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ABSTRACT

This note a

ompanies a video presentation on the use of

homotopy methods for real-time visualizing a 
lass of geo-

metri
 tangent problems in R

3

.

1. INTRODUCTION

Several appli
ations in three-dimensional 
omputational

geometry 
an be redu
ed to 
omputing the lines tangent to

four given spheres in R

3

. This set of appli
ations in
ludes

visibility 
omputations with moving viewpoints [11, 4℄, 
om-

puting smallest en
losing 
ylinders of point sets in R

3

[1, 9℄,

and pla
ement problems in geometri
 modeling [6℄.

The aim of the video is to visualize the geometry and the

algebra of this fundamental problem as well as the algebrai
-

geometri
 te
hniques to analyze it. From the algebrai
-

geometri
 point of view, the tangent problem is of degree 12.

Sin
e many properties and 
onstru
tions 
on
erning this

problem 
an best be understood in terms of dynami
 
on�g-

urations, homotopy 
ontinuation te
hniques seem to be par-

ti
ularly suited. In the last years, homotopy te
hniques have

been improved and fruitfully applied for solving systems of

polynomial equations (see, e.g., [3, 13℄). However, for a dy-

nami
 visualization of our algebrai
 problem of degree 12,

we do not only have to solve a single system, but instead

have to solve several systems per se
ond. The 
on
rete aim

of this proje
t was to investigate in how far dynami
 
on-

�gurations of the tangent problem 
an be visualized in real

time. We have implemented a prototype of a visualization

tool, and the video provides experimental proof that visu-

alization of algebrai
-geometri
 problems of this degree in

real time is indeed possible.
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2. TANGENT PROBLEMS FOR SPHERES

The following theorem in [7℄ shows that the problem to


ompute the 
ommon tangents to four unit spheres in R

3

is

an algebrai
 problem of degree 12.

Theorem 1. Four (not ne
essarily disjoint) unit spheres

in R

3

have at most 12 
ommon tangent lines unless their


enters are lo
ated on the same line. Furthermore, there

exists a 
on�guration with 12 di�erent real tangents, i.e.,

the upper bound is tight.

If four spheres with arbitrary radii have only �nitely many


ommon tangent lines, then this number is also bounded

by 12 (see [11℄). However, for this 
ase of general radii it

is not yet known if there exist situations with non-
ollinear


enters leading to an in�nite number of 
ommon tangents.

With regard to possible 
onsisten
y 
he
ks in programs

and with regard to the relation of the tangent problem to


lassi
al problems in enumerative geometry, the following

realization result has been shown in [12℄.

Theorem 2. For any number k 2 f0; : : : ; 12g there exists

a 
on�guration of four unit spheres in R

3

whi
h have exa
tly

k di�erent 
ommon tangents in R

3

.

This result 
ontrasts the tangent problem to the famous

problem of 27 lines on a smooth 
ubi
 surfa
e, where for

a 
ubi
 surfa
e in R

3

only the numbers 3, 7, 15, and 27


an be established with real lines. Another famous exam-

ple in geometry is Apollonius' problem whi
h asks for the


ir
les tangent to three given 
ir
les. Here, there exist 
on-

�gurations with k 2 f0; 1; : : : ; 6; 8g real tangent 
ir
les but

provably no 
on�guration with 7 real tangent 
ir
les.

In order to visualize some aspe
ts of these theorems, we

use the following framework and results of [7℄. Let 


4

=

(0; 0; 0)

T

, and let 


1

, 


2

, 


3

be linearly independent. Then

the four 
enters de�ne a tetrahedron in R

3

. Further, let

` = fp + �s : � 2 Rg with p; s 2 R

3

, s 6= 0, p ? s, be

a line tangent to the spheres S(


i

; r) for some radius r >

0. Any valid dire
tion ve
tor s of su
h a tangent uniquely

determines p and (sin
e jjpjj = r) also r. Setting M :=

(


1

; 


2

; 


3

)

T

, the 
orresponding equation is

r =

1

2s

2
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Let A

i

denote the surfa
e area of the fa
e opposite to 


i

, i.e.,
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3
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)jj=2, and let F := (A

2
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4

)=2.



Further, let t = (t

1

; t

2

; t

3

)

T

denote the 
oeÆ
ient ve
tor

expressing s in the basis 


1

, 


2

, 


3

. In parti
ular, both s and

t are homogeneous ve
tors. Then the dire
tion ve
tors of

the lines equidistant to 


1

; : : : ; 


4

are given by the non-zero

solutions to the homogeneous 
ubi
 equation
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= 0:

Sin
e the radius 
ondition (1) gives a quarti
 equation, the


ommon tangents are given by the interse
tion points of a


ubi
 and a quarti
 
urve in proje
tive plane.

3. HOMOTOPY CONTINUATION

General framework. Homotopy 
ontinuation methods

serve to numeri
ally �nd all solutions of a system of poly-

nomial equations

f

1

(x

1

; : : : ; x

n

) = : : : = f

n

(x

1

; : : : ; x

n

) = 0 ;

abbreviated f(x) = 0 (see [3, 13℄). The idea of the homotopy

te
hnique is to start from a se
ond system g(x) = 0 whose

solutions are known a priori. Then we 
onsider the family

of systems of equations

0 = h

�

(x) := (1� �)g(x) + �f(x)

for 0 � � � 1. By su

essively in
reasing � in small steps

from 0 to 1 we 
an use either Newton's method to �nd the

solutions for the next step, or solvers of ordinary di�erential

equations. The latter approa
h is based on the equation

J(x(�); �)

dx(�)

d�

= �

�h

��

(x(�); �); J(x; �) :=

�

�h

i

�x

j

(x; �)

�

;

whi
h is implied by the Impli
it Fun
tion Theorem.

Homotopy methods for the tangents to spheres. If

the starting system g(x) = 0 of a homotopy solver has more

solutions than the system f(x) = 0, some paths ne
essarily

diverge as � ! 1. Therefore a main 
on
ern in the de-

sign of homotopy solvers is to �nd an appropriate starting

system of polynomials g(x), whi
h is expe
ted to have the

same number of zeros as f(x). By Bernstein's Theorem, this

means that the starting polynomials g(x) should have the

same Newton polytope as f(x) (see, e.g., [3℄).

For two reasons, homotopy te
hniques seem to be parti
-

ularly suitable for visualizing 
on�gurations of the tangents

to spheres. Firstly, for the given polynomial formulation the

B�ezout number (= produ
t of the degrees) agrees with the

number of expe
ted zeroes. Se
ondly, geometri
 understand-

ing of 
on�gurations suggests also to inspe
t topologi
ally

neighboring 
on�gurations (
f. [10℄). For two-dimensional

geometri
 problems, the latter issue is treated in dynami


geometry software su
h as Cinderella [8℄.

For numeri
al 
omputations of the tangents based on eigen-

value te
hniques see [5℄.

4. IMPLEMENTATION ASPECTS

The homotopy-based visualization of dynami
 tangent 
on-

�gurations has been prototypi
ally implemented in Visual

C++. The input to the program is a des
ription of the

dynami
 
on�gurations. For 
omputing and visualizing the

tangents of the initial 
on�gurations, the homotopy method

starts from a standard starting system. For the subsequent


on�gurations, it starts from the pre
eding 
on�guration.

Both Newton's method and numeri
al methods for solving

the di�erential equation are implemented.

The 3D graphi
s have been implemented using the Open

GL-based Coin 3D graphi
s library [2℄. This library pro-

vides an appli
ation programming interfa
e based on the

widely distributed Open Inventor graphi
s library.

Frontiers of the implementation. Despite an automati


adaption of the step size, numeri
al problems of 
ourse arise

whenever we rea
h too 
lose to a 
on�guration in whi
h the

Ja
obian matrix J is singular. If this 
on�guration is only an

intermediate 
on�guration on a homotopy path, this 
an be

avoided by 
hoosing a long way round the singularity. How-

ever, if the singular 
on�guration is our destination, then

this strategy obviously does not work.

Examples on the video. The video serves to illustrate

the geometry and the algebra of the tangent problem as well

as to demonstrate the implementation. After shortly intro-

du
ing the tangent problems and homotopy te
hniques, the

video shows an animated 
on�guration of four unit spheres

with the maximum number of 12 di�erent real tangent lines.

Exemplarily, it then illustrates how to obtain a 
on�guration

with 9 di�erent real tangent lines. Finally, the video shows

a dynami
 
on�guration whi
h 
ontains several 
hanges in

the number of real 
ommon tangent lines. Although (as

always when using software en
oding) produ
ing the video

in
uen
es the visualization program, the speed of the out-

put 
orresponds to the real speed of the program (on an 800

MHz PC with Pentium III pro
essor).
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