

(4.10) f((1 − λ)x∗ + λx) − f(x∗) ≤ σ .

Let ε be given. If f is of bounded (ε(f∗ − f∗))-
variation then there is a polynomial fraction of “good
volume”, i.e., there is a sufficiently large subset in
which the points are relative ε-approximations. In
the following we show that the quadratic optimization
problem (4.9) is always of bounded (ε(f∗−f∗))-variation
(i.e., for every ε ∈ (0, 1]); in this case δ1 will be a
function of ε.

Lemma 4.2. For every ε ∈ (0, 1], the quadratic op-
timization problem (4.9) is of bounded (ε(f∗ − f∗))-
variation with δ1 := ε/4.

In order to prove this, we can assume without loss
of generality that a minimal point x̂∗ of f̂ is located in
the origin. Let x̂ ∈ bd(π(P )); by definition of π(P ),
there exist x∗ and x such that x∗ = (x̂∗, x∗) ∈ P

and x = (x̂, x) ∈ bd(P ) with f(x) = f̂(x̂). On the
segment from x∗ to x, the function f can be regarded
as a univariate quadratic function. By parameterizing
the line from x∗ to a point x ∈ bd(P ) by t ∈ [0, 1], we
can assume that h = at2 + bt + c. Moreover, we can
assume that c = 0.

Thus we want to show the following lemma.

Lemma 4.3. Let h : R → R, h(t) = at2 + bt, α =
maxt∈[0,1] h(t)−mint∈[0,1] h(t) and 0 be a global minimal
point of h. Then for all ε ∈ [0, 1] and δ1 := ε/4 we have
h(t) ≤ εα for all t ∈ [0, δ1].

Proof. If a > 0 then h is convex. Hence, h(0) = 0
and h(1) = a + b imply that for t ∈ [0, 1] we have
h(t) ≤ (a + b)t ≤ αt ≤ αδ1 ≤ αε.

Now consider the case a < 0, and let tm = − b
2a

be the maximal point of h. Since for tm ≤ 0 we do not
have a global minimum at 0, we can assume tm > 0, i.e.,
b < 0. For tm < 1

2 , we do not have a global minimum at
0 either. Hence, it suffices to consider the case tm ≥ 1

2 .
Since the range of h in the interval [0, 1/2] is at most α,

and since
∫ 1/2

0
2α dt = α, the slope of h in 0 is at most

2α. Hence, for δ1 ≤ ε/4 the claim follows.

If we consider the segment in the projection, i.e.,
the segment from x̂∗ to x̂, then by definition of f̂ we
have f̂(π(x)) ≤ f(x), i.e., the function value w.r.t. f̂ is
not larger than f(x). Hence, on every segment we have
at least an ε

4 -fraction of good function values.
We can conclude that there is a polynomial fraction

of “good volume”:

Corollary 4.1. For a quadratic optimization problem
of the form (4.8), let π denote the projection on the
first k variables. Then there exists a subset A ⊂ π(P )
of volume ≥ (ε/4)k volk(π(P )) such that for all x̂ ∈ A

f̂(x̂) − f∗ ≤ ε(f∗ − f∗) .

Proof. Let x∗ be an arbitrary globally optimal point.
On every segment in π(P ) starting in π(x∗) to a
boundary point on π(P ), a fraction of ε/4 has function
values as desired. This proves the claim.

We note that from the proofs of the two preceding
Lemmas, it actually follows that on the ray from x∗ to
x, at least for half the length of the ray, the function
h(·) is increasing. So, if we were to start from this half
of the ray and do gradient descent (now just on that
ray), we would arrive at x∗. We conjecture that this
generalizes to gradient descent in the whole body :

Conjecture 1. Let K be the set of points x0 in π(P )

such that gradient descent for minimizing f̂ on π(P )
starting at x0 ends at x∗. Then vol(K)/ vol(π(P )) is at
least a constant.

The idea of our randomized algorithm is to sample
points in the projected polytope π(P ). Since the
sampling statements are phrased in terms of oracles of
convex bodies, we start by explaining how to construct
a membership or a separation oracle for the projection
π(P ). Given a membership oracle for P and a point
x ∈ P , we can easily provide a point in π(P ) (namely,
x̂ = π(x) ∈ π(P )) and construct a polynomial time
membership oracle for π(P ): Given x ∈ Rn, we have
x ∈ π(P ) iff the linear program min{x̄ ∈ Rn−k : x =
(x̂, x), Ax ≤ b} has a solution.

The following lemma shows how to construct a
separation oracle in polynomial time:

Lemma 4.4. Let P = {x ∈ Rn : Ax ≤ b} be a rational
polytope given as an intersection of halfspaces. Then
there exists a polynomial time algorithm for providing a
strong separation oracle for π(P ).



Proof. If P = {x ∈ Rn : Ax ≤ b} with A = (A1 A2) ∈
Rm×k × Rm×(n−k), we can easily provide a polynomial
time separation oracle for π(P ). Given some ẑ ∈ Rk,
we can test whether ẑ ∈ π(P ) by checking feasibility of
the linear program in x

max 0T x s.t. A2x ≤ b − A1ẑ .

If ẑ is not feasible for π(P ) then the dual program

min(b − A1ẑ)T u s.t. AT
2 u = 0, u ≥ 0

is unbounded, i.e., there exists some u∗ ∈ Rm with
(b − A1ẑ)u∗ = 1 , AT

2 u∗ = 0 , u∗ ≥ 0 . Now
it can easily be seen that the hyperplane H = {x̂ ∈
Rk : (u∗)T A1x̂ = (u∗)T b} yields the desired separating
hyperplane.

In order to sample the points in π(P ), we use the
following sampling theorem of Kannan, Lovász, and
Simonovits [9, Theorem 2.2]. Here, for two probability
measures p, q on a convex body K, the total variation
distance between p and q is defined by sup{|p(A) −
q(A)| : A ⊂ K}.

Proposition 4.2. For a convex body K ⊂ Rn given by
a separation oracle and r, R ∈ Q with rBn ⊂ K ⊂ RBn,
an integer N > 0 and ε > 0, we can generate a set of
N random points v1, . . . , vN in K that are

1. almost uniform in the sense that the distribution
of each one is at most ε away from the uniform in
total variation distance, and

2. almost (pairwise) independent in the sense that for
every 1 ≤ i < j ≤ N and every two measurable sets
A and B of K,

∣

∣Prob(vi ∈ A, vj ∈ B)

− Prob(vi ∈ A)Prob(vj ∈ B)
∣

∣ ≤ ε .

The running time of the algorithm is polynomial in
N , n, log 1

ε and in log R
r .

In order to optimize over P , we then use the
following algorithm:

Input: An optimization problem of the form (4.8) with
h quadratic, g linear and P = {x ∈ Rn : Ax ≤ b},
an integer N > 0 and 0 < ε < 1, δ > 0.

Output: Points v1, . . . , vN ∈ P .

1. Sample points v̂1, . . . , v̂N ∈ π(P ) which are almost
uniform in π(P ) (with total variation distance at
most ε) and almost independent.

2. For each j ∈ {1, . . . , N} solve the linear program in
the variables x = (xk+1, . . . , xn)

min g(x) s.t. Ax ≤ b, x̂ = v̂j

to obtain points v1, . . . , vN ∈ P .

This algorithm has the following performance guar-
antee:

Theorem 4.2. Given an optimization problem of the
form (4.8) with h quadratic, g linear and P a polytope
given as the intersection of halfspaces, N > 0, 0 < ε <
1, and δ > 0, the algorithm finds points v1, . . . , vN ∈ P
with the following properties:

1. π(v1), . . . , π(vN ) are almost uniform in π(P ) (with
total variation distance at most δ) and almost
independent.

2. In the underlying uniform distribution in π(P ), we
have for any fixed j ∈ {1, . . . , N}

Prob(vj is an ε-approximation of the

quadratic problem) ≥
(ε

4

)k

.

The running time of the algorithm is
poly(N, k,L, log 1

δ ).

Proof. The quality of the approximation follows from
the lower bound of the volume in Corollary 4.1.

In order to prove the running time, with regard
to Proposition 4.2 we have to show that in polynomial
time we can compute radii R and r of concentric balls
containing and being contained in π(P ). Since by
Lemma 4.4 we can provide a separation oracle for π(P )
in polynomial time, we can compute a Löwner-John pair
for π(P ) in polynomial time. The smallest principal
axes of the small ellipsoid and the largest principal axes
of the large ellipsoid yield the desired pair of balls. By
appropriate scaling, we can assume r = 1. Hence,
with regard to the sampling theorem, log R

r , i.e., the
bit length of R/r, is polynomial in the input length.

By choosing δ := ε/3, and boosting the probability,
this yields

Corollary 4.2. Given an optimization problem of the
form (4.8) with h quadratic, g linear and P a polytope
given as the intersection of halfspaces. For any ε >
0, we can find in time polynomial in L and 1

ε with
probability at least 1

2 an ε-approximate solution to the
quadratic program.

Consequently, we obtain a randomized approxima-
tion algorithm for finding Nash equilibria in games of
fixed rank.



4.3 Relative approximation in case of a nonneg-

ative decomposition. The right hand side in Defini-
tion 2.1 of an approximate equilibrium depends only on
ε and on |A + B|. Since different equilibria in the same
game can differ strongly in their payoffs, we introduce a
notion of relative approximation with respect to a Nash
payoff which takes into account these differences.

Consider the quadratic problem (4.7). In a Nash
equilibrium (x, y) ∈ S1 × S2 there exists an s ∈ R

such that (x, y, s) is a feasible solution to (4.7); in this
situation s coincides with the sum of the payoffs of the
two players. In the relative approximation, we aim at
finding pairs of strategies (x, y) for which there exists
an s ∈ R such that (x, y, s) is feasible and

s − xT (A + B)y ≤ ρs .

Using our notion of loss, by observing s = maxi A(i)x +
maxj xT B(j) for an optimally chosen s, this means

ℓ(x, y) ≤ ρ(maxi A(i)x + maxj xT B(j)).
We provide an efficient approximation algorithm for

the case that C = A + B has a known decomposition
of the form C =

∑k
i=1 u(i)(v(i))T with non-negative

vectors u(i) and v(i).

Theorem 4.3. If C has a known nonnegative decompo-
sition then for any given ε > 0 a relatively approximate
Nash equilibrium with approximation ratio 1 − 1

(1+ε)2

can be computed in time poly(L, 1/ log(1 + ε)), where L
is the bit length of the input.

Let zi = xT ·u(i), wi = (v(i))T · y. We put a grid on
each zi and wi in a geometric progression: denoting by
(zi)min = minx∈S1

xT ·u(i) and (zi)max = maxx∈S1
xT ·

u(i) the minimum and maximum possible value for
zi, we partition the interval [(zi)min, (zi)max] into the
intervals [(zi)min, (1 + ε)(zi)min], [(1 + ε)(zi)min, (1 +
ε)2(zi)min], and so on. And analogously for the wi.

For every cell we construct a linear program which
“approximates” the quadratic program (4.7). Let the
intervals of a grid cell be [αi, (1+ε)αi] and [βi, (1+ε)βi],
i.e.,

αi ≤ zi ≤ (1 + ε)αi and βi ≤ wi ≤ (1 + ε)βi .

Then for any pair of strategies (x, y) ∈ S1 × S2 falling
into that cell, we have

(4.11)
∑k

i=1
αiβi ≤ xT Cy ≤ (1 + ε)2

∑k

i=1
αiβi ,

where the left inequality uses that all the values in the
decomposition are nonnegative. For the grid cell, we

consider the linear program

min s −
∑k

i=1 αiβi

αi ≤ xT · u(i) ≤ (1 + ε)αi ,
βi ≤ (v(i))T · y ≤ (1 + ε)βi ,

s ≥
(

A(i) |BT
(j)

)

z for all i ∈ {1, . . . , m},

j ∈ {1, . . . , n},
(x, y) ∈ S1 × S2 , s ∈ R .

In at least one of the cells there exist a Nash equilibrium.
The linear program corresponding to that cell yields a
solution with

(4.12)
∑k

i=1
αiβi ≤ s ≤ (1 + ε)2

(

∑k

i=1
αiβi

)

.

Hence, by the left inequality in (4.11) and the right

inequality in (4.12) we have xT Cy ≥
∑k

i=1 αiβi ≥
s

(1+ε)2 . We conclude s−xT Cy ≤ s
(

1 − 1
(1+ε)2

)

, which

shows Theorem 4.3.

5 Conclusion and future research

We have introduced the model of games of fixed rank
and presented various combinatorial and algorithmic re-
sults on games of fixed rank. Both from the viewpoint
of game theory and from the viewpoint of generaliza-
tions of linear programming, we think that this model
has much to offer and suggest further investigation.

From the viewpoint of game theory, it provides a
flexible hierarchy between zero-sum games and general
bimatrix games. As mentioned above, some fundamen-
tal questions, such as the question whether a Nash equi-
librium in a game of fixed rank can be found in polyno-
mial time, remain open, and deserve further algorithmic
study.

From the viewpoint of algorithmic optimization, we
can interpret our randomized algorithm as a sampling-
based method to optimize quadratic functions of low
rank over a polytope. Current work aims at generalizing
sampling-based optimization methods to more general
optimization problems with some suitable “low-rank”
structure. Moreover, for general optimization lacking a
low-rank structure, it seems to be fruitful to combine
existing techniques of low-rank optimization with these
sampling-based low-rank optimization techniques.
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