HOW TO REALIZE A GIVEN NUMBER OF TANGENTS
TO FOUR UNIT BALLS IN R3

THORSTEN THEOBALD

ABSTRACT. By a recent result, the number of common tangent lines to four unit
balls in R® is bounded by 12 unless the four centers are collinear. In the present
paper, we complement this result by showing that indeed every number of tan-
gents k € {0,...,12} can be established in real space. Our constructions combine
geometric and algebraic aspects of the tangent problem.

1. INTRODUCTION

Several applications in geometric modeling [3], visibility computations [14], and the
computation of smallest enclosing cylinders of a point set [12, 1] require to find the
common tangent lines to four given (not necessarily disjoint) unit balls in R3. In these
scenarios the tangent lines can be seen as finite characterization of certain extreme
situations. However, already the questions of finiteness (under what conditions do
there exist only finitely many common tangents?) and the number of solutions show
that the tangent problem is much more involved than its simple formulation suggests.
In fact, the question on the mazximum number of common tangent lines in the finite
case was first formulated by David Larman [6]. It was answered by the following
theorem in [7].

Proposition 1. Four unit balls in R® have at most 12 common tangent lines unless
their centers are located on the same line. Furthermore, there exists a configuration
with 12 tangents, i.e., the upper bound is tight.

In particular, the second part of this theorem positively answers a question of Karger
[5], who asked for a configuration of four points in R* with more than 8 (but finitely
many) unit cylinders of revolution whose surfaces pass through the four points. In
the present paper, we complement the result of Proposition 1 by asking:

For which numbers k& € {0,...,12} does there exist a configuration with ex-
actly k different common tangents in real space?

The motivation for studying this question comes from several quite different as-
pects. Firstly, any knowledge on the subset K C {0,...,12} of realizable numbers
gives important information for the mentioned applications. In order to find the com-
mon tangents we can either start from a system of polynomial equations, or we can
construct a univariate polynomial equation whose solutions encode the tangents. For
both approaches the numerical computation of the tangents may become instable,
especially for configurations of centers which are close to singular configurations (e.g.,
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configurations corresponding to reducible polynomials in an algebraic description). If
not all numbers k& € {0,...,12} can be established in real space this offers the pos-
sibility of strong and valuable consistency checks within a program. If, however, all
numbers can be realized then this would prove the non-existence of such a control
mechanism.

Secondly, the set of realizable numbers gives important insights into the algebraic,
geometric and combinatorial structure of a core problem in computational geometry.
Observe that the 4-ball problem can be seen as a purely geometric problem. In contrast
to this, the proof of Proposition 1 is mainly of algebraic nature and therefore does not
fit well together with additional purely geometric constraints (e.g., disjointness) on the
balls. Here, the difficulties in the geometric construction of concrete configurations
might be seen as an indication of the difficulty to establish a purely geometric proof.

Thirdly, exploring the realizable numbers allows to relate the 4-ball-problem (which
arose from recent applications) to some well-studied problems in classical and enu-
merative geometry (which mainly arose from their natural formulations). Concerning
one of the most famous problem from enumerative geometry, namely the number of 27
lines on a smooth cubic surface, the question of real solutions has already been studied
long time ago ([11, 13], see also [9], p. 188). In particular, for a cubic surface in R
only the numbers 3, 7, 15, and 27 can be established with real lines. Another famous
example in geometry is Apollonius’ problem which asks for the circles tangent to three
given circles. For this problem, there exist configurations with k£ € {0,1,...,6, 8} real
tangent circles but provably no configuration with 7 real tangent circles [8].

In the present paper, we show that the situation of the 4-ball-problem is different
from these situations. Namely, we prove:

Theorem 2. For any number k € {0,...,12} there exists a configuration of 4 unit
balls in R® which have exactly k different common tangents in R3.

For any k € {0, ...,12} we give geometric constructions leading to this number of
common tangents (of course, some values of k are trivial). It turns out that for some
constructions a purely geometric correctness proof seems to be out of reach. However,
in these cases the algebraic framework of [10, 7] helps to establish a rigorous proof.
This leads to nice and effective interactions between the geometry and the algebra of
the problem.

Before giving an outline of the paper, we remark that the cases with 0, 1, 2, or
oo tangents are trivial. For the unit balls centered in ¢; = (0,0,0), co = (2,0,0),
c3 = (4,0,0), ¢4 = (6,¢,0), the valuest =0,¢t =1, ¢t =2, and ¢t = 3 lead to o0, 2, 1,
and 0 tangents, respectively.

The constructions with 3,...,12 tangents are presented in the following order. In
Section 2, we analyze constructions with 3, 6, and 12 tangents where the centers
are the vertices of a regular tetrahedron. Based on this analysis, Section 3 deals with
constructions where three centers form an equilateral triangle; this gives constructions
with 3, 6, 9, and 7 tangents. Parallelogram configurations of the four centers are
discussed in Section 4; in particular, this yields constructions with 4, 5, and 8 tangents.
Finally, Section 5 gives constructions with 10 and 11 tangents. We close the paper
with a short discussion of the relation between the algebra and the geometry of the
tangent problem.
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2. THE CASE OF A REGULAR TETRAHEDRON

In [7], a specific configuration with exactly 12 common tangents is given, where the
four centers constitute the vertices of a regular tetrahedron. The following complete
classification of a regular tetrahedron configuration will be used within the construc-
tions in the next sections. Let cq, ..., cs be the centers of the four balls in Euclidean
space, and let B(c,r) denote the (closed) ball with center ¢ € R® and radius r. By
appropriate scaling, the four balls of radius r can be transformed into unit balls.

Lemma 3. Let ¢y, ...,cq be the vertices of a reqular tetrahedron with edge length 1.
(a) For1/2 < r < 3v/2/8 there exist exactly 12 common tangents to B(cy,r), ...,
B(eq, ).
(b) For v = 1/2 and r = 3v/2/8 there exist exactly 3 and 6 common tangents,
respectively.

(c) Forr < 1/2 orr > 3+/2/8 there do not exist any common tangents.

In order to prove this theorem, we use the following framework and results of [10, 7]
(see also [2]). Let ¢y = (0,0,0)7, and let ¢y, ca, c3 be linearly independent. Then the
four centers define a tetrahedron in R®. Further, let [ = {p + us : p € R} with
p,s € R s # 0, p L s, be a line tangent to the balls B(c;,7) for some radius
r > 0. Any valid direction vector s of such a tangent uniquely determines p and
(since ||p|| = r) also r. Setting M := (cy, co, c3)T, the corresponding equation is

1 (e1 x 5)?
(].) r = 2—82 .Z\J_1 (Cz X 3)2
(c3 x 5)?

Let A; denote the surface area of the face opposite to ¢;, i.e., A = ||ex X c3]|/2,

A2 = ||03 X Cl||/2, A3 = ||Cl X 62||/2, A4 = ||(Cl —62) X (02 —63)”/2, and let
F = (A3 + A]+ A3 — A}))2.

Further, let t = (t1,t,t3)T denote the coefficient vector expressing s in the basis c;,
o, c3. In particular, both s and ¢ are homogeneous vectors, i.e., multiplying s or ¢ by
a non-zero constant still gives the same direction. Then the direction vectors of the
lines equidistant to ¢y, ..., cq4 are given by the non-zero solutions to the homogeneous
cubic equation

(2) Altots(ty +t3) + Adtati(ts +t1) + Adtita(ts + to) + 2Ftitats = 0.

Based on this framework we prove Lemma 3.

Proof. Let ¢4 = (0,0,0)7, ¢ = (1,0,0)7, ¢, = (1/2,v/3/2,0)7, ¢35 =
(1/2,4/3/6,4/6/3)T be the vertices of a regular tetrahedron with edge length 1. In
particular, we have A = B = C = D = F. In this situation, the cubic (2) is reducible
and can be decomposed into

(3) (t1 +t2)(t2 +t3)(ts +t1) = 0.

By symmetry of this equation it suffices to consider the factor ¢; +t, = 0. This linear
equation can be parametrized by (t,ts,13)T = (1, =1, \)T, —oo < X < co. Here, the
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case A = oo refers to the homogeneous vector ¢ = (0,0,1)T. Using (1), 72()\) can be
expressed by
4 2
12()) = OA* + 1402 + 9\
32(A2 4+ 1)2
with nominator of degree 4 and strictly positive denominator. The function graph of
r(A) is depicted in Figure 1. Elementary calculus yields

AN -1
PO = 1)
with strictly positive denominator. Hence,
minr(A) = r(1)=r(-1) =1/2,
maxr(A) = 7(0) = )‘li)r_noor(/\) = Jlim r(\) = 3v/2/8 ~ 0.5303.

Note that the difference between minr(A\) and maxr(\) is rather small. The ex-
treme values and the strict monotony of r%(\) between these values show: for
1/2 < r < 34/2/8 there are four different solutions of A and hence four different
tangents. Considering all three factors of (3), there are exactly 12 different tangents
altogether.

In case r = 1/2 these 12 tangents collapse to 3 tangents. The direction vectors in
t-coordinates are (1,1, —1), (1,—1,1), and (—1,1, 1), respectively. In case r = 31/2/8
the 12 tangents collapse to 6 tangents; the direction vectors are the direction vectors
of the 6 tetrahedron edges. 0

Figure 2 shows a regular tetrahedron configuration with edge length 1 and radius
r = 53/100. A tangent to B(cy,r),...,B(cq4,7) can also be interpreted as axis of a
circular cylinder with radius r circumscribing the tetrahedron with vertices cy, .. ., c4.
Hence, the following statement concerning circumscribing cylinders can be deduced
immediately.

Corollary 4. Let T be a regular tetrahedron with edge length a > 0. Then the
smallest and largest circular cylinder circumscribing T have radius a/2 and 3v/2a/8,
respectively.

Remark. The lower bound a/2 in Corollary 4 can also be deduced from the fact
that a minimal circular cylinder containing a regular tetrahedron with edge length a
has radius a/2 [15].
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FIGURE 2. Construction of four (non-disjoint) balls with 12 common
tangents. Here, if the coordinates of ¢y,...,cs are those of Section 3
then there are exactly 6 tangents which touch all balls with positive
z-coordinate. These tangents are drawn in grey color.

(a) Projection on the zy-plane (b) Section through the zz-plane

FicGURE 3. Different views of the constructions with 3, 6, and 9 tan-
gents. The common radius of the balls is 0.53.

3. EQUILATERAL TRIANGLE CONSTRUCTIONS

In this section, we give configurations with 3, 6, 7, and 9 tangents. We start from
a regular tetrahedron configuration with edge length 1. However, in order to stress
symmetries, we now use the coordinates ¢; = (v/3/3,0,0)7, ¢; = (—+v/3/6,1/2,0)7,
cs = (—v3/6,-1/2,0)7, ¢4 = (0,0,1/6/3)T . Further, let 1/2 < r < 34/2/8. Fig-
ure 3(a) shows the parallel projection of this configuration on the zy-plane. Note that
c1,...,c3 form an equilateral triangle in the zy-plane with center in the origin. By
Lemma 3, the balls B(¢;, ), 1 <i < 4, have 12 common tangents.
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[ r [t [ #s |
0.51 ] 0.8463 | 0.8478
0.52 | 0.8760 | 0.9293
0.53 | 0.0028 | 1.0172

TABLE 1. Some values of the radius r and the resulting coordinates tg
and t3 leading to 9 and 3 common tangents, respectively.

In this configuration with 12 tangents, 6 of the tangents touch all four balls with pos-
itive z-coordinate, and 6 tangents touch exactly two balls with negative z-coordinates
(see Figure 2). We call these tangents the upper and the lower tangents, respectively.

Now observe what happens when replacing the z-coordinate in ¢4 by increasing
values t > v/6/3. The geometry of this process implies: the z-coordinate s3/||s|| of the
unit direction vector increases, until eventually — for some value t = tg — the tangent
touches two of the balls B(¢y, ), B(ca, ), B(cs,r) at the same point (see Figure 3(a)
for an illustration of the zy-projection). In the latter situation, the 6 upper tangents
collapse to 3 tangents. Figure 3 depicts the section of this constellation through the
zz-plane. One of these 3 remaining upper tangents touches B(cq,r) and B(cs,r) in
the same point, namely on the circle where the boundaries of B(ey,r) and B(es,r)
intersect; this circle of intersection is located in the hyperplane y = 0. By symmetry
of the equilateral triangle, the other 4 upper tangents collapse to 2 tangents in the
same way. Since for t = tg the lower tangents neither have vanished nor collapsed (see
below), the four balls have exactly 9 different common tangents.

In order to compute to, let ¢, = (—+/3/6,0,0)” and r, = 1/r2 — 1/4 denote the
center and the radius of the circle of intersection. Then, setting b = ||c; — ¢;1]| and
29 = ((v/3/2)2 — (r —r,)?)'/2, a straightforward geometric computation yields the two
points on the tangent pg, qo,

po = (—v3/6 —ry(r —1,)/b,0,7529/b)T, o= (V3/3—r(r—r,)/b,0,72/b)T.

Py is located on the circle of intersection, and gq is located on the boundary of B(cs, )
(see Figure 3(b)). Now the tangent condition for the ball B((0,0,t9)T,r) implies a
quadratic equation for t9. The larger one of the two solutions gives the desired value
of tg.

For values t > tg there exist at most 6 tangents. Analogous to the critical case with
9 tangents there exists some value t3 where the 6 lower tangents collapse to three
tangents. The dashed lines in Figure 3(b) show the section of this situation through
the xz-plane. The tangent in the zz-plane is given by the two points

P3 = (—\/5/6 +7y(r +1)/b,0, —rs23/b)T, g3 = (\/3/3 —r(r+475)/b,0,725/b)7,

where z3 = ((v/3/2)? — (r+7r,)?)"/2. For values t > t3 there does not exist any common
tangent to the four balls.

In particular, for any given r satisfying 1/2 < r < 34/2/8 the two values t3 and
tg can be computed exactly. However, since the resulting expressions are quite long,
we only give some numerical values to illustrate the relationships in size. Table 1
contains some values of r together with the resulting numerical values of ¢35 and t,.
Figure 4 illustrates the construction.
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1,2

FI1GURE 4. In this construction with 9 tangents, the remaining 3 upper
tangents are drawn in grey color. The tangent labeled by 1,2 stems
from the tangents labeled by 1 and 2 in Figure 2.

For a construction with 7 tangents, we start from the above configuration with 9
tangents. In this configuration, the remaining 3 upper tangents are critical in the
sense that for any additional increment of the z-value of ¢4 these tangents vanish.
Now we move the fourth center (0,0, t9)” along the line (0,0,%9)” + X(go —po), X € R.
For any A > 0, the line through py and gy is still tangent to the four balls. However,
the other two upper tangents from the situation A = 0 immediately vanish for A > 0.
Hence, there exists some ¢ > 0 such that any configuration with 0 < A < € leads to
exactly 7 common tangents. As an example, for r = 0.53 we can choose 0 < A < 1/10.

4. PARALLELOGRAM CONSTRUCTIONS

In order to give constructions with 4, 5, and 8 tangents, we start from the following
situation depending on some parameter a € R. Let ¢; = (—a — 1,—1,0)T, ¢, =
(—a+1,-1,0)T, c5 = (a — 1,1,07), ¢4 = (a + 1,1,0)T define a parallelogram in the
zy-plane, and let » = 1. Tt was shown in [7] that a parallelogram configuration gives
at most 8 common tangents.

As illustrated in Figure 5(a), the special case a = 0 yields a square. Obviously, these
four balls have two common tangents, namely the linesz =2z =0 and y = 2 = 0.

Now observe what happens for parameter values 0 < a < 1. For 0 < a < 1,
there exist exactly 5 tangents. As before, one of the tangents is the line defined by
y = z = 0. However, the tangent x = z = 0 from the case a = 0 splits for a > 0 into
four tangents. More precisely, for 0 < a < co there are two tangents parallel to the
zy-plane (see the dotted line in Figure 5(b)); these two tangents are symmetric with
respect to the zy-plane.

For 0 < a < 1, there exist two tangents passing through the origin. These two
tangents are symmetric with respect to the xz-plane, too. Here, we have to compute
the lines which pass through the origin and which are tangent to B(cs, 1) and B(cq, 1).
For 0 < a < 1, there exist two lines with this property. By symmetry, these lines are
also tangent to B(cy,1) and B(cy, 1). For a = 1, these two lines collapse to the line
y = z = 0. Obviously, if 0 < a < 1 then multiplying the y-coordinates of all four
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(a) a = 0 gives two common tangents. (b) a = 1 gives three common tangents.

F1GURE 5. Initial configurations for constructions with 5 and 8 tan-
gents. In the right figure the dotted line shows the two tangents with
z-coordinate /2 and —v/2, respectively.

centers by a factor u slightly larger than 1 yields a configuration with 4 instead of 5
common tangents.

Now we turn towards a construction with 8 tangents. For 0 < a < 1/2, we multiply
the y-coordinates of all four centers by some 0 < p < 1 such that ||e; — ¢3)| =
llc2 — c4]| = 2. Geometrically, the upper balls “roll” on top of the lower balls (see
Figure 6(a)). Elementary geometry yields = /1 — a2/2. Compared to the situation
a =0, for 0 < a < 1/2 the tangent y = z = 0 is split into 4 tangents in the same way
as in the transition from 2 to 5 tangents.

In particular, since 5% + 122 = 132, the choice a = 5/13 yields the rational co-
ordinates ¢; = (—18,-12,0)T/13, ¢, = (8,-12,0)T/13, ¢35 = (-8,-12,0)T/13,
cy = (18,—12,0)T/13. This configuration is depicted in Figure 6(b). For a = 1/2
the 4 tangents passing through the origin collapse to 2 tangents; hence, this yields
another configuration with 6 tangents.

Note that in the configuration with 8 tangents there are 4 points which belong to
more than one ball. However, the radius can be slightly decreased without altering
the number of common tangents. After rescaling these disjont balls we obtain a
configuration of 4 disjoint unit balls with 8 common tangents.

5. CONSTRUCTIONS WITH 10 AND 11 TANGENTS

In order to give constructions with 10 and 11 tangents, we start from the initial reg-
ular tetrahedron in Section 3 (see Figure 3(a)). However, for notational convenience,
we exchange the centers cs and c4. By Lemma 3, the radius r = 31/2/8 leads to 6
common tangents, whose directions are the directions of the six tetrahedron edges.
Figure 7 shows the projection of this situation in the direction of the edge cscy. Note
that the lower left disc in this figure refers to the balls B(cq, ) and B(cq, 7).

In this situation, we move the balls B(cs,r) and B(cq, ) slightly in opposite direc-
tions along the edge connecting their centers. This movement does not change the
position of the tangent with direction cocy. However, the movement will give some
“freedom” to any of the five other tangents, and hence any of these edges will split
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(a) Parallel projection on the zz-plane (b) Three-dimensional view

F1GURE 6. Construction with 8 tangents. In the right picture, tangents
which are parallel to the xy-plane are drawn in grey color.

Py
c3
FIGURE 7. Parallel projection of B(cy,r),...,B(cq,r) in the zz-plane

with » = 34/2/8. This is the projection along the edge with direction
cocq. The position of the common tangent in this direction is marked
by the cross.

into two edges. Intuitively, this situation leads to 11 tangents; by increasing the radius
slightly the tangent with direction cycs vanishes.

To formalize this idea, we consider the four centers ¢; = (1/3/3,0,0)7, ¢, =
(—v/3/6,1/2+a,0)", c3 = (0,0,/6/3)7, c4 = (—v/3/6,—1/2 —a,0)7 for some a > 0.
In order to apply the algebraic framework from Section 2, we translate all centers by
—cy; this translation moves ¢4 into the origin. Since the two faces cicacs and cqcsey
have the same area, and the two faces c;cocy and cyc3ey have the same area, we have
A; = A; and Ay = A4. Hence, the cubic (2) specializes to

(A3ty + Afts)(Af (tits + 15 + tats) + Adtits) = 0.

In particular, the cubic is reducible. Following the reducible case of [10, 7], the set of
all tangents to the four balls B(c;,r) for some radius r > 0 can be parametrized by
the line

(4) (tl,tg,tg)T = (A%,A%)\, —A%)T, —00 <A<
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1 X

Fi1GURE 8. In the parametrization of the linear factor, the square of
the radius function r(\) is a rational function in A.

and the conic section

(5) (i, ta,ts)T = (—AZ(N — 1) — A2, A2\, A2(X — DA, —00 < A < o0.

For a given radius, the linear function gives at most 4 common tangents and the
conic section gives at most 8 common tangents. Analogous to Section 2, for both
parametrizations the square of the radius function r(A) is a rational function in A.

A suitable choice of a which will have the desired properties and which leads to
rational values of A2, A3 is a = (1/112/100 — 1)/2. Then A? = 78/400, A% = 84/400,
and the parametrization of the linear factor yields

4 2
(1) = 169(1764A\* + 2492)\* 4 1521)
32(175A% 4+ 169)2
The graph of 7()) is shown in Figure 8. The derivative of r?()) is
© 8(169A2 4 175)3
with nominator of degree 3 and strictly positive denominator. In particular, r(0) =
31v/2/8 ~ 0.5303 is a local maximum, and

. ) 169 - 1764
Jim r(A) = Jim r(A) =/ 55775 > 054

Consequently, there exist exactly three different values of A\ with r(\) = 31/2/8; and
for slightly larger radii  than 3v/2/8, say 71 < r < ry with ry := 3v/2/8, ry := 0.54,
we only obtain two such values of A.

It remains to show: for a given radius r € [ry; 73], the parametrization of the conic
section contains exactly 8 values of A with r(\) = r. Figure 9 illustrates the function
graph of 7()). By (5), the A-values —co, —A2/A%? + 1, 0, 1, oo represent the t-vectors
(0,0,)T, (0,1, -1)T, (1,0,0)T, (1,—1,0)", and (0,0, 1), respectively. For all these A-
values we obtain r(\) = 34/1378/206 > 0.54. These 5 values decompose the real axis
into 4 intervals. If any of these intervals contains some value A with r(\) < 31/2/8,
then for a given r € [ry;rs], there are at least 8 solutions with 7(\) = r. We can
choose, e.g., the following values of A\: —3/10, —5/100, 2/10, and 2. For any of these
4 values we obtain r(A) < 0.52 which implies the desired result. Since there cannot
be more than 8 solutions, there are exactly 8 solutions.

Finally, it can be easily checked that for Ay > A; the line (4) and the conic sec-
tion (5) do not have real intersection points; so the tangents stemming from the line




HOW TO REALIZE A GIVEN NUMBER OF TANGENTS TO FOUR, UNIT BALLS IN R? 11

r)h
0.54
Ny\/
0.50
@y 1 (12 e 1 @Rp 2 X

FIGURE 9. r()) for the parametrization of the conic section. For better
illustration of the region near A = 0 the A-axis is scaled quadratically.

and the tangents stemming from the conic section are indeed different. This completes
the proof of the constructions with 10 and 11 tangents.

6. DISCUSSION

We have shown that for any k& € {0,...,12} there exists a configuration with 4 unit
balls and exactly k different common tangents. Although we have motivated every
construction by purely geometric arguments, the rigorous proofs of some constructions
(in particular 10, 11 tangents) heavily depend on the algebraic description of the
problem. We interpret this observation as an indication why a purely geometric proof
of Proposition 1 should be quite hard to establish.

Furthermore, observe that all constructions with more than 8 tangents are based
on non-disjoint ball configurations. In fact, we conjecture that in case of disjoint
balls the maximum number of common tangents is bounded by 8. The difficulty in
treating this problem is the same one as above. Namely, it is difficult to exploit the
condition of disjointness in the algebraic setting; but we do not know how to handle
these situations from a purely geometric point of view.

Finally, the following open problem plays an important role in the interplay between
the algebra and the geometry of the 4-ball problem. For some famous problems in
enumerative geometry (flexes and bitangents of plane curves, lines on hypersurfaces,
conics tangent to five given conics), the resulting Galois groups in the generic case
are non-solvable [4], i.e., the solutions of these problems cannot be expressed in terms
of roots. This situation reflects the difficulty of purely geometric methods to handle
these problems. It is an open problem to characterize the (non-)solvability of the
Galois groups for the 4-ball problem.
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