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Abstract. Network games provide a powerful framework for modeling agent in-
teractions in networked systems, where players are represented by nodes in a graph,
and their payoffs depend on the actions taken by their neighbors. Extending the
framework of network games, in this work we introduce and study semidefinite net-
work games. In this model, each player selects a positive semidefinite matrix with
trace equal to one, known as a density matrix, to engage in a two-player game with
every neighboring node. The player’s payoff is the cumulative payoff acquired from
these edge games. Network semidefinite games are of interest because they provide
a simplified framework for representing quantum strategic interactions. Initially, we
focus on the zero-sum setting, where the sum of all players’ payoffs is equal to zero.
We establish that in this class of games, Nash equilibria can be characterized as
the projection of a spectrahedron. Furthermore, we demonstrate that determining
whether a game is a semidefinite network game is equivalent to deciding if the value
of a semidefinite program is zero. Beyond the zero-sum case, we characterize Nash
equilibria as the solutions of a semidefinite linear complementarity problem.

1. Introduction

In normal form games, agents use probability distributions to select one action
from a finite set, while their utility functions are multilinear. In a broader context,
continuous games enable agents to choose from an infinite set of pure strategies, often
constrained to a compact set. Computationally, continuous games involve calcula-
tions with polynomial roots instead of just manipulating rational numbers, and their
solvability relies on algorithmic techniques that go beyond linear programming.

Among the numerous applications of continuous games, there has been significant
interest in quantum games. Quantum game theory has recently emerged as a powerful
tool for analyzing the interactions of quantum-enabled agents, which can process and
exchange information in accordance with the laws of quantum mechanics. The existing
literature on quantum games covers a broad range of topics, including tractable repre-
sentations of quantum strategies [12, 7], complexity aspects [2], supremacy of quantum
resources in classical games [9, 22], and more recently, no-regret learning [15, 21, 20].

The foundational concept of a Nash equilibrium [23] has been extended to the
quantum regime, leading to the notion of a Quantum Nash Equilibrium (QNE) [29].
Defined as an unentangled state that retains stability against unilateral quantum
deviations, QNEs offer a plausible solution to a strategic quantum interaction. The
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investigation into the computational complexity of QNEs has yielded both positive and
negative results. On one hand, [14] demonstrated that QNEs in zero-sum games can
be efficiently computed using semidefinite programming. In contrast, [2] showed that
finding QNEs in general games is hard. Motivated by this, our work aims to investigate:

Is it possible to expand the range of settings where quantum Nash equilibria
can be efficiently computed?

Model and results. The simplest model of a two-player quantum game is a semidef-
inite (SDP) game [14]. In a two-player SDP game, the strategy sets of the two players
are described by positive semidefinite matrices with trace equal to one. We refer the
reader to Section 2 for preliminaries and additional notation.

Building on [14], we introduce and study semidefinite network games, where (quan-
tum-enabled) agents are interconnected in an undirected graph G and each edge cor-
responds to a two-player SDP game. In this setting, each player selects a single density
matrix, which is used for playing all the games associated with its neighboring nodes,
and their payoff is the cumulative payoff acquired from these edge games.

As the strategy space of each player is convex and compact, there always exists an
equilibrium point, see, e.g., [10]. In this work we establish the following three results:

(1) In a zero-sum semidefinite network game, Nash equilibria can be found effi-
ciently using semidefinite programming.

(2) A zero-sum semidefinite network game can be recognized using semidefinite
programming.

(3) Beyond the zero-sum case, semidefinite Nash equilibria are solutions to a semi-
definite Linear Complementarity problem.

Previous and related work. For two-player zero-sum SDP games, optimal strate-
gies can be efficiently computed using semidefinite programming, see [16] and in the
context of real SDP games [14]. Furthermore, it is shown in [14] that two-player zero-
sum SDP games are closely related to semidefinite programming, extending Dantzig’s
seminal work on the near equivalence of bimatrix games and linear programming. SDP
games fall within the class of continuous games, e.g., [1, 25], where the strategy space
is a convex compact set and the payoffs are convex functions (in this case multilinear).

The results in this work are motivated by similar results for classical games played on
networks. The network version of normal form games was introduced by Janovskaja [17]
under the name polymatrix game and the connection to linear programming first ap-
peared in [4, 3]. In particular, Brègman and Fokin [4] transform the polymatrix game
to a two-player zero-sum polyhedral game, which in turn corresponds to an exponen-
tial size linear program. Daskalakis and Papadimitriou [8] consider (the computation
of Nash equilibria of) polymatrix games, where each edge corresponds to a zero sum
game. To compute the Nash equilibria they carefully round the optimal solution of a
linear program. Cai and Daskalakis [6], among other results, directly relate the equi-
libria of a polymatrix zero sum game to a linear program and Cai et al. [5] show
how to compute the equilibria of a zero sum polymatrix game using a polynomial size
linear program.
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2. The model

2.1. Semidefinite games. In a two-player SDP game, the strategy sets of the two
players are described by density matrices X1 and X2, acting on complex Euclidean
spaces A1 and A2, respectively. Recall that a density matrix is a positive semidefinite
matrix with trace equal to one. Consequently, the state of the joint system is in the
product (i.e., unentangled) state X1 ⊗X2. Then, the players give their registers to a
third party who measures the joint system and determines their utilities. The payoff
at a strategy profile (X1, X2) is a bilinear function, i.e.,

u1(X1, X2) = 〈R1, X1 ⊗X2〉 and u2(X1, X2) = 〈R2, X1 ⊗X2〉,

for Hermitian matrices Ri ∈ Herm(Ai) and 〈· , ·〉 corresponds to the Euclidean inner
product of two matrices. Note that as Ri are Hermitian, it is ensured that the inner
products 〈Ri, X1 ⊗X2〉 result in real numbers.

2.2. Semidefinite network games. A semidefinite network game is a non-coopera-
tive N -player game taking place on an undirected graph G = ([N ], E). The strategy
space of player i ∈ [N ] is the set of density matrices acting on a register Ai, i.e.,
Xi = D(Ai), where Ai is a finite-dimensional complex Euclidean space, i.e., isomorphic
to Ck for some k ≥ 1, and D is the space of density matrices, see (3.1). The set of

strategy profiles X =
∏N

i=1Xi is the Cartesian product of the individual strategy
spaces. Thus, any strategy profile X ∈ X is simply a collection of density matrices,
one for every node of the underlying graph, i.e., X = (X1, . . . , XN), where Xi ∈ Xi.

In the strategy profile (X1, . . . , XN) ∈ X , player i is using Xi ∈ Xi to play each
two-player game corresponding to an edge edge (i, j) ∈ E. The payoffs of players i
and j in the edge game corresponding to (i, j) ∈ E is respectively given by

pi,j(Xi, Xj) = 〈Rij, Xi ⊗Xj〉 and pj,i(Xi, Xj) = 〈Rji, Xi ⊗Xi〉,

for some Hermitian matrices Rij, Rji ∈ Herm(Ai ⊗Aj). The payoff of player i is the
sum of the payoffs accrued from all the edge games in which they participate, i.e.,

pi(X) =
∑

(i,j)∈E

pi,j(Xi, Xj).

The game is called zero-sum if
∑N

i=1 pi(X) = 0, for all X ∈ X . Finally, a profile
(X1, . . . , XN) ∈ X is a Nash Equilibrium if for each player i, the density matrix Xi is
a best response to X−i = (X1, . . . , Xi−1, Xi+1, . . . , XN), i.e.,

(NE) Xi ∈ arg max{pi(Yi, X−i) : Yi ∈ Xi}, ∀i ∈ [N ].

Example 2.1. Let G = ([N ], E) be a connected graph with |E| ≥ 1 and for any
edge e ∈ E let the two-player SDP game Γe associated with edge e be a constant-sum
game. Then, the semidefinite network game is a constant-sum game, i.e., there exists
a constant C ∈ R such that

∑N
i=1 pi(X) = C for every X ∈ X . This game can be

transformed into a zero-sum network SDP game as follows. For any i ∈ [N ], consider
the neighbors j of i and construct, for e = (i, j), from Γe the game Γ′e by considering
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(p′)i,j(Xi, Xj) = pi,j(Xi, Xj)− 1
N deg i

, where deg i is the degree of the node i in G. The

game Γ′e can be formulated as a two-player SDP game.

The resulting network game satisfies
∑N

i=1 p
′
i(X) =

∑N
i=1

∑
(i,j)∈E(p′)i,j(Xi, Xj) =

(
∑N

i=1

∑
(i,j)∈E(pi,j(Xi, Xj)) − C = 0, and hence, Γ′ is a zero-sum SDP game. If G is

a non-connected graph with |E| ≥ 1, then the normalization step to a zero-sum game
can be carried out on an arbitrary component with at least one edge.

Example 2.2. Let Γ̂ be a zero-sum network matrix game. By embedding the pure
strategies of the edge games into the diagonal entries of the payoff tensors of a cor-
responding SDP game, we obtain a zero-sum SDP game Γ. To each edge game of Γ,
adding a two-player zero-sum SDP game preservers the property of a zero-sum SDP
game.

For example, let Γ̂ be the following security game considered in [6]. Let G be a
complete bipartite graph, where the nodes refer to evaders and inspectors. Every
evader and every inspector can choose one of several given exits, which correspond to
the pure strategies. If an evader’s exit is not chosen by an inspector, then the evader
obtains one unit. For every evader whose exit is inspected, the inspector obtains one
unit. This is a constant-sum network matrix game, which can be turned into a zero-sum
game and viewed as a semidefinite network game as explained before. Adding to each
payoff tensor of an edge game the payoff tensor of an arbitrary zero-sum semidefinite
game with the same dimensions retains the zero-sum property of the SDP game.

3. Linear Algebra Techniques

3.1. Linear algebra. First we give a brief introduction to the linear algebraic notions
used in this work. Our notation closely follows [28].

Let A be a finite-dimensional complex Euclidean space. A Hermitian operator
A ∈ Herm(A) is positive semidefinite (PSD), denoted A � 0, if all its eigenval-
ues are nonnegative. The set of PSD operators acting on A is denoted by Pos(A).
The set of density matrices acting on A is the set of PSD matrices with trace equal
to one, i.e.,

(3.1) D(A) =
{
X ∈ Herm(A) : X � 0 and tr(X) = 1

}
.

The set of density matrices is convex, compact, and its extreme points are rank-one
density matrices, also known as pure states, i.e., matrices of the form X = xx†, where
‖x‖ = 1, e.g., see [28]. For any Hermitian matrix A ∈ Herm(A) we have that

(3.2)
λmax(A) = max{〈A,X〉 : X ∈ D(A)},
λmin(A) = min{〈A,X〉 : X ∈ D(A)}.

This well-known fact follows from the Rayleigh-Ritz characterization of the maximum
(resp. minimum) eigenvalue of a Hermitian matrix A, i.e.,

λmax(A) = max{x†Ax : ‖x‖ = 1},
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combined with the characterization of the extreme points of D(A) given above, Finally,
for any A ∈ Herm(A) we repeatedly use that A � t I if and only if all the eigenvalues
of A are at most t.

Let A = Cn and B = Cm be arbitrary fixed complex Euclidean spaces. By L(A)
we denote the space of linear maps A : A → A and similarly for L(B). We use A to
denote both the operator and its corresponding matrix (if we choose some coordinate
system). We define the partial trace, trA = tr⊗ IB, as the map

(3.3)
trA : L(A⊗ B) → L(B)

A⊗B 7→ trA(A⊗B) = tr(A)B.

The adjoint operator of trA is

(3.4)
tr†A : L(B) → L(A⊗ B)

B 7→ tr†A(B) = IA⊗B.
We denote by T (A,B) the space of linear maps Φ : L(A)→ L(B), known as super-

operators. There is a well-known bijection between T (A,B) and L(B ⊗A) given by

(3.5)
J : T (A,B) → L(B ⊗A)

Φ 7→ J(Φ) =
∑

i∈[n],j∈[m]

Φ(Ei,j)⊗ Ei,j,

where Ei,j = eie
†
j is the operator that sends the canonical basis element ej to the

canonical basis element ei. The corresponding matrix J(Φ) is called the Choi repre-
sentation of Φ, see, e.g., [28]. Moreover, the action of Φ ∈ T (A,B) (on an element
A ∈ L(A)) can be recovered from its Choi representation J(Φ) through

(3.6) Φ(A) = trA
(
J(Φ) (IB⊗A>)

)
,

e.g., see [28, Equation 2.66]. We can express many properties of a superoperator Φ in
terms of the Choi representation J(Φ). The following two properties, e.g. see Theo-
rem 2.25 and Corollary 2.27 in [28], are related to our study:

• J(Φ) is a Hermitian matrix if and only if Φ : L(A) → L(B) is Hermitian
preserving, i.e., Φ(X) is Hermitian whenever X is Hermitian.
• J(Φ) is PSD if and only if Φ is completely positive, i.e., for any integer k ≥ 1

the map Ik ⊗ Φ maps PSD matrices to PSD matrices.

Semidefinite programming. Consider complex Euclidean spaces A,B, operators
C ∈ Herm(A), B ∈ Herm(B) and a Hermitian preserving superoperator Φ ∈ T (A,B).
The triple (C,B,Φ) specifies a pair of primal/dual semidefinite programs (SDPs):

(3.7)

sup 〈C,X〉
s.t. Φ(X) = B,

X ∈ Pos(A),

inf 〈B, Y 〉
s.t. Φ†(Y ) � C,

Y ∈ Herm(B).

Here, 〈·, ·〉 is the Frobenius scalar product, 〈A,B〉 := tr(AB) =
∑

i,j aijbij. SDPs
represent a broad generalization of linear programming, offering significant expressive
capabilities and efficient algorithms for their solution. The feasible region of an SDP
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is called a spectrahedron and the projection of a spectrahedron is called an SDP-
representable set. There has been significant recent interest in determining whether a
convex set, e.g., a polyhedron, is SDP-representable, e.g,, see [26].

3.2. Operator representation of semidefinite network games. The following
operator representation of a semidefinite network game will be a crucial tool in the
subsequent sections.

Lemma 3.1. Consider a semidefinite network game with payoff functions

pi,j(Xi, Xj) = 〈Rij, Xi ⊗Xj〉,
where Rij ∈ Herm(Ai ⊗ Aj). If Φij : L(Aj) → L(Ai) is the linear map whose Choi
representation is Rij, then

(3.8) pi,j(Xi, Xj) = 〈Xi,Φij(Xj
>)〉.

We refer to the maps Φij as the payoff operators.

Proof. Note that

pi,j(Xi, Xj) = 〈Rij, Xi ⊗Xj〉 = 〈Xi ⊗ IAj
, Rij(IAi

⊗Xj)〉
= 〈tr†Aj

(Xi), Rij(IAi
⊗Xj)〉 = 〈Xi, trAj

(Rij(IAi
⊗Xj))〉 = 〈Xi,Φij(X

>
j )〉,

where the second equality follows by the cyclicity of trace, the third equality from (3.4),
and the last equality follows from (3.6). �

Remark 3.2. In the following sections, when referring to (3.8), we simplify notation
by omitting the transpose. This may be interpreted in two ways: either as the agents
choosing X>i or as including the transpose in the definition of the payoff operator.

For each player i, let N(i) be the open neighborhood of i in the network. Moreover,
for each strategy profile X = (X1, . . . , XN) ∈ X we set XN(i) = (Xj : j ∈ N(i)) as the
vector of strategies of all neighbors of i. To keep our derivations compact we define
the linear map Φi :

⊕
j∈N(i)

L(Aj)→ L(Ai) where

(3.9) Φi(XN(i)) =
∑
j∈N(i)

Φij(Xj).

Although each Φi only depends on the density matrices chosen by the neighbors of
i, it will be convenient to view Φi also as a function from

⊕N
i=1 L(Ai). Combining

Lemma 3.1 with the definition of Φi, we can write the payoff of player i as a linear
function of their strategy Xi explicitly, i.e.,

(3.10) pi(X) =
∑

j:(i,j)∈E

pi,j(Xi, Xj) =
∑

j:(i,j)∈E

〈Xi,Φij(Xj)〉 = 〈Xi,Φi(XN(i))〉.

Finally, we define the direct sum of the linear maps Φi, i.e.,

(3.11) Φ :
N⊕
i=1

L(Ai)→
N⊕
i=1

L(Ai) where (X1, . . . , XN) 7→ (Φ1(X), . . . ,ΦN(X)).
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As the game is zero-sum, for each strategy profile X = (X1, . . . , XN) ∈ X we have

(3.12)
∑
i

pi(X) =
∑
i

〈Xi,Φi(X)〉 = 0.

Combining (3.11) and (3.9), (3.12) can be also written as

(3.13) 〈X,Φ(X)〉 = 0 for all X ∈ X .

Next, set Ψ = Φ† and note that

(3.14)

Ψ :
N⊕
i=1

L(Ai)→
N⊕
i=1

L(Ai)

Ψ(Y1, . . . , YN) 7→ (Ψ1(Y ), . . . ,ΨN(Y )) where Ψi(Y ) =
∑
j∈N(i)

Φ†ji(Yj).

Indeed, on the one hand we have

〈Ψ(Y1, . . . , YN), (X1, . . . , XN)〉 =
∑
i

〈Ψi(Y ), Xi〉

and on the other hand

〈Ψ(Y1, . . . , YN), (X1, . . . , XN)〉 = 〈(Y1, . . . , YN),Φ(X1, . . . , XN)〉
=

∑
i

〈Yi,Φi(X)〉 =
∑
i

∑
j∈N(i)

〈Yi,Φij(Xj)〉 =
∑
i

〈
∑
j∈N(i)

Φ†ji(Yj), Xi〉.

Finally, as Ψ = Φ†, (3.13) implies that

(3.15) 〈Ψ(X), X〉 = 0 for all X ∈ X .

We next show that we can assume that the payoff operators are completely positive.

Lemma 3.3. For any semidefinite network game there exists another semidefinite net-
work game with the same Nash equilibria and completely positive payoff operators Φij.

Proof. Consider a new semidefinite network game where we replace each payoff matrix
Rij with Rij + c Iij, where Iij denotes the identity operator on Ai⊗Aj and c is chosen
such that Rij +c Iij � 0 for all (i, j) ∈ E. This ensures that the resulting operators are
positive semidefinite. In this modified game, the payoffs for each edge are nonnegative
and differ by a constant c from the payoffs in the original game, i.e.,

〈Rij + c Iij, Xi ⊗Xj〉 = 〈Rij, Xi ⊗Xj〉+ c.

Thus, the payoff of player i in the new game differs by c deg(i) compared to the original
payoff. Consequently, the Nash equilibria in the old game and the new game coincide.

Finally, in the new game, the payoff operator Φij is the linear map whose Choi
representation is Rij+c Iij. As the latter matrix is PSD, it follows that Φij is completely
positive. �
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4. Nash equilibria in semidefinite network games

Recall that a strategy profile (X1, . . . , XN) ∈ X is a Nash Equilibrium (NE) if
for each player i, the density matrix Xi is a best response to X−i. For any profile
X = (X1, . . . , XN) ∈ X define the exploitability of a agent i with respect to X as
the maximum possible gain that they can achieve by deviating from Xi while the
strategies of the other players remain fixed, i.e.,

ei(X) = max
Si∈Xi

〈Si,Φi(XN(i))〉 − 〈Xi,Φi(XN(i))〉.

Then, for any strategy profile X = (X1, . . . , XN) ∈ X we have that

X is a NE⇐⇒ ei(X) = 0 for all i ∈ [N ].

Finally, noting that exploitability is always nonnegative, we have that

X is a NE⇐⇒
∑
i

ei(X) = 0 for all i ∈ [N ].

Next, define

wi(X) = max
Si∈Xi

〈Si,Φi(XN(i))〉.

Recall that for a zero-sum game we have 〈X,Φ(X)〉 = 0 (see (3.13)), and consequently,
for any X ∈ X we have ∑

i

ei(X) =
∑
i

wi(X).

Putting everything together, for a zero-sum semidefinite network game we have that

(4.1) X is a NE⇐⇒
∑
i

wi(X) = 0 for all i ∈ [N ].

This discussion leads to the following characterization of Nash equilibria in the zero-
sum case.

Theorem 4.1. Consider a semidefinite network game Γ with the payoff operators
{Φij}i,j∈[N ] and let NE(Γ) be the set of Nash equilibria. Let P ∗(Γ) be the set of optimal
solutions of the following semidefinite program

(P (Γ))

min
wi,Xi

∑
i∈[N ]

wi

s.t. wi IAi
� Φi(XN(i)),

tr(Xi) = 1,

Xi � 0,

w ∈ RN , i ∈ [N ],

where Φi(XN(i)) =
∑

j∈N(i) Φij(Xj). Then, the set of Nash equilibria is equal to the

coordinate projection of the spectrahedron P ∗(Γ) onto the X coordinates, i.e.,

NE(Γ) =
{
X ∈ X : ∃w ∈ RN for which (w,X) ∈ P ∗(Γ)

}
.
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In particular, the set of Nash equilibria of a zero-sum semidefinite network game is
SDP-representable.

Proof. First we consider the optimization problem

(P ′(Γ))

min
w,X

∑
i∈[N ]

wi

s.t. wi ≥ pi(Si, XN(i)), ∀Si ∈ Xi, i ∈ [N ],

X ∈ X , w = (w1, . . . , wN) ∈ RN .

The proof has two main steps: First, we show that the optimal value of (P ′(Γ)) is
equal to zero and second, that it can be reformulated as the SDP in (P (Γ)). The
fact that optimal solutions correspond to Nash equilibria then follows immediately
by (4.1).

We claim that (P ′(Γ)) can be expressed as the semidefinite program (P (Γ)). Us-
ing (3.10) we can rewrite (P ′(Γ)) in terms of the linear maps Φi (3.9) as

(4.2)

min
w,X

∑
i∈[N ]

wi

s.t. wi ≥ 〈Si,Φi(XN(i))〉, ∀Si ∈ Xi, i ∈ [N ]

X ∈ X , w = (w1, . . . , wN) ∈ RN .

Clearly, for each player i ∈ [N ] we have that

wi ≥ 〈Si,Φi(XN(i))〉 ∀Si ∈ Xi ⇐⇒ wi ≥ max
Si

{
〈Si,Φi(XN(i))〉 : tr(Si) = 1, Si � 0

}
.

Moreover, using (3.2), for each of the inner optimization problems we see

(4.3) max
Si

{
〈Si,Φi(XN(i))〉 : tr(Si) = 1, Si � 0

}
= λmax(Φi(XN(i))).

Finally, using (4.3) and noting that

λmax(Φi(XN(i))) ≤ wi ⇐⇒ Φi(XN(i)) � wi IAi
,

the optimization problem (4.2) can be re-written as the semidefinite program (P (Γ)).
Next we show that the value of the primal (P (Γ)) is lower bounded by zero. Indeed,

every feasible solution (Xi, wi) of the primal satisfies

N∑
i=1

wi ≥
N∑
i=1

pi(Xi, XN(i)) = 0,

where the last equality follows from the zero-sum property. Moreover, the primal is
strictly feasible, since by considering large enough wi, we can make the semidefinite
inequality become strict. Consequently, by strong duality for linear conic programs,
e.g. see [19, Theorem 3.4.1], it follows that we have strong duality and the value of
the dual is attained.
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To derive the dual of (P (Γ)), we consider the Lagrangian function,

L(w,X,Λi,Λ
′
i, λi) =

∑
i∈[N ]

wi +
∑
i∈[N ]

〈Λi,Φi(XN(i))− wiIi〉 −
∑
i∈[N ]

〈Λ′i, Xi〉

+
∑
i∈[N ]

λi(1− 〈Ii, Xi〉),

where Ii denotes the identity matrix of order i. Using the definitions of Φi (cf. (3.9)),
Ψi (cf. (3.14)) and basic properties of the trace and inner product, the Lagrangian
can be arranged as

L(w,X,Λi,Λ
′
i, λi) =

∑
i

wi(1− tr(Λi)) +
∑
i

∑
j∈N(i)

〈Λi,Φij(Xj)〉 −
∑
i

〈Λ′i, Xi〉

+
∑
i

λi(1− 〈Ii, Xi〉).

Since
∑

j∈N(i)〈Λi,Φij(Xj)〉 =
∑

j∈N(i)〈Φ
†
ij(Λi), Xj〉 =

∑
j∈N(i)〈Xj,Ψji(Λi)〉 = 〈Xi,

Ψi(Λ)〉, we obtain

L(w,X,Λi,Λ
′
i, λi) =

∑
i

wi(1 − tr(Λi)) +
∑
i

〈Xi,Ψi(Λ) − Λ′i − λiIi〉 +
∑
i

λi.

Putting everything together, the dual of (P (Γ)) is given by

(D(Γ))

max
λi,Λi

∑
i

λi

s.t. tr(Λi) = 1,

Ψi(Λ) � λiIi,
Λi � 0.

The program (D(Γ)) is strictly feasible, because for given Λi, choosing the numbers
λj negative and with sufficiently large absolute values gives feasible solutions.

We next show that (D(Γ)) has a nonpositive objective value. Indeed, let λi,Λi be
a dual feasible solution. By Ψi(Λ) � λiIi and (3.2) we have that

(4.4) λi ≤ min
Si∈Xi

〈Ψi(ΛN(i)), Si〉.

This implies ∑
i

λi ≤
∑
i

min
Si∈Xi

〈Ψi(ΛN(i)), Si〉

= min
(S1,...,SN )∈X

〈(Ψ1(Λ), . . . ,ΨN(Λ)), (S1, . . . , SN)〉

= min
(S1,...,SN )∈X

〈Ψ(Λ), (S1, . . . , SN)〉

≤ 〈Ψ(Λ),Λ〉 = 0,

,
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where the first inequality follows by summing (4.4), the second equality since the
optimization is separable in the Si’s, the third equality from the definition of the Ψ
map in (3.14), the fourth inequality as Λi ∈ Xi, and the final equality from (3.15).

Putting everything together, (P (Γ)) and (D(Γ)) are a pair of primal-dual SDPs,
where strict duality holds, both are attained, and the (common) value is equal to 0. �

5. Recognizing zero-sum semidefinite network games

In this section we address the question of recognizing whether a semidefinite network
game is zero-sum. This is not immediately clear how to do, as the zero-sum condition∑N

j=1 pj(X) = 0 needs to hold for all (infinitely many) strategies X ∈ X . In the special
case where each edge game is a matrix game, the situation can be reduced to the finite
set of pure strategies. This was studied in [5] and it was shown there that recognizing
the network version of matrix games (called polymatrix game in that paper) can be
achieved by solving a finite number of linear programs and that the number of linear
programs is polynomial in the number of players and strategies. Hence, recognizing
these games can be done in polynomial time.

In the general case of semidefinite network games, we show that recognizing the
zero-sum property can be done by deciding whether a certain finite set of semidefinite
programs all have the optimal value zero.

For every player i, a strategy Xi ∈ Xi and X−i ∈ X−i, let

W (Xi, X−i) =
∑
j∈V

pj(Xi, X−i).

Note that a game is constant-sum if and only if

W (Xi, X−i) = W (Yi, X−i) for all Xi, Yi ∈ Xi.

Theorem 5.1. Consider a semidefinite network game Γ with the payoff operators
{Φij}i,j∈[N ]. The game Γ is constant-sum if and only if for all i ∈ [N ], the semidefinite
program

(5.1)

min
Xi,Yi,w`

∑
`∈N(i)

w`

(Φ†i` + Φ`i)(Xi − Yi) � w` Il, (` ∈ N(i)),

w` ∈ R, (` ∈ N(i)),

Xi, Yi ∈ Xi
attains its minimum at zero.

If the game is constant-sum, then we can check whether the game is zero-sum
by evaluating the sum of the payoffs at an arbitrarily chosen strategy profile of the
players.

Proof. First we claim that the the game Γ is constant-sum if and only if for all i ∈ [N ]
and all Xi, Yi ∈ Xi, the optimization problem

(5.2) max
{
W (Xi, X−i)−W (Yi, X−i) : X−i ∈ X−i

}
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attains its maximum at zero.
Assume that the game Γ is constant-sum. Then, by the preceding discussion we

have that W (Xi, X−i) = W (Yi, X−i) for all Xi, Yi ∈ Xi. This means that every feasible
solution has value 0, so (5.2) has optimal value zero.

Conversely, if the optimal value of (5.2) is zero, then W (Xi, X−i) = W (Yi, X−i) for
all i ∈ V and Xi, Yi ∈ Xi

, X−i ∈ Xi. Then Γ is a constant-sum game.
The characterization (5.2) involves infinitely many SDPs, because of the quantifi-

cation over Xi, Yi in the infinite set Xi. Using duality theory, we show that for each
player i ∈ [N ], this characterization can be formulated as the SDP (5.1). For this,
note that the payoff at any edge game (k, `) where k, ` 6= i do not appear in the
objective function, as all these terms cancel out. Expanding the objective function,
we can rewrite it as

W (Xi, X−i)−W (Yi, X−i) =
∑
`∈N(i)

〈X`, (Φ
†
i` + Φ`i)(Xi − Yi)〉.

So (5.2) can be written as

max
X`∈X`

∑
`∈N(i)

〈X`, (Φ
†
i` + Φ`i)(Xi − Yi)〉 =

∑
`∈N(i)

λmax(Φ†i` + Φ`i)(Xi − Yi)

=
∑
`∈N(i)

min
wl∈R

{
wl : (Φ†i` + Φ`i)(Xi − Yi) � wl Il

}
.

For a fixed player i, this is equivalent to the SDP (5.1). �

Remark 5.2. While the optimization problems (5.2) are usually considered as tract-
able, let us point out that these problems are related to the decision problem whether
an SDP has a feasible solution (SDFP, semidefinite program feasibility problem). The
complexity of SDFP in the Turing machine model is not known. Either SDFP ∈
NP ∩ co−NP or SDFP 6∈ NP ∪ co−NP. One obstacle to efficiently solving SDFP is
that, by an example of Khachiyan described in Ramana’s work [24], exponential-size
optimal solutions of semidefinite programs can arise. We note that exponential-size
optimal solutions in an SDP can also arise if the optimal value is known to be zero.
Namely, if SDPn is a family of semidefinite programs with parameter n which has
exponential size optimal solutions in n, then one can construct a family of semidefinite
programs with parameter n which has optimal value 0 and exponential size solutions.
To this end, just duplicate SDPn using a new set of variables, called SDP′n, and
consider the SDP whose objective function is the difference of the objective function
of SDPn and SDP′n and whose feasible region is the Cartesian product of the feasible
regions of SDPn and SDP′n.

6. Nash equilibria via SDP linear complementarity problems

It is well-established that Nash equilibria of bimatrix and network games can be
equivalently formulated as solutions to Linear Complementarity problems over the
nonnegative orthant, e.g., see [27] and [13]. In this section, we extend this result and
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demonstrate that Nash equilibria of SDP network games can also be characterized as
solutions to Semidefinite Linear Complementarity problems (SDP-LCP).

An SDP-LCP instance is defined in terms of a linear map L : Herm(A)→ Herm(A)
and a matrix Q ∈ Herm(A). The objective is to find a Hermitian matrix X that
satisfies the following three conditions:

(6.1) X � 0, L(X) +Q � 0, 〈X,L(X) +Q〉 = 0.

Algorithms for solving SDP-LCPs typically exploit the specific properties of the linear
operator L and the matrix Q, see, e.g., [18, 11] and the references therein.

Theorem 6.1. The set of Nash equilibria of an SDP network game are the solutions
to an SDP-Linear Complementarity Problem.

Proof. Consider a strategy profile (X1, . . . , Xn) that is a Nash equilibrium of an SDP
network game. By definition of a Nash equilibrium, for any player i ∈ [N ] we have
that Xi is a best response to X−i, i.e.,

Xi ∈ argmax
Yi∈Xi

〈Yi,Φi(X)〉.

Considering the optimization problem

max
{
〈Yi,Φi(X)〉 : Yi ∈ Xi

}
,

its dual is given by

min
λi,Zi

{
λi : λi IAi

−Φi(X) = Zi � 0
}
.

Consequently, by strong duality for SDPs we have that (X1, . . . , Xn) is a Nash equi-
librium iff there exist λ1, . . . , λN such that for all i ∈ [N ] we have

(6.2)

Xi � 0,

λi IAi
−Φi(X) � 0,

tr(Xi) = 1,

〈Xi, λi IAi
−Φi(X)〉 = 0.

Lemma 3.3 establishes that we can assume each payoff matrix to be PSD. Therefore,
the map Φi becomes a completely positive map, implying that Φi(X) is also a PSD
matrix. Thus, the generalized inequality λi IAi

−Φi(X) � 0 implies that λi ≥ 0. Now
consider the SDP-LCP

(6.3)

Xi � 0, i ∈ [N ],

IAi
−Φi(X) � 0, i ∈ [N ],

〈Xi, IAi
−Φi(X)〉 = 0, i ∈ [N ].

and note that if Xi, λi are feasible for (6.2) then 1
λi
Xi is feasible for (6.3), and con-

versely, if X is feasible for (6.3) then Xi

tr(Xi)
, λi = 1

tr(Xi)
is feasible for (6.2). Finally, to

write (6.2) in the standard form (6.1) we take

(6.4) X ∈ Pos(⊕iAi), L(X) = −⊕i Φi(X), Q = ⊕i IAi
.
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This concludes the proof. �

7. Conclusion

We have considered semidefinite network games, where players reside at graph nodes
and their results hinge on the actions of neighboring players. The player’s strategies
entail positive semidefinite matrices, making them suitable for modeling quantum
games on networks. When the games are zero-sum, we compute the corresponding
Nash equilibria through semidefinite programs. Identifying a semidefinite network
game equates to ascertaining a that an semidefinite program has value zero. In cases
beyond zero-sum scenarios, Nash equilibria correspond to solutions of a semidefinite
linear complementarity problem.
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