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ABSTRACT

This note aompanies a video presentation on the use of

homotopy methods for real-time visualizing a lass of geo-

metri tangent problems in R

3

.

1. INTRODUCTION

Several appliations in three-dimensional omputational

geometry an be redued to omputing the lines tangent to

four given spheres in R

3

. This set of appliations inludes

visibility omputations with moving viewpoints [11, 4℄, om-

puting smallest enlosing ylinders of point sets in R

3

[1, 9℄,

and plaement problems in geometri modeling [6℄.

The aim of the video is to visualize the geometry and the

algebra of this fundamental problem as well as the algebrai-

geometri tehniques to analyze it. From the algebrai-

geometri point of view, the tangent problem is of degree 12.

Sine many properties and onstrutions onerning this

problem an best be understood in terms of dynami on�g-

urations, homotopy ontinuation tehniques seem to be par-

tiularly suited. In the last years, homotopy tehniques have

been improved and fruitfully applied for solving systems of

polynomial equations (see, e.g., [3, 13℄). However, for a dy-

nami visualization of our algebrai problem of degree 12,

we do not only have to solve a single system, but instead

have to solve several systems per seond. The onrete aim

of this projet was to investigate in how far dynami on-

�gurations of the tangent problem an be visualized in real

time. We have implemented a prototype of a visualization

tool, and the video provides experimental proof that visu-

alization of algebrai-geometri problems of this degree in

real time is indeed possible.
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2. TANGENT PROBLEMS FOR SPHERES

The following theorem in [7℄ shows that the problem to

ompute the ommon tangents to four unit spheres in R

3

is

an algebrai problem of degree 12.

Theorem 1. Four (not neessarily disjoint) unit spheres

in R

3

have at most 12 ommon tangent lines unless their

enters are loated on the same line. Furthermore, there

exists a on�guration with 12 di�erent real tangents, i.e.,

the upper bound is tight.

If four spheres with arbitrary radii have only �nitely many

ommon tangent lines, then this number is also bounded

by 12 (see [11℄). However, for this ase of general radii it

is not yet known if there exist situations with non-ollinear

enters leading to an in�nite number of ommon tangents.

With regard to possible onsisteny heks in programs

and with regard to the relation of the tangent problem to

lassial problems in enumerative geometry, the following

realization result has been shown in [12℄.

Theorem 2. For any number k 2 f0; : : : ; 12g there exists

a on�guration of four unit spheres in R

3

whih have exatly

k di�erent ommon tangents in R

3

.

This result ontrasts the tangent problem to the famous

problem of 27 lines on a smooth ubi surfae, where for

a ubi surfae in R

3

only the numbers 3, 7, 15, and 27

an be established with real lines. Another famous exam-

ple in geometry is Apollonius' problem whih asks for the

irles tangent to three given irles. Here, there exist on-

�gurations with k 2 f0; 1; : : : ; 6; 8g real tangent irles but

provably no on�guration with 7 real tangent irles.

In order to visualize some aspets of these theorems, we

use the following framework and results of [7℄. Let 

4

=

(0; 0; 0)

T

, and let 

1

, 

2

, 

3

be linearly independent. Then

the four enters de�ne a tetrahedron in R

3

. Further, let

` = fp + �s : � 2 Rg with p; s 2 R

3

, s 6= 0, p ? s, be

a line tangent to the spheres S(

i

; r) for some radius r >

0. Any valid diretion vetor s of suh a tangent uniquely

determines p and (sine jjpjj = r) also r. Setting M :=

(

1

; 

2

; 

3

)

T

, the orresponding equation is
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1
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Let A

i

denote the surfae area of the fae opposite to 

i

, i.e.,
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Further, let t = (t

1

; t

2

; t

3

)

T

denote the oeÆient vetor

expressing s in the basis 

1

, 

2

, 

3

. In partiular, both s and

t are homogeneous vetors. Then the diretion vetors of

the lines equidistant to 

1

; : : : ; 

4

are given by the non-zero

solutions to the homogeneous ubi equation
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Sine the radius ondition (1) gives a quarti equation, the

ommon tangents are given by the intersetion points of a

ubi and a quarti urve in projetive plane.

3. HOMOTOPY CONTINUATION

General framework. Homotopy ontinuation methods

serve to numerially �nd all solutions of a system of poly-

nomial equations

f

1

(x

1

; : : : ; x

n

) = : : : = f

n

(x

1

; : : : ; x

n

) = 0 ;

abbreviated f(x) = 0 (see [3, 13℄). The idea of the homotopy

tehnique is to start from a seond system g(x) = 0 whose

solutions are known a priori. Then we onsider the family

of systems of equations

0 = h

�

(x) := (1� �)g(x) + �f(x)

for 0 � � � 1. By suessively inreasing � in small steps

from 0 to 1 we an use either Newton's method to �nd the

solutions for the next step, or solvers of ordinary di�erential

equations. The latter approah is based on the equation

J(x(�); �)

dx(�)

d�

= �

�h

��

(x(�); �); J(x; �) :=

�

�h

i

�x

j

(x; �)

�

;

whih is implied by the Impliit Funtion Theorem.

Homotopy methods for the tangents to spheres. If

the starting system g(x) = 0 of a homotopy solver has more

solutions than the system f(x) = 0, some paths neessarily

diverge as � ! 1. Therefore a main onern in the de-

sign of homotopy solvers is to �nd an appropriate starting

system of polynomials g(x), whih is expeted to have the

same number of zeros as f(x). By Bernstein's Theorem, this

means that the starting polynomials g(x) should have the

same Newton polytope as f(x) (see, e.g., [3℄).

For two reasons, homotopy tehniques seem to be parti-

ularly suitable for visualizing on�gurations of the tangents

to spheres. Firstly, for the given polynomial formulation the

B�ezout number (= produt of the degrees) agrees with the

number of expeted zeroes. Seondly, geometri understand-

ing of on�gurations suggests also to inspet topologially

neighboring on�gurations (f. [10℄). For two-dimensional

geometri problems, the latter issue is treated in dynami

geometry software suh as Cinderella [8℄.

For numerial omputations of the tangents based on eigen-

value tehniques see [5℄.

4. IMPLEMENTATION ASPECTS

The homotopy-based visualization of dynami tangent on-

�gurations has been prototypially implemented in Visual

C++. The input to the program is a desription of the

dynami on�gurations. For omputing and visualizing the

tangents of the initial on�gurations, the homotopy method

starts from a standard starting system. For the subsequent

on�gurations, it starts from the preeding on�guration.

Both Newton's method and numerial methods for solving

the di�erential equation are implemented.

The 3D graphis have been implemented using the Open

GL-based Coin 3D graphis library [2℄. This library pro-

vides an appliation programming interfae based on the

widely distributed Open Inventor graphis library.

Frontiers of the implementation. Despite an automati

adaption of the step size, numerial problems of ourse arise

whenever we reah too lose to a on�guration in whih the

Jaobian matrix J is singular. If this on�guration is only an

intermediate on�guration on a homotopy path, this an be

avoided by hoosing a long way round the singularity. How-

ever, if the singular on�guration is our destination, then

this strategy obviously does not work.

Examples on the video. The video serves to illustrate

the geometry and the algebra of the tangent problem as well

as to demonstrate the implementation. After shortly intro-

duing the tangent problems and homotopy tehniques, the

video shows an animated on�guration of four unit spheres

with the maximum number of 12 di�erent real tangent lines.

Exemplarily, it then illustrates how to obtain a on�guration

with 9 di�erent real tangent lines. Finally, the video shows

a dynami on�guration whih ontains several hanges in

the number of real ommon tangent lines. Although (as

always when using software enoding) produing the video

inuenes the visualization program, the speed of the out-

put orresponds to the real speed of the program (on an 800

MHz PC with Pentium III proessor).
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