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Abstract. The S-cone provides a common framework for cones of polynomials or ex-
ponential sums which establish non-negativity upon the arithmetic-geometric inequality,
in particular for sums of non-negative circuit polynomials (SONC) or sums of arithmetic-
geometric exponentials (SAGE). In this paper, we study the S-cone and its dual from
the viewpoint of second-order representability. Extending results of Averkov and of Wang
and Magron on the primal SONC cone, we provide explicit generalized second-order de-
scriptions for rational S-cones and their duals.

1. Introduction

The question to characterize and to decide whether a polynomial or an exponential
sum is non-negative occurs in many branches of mathematics and application areas. In
the development of real algebraic geometry, the connection between the cone of non-
negative polynomials and the cone of sums of squares of polynomials plays a prominent
role (see, for example, [3, 13, 18]). If a polynomial can be written as a sum of squares
of polynomials, this provides a certificate for the non-negativity of the polynomial. Since
the beginning of the current millennium, non-negativity certificates of polynomials have
also seen much interest from the computational point of view and have strongly advanced
the rich connections between real and convex algebraic geometry as well as polynomial
optimization (see, for example, [11, 12]).

Within the research activities on non-negativity certificates in the last years, the cones
of sums of arithmetic-geometric exponentials (SAGE, introduced by Chandrasekaran and
Shah [4]) and sums of non-negative circuit polynomials (SONC, introduced by Iliman and
de Wolff [8]) have received a lot of attention (see, e.g., [1, 5, 7, 14, 15, 20]). These cones
build upon earlier work of Reznick [19]. They provide non-negativity certificates based on
the arithmetic-geometric inequality and are particularly useful in the context of sparse
polynomials.

In [10], the authors of the current paper and Katthän have introduced a common
generalization, called the S-cone, which facilitates to study the SAGE cone and the SONC
cone within a uniform generalized setting. Formally, for two finite disjoint sets ∅ 6= A ⊆
Rn,B ⊆ Nn \ (2N)n, let R[A,B] denote the space of all functions f : Rn → R ∪ {∞} of
the form

(1.1) f(x) =
∑
α∈A

cα|x|α +
∑
β∈B

cβx
β ∈ R[A,B]
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with real coefficients cα, α ∈ A ∪ B. Our precondition A∩ B = ∅ is a slight restriction to
the setup in [10], in order to enable a little more convenient notation.

One motivation for the class of functions (1.1) is that it allows to capture non-negativity
of polynomials on Rn and non-negativity of polynomials on the non-negative orthant Rn

+

within a uniform setting. Moreover, global non-negativity of the summand
∑

α∈A cα|x|α
is equivalent to global non-negativity of the exponential sum y 7→

∑
α∈A cα exp(αTy).

Definition 1.1. A function f of the form (1.1) is called an even AG function if for at
most one α ∈ A, cα is negative and for all β ∈ B, cβ is zero; and it is called an odd AG
function if for all α ∈ A, cα is non-negative and for at most one β ∈ B, cβ is nonzero.

f is called an AG function (arithmetic-geometric mean function), if f is an even AG
function or an odd AG function.

Definition 1.2. Let ∅ 6= A ⊆ Rn,B ⊆ Nn \ (2N)n be finite disjoint sets. The S-cone
CS(A,B) is defined as

CS(A,B) := cone {f ∈ R[A,B] : f is a non-negative AG function} ,

where cone denotes the conic (or positive) hull. CS(A,B) is called rational if A ⊆ Qn.

The SAGE and SONC cones arise as special cases of this cone, see Section 2.

Both from the geometric and from the optimization point of view, it is of prominent
interest to understand how the different classes of cones relate to each other and whether
techniques for different cones can be fruitfully combined. In [9], Karaca, Darivianakis et
al. have studied non-negativity certificates based on a combination of the SAGE cone with
the cone of sums of squares. Concerning relations between the various cones, Averkov has
shown that the SONC cone can be represented as a projection of a spectrahedron [1].
In fact, his proof applies the techniques from [2], which reveals that the SONC cone is
even second-order representable. Wang and Magron gave an alternative proof based on
binomial squares and A-mediated sets [21].

Here, we take the general view of the S-cone as well as a primal-dual viewpoint. Gen-
eralizing the results of Averkov and of Wang and Magron, we show that rational S-cones
and their duals are second-order representable and provide explicit and direct descriptions.
Our proof combines the techniques for the second-order cones techniques from [2] with the
concepts and the duality theory of the S-cone from [10]. Our derivation is different from
the approach of Wang and Magron, and it does not need binomial squares or A-mediated
sets. Moreover, our second-order representation prevents the consideration of redundant
circuits by using a characterization of the extreme rays of the S-cone from [10].

Beyond the specific representability result, the goal of the paper is to offer further
insights into the use of the framework of the S-cone as a generalization of SONC and
SAGE.

Acknowledgement. The work was partially supported through the project “Real Al-
gebraic Geometry and Optimization” jointly funded by the German Academic Exchange
Service DAAD and the Research Council of Norway RCN.
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2. Preliminaries

Throughout the text, we use the notations N = {0, 1, 2, 3, . . .} and R+ = {x ∈ R : x ≥
0}. For a finite subset A ⊆ Rn, denote by RA the set of |A|-dimensional vectors whose
components are indexed by the set A. Moreover, we write

|x|α =
n∏
j=1

|xj|αj and xβ =
n∏
j=1

x
βj
j ,

and if one component of x is zero and the corresponding exponent is negative, then we
set |x|α =∞.

2.1. The S-cone, SAGE and SONC. We explain that the S-cone generalizes the SAGE
cone and the SONC cone and collect some basic properties of the three cones.

The SAGE cone. Let A be a non-empty, finite set. An exponential sum supported on A
is a function of the form

(2.1) y 7→
∑
α∈A

cα exp(αTy)

with real coefficients cα. If B = ∅, then R[A,B] can be identified with the space of
exponential sums supported on A by means of the substitution |xi| = exp(yi).

For finite A ⊆ Rn, A′ ( A and β ∈ A \ A′, the SAGE cone CSAGE(A) is defined as

CSAGE(A) =
∑
β∈A

CAGE(A \ {β}, β),

where for A′ := A \ {β}

CAGE(A′, β) =
{
c ∈ RA : cα ≥ 0 for α ∈ A′,

∑
α∈A′

cα exp(αTx) + cβ exp(βTx) ≥ 0 on Rn
}

(see [4]). We observe that the S-cone CS(A, ∅) can be identified with CSAGE(A) using
the substitution (2.1). CSAGE(A) is a closed convex cone in RA. The membership prob-
lem for this convex cone can be formulated as a relative entropy program ([14], see also
Proposition 2.2 below).

The SONC cone. Here, let the non-empty finite set A be contained in Nn. Let
(2.2)

I(A) =
{

(A, β) : A ⊆ (2N)n ∩ A affinely independent, β ∈ relint(convA) ∩ A
}
,

where relint denotes the relative interior of a set. For singleton sets A = {α}, the sets
(A, β) are formally of the form ({α}, α). By convention, we write these circuits simply as
(α), and with this convention, the set {(α) : α ∈ (2N)n} ∩ A is contained in I(A).

For (A, β) ∈ I(A), let PA,β denote the set of polynomials in R[x1, . . . , xn] whose supports
are contained in A ∪ {β} and which are non-negative on Rn. The Minkowski sum

CSONC(A) =
∑

(A,β) ∈ I(A)

PA,β

defines the cone of SONC polynomials with support A (see [1, 8]).
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The cone CSONC(A) is a closed convex cone, and it can be recognized as a special case
of a rational S-cone by observing

CSONC(A) = CS (A ∩ (2N)n,A ∩ (Nn \ (2N)n))

(see [10]). Using the results from [14], membership in the SONC cone can also be formu-
lated in terms of a relative entropy program.

The S-cone. The S-cone from Definition 1 offers a uniform setting for the SAGE and the
SONC cones. We collect some further properties of the S-cone. For a non-empty finite set
A ⊆ Rn and β ∈ Nn \ ((2N)n ∪ A) let

P odd
A,β :=

{
f : f =

∑
α∈A

cα|x|α + cβx
β, f(x) ≥ 0 ∀ x ∈ Rn, c|A ∈ RA+, cβ ∈ R

}
be the cone of non-negative odd AG functions supported on (A, β), and similarly for
β ∈ Rn \ A let

(2.3) P even
A,β :=

{
f : f =

∑
α∈A

cα|x|α + cβ|x|β, f(x) ≥ 0 ∀ x ∈ Rn, c|A ∈ RA+, cβ ∈ R

}
be the cone of non-negative even AG functions supported on (A, β). By definition,

CS(A,B) =
∑
α∈A

P even
A\{α},α +

∑
β∈B

P odd
A,β .

Note that non-negative even AG functions correspond exactly to the AGE functions
(arithmetic-geometric exponentials) in [4] and [14].

The following alternative representation allows to express the S-cone in terms of the
SAGE cone. Here, |d| denotes the absolute value of the vector d ∈ RB, taken component-
wise.

Proposition 2.1. [10] Let ∅ 6= A ⊆ Rn, B ⊆ Nn \ (2N)n be finite and disjoint. Then,

CS(A,B) =

{∑
α∈A

cα|x|α +
∑
β∈B

dβx
β : (c,−|d|) ∈ CSAGE(A ∪ B)

}
(2.4)

=

{∑
α∈A

cα|x|α +
∑
β∈B

dβx
β : ∃t ∈ RB (c, t) ∈ CSAGE(A ∪ B), t ≤ −|d|

}
.(2.5)

For a finite set ∅ 6= A ⊆ Rn, we use the notion

CS(A) := CS(A, ∅) = CSAGE(A)

and immediately observe CS(A) =
∑

α∈A P
even
A\{α},α. Hence, for our purpose it suffices to

study the cone P even
A,β of even AG functions and use the results of this cone for the odd

case in Section 4.
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Using the relative entropy function and the circuit number, the cones P even
A,β and P odd

A,β can
be characterized in terms of convex optimization problems. For a finite set ∅ 6= A ⊆ Rn,
denote by D : RA>0 × RA>0 → R,

D(ν, γ) =
∑
α∈A

να ln

(
να
γα

)
,

the relative entropy function. D can also be extended to RA+ × RA+ → R ∪ {∞} via the
conventions 0 · ln 0

y
= 0 for y ≥ 0 and y · ln y

0
=∞ for y > 0. Non-negativity of an (even or

odd) AG function f with coefficients cα and cβ can be characterized through the product∏
α∈A (cα/λα)λα and cβ (see [10, Theorem 2.7]). For an affinely independent ground set
A, this product is called the circuit number of f (see [8]). In particular, for an even AG
function, this non-negativity characterization in terms of the circuit number is given by

(2.6)
∏
α∈A

(
cα
λα

)λα
≥ −cβ.

The following characterization of P even
A,β and P odd

A,β in terms of the relative entropy function
and in terms of the circuit number is a direct consequence of Theorem 2.7 of [10].

Proposition 2.2. Let A ⊆ Rn be a non-empty finite set, β ∈ Rn \A and an AG function
f with coefficient vector c supported on A ∪ {β}.

(1) If f is an even AG function, then

f ∈ P even
A,β ⇐⇒ ∃ν ∈ RA+

∑
α∈A

ναα =
(∑

α∈A
να

)
β, D(ν, e · c) ≤ cβ

⇐⇒ ∃λ ∈ RA+
∑
α∈A

λαα = β,
∑

α∈A
λα = 1,

∏
α∈A

(
cα
λα

)λα
≥ −cβ.

(2) If f is an odd AG function, then

f ∈ P odd
A,β ⇐⇒ ∃ν ∈ RA+

∑
α∈A

ναα =
(∑

α∈A
να

)
β, D(ν, e · c) ≤ −|cβ|

⇐⇒ ∃λ ∈ RA+
∑
α∈A

λαα = β,
∑

α∈A
λα = 1,

∏
α∈A

(
cα
λα

)λα
≥ |cβ|.

If A is a set of affinely independent vectors and β ∈ relintA, then λ is unique. We call
the corresponding AG function a circuit function, the tuple (A, β) the circuit and identify
the unique λ with the above declared characteristics λ = λ(A, β).

2.2. Duality theory. Studying the duality theory has been initiated in [4] (for SAGE),
[6] (for SONC) and [10] (for the S-cone). See also the recent work of Papp [17], who
developed an alternative approach for deriving the dual cones, by expressing the non-
negativity of circuit polynomials in terms of a power cone. We can identify the dual space
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of R[A] with RA. For f ∈ R[A] with coefficients c ∈ RA and an element v ∈ RA, we
consider the natural duality pairing

(2.7) v(f) =
∑
α∈A

vαcα .

Using this notation, the dual cone (CS(A))∗ is defined as

(CS(A))∗ =
{
v ∈ RA : v(f) ≥ 0 for all f ∈ CS(A)

}
.

The following statement expresses the dual S-cone in terms of the dual SAGE cone.

Proposition 2.3. Let ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n disjoint and finite. The dual cone
of the S-cone CS(A,B) is

CS(A,B)∗ =
{

(v,w) ∈ RA × RB : (v, |w|) ∈ CSAGE(A ∪ B)∗
}

(2.8)

=
{

(v,w) ∈ RA × RB : ∃u ∈ RB (v,u) ∈ CSAGE(A ∪ B)∗, u ≥ |w|
}
.(2.9)

Proof. We use (2.5), which provides a characterization for the primal cone CS(A,B) in
terms of an existential quantification. Consider its lifted cone

ĈS(A,B) := CSAGE(A ∪ B)× RB ∩ {(c, t,d) : tβ ≤ −|dβ| for all β ∈ B}
= CSAGE(A ∪ B)× RB ∩ {(c, t,d) : tβ ≤ dβ, tβ ≤ −dβ for all β ∈ B}(2.10)

in the space RA × RB × RB. The dual cone of the right-hand cone in (2.10) is the set

cone
{

(0, . . . , 0,−e(β),±e(β)) : β ∈ B
}
,

where e(β) denotes the unit vector with respect to β ∈ B. As intersection and Minkowski
sum are dual operations, we obtain

ĈS(A,B)∗ = CSAGE(A ∪ B)∗ × {0}+ cone
{

(0, . . . , 0,−e(β),±e(β)) : β ∈ B
}
.

Identifying the S-cone with its coefficients, we can express CS(A,B)∗ in terms of the

lifted cone ĈS(A,B) by

CS(A,B)∗ = ĈS(A,B) ∩
{

(v, s,w) ∈ RA × RB × RB : s = 0
}
.

Thus, (v,w) ∈ CS(A,B) whenever (v, |w|) ∈ CSAGE(A∪B)∗. Convexity then implies the
second characterization (2.9). �

Hence, as in the primal case, it suffices to study even AG functions in the dual situation.
We will make use of a representation of the dual of the S-cone from [10]. For this, observe
that similar to the SONC case in (2.2), one can also consider circuits in the case of the
SAGE cone. In slight variation of (2.2), for a finite set ∅ 6= A ⊆ Rn, the set of circuits
supported on A is the set

I(A) =
{

(A, β) : A ⊆ A affinely independent, β ∈ relint(convA) ∩ (A \ A)
}
.

Two examples of circuits are the pairs (A, β) with A = {0, 6} and β = {2} (see Figure
1) and (A′, β′) with A′ = {(0, 0)T , (4, 2)T , (2, 4)T} and β′ = (1, 1)T (see Figure 2).

Thereby, the dual S-cone CS(A) can be represented as follows.
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Figure 1. Circuit (A, β)
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(4, 2)T

(0, 0)T

(2, 4)T

(1, 1)T

Figure 2. Circuit (A′, β′)

Proposition 2.4. [10, Theorem 3.5] Let ∅ 6= A ⊆ Rn be finite. Then a point v ∈ RA is
contained in CS(A)∗ if and only if v ≥ 0 and

ln(vβ) ≤
∑
α∈A

λα ln(vα) for every circuit (A, β) in I(A) and λ = λ(A, β).

2.3. Second-order formulations. Let [m] abbreviate the set {1, . . . ,m} and denote by
‖·‖ the Euclidean norm. A second-order cone program (SOCP) is an optimization problem
of the form

(2.11) min
{
cTx : ||Aix + bi||2 ≤ cTi b + di for all i ∈ [m]

}
with real symmetric matrices Ai, vectors bi, ci,di and a vector c. A subset of Rn is called
second-order representable if it can be represented as a projection of the feasible set of a
second-order program.

For a symmetric 2× 2-matrix, positive semidefiniteness can be formulated as a second-
order condition.

Lemma 2.5. (See, e.g., [16, §6.4.3.8], [21, Lemma 4.3].) A symmetric 2 × 2 matrix A =(
a b
b c

)
is positive semidefinite if and only if the second-order condition∣∣∣∣∣∣∣∣( 2b

a− c

)∣∣∣∣∣∣∣∣
2

≤ a+ c

is satisfied.

Let Sn+ be the subset of symmetric n × n-matrices which are positive semidefinite. By
[1], there exists some m ∈ N so that the cone of SONC polynomials CSONC(A) supported
on A can be written as the projection of the spectrahedron (S2

+)m ∩ H for some affine
space H.

3. A second-order representation for the cone of non-negative AG
functions and its dual

In order to provide a second-order representation for the S-cone and its dual, the main
task is to capture the cone of non-negative AG functions and its dual. For a comprehensive
collection of techniques for handling second-order cones, we refer to [2].
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Throughout the section, let (A, β) be a fixed circuit and rational barycentric coordinates
λ ∈ RA

+, which represent β as a convex combination of A. That is, β =
∑

α∈A λαα and∑
α∈A λα = 1. Let p ∈ N denote the smallest common denominator of the fractions λα for

α ∈ A, i.e., λα = pα
p

with pα ∈ N for all α ∈ A and p is minimal.

With the given circuit (A, β) ∈ I(A), we associate a set of dual circuit variables

(yk,i)k,i,(3.1)

where k ∈ [dlog2(p)e−1] and i ∈ [2dlog2(p)e−k]. The collection of these
∑dlog2(p)e−1

k=1 2dlog2(p)e−k

= 2dlog2(p)e− 2 variables is denoted as yA,β or shortly as y. Further, denote the restriction
of a vector v ∈ RA to the components of A ⊆ A by v|A.

Definition 3.1. A dual circuit matrix C∗A,β(v|A, vβ,y) is a block diagonal matrix consist-
ing of the blocks(

yk−1,2i−1 yk,i
yk,i yk−1,2i

)
for k ∈ {2, . . . , dlog2(p)e − 1} and i ∈ [2dlog2(p)e−k],(3.2)

(3.3)

(
ydlog2(p)e−1,1 vβ

vβ ydlog2(p)e−1,2

)
,

the singleton block (vβ), as well as 2dlog2(p)e−1 blocks of the form(
u y1,l
y1,l w

)
for l ∈ [2dlog2(p)e−1],(3.4)

where in each of these blocks u and w represent a variable of the set {vα : α ∈ A} ∪ {vβ}
such that altogether each vα appears pα times and vβ appears 2dlog2(p)e − p times.

In this definition, the exact order of appearances of the variables in {vα : α ∈ A}∪{vβ}
is not uniquely determined. However, since this order of appearances will not matter, we
will speak of the dual circuit matrix.

Remark 3.2. Each block of the type (3.4) contains two (not necessarily identical) vari-
ables from the set {vα : α ∈ A} ∪ {vβ}. Since

∑
α∈A λα = 1, we have

∑
α∈A pα = p and

hence the total number of occurrences of variables from the set {vα : α ∈ A} ∪ {vβ} in
the blocks of type (3.4) is ∑

α∈A

pα + (2dlog2(p)e − p) = 2dlog2(p)e,

which is twice the number of blocks of type (3.4).

Note that every yk,i only serves as an auxiliary variable to make the non-linear con-
straints ln(vβ) ≤

∑
α∈A λα ln(vα) of the dual S-cone description from Proposition 2.4

linear. In the end, we will only multiply those constraints to obtain the original ones. In
particular, factors vβ serve to cover cases where p is not a power of 2. For the purpose of
the second-order descriptions, it does not matter in which order the variables appear in
the blocks (3.4), because only the product of these blocks will be considered.
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The goal of this subsection is to show the following characterization of the cone of
non-negative even AG functions P even

A,β supported on the circuit (A, β). Here, positive
semidefiniteness of a symmetric matrix is denoted by � 0.

Theorem 3.3. The dual cone (P even
A,β )∗ of the cone of non-negative even AG functions

P even
A,β supported on the circuit (A, β) ∈ I(A) is the projection of the spectrahedron{

(v,y) ∈ RA × R2dlog2(p)e−2 : C∗A,β(v|A, vβ,y) < 0
}

(3.5)

on (v|A, vβ). (P even
A,β )∗ is second-order representable.

Here, the second-order representability follows immediately from the representation (3.5)
in connection with Lemma 2.5. Let us consider an example for the theorem.

Example 3.4. Let A = {0, 6},B = {2} and consider the circuit (A, β) with A = A and
β = 2 (compare Figure 1). We have p = 3, p0 = 2, p6 = 1 and y consists of the components

y1,1, y1,2.

A vector (v0, v2, v6) is contained in (P even
A,β )∗ if and only if v2 ≥ 0 and the three 2×2-matrices(

y1,1 v2
v2 y1,2

)
,

(
v0 y1,1
y1,1 v0

)
,

(
v6 y1,2
y1,2 v2

)
are positive semidefinite.

In [1], Averkov considered the size of the blocks in the SDP-representation of SONC-
polynomials but does not give a number or bound on the number of blocks. Here, for the
S-cone, we provide a bound on the number of inequalities of a second-order representation,
which also gives a bound on the number of 2× 2-blocks in a semidefinite representation.
The bound depends on the smallest common denominator of the barycentric coordinates
representing the inner exponent of a circuit as a convex combination of the outer ones.

Corollary 3.5. The matrix C∗A,β(v|A, vβ,y) consists of 2dlog2(p)e − 1 blocks of size 2 × 2
and one block of size 1× 1.

Proof. Counting the number of 2×2-blocks, there are
∑dlog2(p)e−1

k=2

(
2dlog2(p)e−k

)
= 2dlog2(p)e−1

−2 blocks of type (3.2), a single block (3.3) and 2dlog2(p)e−1 blocks of type (3.4). �

Remark 3.6. It is useful to record the set inequalities characterizing the positive semidef-
initeness of the matrix C∗A,β(v|A, vβ,y). Besides the non-negativity conditions for the vari-
ables,

v|A ≥ 0, vβ ≥ 0,(3.6)

and xk,i ≥ 0 for all k ∈ {2, . . . , dlog2(p)e − 1}, i ∈ [2dlog2(p)e − k],(3.7)
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these are the determinantal conditions arising from the positive semidefiniteness of the
matrices in (3.2), (3.3) and (3.4):

v2β ≤ ydlog2(p)e−1,1ydlog2(p)e−1,2,(3.8)

y2k,i ≤ yk−1,2i−1yk−1,2i for all k ∈ {2, . . . , dlog2(p)e − 1}, i ∈ [2dlog2(p)e−k](3.9)

and uw ≥ (y1,l)
2 for l ∈ [2dlog2(p)e−1](3.10)

for u,w ∈ {vα : α ∈ A} ∪ {vβ}, such that vα appears pα times for every α ∈ A and vβ
appears 2dlog2(p)e − p times.

The next lemma prepares one inclusion of Theorem 3.3.

Lemma 3.7. Let v ∈ RA,β such that there exists y ∈ R2dlog2(p)e−2 with C∗A,β(v|A, vβ,y) < 0.
Then v|A is non-negative and satisfies

vpβ ≤
∏
α∈A

vpαα .

Proof. By (3.6), we have v|A ≥ 0 and vβ ≥ 0. Moreover, (3.8) and successively apply-
ing (3.9) gives

vβ ≤
(
ydlog2(p)e−1,1 ydlog2(p)e−1,2

)1/2
≤

(
ydlog2(p)e−2,1 ydlog2(p)e−2,2

)1/4 (
ydlog2(p)e−2,3 ydlog2(p)e−2,4

)1/4
=

(
ydlog2(p)e−2,1 ydlog2(p)e−2,2 ydlog2(p)e−2,3 ydlog2(p)e−2,4

) 1

2dlog2(p)e−(dlog2(p)e−2)

≤ · · · ≤
((∏

α∈A
vpαα

)
· (vβ)2

dlog2(p)e−p
) 1

2dlog2(p)e .

This is equivalent to

(vβ)2
dlog2(p)e · (vβ)p−2

dlog2(p)e ≤
∏

α∈A
vpαα ,

which implies vpβ ≤
∏

α∈A v
pα
α . �

Now we prepare the converse inclusion of Theorem 3.3.

Lemma 3.8. For every v ∈ RA,β with v|A∪{β} ≥ 0 and vpβ ≤
∏

α∈A v
pα
α , there exists

y ∈ R2dlog2(p)e−2 such that C∗A,β(v|A, vβ,y) < 0.

Proof. Define y inductively by

y1,l =
√
uw for those u,w which occur in the block with y1,l,

yk,i =
√
yk−1,2i−1yk−1,2i for all k ∈ {2, . . . , dlog2(p)e − 1}, i ∈ [2dlog2(p)e−k].

It suffices to show that the inequalities (3.6)-(3.10) in Remark 3.6 are satisfied. The non-
negativity conditions (3.6) and (3.7) hold by assumption and by definition of y. The
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construction of y also implies that a subchain of the chain of inequalities considered in
the previous proof even holds with equality,(

ydlog2(p)e−1,1 ydlog2(p)e−1,2
)1/2

=
(
ydlog2(p)e−2,1 ydlog2(p)e−2,2

)1/4 (
ydlog2(p)e−2,3 ydlog2(p)e−2,4

)1/4
=

(
ydlog2(p)e−2,1 ydlog2(p)e−2,2 ydlog2(p)e−2,3 ydlog2(p)e−2,4

) 1

2dlog2(p)e−(dlog2(p)e−2)

= · · · =
((∏

α∈A
vpαα

)
· (vβ)2

dlog2(p)e−p
) 1

2dlog2(p)e .

By the assumption vpβ ≤
∏

α∈A v
pα
α , we obtain v2β ≤ ydlog2(p)e−1,1ydlog2(p)e−1,2, which shows

inequality (3.8). The remaining inequalities (3.9), (3.10) are satisfied with equality by
construction. �

Finally, we can conclude the proof of Theorem 3.3.

Proof of Theorem 3.3. Let p be defined as in Definition 3.1 and λ ∈ RA denote the
barycentric coordinates representing β as a convex combination of A, i.e., λα = pα

p
with

pα ∈ N for all α ∈ A. By (2.3) and Proposition 2.4, we have

(P even
A,β )∗ =

{
v ∈ RA,β : v|A∪{β} ≥ 0, ln(vβ) ≤

∑
α∈A

λα ln(vα)
}

=
{

v ∈ RA,β : v|A∪{β} ≥ 0, vpβ ≤
∏

α∈A
vpαα

}
.

Applying Lemmas 3.7 and 3.8, we obtain that C∗A,β(x, vβ) < 0 if and only if v ∈ P ∗A,β. �

Our derivation of the second-order representation of the dual cone (P even
A,β )∗ also suggests

a simple way to derive a second-order cone representation of the primal cone P even
A,β . For

the dual cone, Proposition 2.4 gives – besides non-negativity-constraints on vα for α ∈ A
and on vβ – the condition ln(vβ) ≤

∑
α∈A λα ln(vα) for every circuit (A, β) ∈ I(A). Those

conditions can – as done in the previous proof – be stated as

vpβ ≤
∏
α∈A

vpαα , where λα =
pα
p
.

The conditions for the primal cone can be reformulated similarly. Namely, by (2.6),
an even circuit function f with coefficient vector c is non-negative if and only if −cβ ≤∏

α∈A (cα/λα)λα , which we write as

(−cβ)p ≤
∏
α∈A

(
cα
λα

)pα
.

This motivates to carry over the definition of the dual circuit matrix to the primal case
as follows. Since cβ may be negative (in contrast to the dual case), we introduce the primal
circuit variables, or simply circuit variables,

(xβ, (xk,i)k,i),
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where k ∈ [dlog2(p)e] and i ∈ [2dlog2(p)e−k]. As in the dual case, we refer to these 1 +∑dlog2(p)e
k=1 2dlog2(p)e−k = 2dlog2(p)e variables as xA,β or shortly as x.

Definition 3.9 (Circuit matrix). The circuit matrix CA,β(c|A∪{β}, xβ,x) is the block di-
agonal matrix consisting of the blocks(

xk−1,2i−1 xk,i
xk,i xk−1,2i

)
for k ∈ {2, . . . , dlog2(p)e}, i ∈ [2dlog2(p)e−k],

the two singleton blocks(
xdlog2(p)e,1 −

(∏
α∈A(λα)λα

)
xβ
)
,
(
xβ + cβ

)
,(3.11)

as well as 2dlog2(p)e−1 blocks of the form(
u x1,l
x1,l w

)
for l ∈ [2dlog2(p)e−1],(3.12)

where u,w ∈ {cα : α ∈ A}∪ {
(∏

α∈A(λα)λα
)
xβ}, such that cα appears pα times for every

α ∈ A and
(∏

α∈A(λα)λα
)
xβ appears 2dlog2(p)e − p times.

Note that for a circuit (A, β), the product
(∏

α∈A(λα)λα
)

is always non-zero, because
β ∈ relint convA and A consists of affinely independent vectors.

In contrast to the dual cone, there is no sign constraint on cβ in the primal cone. If p
is not a power of 2, then xβ appears on the main diagonal of (3.12). In our coupling of
xβ with cβ, the constraint xβ + cβ ≥ 0 results in −cβ ≤ xβ and thus reflects these sign
considerations.

Note that the primal cone consists of circuit functions, whereas in our definition of
the dual cone, the elements are coefficient vectors. Therefore, the projection regarded in
Theorem 3.3 only delivers the coefficients of the circuit functions rather than the cone
itself.

Theorem 3.10. The set of coefficients of the cone P even
A,β of non-negative even circuit poly-

nomials supported on the circuit (A, β) coincides with the projection of the spectrahedron

P̂ even
A,β :=

{
(c,x) ∈ RA × R2dlog2(p)e : CA,β(c|A∪{β}, xβ,x) < 0, c|A\(A∪{β}) = 0

}
(3.13)

on (c|A, cβ). The cone P even
A,β is second-order representable.

The last equality constraint in (3.13) is redundant and can be omitted. We include it
here, because this formulation is needed in Section 4 for the description of the S-cone
supported on the full set A.

Proof. First, let (c,x) ∈ P̂ even
A,β . The positive semidefiniteness of the 2 × 2-blocks in

CA,β(c|A∪{β}, xβ,x) imply the inequalities

c|A ≥ 0 and (−xβ)p ·
(∏

α∈A
λα

λα
)
≤
∏

α∈A
cpαα .
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The two 1×1-blocks from (3.11) give the inequalities xdlog2(p)e,1 ≥
(∏

α∈A λ
λα
α

)
xβ and xβ ≥

−cβ. They imply −cβ
(∏

α∈A λ
λα
α

)
≤ xβ

(∏
α∈A λ

λα
α

)
≤ xdlog2(p)e,1. Hence, similar to Lemma

3.7,

xβ

(∏
α∈A

λλαα

)
≤ xdlog2(p)e,1 ≤

(
xdlog2(p)e−1,1 xdlog2(p)e−1,2

)1/2
≤

(
xdlog2(p)e−2,1 xdlog2(p)e−2,2

)1/4 (
xdlog2(p)e−2,3 xdlog2(p)e−2,4

)1/4
=

(
xdlog2(p)e−2,1 xdlog2(p)e−2,2 xdlog2(p)e−2,3 xdlog2(p)e−2,4

) 1

2dlog2(p)e−(dlog2(p)e−2)

≤ · · · ≤
((∏

α∈A
cpαα

)
· (xβ)2

dlog2(p)e−p
(∏

α∈A
λλαα

)2dlog2(p)e−p) 1

2dlog2(p)e

.

This is equivalent to

(xβ)2
dlog2(p)e ·

(∏
α∈A

λλαα

)2dlog2(p)e
· (xβ)p−2

dlog2(p)e ·
(∏

α∈A
λλαα

)p−2dlog2(p)e
≤
∏

α∈A
cpαα ,

which, together with the considerations before the chain of inequalities, yields (−cβ)p ≤∏
α∈A(cα/λα)pα and further c|A∪{β} ∈ P even

A,β .
For the converse inclusion, we remind the reader that λα > 0 for all α ∈ A. We

set xβ := xdlog2(p)e,1

(∏
α∈A

(
1
λα

)λα)
and, similar to the proof of Lemma 3.8, define x

inductively by

x1,l =
√
uw for those u,w which occur in the block with x1,l,

xk,i =
√
xk−1,2i−1xk−1,2i for all k ∈ {2, . . . , dlog2(p)e}, i ∈ [2dlog2(p)e−k].

Analogous to that proof, the construction of x gives CA,β(cA∪{β}, xβ,x) � 0.
Second-order representability is then an immediate consequence in view of Lemma 2.5.

�

Example 3.11. Let A = {0, 2}, B = {1} and consider the circuit (A, β) with A = A and
β = 1. Since

1 =
1

2
· 0 +

1

2
· 2,

we have p1 = p2 = 1 and p = 2. Hence, dlog2(p)e = log2(p) = 1, 2dlog2(p)e − p = 2− p = 0
as well as ∏

α∈A

λλαα =
1

2
and x =

(
x1
x1,1

)
.

A given vector (c0, c1, c2) is contained in PA,β if and only if

x1,1 −
1

2
x1 ≥ 0, x1 + c1 ≥ 0 and

(
c0 x1,1
x1,1 c2

)
� 0.

Similar to Lemma 3.5, we can determine the number of blocks.

Corollary 3.12. The matrix CA,β(c|A∪{β}, xβ,x) consists of 2dlog2(p)e − 1 blocks of size
2× 2 and two blocks of size 1× 1.
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x

y

(4, 0)T(0, 0)T

(0, 2)T
(1, 1)T (4, 2)T

Figure 3. The circuit is re-
duced, as (4, 2)T /∈ conv(A).

x

y

(4, 0)T(0, 0)T

(0, 2)T
(1, 1)T (2, 0)T

Figure 4. The circuit is not
reduced, as (2, 0)T ∈ conv(A).

4. A second-order representation of the S-cone and its dual

In Section 3, we obtained second-order representations of the subcones of non-negative
even circuit functions and their duals, under the condition that the barycentric coordinates
are rational. We now assume that A and B are rational and derive an explicit second-
order representation of the rational S-cone CS(A,B) and its dual. In the primal case,
those cones are obtained via projection and Minkowski sum, and in the dual case, they
arise from projection and intersection. First we consider the lifted cones for the dual case.

Taking all circuits (A, β) into account would induce a highly redundant representation.
To avoid those redundancies, we make use of the following characterization from [10] of
the extreme rays of the S-cone.

For finite and disjoint sets ∅ 6= A,B ⊆ Rn, the set of reduced circuits contained in A∪B
is the set

R(A,B) =
{

(A, β) : A ⊆ A affinely independent, β ∈ relint(convA) ∩ (B \ A),

A ∩ (conv(A)) \ (A ∪ {β}) = ∅
}
.

Less formally, this is the set of all circuits with outer exponents inA and inner exponents
in B without additional support points contained in the convex hull of the circuit.

Note that for A ⊆ Rn and B ⊆ Nn \ (2N)n disjoint and finite, the set R(A,A) is exactly
the set of even reduced circuits and the set R(A,B) the set of odd reduced circuits. The set
R(A,A∪ B) denotes the set of all reduced circuits (A, β) with A ⊆ A and β ∈ A ∪ B. A
circuit function supported on a reduced circuit in R(A,A∪B) has non-negative coefficients
corresponding to exponents in A and a possibly negative coefficient corresponding to a
single exponent in A ∪ B.

The question whether a circuit is reduced or not depends on the ground set A. For

example, the circuit (A, β) with A =

{(
0
0

)
,

(
4
0

)
,

(
0
2

)}
and β =

(
1
1

)
is reduced

for the ground set A = A ∪ {β} ∪
{(

4
2

)}
(compare Figure 3), but not reduced for

A = A ∪ {β} ∪
{(

2
0

)}
(compare Figure 4).

The following proposition is a direct consequence of Theorem 3.5(d) in [10].
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Proposition 4.1. Let ∅ 6= A ⊆ Rn and B ⊆ Nn \ (2N)n be finite and disjoint sets. Then

CS(A,B) =
∑

(A,β)∈R(A,A)

P even
A,β +

∑
(A,β)∈R(A,B)

P odd
A,β .

Using this decomposition theorem, we can exclude many circuits from our consideration.
Thus, the second-order program will be much smaller than the one considering all circuits.

In Section 3, we only considered even circuits. To use Lemma 2.1 and obtain the con-
ditions for odd circuits as well, we extend the dual circuit variables for odd circuits to

(yβ, (yk,i)k,i)

for k ∈ [2dlog2(p)e− 1] and i ∈ [2log2(p)−k]. We call them yA,β nevertheless for a fixed circuit
(A, β) ∈ R(A,B).

For the dual case, we consider the coordinates

yA,B =
{

(yA,β) : (A, β) ∈ R(A,A ∪ B)
}
,

which consist of
∑

(A,β)∈R(A,A∪B) 2dlog2(pA,β)e−1 components, where pA,β denotes the small-

est common denominator of the barycentric coordinates λA,β of the circuit (A, β) repre-
senting β as a convex combination of A.

For the primal case, we consider

xA,B =
{

(xA,β) : (A, β) ∈ R(A,A ∪ B)
}
,

which consist of
∑

(A,β)∈R(A,A∪B) 2dlog2(pA,β)e components.

Using Lemma 2.1, we can use our earlier characterizations of P even
A,β to obtain the fol-

lowing second-order characterization for P odd
A,β .

Corollary 4.2. Let (A, β) ∈ R(A,B) an odd reduced circuit with rational A ⊆ A ⊆ Qn

and β ∈ B.

(1) Let f be an odd AG function supported on (A, β) with coefficient vector c. f is

non-negative if and only if there exists x ∈ R2dlog2(p)e such that CA,β(c|A, xβ,x) < 0
and (

xβ cβ
cβ xβ

)
< 0.(4.1)

(2) A vector v ∈ RA,β is contained in
(
P odd
A,β

)∗
if and only if there exist y ∈ R2dlog2(p)e−2

and yβ ∈ R such that C∗A,β(v|A, yβ,y) < 0 and(
yβ vβ
vβ yβ

)
< 0.(4.2)

Note that, as a consequence of the application of Lemma 2.1, the second argument of
C∗A,β(v|A, yβ,y) is yβ now instead of vβ that we had in Theorem 3.3.



16 HELEN NAUMANN AND THORSTEN THEOBALD

Proof. (1) The semidefinite condition on the matrix (4.1) is equivalent to xβ ≥ 0 and |cβ| ≤
xβ. Hence, altogether we obtain

f ∈ P odd
A,β if and only if |cβ| ≤

∏
α∈A

(cα
λ

)λα
for barycentric coordinates λ ∈ RA

+ decomposing β as a convex combination of A. This is
exactly Proposition 2.2(b).

(2) If v ∈ (P odd
A,β )∗, then, in the notation of Theorem 2.9, there exists some u such

that (v, u) ∈ (P even
A,β )∗ and u ≥ |vβ|. In particular, u ≥ 0 is necessary for containment

in
(
P even
A,β

)∗
. The semidefinite constraints (4.2) are equivalent to yβ ≥ 0 and the latter

inequality u ≥ |vβ|, and the constraint C∗A,β(v|A, yβ,y) < 0 is equivalent to (v, yβ) ∈(
P even
A,β

)∗
by Theorem 3.3. �

For every odd reduced circuit (A, β) ∈ R(A,B), define the block diagonal matrix

Ĉ∗A,β(v|A∪{β}, yβ,y) consisting of the dual circuit matrix C∗A,β(v|A∪{β}, yβ,y) and (4.1) for
the dual cone. Considering all the reduced circuits, these lifting matrices define the lifted
cone

Ĉ∗(A,B) =
{

(v,yA,B) : Ĉ∗A,β(v|A∪{β}, yβ,y) < 0 for all (A, β) ∈ R(A,B),

C∗A,β(v|A, vβ,y) < 0 for all (A, β) ∈ R(A,A)
}
,

where the variable vector v lives in the space RA,B.
For a fixed odd reduced circuit (A, β) ∈ R(A,B), let

P̂ odd
A,β =

{
(c,xA,B) : ĈA,β(c|A∪{β}, xβ,x

A,β) < 0, c|A∪B\(A∪{β}) = 0
}
,

where ĈA,β(c|A∪{β}, xβ,x
A,β) is defined analogous to the dual case. We define the lifted

cone

Ĉ(A,B) =
∑

(A,β)∈R(A,A)

P̂ even
A,β +

∑
(A,β)∈R(A,B)

P̂ odd
A,β .

Here, for every (A, β) ∈ R(A,A), P̂ even
A,β is the set from Theorem 3.10.

Corollary 4.3. (1) The dual of the rational S-cone C∗S(A,B) is the projection on the

coordinates v ∈ RA,B of Ĉ∗(A,B).
(2) The primal rational S-cone CS(A,B) is the projection on the coordinates v ∈ RA,B

of Ĉ(A,B).

Applying this lifting to the second-order representations of Theorems 3.10 and 3.3
in standard form also gives second-order representations of CS(A,B) and C∗S(A,B) in
standard form.

Corollary 4.4 (Second-order representation of the dual rational S-cone). A vector v ∈
R(A,B) is contained in the rational S-cone (CS(A,B))∗ if and only if the circuit vector yA,B

satisfies for every reduced odd circuit (A, β) ∈ R(A,B)
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(1)

(
yA,βk−1,2i−1 yA,βk,i

yA,βk,i yA,βk−1,2i

)
� 0, 2 ≤ k ≤ dlog2(pA,β)e − 1 ∀i ∈ [2dlog2(pA,β)e−k],

(2)

(
yA,βdlog2(pA,β)e−1,1 yA,ββ

yA,ββ yA,βdlog2(pA,β)e−1,2

)
� 0,

(3)

(
u yA,β1,l

yA,β1,l w

)
� 0 for l ∈ [2dlog2(pA,β)e−1] and u,w ∈ {vα : α ∈ A} ∪ {yA,ββ }, such

that vα appears (pA,β)α times for each α ∈ A and yA,ββ appears 2dlog2(pA,β)e− (pA,β)α
times,

(4) ||vβ||2 ≤ yA,ββ ,

and for every reduced even circuit (A, β) ∈ R(A,A) the conditions of Theorem 3.3.

We need to write yA,β instead of just writing y in the previous corollary, since different
yA,β for every reduced circuit (A, β) may appear.

For the primal case, we have to consider every reduced circuit as well. Here, sums take
the role of the intersections from the dual case.

Corollary 4.5 (A second-order representation of the rational S-cone). A function f ∈
R[A,B] with coefficient vector c is contained in the rational S-cone CS(A,B) if and only
if there exists cA,β for (A, β) ∈ R(A,A∪B) with c =

∑
(A,β)∈R(A,A∪B)

cA,β and for the circuit

vector xA,B and for every (A, β) ∈ R(A,A ∪ B) the following inequalities hold.

(1)

(
xA,βk−1,2i−1 xA,βk,i

xA,βk,i xA,βk−1,2i

)
< 0, 2 ≤ k ≤ dlog2(pA,β)e, i ∈ [2dlog2(pA,β)e−k],

(2) xA,βdlog2(pA,β)e,1 −
(∏

α∈A λ
(pA,β)α
α

)
xA,ββ ≥ 0,

(3) xA,ββ + cβ ≥ 0,

(4) ||cβ||2 ≤ xA,ββ if (A, β) is an odd circuit,
(5) as well as in both the even and the odd case,(

u xA,β1,l

xA,β1,l w

)
< 0 for l ∈ [2dlog2(λA,β)e−1]

for u,w ∈ {cα : α ∈ A} ∪
{(∏

α∈A λ
(λA,β)α
α

)
xA,ββ

}
, such that cα appears (pA,β)α

times for every α ∈ A and
(∏

α∈A λ
(λA,β)α
α

)
xA,ββ appears 2dlog2(pA,β)e − pA,β times.

As already mentioned in Section 2, the SONC cone CSONC(A) and its dual are always
rational S-cones and thus occur as a special case of Corollaries 4.5 and 4.4.

Remark 4.6. The specific case of the primal SONC cone has also been studied in detail
by Magron and Wang [21]. Their approach is based on different methods. In particular, it
relies on mediated sets and intermediately uses sums of squares representations. However,
the resulting second-order programs are structurally similar. Notably, the dependence
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of the size of the second-order program on the parameter p in our derivation relates to
the dependency on the size of the rational mediated set in [21]. Note also that various
amendments are integrated into the approaches (such as the handling of denominators in
[21] and the use of extreme rays in our approach).

Acknowledgment. We thank an anonymous referee for some beneficial suggestions.

5. Conclusion and open question

We have provided second-order representations for primal and dual rational S-cones.
These statements remain valid also for non-rational sets A, as long as all the relevant
barycentric coordinates are still rational. It is an open question whether an S-cone and
its dual are also second-order representable in the general non-rational case.

Also, despite the use of the reduced circuits, the second-order representation of the
S-cone is still rather large. It remains the question whether smaller second-order repre-
sentations for the S-cone exist.
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