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ABSTRACT

This note accompanies a video presentation on the use of
homotopy methods for real-time visualizing a class of geo-
metric tangent problems in R3.

1. INTRODUCTION

Several applications in three-dimensional computational
geometry can be reduced to computing the lines tangent to
four given spheres in R®. This set of applications includes
visibility computations with moving viewpoints [11, 4], com-
puting smallest enclosing cylinders of point sets in R® [1, 9],
and placement problems in geometric modeling [6].

The aim of the video is to visualize the geometry and the
algebra of this fundamental problem as well as the algebraic-
geometric techniques to analyze it. From the algebraic-
geometric point of view, the tangent problem is of degree 12.

Since many properties and constructions concerning this
problem can best be understood in terms of dynamic config-
urations, homotopy continuation techniques seem to be par-
ticularly suited. In the last years, homotopy techniques have
been improved and fruitfully applied for solving systems of
polynomial equations (see, e.g., [3, 13]). However, for a dy-
namic visualization of our algebraic problem of degree 12,
we do not only have to solve a single system, but instead
have to solve several systems per second. The concrete aim
of this project was to investigate in how far dynamic con-
figurations of the tangent problem can be visualized in real
time. We have implemented a prototype of a visualization
tool, and the video provides experimental proof that visu-
alization of algebraic-geometric problems of this degree in
real time is indeed possible.
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2. TANGENT PROBLEMS FOR SPHERES

The following theorem in [7] shows that the problem to
compute the common tangents to four unit spheres in R® is
an algebraic problem of degree 12.

THEOREM 1. Four (not necessarily disjoint) unit spheres
in R® have at most 12 common tangent lines unless their
centers are located on the same line. Furthermore, there
exists a configuration with 12 different real tangents, i.e.,
the upper bound is tight.

If four spheres with arbitrary radii have only finitely many
common tangent lines, then this number is also bounded
by 12 (see [11]). However, for this case of general radii it
is not yet known if there exist situations with non-collinear
centers leading to an infinite number of common tangents.

With regard to possible consistency checks in programs
and with regard to the relation of the tangent problem to
classical problems in enumerative geometry, the following
realization result has been shown in [12].

THEOREM 2. For any number k € {0, ...,12} there exists
a configuration of four unit spheres in R® which have exactly
k different common tangents in R3.

This result contrasts the tangent problem to the famous
problem of 27 lines on a smooth cubic surface, where for
a cubic surface in R® only the numbers 3, 7, 15, and 27
can be established with real lines. Another famous exam-
ple in geometry is Apollonius’ problem which asks for the
circles tangent to three given circles. Here, there exist con-
figurations with k£ € {0,1,...,6,8} real tangent circles but
provably no configuration with 7 real tangent circles.

In order to visualize some aspects of these theorems, we
use the following framework and results of [7]. Let cs =
(0,0,0)7, and let c1, ca, cs be linearly independent. Then
the four centers define a tetrahedron in R®. Further, let
0 ={p+us : p € R} with p,s € R® s #0,p L s, be
a line tangent to the spheres S(c;,r) for some radius r >
0. Any valid direction vector s of such a tangent uniquely
determines p and (since ||p|| = r) also r. Setting M :=
(e1,c2,¢3)T, the corresponding equation is

1 ) (c1 x 5)?
r=53 M~ (c2 x )2 . (1)
(c3 x 5)?

Let A; denote the surface area of the face opposite to c;, i.e.,
A1 = |lez xcs]/2, Az = ||es x e1]|/2, As = [|e1 X e2||/2, Aa =
[|(c1 —c2) % (c2—c3)||/2, and let F := (A7 + A3+ A5 — A3)/2.



Further, let t = (t1,t2,t3)T denote the coefficient vector
expressing s in the basis c1, c2, c3. In particular, both s and
t are homogeneous vectors. Then the direction vectors of
the lines equidistant to ci,...,cs are given by the non-zero
solutions to the homogeneous cubic equation

A%tzts(t2+t3)+Agt3t1 (t3+t1)+A§t1tz (t1+t2)+2Ft1t2t3 = 0.

Since the radius condition (1) gives a quartic equation, the
common tangents are given by the intersection points of a
cubic and a quartic curve in projective plane.

3. HOMOTOPY CONTINUATION

General framework. Homotopy continuation methods
serve to numerically find all solutions of a system of poly-
nomial equations

filz1,-.yzn) = ... = fu(z1,...,2,) =0,

abbreviated f(z) = 0 (see [3, 13]). The idea of the homotopy
technique is to start from a second system g(z) = 0 whose
solutions are known a priori. Then we consider the family
of systems of equations

0 = ha(z) := (1 = A)g(z) + Af(z)

for 0 < A < 1. By successively increasing A in small steps
from 0 to 1 we can use either Newton’s method to find the
solutions for the next step, or solvers of ordinary differential
equations. The latter approach is based on the equation

J(x()\),)\)dz(;\) - —%(m()\),)\), J(z,2) = (%@,A)) ,

which is implied by the Implicit Function Theorem.

Homotopy methods for the tangents to spheres. If
the starting system g(z) = 0 of a homotopy solver has more
solutions than the system f(z) = 0, some paths necessarily
diverge as A — 1. Therefore a main concern in the de-
sign of homotopy solvers is to find an appropriate starting
system of polynomials g(z), which is expected to have the
same number of zeros as f(z). By Bernstein’s Theorem, this
means that the starting polynomials g(z) should have the
same Newton polytope as f(z) (see, e.g., [3])-

For two reasons, homotopy techniques seem to be partic-
ularly suitable for visualizing configurations of the tangents
to spheres. Firstly, for the given polynomial formulation the
Bézout number (= product of the degrees) agrees with the
number of expected zeroes. Secondly, geometric understand-
ing of configurations suggests also to inspect topologically
neighboring configurations (cf. [10]). For two-dimensional
geometric problems, the latter issue is treated in dynamic
geometry software such as CINDERELLA [8].

For numerical computations of the tangents based on eigen-
value techniques see [5].

4. IMPLEMENTATION ASPECTS

The homotopy-based visualization of dynamic tangent con-
figurations has been prototypically implemented in Visual
C++. The input to the program is a description of the
dynamic configurations. For computing and visualizing the
tangents of the initial configurations, the homotopy method
starts from a standard starting system. For the subsequent
configurations, it starts from the preceding configuration.
Both Newton’s method and numerical methods for solving
the differential equation are implemented.

The 3D graphics have been implemented using the OPEN
GL-based CoIN 3D graphics library [2]. This library pro-
vides an application programming interface based on the
widely distributed OPEN INVENTOR. graphics library.

Frontiers of the implementation. Despite an automatic
adaption of the step size, numerical problems of course arise
whenever we reach too close to a configuration in which the
Jacobian matrix J is singular. If this configuration is only an
intermediate configuration on a homotopy path, this can be
avoided by choosing a long way round the singularity. How-
ever, if the singular configuration is our destination, then
this strategy obviously does not work.

Examples on the video. The video serves to illustrate
the geometry and the algebra of the tangent problem as well
as to demonstrate the implementation. After shortly intro-
ducing the tangent problems and homotopy techniques, the
video shows an animated configuration of four unit spheres
with the maximum number of 12 different real tangent lines.
Exemplarily, it then illustrates how to obtain a configuration
with 9 different real tangent lines. Finally, the video shows
a dynamic configuration which contains several changes in
the number of real common tangent lines. Although (as
always when using software encoding) producing the video
influences the visualization program, the speed of the out-
put corresponds to the real speed of the program (on an 800
MHz PC with Pentium IIT processor).
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