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Abstract. We introduce and study a cone which consists of a class of generalized polynomial
functions and which provides a common framework for recent non-negativity certificates of
polynomials in sparse settings. Specifically, this S-cone generalizes and unifies sums of arithmetic-
geometric mean exponentials (SAGE) and sums of non-negative circuit polynomials (SONC).
We provide a comprehensive characterization of the dual cone of the S-cone, which even for
its specializations provides novel and projection-free descriptions. As applications of this
result, we give an exact characterization of the extreme rays of the S-cone and thus also of its
specializations, and we provide a subclass of functions for which non-negativity coincides with
membership in the S-cone.

Moreover, we derive from the duality theory an approximation result of non-negative univariate
polynomials and show that a SONC analogue of Putinar’s Positivstellensatz does not exist even
in the univariate case.

1. Introduction

In recent years, several interrelated approaches for non-negative polynomials and for non-
negative exponential sums have been proposed, which are aimed at sparse settings. In [4],
Chandrasekaran and Shah proposed (in the language of exponential sums/signomials) to consider
sums of polynomial functions f : Rn

+ → R of the form∑
α∈A cαxα for a given setA ⊆ Rn such that

at most one term has a negative coefficient. Non-negativity of signomials can be characterized
in terms of the arithmetic-geometric mean inequality, and deciding membership in the resulting
cone (SAGE cone) can be formulated as a relative entropy program. In [13], Iliman and de
Wolff proposed to consider sums of non-negative circuit polynomials on Rn (SONC polynomials).
For a certain subclass of polynomials called ST-polynomials, deciding membership in the cone
of SONC polynomials can be formulated in terms of the optimization subclass of geometric
programs [7]. Murray, Chandrasekaran and Wierman [21] have shown that an adaption of the
SAGE setting to Rn gives exactly the same cone of polynomials as the SONC cone. This yields a
computationally tractable method to decide membership of arbitrary polynomials in the SONC
cone using a relative entropy program.

While many aspects of these classes of polynomials are connected with open questions and
research efforts, they clearly exhibit some fundamental structural phenomena adapted to sparse
settings. For example, it was shown by Murray et al. [21] for the SAGE cone and by Wang [26]
for the SONC cone that every polynomial in those cones has a cancellation-free representation.
Generally, SAGE and SONC approaches can be combined with semidefinite approaches to
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polynomial optimization, see Karaca, Darivianakis et al. [15] or Averkov [3]. Moreover, by [3,
Theorem 2.16] and its proof, the SONC cone is second-order-cone representable (but the size of
the second-order formulation from that work depends on the actual values of the support vectors).
For a practical algorithm to compute SONC bounds via second-order cone representations, see
Magron and Wang [27].

The goal of the present paper is to provide a uniform framework which covers all these
classes as well as some more general settings. Since non-negativity of a polynomial function
f(x1, . . . , xn) on Rn

+ is equivalent to non-negativity of f(|x1|, . . . , |xn|) on Rn, we consider the
more general functions f : Rn → R ∪ {∞} of the form

(1) f(x) =
∑
α∈A

cα|x|α +
∑
β∈B

dβxβ,

with sets of exponents A ⊆ Rn, B ⊆ Nn \ (2N)n, which also capture the signomial functions.
Based on a subset of these functions, we define the S-cone CS(A,B) which provides the common
generalization of the cones mentioned above, see Definition 2.3. Its atomic functions are called
AG functions, which are functions of the form (1) with strong support conditions. The AG
functions can be seen as a (non-polynomial) generalization of polynomials coming from the
arithmetic-geometric inequality. Building upon the earlier work of the second and the third
author [9] on the dual SONC cone, a particular focus is the structure and the use of the dual
viewpoint.

Non-negative polynomials and polynomial optimization are ubiquitous in applications, and
sparsity is one of the central structural properties that provides potential for efficient computation.
Besides classical application in control theory and robotics (see, e.g., [2, 12] and the references
therein), let us list the more recent applications of non-negative polynomials and polynomial
optimization in the optimal power flow problem [14], collision avoidance [1] or shape-constrained
regression [10].

Contributions. 1. We show that fundamental properties of the SAGE and/or the SONC cone
also hold in the more general context of the S-cone. In particular, every f ∈ CS(A,B) can
be decomposed into a sum of non-negative AG functions whose supports are contained in the
support of f . See Proposition 2.7, which unifies and generalizes the results of [21] for the SAGE
cone and of [26] for the SONC cone.

2. We provide a comprehensive characterization of the dual cone of the S-cone, see Theorem 3.5.
In particular, we provide projection-free characterizations in terms of AG functions supported
on the particular class of reduced circuits. The characterizations of the dual cone go far beyond
the characterizations of the dual SAGE cone from [4] and the dual SONC cone from [9], where
the dual cones are described in terms of projections. Our proofs provide a uniform tool set for
handling the various types of cones.

3. Based on the characterizations of the dual of the S-cone, we provide several applications
of the duality theory.

(a) We show that every sum f of non-negative AG functions can be written as a sum of
non-negative circuit functions whose supports are contained in the support of f . This unifies
and generalizes the results from [21] for the SAGE cone and of [26] for the SONC cone.
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(b) We give an exact characterization of the extreme rays of the S-cone. Even for the
particular case of the SAGE cone, this characterization substantially sharpens the necessary
conditions in [21].

(c) We show that not even in the univariate case, SONC polynomials do allow Putinar-type
representations. This counterexample strengthens and simplifies the result of Dressler, Kurpisz
and de Wolff [8], who have provided a multivariate counterexample.

(d) We give a characterization of a wide class of non-negative AG functions with simplex
Newton polytopes. Using the dual S-cone, this result unifies and generalizes the results from
[13] and [21] and provides a simpler proof.

(e) As a final application of the dual S-cone, we show that non-negative univariate polynomials
can be approximated by SONC polynomials.

As further related work, let us mention the exploitation of sparsity and symmetries to derive
specific SDP relaxations for polynomial optimization [16, 20, 24, 28, 29, 30].

2. The S-Cone

In this section, we introduce AG functions and the S-cone. We show that every non-negative
function in the S-cone has a cancellation-free representation (see Proposition 2.7) and characterize
non-negativity of an AG function in terms of the relative entropy function (see Theorem 2.8).

Notation. Throughout the article we use the notations N = {0, 1, 2, 3, . . .} and R+ = {x ∈ R :
x ≥ 0}. Moreover, for a finite subset A ⊆ Rn, denote by RA the set of |A|-dimensional vectors
whose components are indexed by the set A.

Our main object of study are functions f : Rn → R ∪ {∞} of the form

(2) f(x) =
∑
α∈A

cα|x|α +
∑
β∈B

dβxβ,

where A ⊆ Rn, B ⊆ Nn \ (2N)n are finite sets of exponents, {cα : α ∈ A}, {dβ : β ∈ B} ⊆ R.
Here we use the notations

|x|α =
n∏
j=1
|xj|αj and xβ =

n∏
j=1

x
βj
j ,

and if one component of x is zero and the corresponding exponent is negative, then we set
|x|α =∞.

For two finite sets ∅ 6= A ⊆ Rn,B ⊆ Nn \ (2N)n, let

R[A,B] := spanR({|x|α α ∈ A} ∪ {xβ β ∈ B})

denote the space of all functions of the form (2) with given sets of exponents. This is a vector
space of dimension dimR[A,B] = |A|+ |B|.

Remark 2.1. (1) If A ⊆ (2N)n, then R[A,B] is exactly the space of polynomials with exponent
vectors in A ∪ B. For this reason, we sometimes refer to elements of A as even exponents and
to elements of B as odd exponents.
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(2) If B = ∅, then R[A,B] can be identified with the space of signomials, i.e., functions of
the form

y 7→
∑
α∈A

cα exp(αTy)

via the identification |xi| = exp(yi).
(3) It is no restriction to exclude sets in (2N)n from B, since for exponents β ∈ (2N)n, we

have |x|β = xβ.
(4) A and B are not necessarily disjoint (cf. Example 2.9 below).

We study the non-negativity of functions in R[A,B] using the following building blocks:

Definition 2.2. Let f = ∑
α∈A cα|x|α +∑

β∈B dβxβ. We say that f is
(1) an even AG function if at most one of the cα is negative and all the dβ are zero; and
(2) an odd AG function if all the cα are non-negative and at most one of the dβ is nonzero.

f is called an AG function (arithmetic-geometric mean function) if f is an even AG function or
an odd AG function.

Note that non-negative even AG functions correspond exactly to the AGE functions (arithmetic-
geometric exponentials) studied in [4] and [21].

We arrive at the central definition of this section.

Definition 2.3 (S-cone). Let ∅ 6= A ⊆ Rn, B ⊆ Nn \ (2N)n be finite sets. The S-cone CS(A,B)
is defined as

CS(A,B) := cone(f ∈ R[A,B] f is a non-negative AG function),

where cone denotes the conic hull.

Remark 2.4.
(1) If B = ∅, then the S-cone can be identified with the SAGE cone using the substitution in

Remark 2.1(2). Formally, for finite A ⊆ Rn, A′ ( A and β ∈ A \ A′, we set

CSAGE(A) =
∑
β∈A

CAGE(A \ {β}, β),

where for A′ := A \ {β}

CAGE(A′, β) =
{
c ∈ RA : cα ≥ 0 for α ∈ A′,

∑
α∈A′

cα exp(αTx) + cβ exp(βTx) ≥ 0 on Rn
}
.

(2) If A ⊆ (2N)n, then CS(A,B) is the cone of SONC polynomials supported on A ∪ B
from [13, 3]. In those papers, the SONC cone is defined in terms of circuit polynomials (see
Remark 3.3). The equivalence of the definitions was established in [21] and also follows from
our more general result in Proposition 4.1.

(3) An example where the cone CS(A,B) is different from both the SAGE cone and the
SONC cone is given by A = {1, 4} and B = {3}.
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For a non-empty finite set A ⊆ Rn and β ∈ Nn \ (2N)n let

P odd
A,β :=

{
f f =

∑
α∈A

cα|x|α + dxβ, f(x) ≥ 0 ∀ x ∈ Rn, c ∈ RA+, d ∈ R
}

be the cone of non-negative odd AG functions supported on (A, β), and similarly for β ∈ Rn \A
let

P even
A,β :=

{
f f =

∑
α∈A

cα|x|α + d|x|β, f(x) ≥ 0 ∀ x ∈ Rn, c ∈ RA+, d ∈ R
}

be the cone of non-negative even AG functions supported on (A, β). Note that, by definition,

CS(A,B) =
∑
α∈A

P even
A\{α},α +

∑
β∈B

P odd
A,β .(3)

As pointed out by a referee, (3) implies the following alternative representation of the S-cone.

Proposition 2.5. Let ∅ 6= A ⊆ Rn, B ⊆ Nn \ (2N)n be finite and eα denote the unit vector in
RA∪B indexed with α ∈ A ∪ B. Then,

CS(A,B) =

∑
α∈A

cα|x|α +
∑
β∈B

dβx
β ∈ R[A,B] :

∑
α∈A

cα · eα −
∑
β∈B
|dβ| · eβ ∈ CSAGE(A ∪ B)


=

∑
α∈A

cα|x|α +
∑
β∈B

dβx
β ∈ R[A,B] :

∃t ∈ RB,
∑
α∈A

cα · eα +
∑
β∈B

tβ · eα ∈ CSAGE(A ∪ B), tβ ≤ −|dβ| for all β ∈ B

 .
In the caseA∩B = ∅, we can shortly write ∑

α∈A
cα·eα−

∑
β∈B
|dβ|·eβ = (c,−|d|), where |d| denotes

the component-wise absolute value. If there exists some β ∈ A ∩ B, then the corresponding
coefficient in the SAGE cone cβ − |dβ| appears only once in the set RA∪B. However, by slight
abuse of notation, we also write ∑

α∈A
cα · eα −

∑
β∈B
|dβ| · eβ shortly as (c,−|d|).

Proof. If f = ∑
α∈A

cα|x|α + ∑
β∈B

dβx
β ∈ CS(A,B), then (3) gives a decomposition

f =
∑
α∈A

f even
α +

∑
β∈B

f odd
β

with f even
α ∈ P even

A\{α},α for all α ∈ A and f odd
β = ∑

α∈A
c(β)
α |x|α + dβx

β ∈ P odd
A,β for every β ∈ B.

Defining the functions

f̃ even
α = f even

α for all α ∈ A
and f̃ even

β =
∑
α∈A

c(β)
α |x|α − |dβ||x|β = f odd

β − dβxβ − |dβ||x|β for all β ∈ B,
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symmetry implies f̃ even
β ∈ P even

A,β and hence, f̃ = ∑
α∈A

f̃ even
α + ∑

β∈B
f̃ even
β ∈ CS(A ∪ B, ∅). Remark

2.4(1) then shows that the coefficient vector of f̃ is contained in CSAGE(A ∪ B).
The converse direction of the first equation follows immediately with the substitution in

Remark 2.1(2).
The second equation, which exhibits the convexity of the S-cone, is an immediate consequence

of the first one. �

In our definition of the S-cone, we exclude sums of non-negative AG functions with support
A ∪ B for A ⊆ Rn,B ⊆ Nn \ (2N)n, where the corresponding AG functions have bigger support
than A ∪ B. This could happen, for example, if two summands cancel in the sum. For a better
understanding of the problem, we have a look at the following example.

Example 2.6. Let A := {1
3 ,

7
3},B := {1}. Consider the two non-negative AG functions

f1 := |x| 13 + x+ x2,

f2 := |x| 13 − x2 + |x| 73 ,

whose support is not contained in A ∪ B. But the sum

f := f1 + f2 = 2|x| 13 + x+ |x| 73

is itself a non-negative AG function, whose support is contained in A ∪ B.

In fact, this restriction is not really a restriction. The following proposition states that every
sum f of non-negative AG functions whose support is bigger than the support of the sum can
be decomposed into a sum of non-negative AG functions whose supports are contained in the
support of f .

For the SAGE case, this was already proven in [21, Theorem 2] and for the SONC case this
follows from the more detailed result of [26].

Proposition 2.7. Let ∅ 6= A ⊆ Rn,B ⊆ Nn \ (2N)n be finite sets and f ∈ R[A,B]. If
f ∈ CS(A′,B′) for some A′ ⊇ A, Nn \ (2N)n ⊇ B′ ⊇ B, then f ∈ CS(A,B) as well. Equivalently,
it holds that

CS(A,B) = CS(A′,B′) ∩ R[A,B].

Proof. By Proposition 2.5,

CS(A,B) =

∑
α∈A

cα|x|α +
∑
β∈B

dβx
β ∈ R[A,B] :

∑
α∈A

cα · eα −
∑
β∈B
|dβ| · eβ ∈ CSAGE(A ∪ B)

 ,
with eα denoting the unit vector with respect to α for α ∈ A, resp. B. Let f ∈ CS(A′,B′) ∩
R[A,B] with coefficient vector (c, d) and hence (c,−|d|) ∈ CSAGE(A′ ∪ B′) ∩ RA∪B where the
absolute value is component-wise. The already mentioned statement for the SAGE-case ([21],
Theorem 2) states that CSAGE(A∪B) = CSAGE(A′∪B′)∩RA∪B. Hence, (c,−|d|) ∈ CSAGE(A∪B)
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as well as

f ∈

∑
α∈A

cα|x|α +
∑
β∈B

dβx
β ∈ R[A,B] :

∑
α∈A

cα · eα −
∑
β∈B
|dβ| · eβ ∈ CSAGE(A ∪ B)


= CS(A,B),

again by Proposition 2.5. The other inclusion is obvious. �

Our next result characterizes non-negative AG functions. It is a slight generalization of [5,
Lemma 2.2] to the setting of AG functions. The following notation is useful to state the theorem:

Notation. For a non-empty finite set A ⊆ Rn and β ∈ Rn, let Λ(A, β) be the polytope

(4) Λ(A, β) :=
{
λ ∈ RA+

∑
α∈A

λαα = β,
∑
α∈A

λα = 1
}
.

Note that Λ(A, β) 6= ∅ if and only if β is contained in the convex hull of A. In the special case
that A is affinely independent, Λ(A, β) consists of a single element, which we denote by λ(A, β).

Let A ⊆ Rn be a non-empty finite set. We denote by D : RA>0 × RA>0 → R,

D(ν, γ) =
∑
α∈A

να ln
(
να
γα

)
, ν, γ ∈ RA>0

the relative entropy function. It can be extended to RA+ × RA+ → R ∪ {∞} using the usual
conventions 0 · ln 0

y
= 0 for y ≥ 0 and y · ln y

0 =∞ for y > 0.

Theorem 2.8. Let A ⊆ Rn be a non-empty finite set and f be an AG function of the form

f =
∑
α∈A

cα|x|α +

d|x|β with β ∈ Rn \ A if f is even,
dxβ with β ∈ Nn \ (2N)n if f is odd,

where cα ≥ 0 for all α ∈ A and d ∈ R. Then the following statements are equivalent:
(1) f(x) ≥ 0 for all x ∈ Rn.
(2) There exists a ν ∈ RA+ such that ∑α∈A ναα = (∑α∈A να)β and

D(ν, e · c) ≤

d if f even,
−|d| if f odd.

(3) There exists a λ ∈ Λ(A, β) such that

∏
α∈A

(
cα
λα

)λα
≥

−d if f even,
|d| if f odd.

A vector λ ∈ Λ(A, β) as in this theorem is called an AG witness.
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Proof of Theorem 2.8. Before we prove this theorem, observe that for the AGE cone CAGE(A, β),
defined in Remark 2.4, we have (c, d) ∈ CAGE(A, β) if and only if there exists ν ∈ RA+ such that∑
α∈A ναα = (∑α∈A να)β and

D(ν, e · c) ≤ d

(compare [4], Section 2.1). If f is an even AG-function, this is exactly the equivalence (1)⇔ (2)
due to Remark 2.4. If f is an odd AG-function, the equivalence follows from Proposition 2.5
and the mentioned observation.

For the implication (2) =⇒ (3), set λ := (∑α∈A να)−1ν. It is clear from the properties of ν
that λ ∈ Λ(A, β). The discussion in [4, p. 1151] shows that∏

α∈A

(
cα
λα

)λα
≥ −D(ν, e · c)

and thus this λ has the desired properties. The implication (3) =⇒ (1) is a direct consequence
of the weighted arithmetic-geometric mean inequality:∑

α∈A
cα|x|α

AM/GM-inequality
≥

∏
α∈A

(
cα
λα
|x|α

)λα
=
∏
α∈A

(
cα
λα

)λα
|x|β.

Using (3), we obtain

∑
α∈A

cα|x|α +

d|x|βdxβ
≥ |x|β

−d+ d

|d| − sgn(x) · d
≥ 0.

As we already know that (1)⇔ (2), we obtain the desired statement. �

Example 2.9. Let A = B = {1} ⊆ N. A typical AG function with this support is
g(x) = c1|x|+ c2x.

Since the equality condition in statement (2) of Theorem 2.8 is trivially satisfied, we have
g(x) ≥ 0 for all x ∈ R if and only if there exists a ν ∈ R+ with

(5) ν ln
(
ν

ec1

)
≤ −|c2|.

If ν ≥ 0, the latter condition can be simplified to |c2| ≤ c1. For the case ν = 0, this is clear from
our setting 0 · ln 0 = 0, and to see it for ν > 0, rewrite (5) as

c1

(
ν

c1

)
ln
(
ν

ec1

)
≤ −|c2|.

Since the function x ln
(
x
e

)
attains its minimum at x = 1 (which means x ln

(
x
e

)
≥ −1), we

obtain the claimed result. It is in particular the one of statement (3) in Theorem 2.8.

For later use, we note that our cones of interest are closed:

Proposition 2.10. The cones P odd
A,β , P

even
A,β and CS(A,B) are closed pointed convex cones.
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Proof. It is clear that all three cones are pointed, since the only non-negative function f where
−f is non-negative as well is the zero function. The cones P odd

A,β and P even
A,β are defined as (infinite)

intersections of closed halfspaces, and thus they are closed. Finally, since finite sums of closed
pointed convex cones are again closed, the cone CS(A,B) is closed as well. �

3. Circuits and the dual of the S-cone

In this section, we introduce circuit functions and provide several characterizations of the
dual S-cone (see Theorem 3.5).

We can identify the dual space of R[A,B] with R(A,B) := RA × RB. For f ∈ R[A,B] with
coefficients (cα)α∈A, (dβ)β∈B and an element (v, w) ∈ R(A,B), we consider the natural pairing
(6) (v, w)(f) =

∑
α∈A

vαcα +
∑
β∈B

wβdβ .

Using this notation, the dual cone CS(A,B)∗ is defined as
CS(A,B)∗ = {(v, w) ∈ R(A,B) | (v, w)(f) ≥ 0 for all f ∈ CS(A,B)}.

Now we consider the representation of AG functions in terms of circuit functions. Here, relint
and conv denote the relative interior and the convex hull of a set.

Definition 3.1. A circuit is a pair (A, β), where A ⊆ Rn is affinely independent and β ∈
relint conv(A). For finite sets A,B ⊆ Rn, let

I(A,B) := {(A, β) circuit A ⊆ A, β ∈ B}
denote the set of all circuits on A,B. In particular, for A ⊆ Rn,B ⊆ Nn \ (2N)n we call I(A,A)
the set of all even circuits and I(A,B) the set of all odd circuits.

Definition 3.2. Let (A, β) be a circuit.
(1) An even circuit function supported on (A, β) is an AG function of the form

f =
∑
α∈A

cα|x|α + d|x|β

with cα > 0 for all α ∈ A and d ∈ R.
(2) For β ∈ Nn \ (2N)n, an odd circuit function supported on (A, β) is an AG function of

the form
f =

∑
α∈A

cα|x|α + dxβ

with cα > 0 for all α ∈ A and d ∈ R.
We call β the inner exponent of f and the other exponents are the outer exponents.

Remark 3.3. (1) In case of a circuit, the vector λ ∈ Λ(A, β) in Theorem 2.8 is unique, and
thus the non-negativity of f can be expressed in terms of the circuit number

(7) Θf =
∏
λα 6=0

(
cα
λα

)λα
,

which was introduced in [13].
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(2) Iliman and de Wolff also introduced the notion of circuit polynomials in [13]. Every circuit
polynomial is an even circuit function if the inner exponent is even and an odd circuit function if
the inner exponent is odd. With this, circuit polynomials form a special case of circuit functions.

Next, we introduce reduced circuits, which will be used in Section 4.2 to determine the extreme
rays of the S-cone.
Definition 3.4. For a circuit (A, β) let

re(A, β) := | (conv(A) \ (A ∪ {β})) ∩ A| and
ro(A, β) := | (conv(A) \ A) ∩ A|.

An even circuit (A, β) is called reduced if re(A, β) = 0 and an odd circuit (A, β) is called reduced
if ro(A, β) = 0.

In other words, reduced circuits contain no elements of A in their convex hull except those
which are trivially there. Note that for β ∈ A ∩ B, it is possible that a circuit is reduced as an
even circuit, but not reduced as an odd circuit. See Example 4.5 below.

We can now provide the following characterization of the dual S-cone CS(A,B)∗. Here, recall
the definition of Λ(A, β) from (4) and that λ(A, β) denotes the single element of Λ(A, β) in the
case of a circuit. We use the convention that 0 ln(0) = 0 and ln(0) = −∞.

Theorem 3.5. Let ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n be finite sets and let (v, w) ∈ R(A,B).
(1) If (v, w) ∈ CS(A,B)∗, then vα ≥ 0 for all α ∈ A.
(2) If the condition of part (1) is satisfied, then the following are equivalent:

(a) (v, w) lies in the dual cone CS(A,B)∗.
(b) For all β ∈ A (respectively β ∈ B) and all λ ∈ Λ(A, β), it holds that

ln |vβ| ≤
∑
α∈A

λα ln(vα) (respectively ln |wβ| ≤
∑
α∈A

λα ln(vα)).

(c) For every even circuit (A, β) ∈ I(A,A) (respectively odd circuit (A, β) ∈ I(A,B)) and
λ = λ(A, β), it holds that

ln |vβ| ≤
∑
α∈A

λα ln(vα) (respectively ln |wβ| ≤
∑
α∈A

λα ln(vα)).

(d) For every reduced even circuit (A, β) ∈ I(A,A) (respectively reduced odd circuit (A, β) ∈
I(A,B)) and λ = λ(A, β), it holds that

ln |vβ| ≤
∑
α∈A

λα ln(vα) (respectively ln |wβ| ≤
∑
α∈A

λα ln(vα)).

Before we prove Theorem 3.5 we consider the duals of the sub-cones P odd
A,β and P even

A,β of
CS(A,B).
Lemma 3.6. Let A ⊆ Rn be a non-empty finite set.
(1) For β ∈ Nn \ (2N)n, the dual cone of P odd

A,β consists of those (v, w) ∈ R(A,{β}) where
(a) vα ≥ 0 for all α ∈ A, and
(b) ln |wβ| ≤

∑
α∈A λα ln(vα) for all λ ∈ Λ(A, β).
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(2) For β ∈ Rn \ A, the dual cone of P even
A,β consists of those (v, w) ∈ R(A,{β}) satisfying (a), (b)

and in addition
(c) wβ ≥ 0.

Proof. We prove the even and odd case simultaneously. Let (v, w) ∈ (P odd
A,β )∗ or (v, w) ∈ (P even

A,β )∗.
First we show that it satisfies the claimed conditions.

(a) and (c): For every α ∈ A, it holds that |x|α ∈ P odd
A,β resp. |x|α ∈ P even

A,β and thus
0 ≤ (v, w)(|x|α) = vα, as claimed. In the even case, we also have that |x|β ∈ P even

A,β and thus by
the same argument (c) holds.

(b): Fix a λ ∈ Λ(A, β). First assume that vα 6= 0 for all α ∈ A. Then

f :=
∑
α∈A

 ∏
α′∈A

v
λα′
α′

 λα
vα
|x|α −

|x|β in the even case,
sgn(wβ)xβ in the odd case

is an (even or odd) AG function and a straightforward computation shows that f satisfies the
condition (3) of Theorem 2.8 (with the given λ), hence f is non-negative. Thus,

0 ≤ (v, w)(f) =


∏
α∈A v

λα
α − wβ in the even case,∏

α∈A v
λα
α − sgn(wβ)wβ in the odd case,

which is equivalent to property (b). Since the mapping (6) is continuous in (v, w), the statements
also hold if vα = 0 for some α ∈ A.

For the converse implication, assume that v satisfies conditions (a), (b), and in the even case
also (c).

We need to show that every non-negative AG function f = ∑
α∈A cα|x|α + dxβ resp. f =∑

α∈A cα|x|α + d|x|β satisfies (v, w)(f) ≥ 0. Let λ ∈ Λ(A, β) be an AG witness for f as in
Theorem 2.8. Observe that∑

α∈A
vαcα =

∑
α∈A

λα

(
vαcα
λα

)
≥
∏
α∈A

(
vαcα
λα

)λα
=
∏
α∈A

vλαα ·
∏
α∈A

(
cα
λα

)λα
≥ |wβ|

∏
α∈A

(
cα
λα

)λα
,

which implies

(8) (v, w)(f) =
∑
α∈A

vαcα + wβd ≥ |wβ|
(∏
α∈A

(
cα
λα

)λα
+ sgn(wβ)d

)
.

In the even case, we have sgn(wβ) = +1 by (c), and the right expression in (8) is non-negative,
because f is a non-negative AG function. In the odd case, observe that then the non-negativity
of f yields non-negativity of the right expression in (8) as well. �

Remark 3.7. In the beginning of this section, we identified the dual space of R[A,B] with
R(A,B). Using the reverse identification and associating for every v ∈ R(A,B) a function of form
(1), we can identify the dual cones (P even

A,β )∗ resp. (P odd
A,β )∗ with the cones of all functions of the

form (1) with coefficients in (P even
A,β )∗ resp. (P odd

A,β )∗. If β ∈ conv(A), then by Theorem 2.8 and
Lemma 3.6, it is easy to see that (P even

A,β )∗ ⊆ P even
A,β and (P odd

A,β )∗ ⊆ P odd
A,β .

In particular, this means that every function of the form (1) with coefficients in (P even
A,β )∗ resp.

(P odd
A,β )∗ is non-negative. Hence, CS(A,B)∗ ⊆ CS(A,B).
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The reverse inclusion does not hold in general. With A = {0, 2}, β = 1, v0 = v2 = 1 and
v1 = −2, we obtain (P even

A,β )∗ ( P even
A,β as well as (P odd

A,β )∗ ( P odd
A,β . Setting B = {1} it follows that

CS(A,B)∗ ( CS(A,B).

In addition, we need the following lemma for the proof of Theorem 3.5. Here, for λ ∈ RA+,
denote by supp(λ) = {α ∈ A λα 6= 0} its support.

Lemma 3.8 (Essentially Lemma 8 of [21]). Let A ⊆ Rn be a non-empty finite set and β ∈
conv(A). Then every λ ∈ Λ(A, β) can be written as a sum

λ =
k∑
j=1

µjλ
(j)

with k ≥ 1, µ ∈ Rk
+,
∑k
j=1 µj = 1 and λ(j) ∈ Λ(A, β) for all j, such that the support of each λ(j)

is affinely independent.

Proof. Since the polytope Λ(A, β) is the convex hull of its vertices, it suffices to show that the
support of every vertex of Λ(A, β) is an affinely independent set.

Let λ be a vertex of Λ(A, β) and A′ := {α λα > 0} be its support. Assume to the contrary
that A′ is affinely dependent. Then there exists µ ∈ RA \{0} with ∑α∈A′ µα = 0, ∑α∈A′ µαα = 0
and µα = 0 for α 6∈ A′. Since λα > 0 for all α ∈ A′, for sufficiently small ε > 0 both λ+ εµ and
λ− εµ are contained in Λ(A, β). But this implies that λ = 1

2(λ+ εµ) + 1
2(λ− εµ) is not a vertex

of Λ(A, β), a contradiction. �

Proof of Theorem 3.5. (1): Since |x|α ∈ CS(A,B) for every α ∈ A, every v ∈ CS(A,B)∗
satisfies

0 ≤ (v, w)(|x|α) = vα.

(2): The implications (b) =⇒ (c) =⇒ (d) are trivial. For the equivalence of (a) and (b)
note that

CS(A,B)∗ =
⋂
α∈A

(P even
A\{α},α)∗ ∩

⋂
β∈B

(P odd
A,β )∗,

because Minkowski sum and intersection are dual operations (see, e.g., [25], Theorem 1.6.3).
Hence, the claim follows with Lemma 3.6. It remains to show (c) =⇒ (b) and (d) =⇒ (c).

(c) =⇒ (b): Let β ∈ A and λ ∈ Λ(A, β). By Lemma 3.8, we can decompose λ as λ =∑k
j=1 µjλ

(j) with k ≥ 1, µ ∈ Rk
+,
∑k
j=1 µj = 1 and λ(1), . . . , λ(k) ∈ Λ(A, β), such that the support

of each λ(j) is affinely independent. Now the claim follows from

ln |vβ| =
k∑
j=1

µj ln |vβ|
(c)
≤

k∑
j=1

µj
∑
α

λ(j)
α ln vα =

∑
α

ln vα
k∑
j=1

µjλ
(j)
α =

∑
α

λα ln vα.

For β ∈ B, the proof is analogous by considering wβ instead of vβ.
(d) =⇒ (c): We start with the even case and proceed by induction on r = re(A, β). Since

the base case r = 0 captures exactly the reduced circuits, there is nothing to prove in this case.
Now consider an even circuit (A, β) ∈ I(A,A) with re(A, β) > 0. Then there exists a β′ ∈
conv(A) ∩ A with β′ /∈ A and β′ 6= β. Set λ := λ(A, β) and λ′ := λ(A, β′).
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Let τ ≥ 0 be the maximal real number with λ̃ := λ− τλ′ ∈ RA
+. This number exists clearly, and

we have τ ≤ 1 because the coordinate sums of λ and λ′ are equal. Further, it holds that τ > 0
because all components of λ are positive.
Similarly, let τ ′ be the maximal real number with λ̃′ := λ′ − τ ′λ ∈ RA

+. As above, it holds that
0 ≤ τ ′ ≤ 1. Moreover, note that β 6= β′ implies τ, τ ′ < 1. The construction gives

β =
∑
α∈A

λ̃αα + τβ′,
∑
α∈A

λ̃α + τ = 1,

β′ =
∑
α∈A

λ̃′αα + τ ′β and
∑
α∈A

λ̃′α + τ ′ = 1.

Note that at least one of the entries of λ̃ is zero, and moreover, τ ′ or at least one of the entries
of λ̃′ is zero. Define two new even circuits (A1, β) and (A2, β

′) with A1 := supp(λ̃) ∪ {β′} and

A2 :=

supp(λ̃′) ∪ {β} if τ ′ > 0,
supp(λ̃′) if τ ′ = 0.

We observe conv(A1) ( conv(A), and since β′ is not counted towards re(A1, β), it follows
that re(A1, β) < re(A, β). Similarly, since conv(A2) ⊆ conv(A) and β′ is not counted towards
re(A2, β

′), we obtain re(A2, β
′) < re(A, β). Hence, by induction,

ln(|vβ|) ≤
∑
α∈A

λ̃α ln(vα) + τ ln(vβ′) and(9)

ln(|vβ′ |) ≤
∑
α∈A

λ̃′α ln(vα) + τ ′ ln(vβ).(10)

Note that vβ′ ≥ 0 and vβ ≥ 0. Adding τ times (10) to (9) gives, due to λ̃ + τ λ̃′ = (1− ττ ′)λ,
the uniform inequality

0 ≤ (1− ττ ′)
( ∑
α∈A

λα ln vα − ln |vβ|
)
.

Since 1− ττ ′ > 0, this proves the claim.
For the odd case, we proceed by induction on ro(A, β), and the base case consists again of the
reduced circuits. Fix an odd circuit (A, β) ∈ I(A,B) with ro(A, β) > 0. Again, there exists a
β′ ∈ conv(A) ∩ A with β′ /∈ A, but this time β′ = β is possible.
We define λ, λ′, τ and λ̃ = λ− τλ′ as above. This time, τ = 1 is possible. Further, we set τ ′ := 0
and (thus) λ̃′ := λ′. We define the new circuits (A1, β) and (A2, β

′) as above, where this time
(A1, β) is odd and (A2, β

′) is even. Since ro(A1, β) < ro(A, β) as above, we obtain

ln(|wβ|) ≤
∑
α∈A

λ̃α ln(vα) + τ ln(vβ′) and(11)

ln(|vβ′ |) ≤
∑
α∈A

λ̃′α ln(vα),(12)

where the second inequality follows since we have already shown (d) =⇒ (c) for even circuits.
As above, we add τ times (12) to (11) to obtain the desired inequality. �
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A description of the dual of the SONC cone was obtained in [9, Theorem 3.1], and a description
of the dual of the SAGE cone in [4, Proposition 2.4]. Both descriptions are based on projections
and differ from the one in Theorem 3.5. For completeness, we show here that they are in fact
equivalent.

Proposition 3.9. Let ∅ 6= A ⊆ Rn be a finite set and β ∈ conv(A). For v ∈ RA+ and wβ ∈ R,
the following are equivalent:
(1) ∀λ ∈ Λ(A, β) : ln |wβ| ≤

∑
α∈A λα ln(vα).

(2) ∃τ ∈ Rn, ∀α ∈ A : |wβ| ln
( |wβ |
vα

)
≤ (β − α)T τ.

(3) ∃v∗ ≥ |wβ|, ∃τ ∈ Rn,∀α ∈ A : v∗ ln
(
v∗

vα

)
≤ (β − α)T τ.

In this proposition, statement (1) is the one we used earlier, statement (2) is the description
of the dual SAGE cone used in [4], and statement (3) in conjunction with Theorem 3.5(c) is the
description of the dual SONC cone used in [9].
Proof. If wβ = 0 then all three conditions hold. Moreover, if vα = 0 for some α ∈ A, then it
is easy to see that all three conditions hold if and only if wβ = 0. Thus we may assume that
wβ 6= 0 and vα 6= 0 for all α ∈ A. We will show the equivalence via the following variant of
statement (2),
(2’) ∃τ ∈ Rn, ∀α ∈ A : ln

( |wβ |
vα

)
≤ (α− β)T τ.

(1) ⇐⇒ (2’): Consider (2’) as the feasibility of a linear system of inequalities in τ . (2’) is
satisfied if and only if its Farkas alternative system (in the version of Proposition 1.7 of [31])

∃λ ∈ RA+ :
∑
α∈A

λα(−α + β) = 0 and
∑
α∈A

λα ·
(
− ln

(
|wβ|
vα

))
< 0

does not have a solution.
We can normalize λ so that all its components sum to 1. Hence, the alternative system

simplifies to ∑
α∈A

λα ln |wβ| >
∑
α∈A

λαvα > 0,

i.e., to ln |wβ| >
∑
α∈A λαvα. Since this is the opposite of (1), the equivalence of (1) and (2’)

follows.
(2’) =⇒ (2): We obtain (2) from (2’) by multiplying with |wβ| and replacing |wβ|τ by −τ .
(2) =⇒ (3): This is trivial.
(3) =⇒ (2’): We have that v∗ ≥ |wβ| > 0 and thus we may divide the inequality in (3) by

v∗ to obtain
∃τ ′ ∈ Rn,∀α ∈ A : ln

(
v∗

vα

)
≤ (β − α)T τ ′,

where τ ′ = τ/v∗. Note that the left-hand side of the inequality is monotonous in v∗, and hence,

ln
(
|wβ|
vα

)
≤ ln

(
v∗

vα

)
≤ (β − α)T τ ′.

We further replace τ ′ by −τ ′ to obtain (2’). �
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4. Applications of the dual cone

4.1. Non-negative AG functions are sums of non-negative circuit functions. As a first
application of our description of the dual cone, we prove the following generalization of [21,
Theorem 4].

Proposition 4.1. Let ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n be finite sets. For every f ∈ CS(A,B),
the following statements hold.

(1) f can be written as a sum of non-negative circuit functions whose supports are contained
in supp f .

(2) f can be written as a sum of non-negative circuit functions supported on reduced circuits
in CS(A,B).

Note that in statement (2), the support of the reduced circuits does not need to be contained
in the support of f . The following example shows a situation, in which this phenomenon
happens.

Example 4.2. Let A := {0, 2, 4} and B := {1}. Consider the non-negative circuit function
f = |x|0 − 4 · 3−3/4x + |x|4 = 1 − 4 · 3−3/4x + x4. Its support ({0, 4}, 1) is not reduced with
respect to A,B, and indeed, we can write f as sum

f =
(2

3 − 4 · 3−3/4x+ 2
3
√

3x2
)

+
(1

3 −
2
3
√

3x2 + x4
)

=
(2

3 |x|
0 − 4 · 3−3/4x+ 2

3
√

3|x|2
)

+
(1

3 |x|
0 − 2

3
√

3|x|2 + |x|4
)

of non-negative circuit functions, whose supports ({0, 2}, 1) and ({0, 4}, 2) are reduced. Note
that the coefficient of |x|2 cancels in the sum.

Proof of Proposition 4.1. By Lemma 3.6 and part (c) of Theorem 3.5, the dual of the S-cone is

(13) CS(A,B)∗ =
⋂

(A,β)∈I(A,A)
(P even

A\{β},β)∗ ∩
⋂

(A,β)∈I(A,B)
(P odd

A,β )∗.

Let f ∈ CS(A,B) and assume that the support of f is given by A′ ⊆ A and B′ ⊆ B. By
Proposition 2.7, f ∈ CS(A′,B′). Apply (13) on the sub-cone CS(A′,B′) and dualize that identity.
Using that CS(A′,B′)∗∗ = CS(A′,B′) (because the cone is closed, Proposition 2.10) then yields

f ∈
∑

(A,β)∈I(A,A)
P even
A\{β},β +

∑
(A,β)∈I(A,B)

P odd
A,β .

This shows part (1).
Part (2) then follows from part (d) of Theorem 3.5. Note that in this case we cannot restrict

the sets of exponents to A′ and B′ as it depends on the choice of A and B whether a circuit is
reduced or not. �

Remark 4.3. If we demand supp(f) = A∪B, we obtain the same statement about the support
in (2) as in (1).
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4.2. Extreme rays of the S-cone. Our next application of our description of the dual cone
is a precise characterization of the extreme rays of CS(A,B). Even for the specific case of the
SAGE cone, this sharpens the result in [21, Theorem 4], where the necessary condition is that
every extreme ray of the SAGE cone is supported on a single coordinate or on a circuit. The
essential concept for this characterization is provided by the reduced circuits.

Let ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n be finite sets and write shortly λ = λ(A, β). For
(A, β) ∈ I(A,A) let

Ee(A, β) :=
{∑
α∈A

cα|x|α −
∏
α∈A

(
cα
λα

)λα
|x|β c ∈ RA

>0

}
,

for (A, β) ∈ I(A,B) let

Eo(A, β) :=
{∑
α∈A

cα|x|α ±
∏
α∈A

(
cα
λα

)λα
xβ c ∈ RA

>0

}
,

and for β ∈ A let

E1(β) :=

R+ · |x|β if β ∈ A \ B,
R+ · (|x|β ± xβ) if β ∈ A ∩ B.

Ee(A, β) and Eo(A, β) are the (even and odd) non-negative circuit functions, for which the
inequality (7) on the circuit number holds with equality. E1(β) provides the special case for
circuits supported on a single element.
Proposition 4.4. For finite sets ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n, the set E(A,B) of extreme
rays of CS(A,B) is

E(A,B) =

 ⋃
(A,β)∈I(A,A),
re(A,β)=0,|A|>1

Ee(A, β)

 ∪
 ⋃

(A,β)∈I(A,B),
ro(A,β)=0,|A|>1

Eo(A, β)

 ∪
 ⋃
β∈A

E1(β)
 .

Here, recall from Definition 3.4 that an even (respectively odd) circuit is reduced if and only if
re(A, β) = 0 (respectively ro(A, β) = 0). The following example shows that the case distinctions
are indeed necessary.
Example 4.5. For A := {0, 1, 2} and B := {1}, the sets of (even resp. odd) circuits are

I(A,A) = {({0, 2}, 1), ({0}, 0), ({1}, 1), ({2}, 2)} and
I(A,B) = {({1}, 1), ({0, 2}, 1)}.

We have a closer look at those elements which are both even and odd circuits.
(1) The circuit ({0, 2}, 1) is reduced as an even circuit and non-reduced as an odd circuit. In

the context of extreme rays this is necessary. The even circuit function a2− 2ab|x|+ b2x2

is an element of an extreme ray, but for the odd circuit function a2 ± 2abx + b2x2 we
have

a2 ± 2abx+ b2x2 = (a2 − 2ab|x|+ b2x2) + 2ab(|x| ± x)
and hence this is not an extreme ray of CS(A,B).
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(2) Further, it holds that

|x| = 1
2(|x|+ x) + 1

2(|x| − x),

so ({1}, 1) does not support an even extreme ray but in fact it does support an odd
extreme ray.

Again, we obtain corollaries for the special cases of SONC polynomials and of the SAGE
cone.

Corollary 4.6. Let ∅ 6= A ⊆ Nn be a finite set and write shortly λ = λ(A, β). The set E(A) of
extreme rays of the cone of SONC-polynomials with support in A is

E(A) =
⋃

(A,β)∈I(A∩(2N)n,A),
re(A,β)=0, |A|>1

{∑
α∈A

cαx
α −

∏
α∈A

(
cα
λα

)λα
xβ c ∈ RA

>0

}

∪
⋃

(A,β)∈I(A∩(2N)n,A),
ro(A,β)=0, |A|>1, β∈A\(2N)n

{∑
α∈A

cαx
α +

∏
α∈A

(
cα
λα

)λα
xβ c ∈ RA

>0

}

∪
⋃

β∈A∩(2N)n
R+ · xβ.

Corollary 4.7. Let ∅ 6= A ⊆ Rn be a finite set, B = ∅ and write λ = λ(A, β). The set E(A,B)
of extreme rays of the cone of SAGE functions with support in A is

E(A,B) =
⋃

(A,β)∈I(A,A),
re(A,β)=0, |A|>1

Ee(A, β) ∪
⋃
β∈A

E1(β)

=
⋃

(A,β)∈I(A,A),
re(A,β)=0, |A|>1

{∑
α∈A

cα exp(yTα)−
∏
α∈A

(
cα
λα

)λα
exp(yTβ) c ∈ RA>0

}

∪
⋃
β∈A

{
c exp(yTβ) c ∈ R+

}
.

Example 4.8. As an example corresponding to the SAGE setting, let A = {0, 1, 2, 4},B = ∅
and f := |x|0 − 4 · 3−3/4x1 + |x|4 be a non-negative circuit function. With the substitution
x 7→ exp(y) we obtain the arithmetic-geometric exponential f̃ = 1− 4 · 3−3/4 exp(y) + exp(4y),
and its support is again not reduced. We write f as a sum

f =
(
1− 2 · 31/4|x|+

√
3x2

)
+
(2

331/4|x| −
√

3x2 + x4
)

of circuit functions, whose supports {0, 1, 2} and {1, 2, 4} are reduced.
This is different from Example 4.2 in that the exponent 1 is contained in A rather than B

and thus is treated like an even number in the SAGE setting.
In [21], after Theorem 4, the authors remark that every circuit “supports a family of extreme

rays in the SAGE cone.” This is not quite correct, as shown by the current example.
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For the proof of Proposition 4.4, we will use a variant of Hölder’s inequality.

Theorem 4.9 (Theorem 11, p. 22, [11]). Let n,m ∈ N. Let (aij) ∈ Rn×m be a matrix and let
λ1, . . . , λn ∈ R>0 with ∑n

i=1 λi = 1. Then
m∑
j=1

n∏
i=1

aλiij ≤
n∏
i=1

 m∑
j=1

aij

λi ,
and equality holds if and only if either (1) for some i, ai1 = · · · = aim = 0, or (2) the matrix
(aij) has rank one.

Note that in case (1) both sides of the inequality are zero.

Proof of Proposition 4.4. By Proposition 4.1, every non-negative function f ∈ CS(A,B) can be
written as a sum of non-negative circuit functions supported on reduced circuits. Hence, it
suffices to show the following two statements:
(a) Every non-negative circuit function supported on a circuit can be written as a sum of

non-negative circuit functions with the same support whose circuit condition is satisfied
with equality.

(b) Every function in E(A,B) is indeed an extreme ray, i.e., it cannot be written as a sum of
other non-negative AG functions.

(a) Let f be a non-negative circuit function supported on the circuit (A, β), whose coefficients
are denoted by (cα)α∈A and cβ.

If f is supported on an odd circuit (A, β) ∈ I(A,B), then the circuit number Θf from (7)
satisfies cβ ∈ [−Θf ,Θf ]. Hence, f is a convex combination of f1 and f2, where f1, f2 have the
same support and coefficients as f , except for c(1)

β = Θf1 = Θf and c
(2)
β = −Θf2 = −Θf .

If f is supported on an even circuit (A, β) ∈ I(A,A), then f can be written as the sum of a
non-negative circuit function with the same support whose inner coefficient equals the negative
of the circuit number and of some function d|x|β for d > 0. If β /∈ B, then the latter is contained
in E1(β). Otherwise, if β ∈ B, then d|x|β = d

2(|x|β + xβ) + d
2(|x|β − xβ), whose two summands

are elements of E1(β).
(b) Let f ∈ E(A,B) with coefficients (cα)α∈A and (dβ)β∈B. Assume that f can be decomposed

into f = ∑k
i=1 fi with non-negative AG functions f1, . . . , fk ∈ R[A,B]. Denote the coefficients

of fi by (c(i)
α )α∈A and (d(i)

β )β∈B.
For the duration of this proof, we use the notation suppe(f) := {α ∈ A cα 6= 0}. Moreover,

set Ã := ⋃
i suppe(fi) = {α ∈ A ∃i : c(i)

α 6= 0}. We claim that Ã ⊆ conv suppe(f).
To show this, we consider a vertex α̃ of conv Ã. Since α̃ must be an outer exponent of each fi

with c
(i)
α̃ 6= 0, we have c(i)

α̃ ≥ 0 for all i. It follows that ∑k
i=1 c

(i)
α̃ > 0 and thus α̃ ∈ suppe(f). As

this holds for every vertex of conv Ã, we obtain that Ã ⊆ conv suppe(f).
Next, we distinguish three cases depending on whether f ∈ E1(β), f ∈ Ee(A, β) or f ∈

Eo(A, β).
Case f ∈ E1(β), β ∈ A: In this case, suppe(fi) = {β} for each i. Thus, if β /∈ B then each fi

is a multiple of |x|β and thus a multiple of f .
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On the other hand, if β ∈ A ∩ B, then w.l.o.g. we can assume that f = c(|x|β + xβ) for some
c > 0. Moreover, each fi is of the form fi = ci|x|β + dixβ with |di| ≤ ci. Then∑

i

di = c =
∑
i

ci ≥
∑
i

|di| ≥
∣∣∣∣∑
i

di

∣∣∣∣
and thus di = ci for each i. Hence, all fi are multiples of f .

Case f ∈ Ee(A, β) for (A, β) ∈ I(A,A) with re(A, β) = 0 and |A| > 1: In this case, our ini-
tial considerations imply that ⋃i suppe(fi) ⊆ conv(A). Since (A, β) is reduced we can also
conclude that ⋃i suppe(fi) ⊆ A ∪ {β}. Hence, each fi is of the form

(14) fi =
∑
α∈A

c(i)
α |x|α + c

(i)
β |x|β +

∑
β′∈B

d
(i)
β′ xβ.

It follows that c(i)
α ≥ 0 for all i and α ∈ A, because otherwise the fi cannot be non-negative.

Next, we claim that

(15) − c(i)
β ≤

∏
α∈A

(
c(i)
α

λα

)λα
for all i, where again we write λ = λ(A, β). To prove the claim, we distinguish two cases:

(i) If c(i)
β ≥ 0, then it trivially holds that −c(i)

β ≤ 0 ≤ ∏α∈A(c(i)
α /λα)λα .

(ii) Consider the case that c(i)
β < 0. Since fi is a non-negative AG function, it holds that the

last sum in (14) vanishes and the claim follows from Theorem 2.8(3).
In the next step, we derive

(16) − cβ = −
k∑
i=1

c
(i)
β

(a)
≤

k∑
i=1

∏
α∈A

(
c(i)
α

λα

)λα (b)
≤

∏
α∈A

(
k∑
i=1

c(i)
α

λα

)λα
(c)=

∏
α∈A

(
cα
λα

)λα
= −cβ,

where in (a) we use (15), (b) follows from Hölder’s Inequality 4.9 and (c) uses that ∑k
i=1 c

(i)
α = cα.

Moreover, by Theorem 4.9 equality in (b) implies that either (1) there exists an α ∈ A such that
c(i)
α vanishes for all i, or (2) the |A| × k matrix with entries c(i)

α /λα has rank one. However, (1)
would imply that cβ = 0 which is impossible, thus we are in case (2). Hence, there exist scalars
ε1, . . . , εk ≥ 0 such that c(i)

α = εicα for all i and all α ∈ A. Further, equality in (a) implies that

−c(i)
β =

∏
α∈A

(
c(i)
α

λα

)λα
=
∏
α∈A

(
εi
cα
λα

)λα
= −εicβ.

By (14), it follows that every fi is of the form

(17) fi = εif + terms in B.

Now, if εi = 0 for some i, then fi has only terms with exponents in B and thus it is the zero
function or it cannot be non-negative. It follows that εi > 0 for all i. But this implies that
c

(i)
β = εicβ < 0. Hence, since the fi are AG functions, they cannot have any other terms in B,

and thus they are all multiples of f .
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Case f ∈ Eo(A, β) for (A, β) ∈ I(A,B) with ro(A, β) = 0 and |A| > 1: In this case, the ar-
gument is similar, except that (16) becomes

(18) |dβ| =
∣∣∣∣∣
k∑
i=1

d
(i)
β

∣∣∣∣∣ (e)
≤

k∑
i=1
|d(i)
β | ≤

k∑
i=1

∏
α∈A

(
c(i)
α

λα

)λα
≤
∏
α∈A

(
k∑
i=1

c(i)
α

λα

)λα
=
∏
α∈A

(
cα
λα

)λα
= |dβ|.

Since we have equality in (e), it follows that all terms on the left-hand side of that triangle
inequality have the same sign. Since dβ = ∑k

i=1 d
(i)
β , this implies that each d(i)

β has the same sign
as dβ. Now we also obtain (17). Note that for the vanishing of the terms with exponents in
B \ {β}, we can argue as above, or alternatively obtain this directly from the oddness of the fi.
Altogether, this yields again that all the fi are multiples of f . �

4.3. Univariate SONC polynomials do not satisfy Putinar’s Positivstellensatz. In
[8, Section 5], a multivariate example was given to show that the analogue of Putinar’s
Positivstellensatz does not hold for SONC polynomials. Using Theorem 3.5, we provide a
simpler example of this phenomenon, which in addition shows that the analogue of Putinar’s
result does not even hold for univariate SONC polynomials.

Recall Putinar’s Theorem from the theory of sums of squares polynomials ([23], see also, e.g.,
[17, Theorem 2.14]).

Theorem 4.10. Let f, g1, . . . , gm ∈ R[x] and assume that the quadratic module

Q(g1, . . . , gm) :=

p0 +
m∑
j=1

pjgj with sums of squares polynomials p0, . . . , pm


is Archimedean. If f ∈ R[x] is strictly positive on the set K = {x ∈ Rn : gj(x) ≥ 0, 1 ≤ j ≤ m},
then f can be written in the form f = p0 +∑m

j=1 pjgj with sum of squares polynomials p0, . . . , pm.

Here, the Archimedean condition can be defined by the existence of some N ≥ 1 with
N−∑n

i=1 x
2
i ∈ Q(g1, . . . , gm), and it is well known that Q(g1, . . . , gm) is Archimedean if g1, . . . , gm

are affine (see, e.g., [17]).

Theorem 4.11. The univariate polynomial

f :=
(
x− 1

2

)4
+ 1

1000
satisfies f(x) > 0 for x ∈ [0, 1], but it cannot be written in the form
(19) p0 + xp1 + (1− x)p2 + x(1− x)p3

with SONC polynomials p0, p1, p2 and p3.

Note that a SONC analogue of Putinar’s Positivstellensatz would even assert a representation
of f using only p0, p1 and p2.

Proof. As a notation, for r ∈ N we set CS(r) := CS({0, 1, . . . , r} ∩ 2N, {0, 1, . . . , r} \ 2N). This
is the cone of SONC polynomials of degree up to r.
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The polynomial f is clearly positive on [0, 1] (in fact, on R), so we only need to show that it
does not have a representation as in the claim.

Assume to the contrary that there exist SONC polynomials p0, p1, p2, p3 such that (19) holds.
Let d be the maximum of the degrees of the pi. Then f is contained in CS(d+ 2) + xCS(d+
1) + (1− x)CS(d+ 1) + x(1− x)CS(d). On the other hand, consider the vector

v :=
(25

18 ,
5
9 ,

1
22 ,

1
23 , . . . ,

1
2d+2

)
∈ R{0,...,d+2}.

A direct computation shows that

v(f) = − 1
288 + 25

18
1

1000 = − 1
480 < 0.

Hence, once we show that v lies in(
CS(d+ 2) + xCS(d+ 1) + (1− x)CS(d+ 1) + x(1− x)CS(d)

)∗
= CS(d+ 2)∗ ∩ (xCS(d+ 1))∗ ∩ ((1− x)CS(d+ 1))∗ ∩ (x(1− x)CS(d))∗,

we obtain a contradiction.
For this, note that we only need to consider inequalities involving the first two components of v,

because apart from those v equals the vector ((1
2)α)0≤α≤d+2, which is clearly contained in the cone.

Further, note that v ∈ (xCS(d+1))∗ if and only if the shifted vector (v1, v2, . . . , vd+2) ∈ R{0,...,d+1}

where we omitted the 0-th coordinate lies in CS(d+ 1)∗. Similarly, v lies in ((1− x)CS(d+ 1))∗
if and only if (v0 − v1, v1 − v2, . . . , vd+1 − vd+2) lies in CS(d+ 1)∗, and an analogous description
holds for (x(1 − x)CS(d))∗. Using these observations, it is a straightforward computation to
verify that v lies in the cone. �

4.4. Functions with simplex Newton polytopes. We provide a subclass of functions for
which non-negativity coincides with containment in the S-cone CS(A,B).

Proposition 4.12. Let ∅ 6= A ⊆ Rn, B ⊆ Nn \ (2N)n be finite sets and f = ∑
α∈A cα|x|α +∑

β∈B dβxβ ∈ R[A,B]. Assume that
(1) conv(A) is a simplex and B ⊆ conv(A),
(2) cα ≤ 0 for every α ∈ A which is not a vertex of conv(A), and
(3) dβ ≤ 0 for every β ∈ B.

Then f is non-negative if and only if f ∈ CS(A,B). In this case, f can be written as a sum of
circuit functions using only vertices of conv(A) as outer exponents.

This has been shown for SONC polynomials under a slightly stronger hypothesis in [13,
Theorem 5.5]. Moreover, the analogous statement in the SAGE setting has been obtained in
[21, Theorem 10]. We provide a simple proof using Theorem 3.5 as well as the following lemma.

Lemma 4.13. Let ∅ 6= A ⊆ Rn be affinely independent and let v ∈ RA
>0. Then there exists a

point p ∈ Rn
>0 and a scalar τ ∈ R>0 such that vα = τpα for all α ∈ A.
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Proof. Since A is affinely independent, there exists an affine map ` : Rn → R such that
`(α) = ln(vα) for all α ∈ A. Explicitly, there exists a w ∈ Rn and c ∈ R with wTα + c = ln(vα)
for all α ∈ A. We set τ := exp(c) and pi := exp(wi) for 1 ≤ i ≤ n. A straightforward
computation shows that p := (p1, . . . , pn) and τ satisfy our claim:

vα = exp(`(α)) = exp
(∑

i

αiwi + c

)
= exp(c)

∏
i

exp(wi)αi = τ
∏
i

pαii = τpα. �

Proof of Proposition 4.12. For the nontrivial direction, let f be non-negative and denote by
V ⊆ A the set of vertices of conv(A). We show that f is contained in the sub-cone

C :=
∑

α∈A\V
P even
V,α +

∑
β∈B

P odd
V,β ⊆ CS(A,B).

Let (v, w) be an arbitrary element of C∗ = ⋂
α∈A\V (P even

V,α )∗ ∩ ⋂β∈B(P odd
V,β )∗. First, consider the

case that vα > 0 for all α ∈ V . Since V is affinely independent, Lemma 4.13 gives a p ∈ Rn
>0

and a τ ∈ R>0 with vα = τpα for all α ∈ V . For β ∈ (A∪B) \V set λ(β) := λ(V, β) and observe
that by Lemma 3.6,

|vβ| ≤
∏
α∈V

vλ
(β)
α
α = τp

∑
α∈V αλ

(β)
α = τpβ,

respectively |wβ| ≤ τpβ. Hence,

(v, w)(f) =
∑
α∈V

vαcα +
∑

α∈A\V
vαcα +

∑
β∈B

wβdβ

≥
∑
α∈V

vαcα −
∑

α∈A\V
|vαcα| −

∑
β∈B
|wβdβ|

≥
∑
α∈V

τpαcα −
∑

α∈A\V
|τpαcα| −

∑
β∈B
|τpβdβ|.

Therefore, the hypotheses (2) and (3) imply that

(v, w)(f) ≥ τf(p) ≥ 0.

In the case vα = 0 for some α ∈ V , continuity of the mapping in (6) implies (v, w)(f) ≥ 0 as
well. Altogether, f ∈ C∗∗ = C ⊆ CS(A,B). �

4.5. Approximating non-negative polynomials by SONC polynomials. Unlike the sit-
uation with sum of squares polynomials, not every non-negative univariate polynomial is a
SONC polynomial. However, in this section we show that non-negative univariate polynomials
can at least be approximated by SONC polynomials.

For a univariate polynomial f = ∑d
i=0 cix

i we set

f̂ := c0 −
d−1∑
i=1
|ci|xi + cdx

d.

This is very similar to the SAGE-representative of a polynomial considered in [21, Section 5].



23

Theorem 4.14. Let f = ∑d
i=0 cix

i ∈ R[x] be a univariate polynomial of even degree d with
positive constant coefficient. Let x0 := inf{x ∈ R+ f̂(x) < 0}.

(1) If x0 = +∞ (i.e., if f̂(x) ≥ 0 for all x ∈ R), then f is a SONC polynomial.
(2) Otherwise, there exists a sequence (pN)N ⊆ R[x] of SONC polynomials which converges

to f uniformly on every compact subset of the open interval (−x0, x0).

Note that the pN have the property that deg pN →∞ for N →∞. Part (1) is essentially a
special case of Proposition 4.12, which itself has been obtained before by de Wolff and Iliman
[13, Theorem 5.5], see also [21, Theorem 10]. Hence, only part (2) is new. It can be seen as a
univariate SONC analogon of the (even multivariate) approximation result in terms of sum of
squares polynomials by Lasserre and Netzer (see [18, 19]), where our result also has a restriction
to (−x0, x0).

Proof. For part (1), note that f̂ is non-negative on R+ if and only if it is non-negative on R.
Moreover, it satisfies the hypothesis of Proposition 4.12, and thus x0 = ∞ implies that f̂ is
a SONC polynomial. Moreover, Proposition 4.12 implies that f̂ can be written as a sum of
circuit polynomials using only the constant term and the highest term as outer exponents. Since
a non-negative circuit polynomial with negative inner coefficient remains non-negative under
flipping the sign of the inner coefficient, f is a SONC polynomial as well.

It remains to show part (2). As in the proof of Theorem 4.11, we use the shorthand notation
CS(r) for CS({0, 1, . . . , r} ∩ 2N, {0, 1, . . . , r} \ 2N) for r ∈ N. Since the two parameters of CS
are disjoint sets, we shortly write elements in the dual cone as v rather than (v, w), by slight
abuse of notation. For N > d define

pN :=

f + c∗

xN0
xN for N > d even,

pN−1 for N > d odd

for some constant c∗ > 0. It is immediately clear that if |x| < x0, then f(x)−pN (x) = c∗(x/x0)N
converges to zero for N →∞, and we even have uniform convergence on every compact subset
of (−x0, x0). It remains to find a suitable value of c∗ such that pN is a SONC polynomial.

We claim that v(f) ≥ m(v0 + x−d0 vd) for every v ∈ CS(d)∗, where m is the minimum of the
function v 7→ v(f) on the set

K :=
{

v

v0 + x−d0 vd
v ∈ CS(d)∗ \ {0}

}
=
{
v ∈ CS(d)∗ v0 + x−d0 vd = 1

}
.

To prove the claim, consider a fixed v ∈ K and observe that vd ≥ 0 because d is even. The
definitions of K and x0 imply v0 ≤ 1 and vd ≤ xd0. For 1 ≤ i < d, Theorem 3.5(c) applied on
the circuit with outer exponents 0, d and inner exponent i then gives

|vi| ≤ v
1−i/d
0 v

i/d
d ≤ 1 · (xd0)i/d ≤ xi0.

Hence, the non-empty set K is bounded and compact. It follows that the function v 7→ v(f)
attains the minimum value m on K. This implies the claim.

Since for N > d every element of CS(N)∗ can be truncated to obtain an element of CS(d)∗,
it follows that the auxiliary claim also holds for every v ∈ CS(N)∗. We set c∗ := 2|m| and it
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remains to show that for this value of c∗ our candidate pN is a SONC polynomial. For this, it is
sufficient to show that for N > d we have v(pN) ≥ 0 for all v ∈ CS(N)∗, and we may assume
that N is even. We distinguish two cases.

Case vd ≤ xd0v0. The inequalities defining CS(N)∗ imply that |vi| ≤ v
1−i/d
0 v

i/d
d for 0 ≤ i ≤ d.

Using this, we derive

v(pN) =
d∑
i=0

vici + vN
c∗

xN0
≥ v0c0 −

d−1∑
i=1
|vici|+ vdcd + vN

c∗

xN0

≥ v0c0 −
d−1∑
i=1

v
1−i/d
0 v

i/d
d |ci|+ vdcd + vN

c∗

xN0
.

If v0 = 0, then this expression is non-negative since both vd and vN are. Otherwise, we continue
as follows:

v(pN) = v0

(
c0 −

d−1∑
i=1

(
vd
v0

)i/d
|ci|+

(
vd
v0

)d/d
cd

)
+ vN

c∗

xN0

= v0f̂

((
vd
v0

)1/d
)

+ vN
c∗

xN0
≥ 0

for any c∗ ≥ 0 by the choice of x0.
Case vd > xd0v0. By Theorem 3.5(c) applied on the circuit with outer exponents 0, N and

inner exponent d, we have vN ≥ v
−(N−d)/d
0 v

N/d
d , so that using the hypothesis of the current case

twice gives

(20) vN > (x−d0 vd)−(N−d)/dv
N/d
d = xN−d0 vd >

xN0
2 (v0 + x−d0 vd).

Since v(pN) = v(f) + vN
c∗

xN0
, employing the auxiliary claim as well as (20) we can conclude

v(pN) ≥ (v0 + x−d0 vd)m+ xN0
2 (v0 + x−d0 vd)

c∗

xN0

= (v0 + x−d0 vd) · (m+ |m|) ≥ 0. �

As a corollary of the theorem, we see that we can also approximate in the (x)-adic topology:

Corollary 4.15. Let f ∈ R[x] be a univariate polynomial with f(0) > 0. Then for each N ≥ 0
there exists a SONC polynomial pN ∈ R[x] such that

f ≡ pN mod xN .

Proof. If the degree of f is odd, then we may consider f as a polynomial of higher degree with
leading coefficient 0, which has even degree. The hypothesis f(0) > 0 implies that the x0 of
Theorem 4.14 exists and is positive, hence we may consider the sequence pN from that theorem.
From its construction in the proof of Theorem 4.14, it is clear that it satisfies our claim. �
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5. Outlook and open problems

We have introduced the S-cone as a unified framework for the classes of SAGE and SONC
polynomials, provided characterizations of its dual cone and presented several new and several
improved results associated with the dual viewpoint. The S-cone exhibits a prominent com-
putationally tractable class within the class of sparse non-negative polynomials. For further
computational aspects building upon the projection-free descriptions of the dual cones from
Section 3, we refer to the subsequent work of the second author together with Dressler, Heuer
and de Wolff [6].

It remains a future task to further understand the relation of the S-cone and its specializations
to the underlying class of all non-negative functions (in some special cases polynomials), both
from the primal and the dual point of view. Specifically, the relation of the SONC cone to the
cone of sparse non-negative polynomials and the dual SONC cone to sparse moment cones (as
studied by Nie [22]) deserve further study. It is an open question whether SONC polynomials
are dense inside the non-negative ones.

Moreover, since by the results in Section 4.3, the analogue of Putinar’s Positivstellensatz
already fails in the univariate case, it also remains a challenge to provide computationally
attractive types of Positivstellensätze for the S-cone and its specializations.

Acknowledgment. We thank the anonymous referees for their helpful suggestions.
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