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THORSTEN THEOBALD

Abstrat. By a reent result, the number of ommon tangent lines to four unit

balls in R

3

is bounded by 12 unless the four enters are ollinear. In the present

paper, we omplement this result by showing that indeed every number of tan-

gents k 2 f0; : : : ; 12g an be established in real spae. Our onstrutions ombine

geometri and algebrai aspets of the tangent problem.

1. Introdution

Several appliations in geometri modeling [3℄, visibility omputations [14℄, and the

omputation of smallest enlosing ylinders of a point set [12, 1℄ require to �nd the

ommon tangent lines to four given (not neessarily disjoint) unit balls in R

3

. In these

senarios the tangent lines an be seen as �nite haraterization of ertain extreme

situations. However, already the questions of �niteness (under what onditions do

there exist only �nitely many ommon tangents?) and the number of solutions show

that the tangent problem is muh more involved than its simple formulation suggests.

In fat, the question on the maximum number of ommon tangent lines in the �nite

ase was �rst formulated by David Larman [6℄. It was answered by the following

theorem in [7℄.

Proposition 1. Four unit balls in R

3

have at most 12 ommon tangent lines unless

their enters are loated on the same line. Furthermore, there exists a on�guration

with 12 tangents, i.e., the upper bound is tight.

In partiular, the seond part of this theorem positively answers a question of Karger

[5℄, who asked for a on�guration of four points in R

3

with more than 8 (but �nitely

many) unit ylinders of revolution whose surfaes pass through the four points. In

the present paper, we omplement the result of Proposition 1 by asking:

For whih numbers k 2 f0; : : : ; 12g does there exist a on�guration with ex-

atly k di�erent ommon tangents in real spae?

The motivation for studying this question omes from several quite di�erent as-

pets. Firstly, any knowledge on the subset K � f0; : : : ; 12g of realizable numbers

gives important information for the mentioned appliations. In order to �nd the om-

mon tangents we an either start from a system of polynomial equations, or we an

onstrut a univariate polynomial equation whose solutions enode the tangents. For

both approahes the numerial omputation of the tangents may beome instable,

espeially for on�gurations of enters whih are lose to singular on�gurations (e.g.,
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on�gurations orresponding to reduible polynomials in an algebrai desription). If

not all numbers k 2 f0; : : : ; 12g an be established in real spae this o�ers the pos-

sibility of strong and valuable onsisteny heks within a program. If, however, all

numbers an be realized then this would prove the non-existene of suh a ontrol

mehanism.

Seondly, the set of realizable numbers gives important insights into the algebrai,

geometri and ombinatorial struture of a ore problem in omputational geometry.

Observe that the 4-ball problem an be seen as a purely geometri problem. In ontrast

to this, the proof of Proposition 1 is mainly of algebrai nature and therefore does not

�t well together with additional purely geometri onstraints (e.g., disjointness) on the

balls. Here, the diÆulties in the geometri onstrution of onrete on�gurations

might be seen as an indiation of the diÆulty to establish a purely geometri proof.

Thirdly, exploring the realizable numbers allows to relate the 4-ball-problem (whih

arose from reent appliations) to some well-studied problems in lassial and enu-

merative geometry (whih mainly arose from their natural formulations). Conerning

one of the most famous problem from enumerative geometry, namely the number of 27

lines on a smooth ubi surfae, the question of real solutions has already been studied

long time ago ([11, 13℄, see also [9℄, p. 188). In partiular, for a ubi surfae in R

3

only the numbers 3, 7, 15, and 27 an be established with real lines. Another famous

example in geometry is Apollonius' problem whih asks for the irles tangent to three

given irles. For this problem, there exist on�gurations with k 2 f0; 1; : : : ; 6; 8g real

tangent irles but provably no on�guration with 7 real tangent irles [8℄.

In the present paper, we show that the situation of the 4-ball-problem is di�erent

from these situations. Namely, we prove:

Theorem 2. For any number k 2 f0; : : : ; 12g there exists a on�guration of 4 unit

balls in R

3

whih have exatly k di�erent ommon tangents in R

3

.

For any k 2 f0; : : : ; 12g we give geometri onstrutions leading to this number of

ommon tangents (of ourse, some values of k are trivial). It turns out that for some

onstrutions a purely geometri orretness proof seems to be out of reah. However,

in these ases the algebrai framework of [10, 7℄ helps to establish a rigorous proof.

This leads to nie and e�etive interations between the geometry and the algebra of

the problem.

Before giving an outline of the paper, we remark that the ases with 0, 1, 2, or

1 tangents are trivial. For the unit balls entered in 

1

= (0; 0; 0), 

2

= (2; 0; 0),



3

= (4; 0; 0), 

4

= (6; t; 0), the values t = 0, t = 1, t = 2, and t = 3 lead to 1, 2, 1,

and 0 tangents, respetively.

The onstrutions with 3; : : : ; 12 tangents are presented in the following order. In

Setion 2, we analyze onstrutions with 3, 6, and 12 tangents where the enters

are the verties of a regular tetrahedron. Based on this analysis, Setion 3 deals with

onstrutions where three enters form an equilateral triangle; this gives onstrutions

with 3, 6, 9, and 7 tangents. Parallelogram on�gurations of the four enters are

disussed in Setion 4; in partiular, this yields onstrutions with 4, 5, and 8 tangents.

Finally, Setion 5 gives onstrutions with 10 and 11 tangents. We lose the paper

with a short disussion of the relation between the algebra and the geometry of the

tangent problem.
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2. The Case of a Regular Tetrahedron

In [7℄, a spei� on�guration with exatly 12 ommon tangents is given, where the

four enters onstitute the verties of a regular tetrahedron. The following omplete

lassi�ation of a regular tetrahedron on�guration will be used within the onstru-

tions in the next setions. Let 

1

; : : : ; 

4

be the enters of the four balls in Eulidean

spae, and let B(; r) denote the (losed) ball with enter  2 R

3

and radius r. By

appropriate saling, the four balls of radius r an be transformed into unit balls.

Lemma 3. Let 

1

; : : : ; 

4

be the verties of a regular tetrahedron with edge length 1.

(a) For 1=2 < r < 3

p

2=8 there exist exatly 12 ommon tangents to B(

1

; r), . . . ,

B(

4

; r).

(b) For r = 1=2 and r = 3

p

2=8 there exist exatly 3 and 6 ommon tangents,

respetively.

() For r < 1=2 or r > 3

p

2=8 there do not exist any ommon tangents.

In order to prove this theorem, we use the following framework and results of [10, 7℄

(see also [2℄). Let 

4

= (0; 0; 0)

T

, and let 

1

, 

2

, 

3

be linearly independent. Then the

four enters de�ne a tetrahedron in R

3

. Further, let l = fp + �s : � 2 Rg with

p; s 2 R

3

, s 6= 0, p ? s, be a line tangent to the balls B(

i

; r) for some radius

r > 0. Any valid diretion vetor s of suh a tangent uniquely determines p and

(sine jjpjj = r) also r. Setting M := (

1

; 

2

; 

3

)

T

, the orresponding equation is

(1) r =

1

2s

2
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�

(

1
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Let A

i

denote the surfae area of the fae opposite to 

i

, i.e., A

1

= jj

2

� 

3

jj=2,

A

2

= jj

3

� 

1

jj=2, A

3

= jj

1

� 

2

jj=2, A

4

= jj(

1

� 

2

)� (

2

� 

3

)jj=2, and let

F := (A

2

1

+ A

2

2

+ A

2

3

� A

2

4

)=2:

Further, let t = (t

1

; t

2

; t

3

)

T

denote the oeÆient vetor expressing s in the basis 

1

,



2

, 

3

. In partiular, both s and t are homogeneous vetors, i.e., multiplying s or t by

a non-zero onstant still gives the same diretion. Then the diretion vetors of the

lines equidistant to 

1

; : : : ; 

4

are given by the non-zero solutions to the homogeneous

ubi equation

(2) A

2

1

t

2

t

3

(t

2

+ t

3

) + A

2

2

t

3

t

1

(t

3

+ t

1

) + A

2

3

t

1

t

2

(t

1

+ t

2

) + 2Ft

1

t

2

t

3

= 0:

Based on this framework we prove Lemma 3.

Proof. Let 

4

= (0; 0; 0)

T

, 

1

= (1; 0; 0)

T

, 

2

= (1=2;

p

3=2; 0)

T

, 

3

=

(1=2;

p

3=6;

p

6=3)

T

be the verties of a regular tetrahedron with edge length 1. In

partiular, we have A = B = C = D = F . In this situation, the ubi (2) is reduible

and an be deomposed into

(3) (t

1

+ t

2

)(t

2

+ t

3

)(t

3

+ t

1

) = 0:

By symmetry of this equation it suÆes to onsider the fator t

1

+ t

2

= 0. This linear

equation an be parametrized by (t

1

; t

2

; t

3

)

T

= (1;�1; �)

T

, �1 < � � 1. Here, the
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�

r(�)

1

3

p

2=8

0:5

Figure 1. The funtion r(�) =

�

9�

4

+14�

2

+9

32(�

2

+1)

2

�

1=2

ase � = 1 refers to the homogeneous vetor t = (0; 0; 1)

T

. Using (1), r

2

(�) an be

expressed by

r

2

(�) =

9�

4

+ 14�

2

+ 9�

32(�

2

+ 1)

2

with nominator of degree 4 and stritly positive denominator. The funtion graph of

r(�) is depited in Figure 1. Elementary alulus yields

�

r

2

(�)

�

0

=

�(�

2

� 1)

4(�

2

+ 1)

with stritly positive denominator. Hene,

min r(�) = r(1) = r(�1) = 1=2;

max r(�) = r(0) = lim

�!�1

r(�) = lim

�!1

r(�) = 3

p

2=8 � 0:5303:

Note that the di�erene between min r(�) and max r(�) is rather small. The ex-

treme values and the strit monotony of r

2

(�) between these values show: for

1=2 < r < 3

p

2=8 there are four di�erent solutions of � and hene four di�erent

tangents. Considering all three fators of (3), there are exatly 12 di�erent tangents

altogether.

In ase r = 1=2 these 12 tangents ollapse to 3 tangents. The diretion vetors in

t-oordinates are (1; 1;�1), (1;�1; 1), and (�1; 1; 1), respetively. In ase r = 3

p

2=8

the 12 tangents ollapse to 6 tangents; the diretion vetors are the diretion vetors

of the 6 tetrahedron edges. �

Figure 2 shows a regular tetrahedron on�guration with edge length 1 and radius

r = 53=100. A tangent to B(

1

; r); : : : ; B(

4

; r) an also be interpreted as axis of a

irular ylinder with radius r irumsribing the tetrahedron with verties 

1

; : : : ; 

4

.

Hene, the following statement onerning irumsribing ylinders an be dedued

immediately.

Corollary 4. Let T be a regular tetrahedron with edge length a > 0. Then the

smallest and largest irular ylinder irumsribing T have radius a=2 and 3

p

2a=8,

respetively.

Remark. The lower bound a=2 in Corollary 4 an also be dedued from the fat

that a minimal irular ylinder ontaining a regular tetrahedron with edge length a

has radius a=2 [15℄.
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1

2

Figure 2. Constrution of four (non-disjoint) balls with 12 ommon

tangents. Here, if the oordinates of 

1

; : : : ; 

4

are those of Setion 3

then there are exatly 6 tangents whih touh all balls with positive

z-oordinate. These tangents are drawn in grey olor.

x
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p

6=3
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t = 0:90
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1

p

3

q

3

p

9

q

9

t

9

t

3

(a) Projetion on the xy-plane (b) Setion through the xz-plane

Figure 3. Di�erent views of the onstrutions with 3, 6, and 9 tan-

gents. The ommon radius of the balls is 0.53.

3. Equilateral Triangle Construtions

In this setion, we give on�gurations with 3, 6, 7, and 9 tangents. We start from

a regular tetrahedron on�guration with edge length 1. However, in order to stress

symmetries, we now use the oordinates 

1

= (

p

3=3; 0; 0)

T

, 

2

= (�

p

3=6; 1=2; 0)

T

,



3

= (�

p

3=6;�1=2; 0)

T

, 

4

= (0; 0;

p

6=3)

T

. Further, let 1=2 < r < 3

p

2=8. Fig-

ure 3(a) shows the parallel projetion of this on�guration on the xy-plane. Note that



1

; : : : ; 

3

form an equilateral triangle in the xy-plane with enter in the origin. By

Lemma 3, the balls B(

i

; r), 1 � i � 4, have 12 ommon tangents.
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r t

9

t

3

0:51 0:8463 0:8478

0:52 0:8760 0:9293

0:53 0:9028 1:0172

Table 1. Some values of the radius r and the resulting oordinates t

9

and t

3

leading to 9 and 3 ommon tangents, respetively.

In this on�guration with 12 tangents, 6 of the tangents touh all four balls with pos-

itive z-oordinate, and 6 tangents touh exatly two balls with negative z-oordinates

(see Figure 2). We all these tangents the upper and the lower tangents, respetively.

Now observe what happens when replaing the z-oordinate in 

4

by inreasing

values t >

p

6=3. The geometry of this proess implies: the z-oordinate s

3

=jjsjj of the

unit diretion vetor inreases, until eventually { for some value t = t

9

{ the tangent

touhes two of the balls B(

1

; r), B(

2

; r), B(

3

; r) at the same point (see Figure 3(a)

for an illustration of the xy-projetion). In the latter situation, the 6 upper tangents

ollapse to 3 tangents. Figure 3 depits the setion of this onstellation through the

xz-plane. One of these 3 remaining upper tangents touhes B(

2

; r) and B(

3

; r) in

the same point, namely on the irle where the boundaries of B(

2

; r) and B(

3

; r)

interset; this irle of intersetion is loated in the hyperplane y = 0. By symmetry

of the equilateral triangle, the other 4 upper tangents ollapse to 2 tangents in the

same way. Sine for t = t

9

the lower tangents neither have vanished nor ollapsed (see

below), the four balls have exatly 9 di�erent ommon tangents.

In order to ompute t

9

, let 

s

= (�

p

3=6; 0; 0)

T

and r

s

=

p

r

2

� 1=4 denote the

enter and the radius of the irle of intersetion. Then, setting b = jj

s

� 

1

jj and

z

9

= ((

p

3=2)

2

� (r� r

s

)

2

)

1=2

, a straightforward geometri omputation yields the two

points on the tangent p

9

, q

9

,

p

9

= (�

p

3=6� r

s

(r � r

s

)=b; 0; r

s

z

9

=b)

T

; q

9

= (

p

3=3� r(r � r

s

)=b; 0; rz

9

=b)

T

:

p

9

is loated on the irle of intersetion, and q

9

is loated on the boundary of B(

3

; r)

(see Figure 3(b)). Now the tangent ondition for the ball B((0; 0; t

9

)

T

; r) implies a

quadrati equation for t

9

. The larger one of the two solutions gives the desired value

of t

9

.

For values t > t

9

there exist at most 6 tangents. Analogous to the ritial ase with

9 tangents there exists some value t

3

where the 6 lower tangents ollapse to three

tangents. The dashed lines in Figure 3(b) show the setion of this situation through

the xz-plane. The tangent in the xz-plane is given by the two points

p

3

= (�

p

3=6 + r

s

(r + r

s

)=b; 0;�r

s

z

3

=b)

T

; q

3

= (

p

3=3� r(r + r

s

)=b; 0; rz

3

=b)

T

;

where z

3

= ((

p

3=2)

2

�(r+r

s

)

2

)

1=2

. For values t > t

3

there does not exist any ommon

tangent to the four balls.

In partiular, for any given r satisfying 1=2 < r < 3

p

2=8 the two values t

3

and

t

9

an be omputed exatly. However, sine the resulting expressions are quite long,

we only give some numerial values to illustrate the relationships in size. Table 1

ontains some values of r together with the resulting numerial values of t

3

and t

9

.

Figure 4 illustrates the onstrution.
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7

1,2

Figure 4. In this onstrution with 9 tangents, the remaining 3 upper

tangents are drawn in grey olor. The tangent labeled by 1,2 stems

from the tangents labeled by 1 and 2 in Figure 2.

For a onstrution with 7 tangents, we start from the above on�guration with 9

tangents. In this on�guration, the remaining 3 upper tangents are ritial in the

sense that for any additional inrement of the z-value of 

4

these tangents vanish.

Now we move the fourth enter (0; 0; t

9

)

T

along the line (0; 0; t

9

)

T

+�(q

9

� p

9

), � 2 R.

For any � > 0, the line through p

9

and q

9

is still tangent to the four balls. However,

the other two upper tangents from the situation � = 0 immediately vanish for � > 0.

Hene, there exists some � > 0 suh that any on�guration with 0 < � < � leads to

exatly 7 ommon tangents. As an example, for r = 0:53 we an hoose 0 < � < 1=10.

4. Parallelogram Construtions

In order to give onstrutions with 4, 5, and 8 tangents, we start from the following

situation depending on some parameter a 2 R. Let 

1

= (�a � 1;�1; 0)

T

, 

2

=

(�a + 1;�1; 0)

T

, 

3

= (a � 1; 1; 0

T

), 

4

= (a + 1; 1; 0)

T

de�ne a parallelogram in the

xy-plane, and let r = 1. It was shown in [7℄ that a parallelogram on�guration gives

at most 8 ommon tangents.

As illustrated in Figure 5(a), the speial ase a = 0 yields a square. Obviously, these

four balls have two ommon tangents, namely the lines x = z = 0 and y = z = 0.

Now observe what happens for parameter values 0 < a < 1. For 0 < a < 1,

there exist exatly 5 tangents. As before, one of the tangents is the line de�ned by

y = z = 0. However, the tangent x = z = 0 from the ase a = 0 splits for a > 0 into

four tangents. More preisely, for 0 < a < 1 there are two tangents parallel to the

xy-plane (see the dotted line in Figure 5(b)); these two tangents are symmetri with

respet to the xy-plane.

For 0 < a < 1, there exist two tangents passing through the origin. These two

tangents are symmetri with respet to the xz-plane, too. Here, we have to ompute

the lines whih pass through the origin and whih are tangent to B(

3

; 1) and B(

4

; 1).

For 0 < a < 1, there exist two lines with this property. By symmetry, these lines are

also tangent to B(

1

; 1) and B(

2

; 1). For a = 1, these two lines ollapse to the line

y = z = 0. Obviously, if 0 < a < 1 then multiplying the y-oordinates of all four
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1



1
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4

x
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1

1



1



2



3



4

(a) a = 0 gives two ommon tangents. (b) a = 1 gives three ommon tangents.

Figure 5. Initial on�gurations for onstrutions with 5 and 8 tan-

gents. In the right �gure the dotted line shows the two tangents with

z-oordinate

p

2 and �

p

2, respetively.

enters by a fator � slightly larger than 1 yields a on�guration with 4 instead of 5

ommon tangents.

Now we turn towards a onstrution with 8 tangents. For 0 < a � 1=2, we multiply

the y-oordinates of all four enters by some 0 < � � 1 suh that jj

1

� 

3

jj =

jj

2

� 

4

jj = 2. Geometrially, the upper balls \roll" on top of the lower balls (see

Figure 6(a)). Elementary geometry yields � =

p

1� a

2

=2. Compared to the situation

a = 0, for 0 < a < 1=2 the tangent y = z = 0 is split into 4 tangents in the same way

as in the transition from 2 to 5 tangents.

In partiular, sine 5

2

+ 12

2

= 13

2

, the hoie a = 5=13 yields the rational o-

ordinates 

1

= (�18;�12; 0)

T

=13, 

2

= (8;�12; 0)

T

=13, 

3

= (�8;�12; 0)

T

=13,



4

= (18;�12; 0)

T

=13. This on�guration is depited in Figure 6(b). For a = 1=2

the 4 tangents passing through the origin ollapse to 2 tangents; hene, this yields

another on�guration with 6 tangents.

Note that in the on�guration with 8 tangents there are 4 points whih belong to

more than one ball. However, the radius an be slightly dereased without altering

the number of ommon tangents. After resaling these disjont balls we obtain a

on�guration of 4 disjoint unit balls with 8 ommon tangents.

5. Construtions with 10 and 11 tangents

In order to give onstrutions with 10 and 11 tangents, we start from the initial reg-

ular tetrahedron in Setion 3 (see Figure 3(a)). However, for notational onveniene,

we exhange the enters 

3

and 

4

. By Lemma 3, the radius r = 3

p

2=8 leads to 6

ommon tangents, whose diretions are the diretions of the six tetrahedron edges.

Figure 7 shows the projetion of this situation in the diretion of the edge 

2



4

. Note

that the lower left dis in this �gure refers to the balls B(

2

; r) and B(

4

; r).

In this situation, we move the balls B(

2

; r) and B(

4

; r) slightly in opposite dire-

tions along the edge onneting their enters. This movement does not hange the

position of the tangent with diretion 

2



4

. However, the movement will give some

\freedom" to any of the �ve other tangents, and hene any of these edges will split



HOW TO REALIZE A GIVEN NUMBER OF TANGENTS TO FOUR UNIT BALLS IN R

3

9

x
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1

1



1
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3



4

(a) Parallel projetion on the xz-plane (b) Three-dimensional view

Figure 6. Constrution with 8 tangents. In the right piture, tangents

whih are parallel to the xy-plane are drawn in grey olor.

x

z



1



2

; 

4



3

Figure 7. Parallel projetion of B(

1

; r); : : : ; B(

4

; r) in the xz-plane

with r = 3

p

2=8. This is the projetion along the edge with diretion



2



4

. The position of the ommon tangent in this diretion is marked

by the ross.

into two edges. Intuitively, this situation leads to 11 tangents; by inreasing the radius

slightly the tangent with diretion 

2



3

vanishes.

To formalize this idea, we onsider the four enters 

1

= (

p

3=3; 0; 0)

T

, 

2

=

(�

p

3=6; 1=2+ a; 0)

T

, 

3

= (0; 0;

p

6=3)

T

, 

4

= (�

p

3=6;�1=2� a; 0)

T

for some a > 0.

In order to apply the algebrai framework from Setion 2, we translate all enters by

�

4

; this translation moves 

4

into the origin. Sine the two faes 

1



2



3

and 

1



3



4

have the same area, and the two faes 

1



2



4

and 

2



3



4

have the same area, we have

A

1

= A

3

and A

2

= A

4

. Hene, the ubi (2) speializes to

(A

2

2

t

1

+ A

2

1

t

3

)(A

2

1

(t

1

t

2

+ t

2

2

+ t

2

t

3

) + A

2

2

t

1

t

3

) = 0:

In partiular, the ubi is reduible. Following the reduible ase of [10, 7℄, the set of

all tangents to the four balls B(

i

; r) for some radius r > 0 an be parametrized by

the line

(4) (t

1

; t

2

; t

3

)

T

= (A

2

1

; A

2

2

�;�A

2

1

)

T

; �1 < � � 1
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�

r(�)

1

0:50

3

p

2=8

0:54

Figure 8. In the parametrization of the linear fator, the square of

the radius funtion r(�) is a rational funtion in �.

and the oni setion

(5) (t

1

; t

2

; t

3

)

T

= (�A

2

1

(�� 1)� A

2

2

; A

2

2

�;A

2

1

(�� 1)�)

T

; �1 < � � 1:

For a given radius, the linear funtion gives at most 4 ommon tangents and the

oni setion gives at most 8 ommon tangents. Analogous to Setion 2, for both

parametrizations the square of the radius funtion r(�) is a rational funtion in �.

A suitable hoie of a whih will have the desired properties and whih leads to

rational values of A

2

1

, A

2

2

is a = (

p

112=100� 1)=2. Then A

2

1

= 78=400, A

2

2

= 84=400,

and the parametrization of the linear fator yields

r

2

(�) =

169(1764�

4

+ 2492�

2

+ 1521)

32(175�

2

+ 169)

2

:

The graph of r(�) is shown in Figure 8. The derivative of r

2

(�) is

�

r

2

(�)

�

0

=

1183�(11438�

2

� 7943)

8(169�

2

+ 175)

3

with nominator of degree 3 and stritly positive denominator. In partiular, r(0) =

3

p

2=8 � 0:5303 is a loal maximum, and

lim

�!�1

r(�) = lim

�!1

r(�) =

r

169 � 1764

32 � 175

2

> 0:54:

Consequently, there exist exatly three di�erent values of � with r(�) = 3

p

2=8; and

for slightly larger radii r than 3

p

2=8, say r

1

< r � r

2

with r

1

:= 3

p

2=8, r

2

:= 0:54,

we only obtain two suh values of �.

It remains to show: for a given radius r 2 [r

1

; r

2

℄, the parametrization of the oni

setion ontains exatly 8 values of � with r(�) = r. Figure 9 illustrates the funtion

graph of r(�). By (5), the �-values �1, �A

2

2

=A

2

1

+ 1, 0, 1, 1 represent the t-vetors

(0; 0; 1)

T

, (0; 1;�1)

T

, (1; 0; 0)

T

, (1;�1; 0)

T

, and (0; 0; 1)

T

, respetively. For all these �-

values we obtain r(�) = 3

p

1378=206 > 0:54. These 5 values deompose the real axis

into 4 intervals. If any of these intervals ontains some value � with r(�) < 3

p

2=8,

then for a given r 2 [r

1

; r

2

℄, there are at least 8 solutions with r(�) = r. We an

hoose, e.g., the following values of �: �3=10, �5=100, 2=10, and 2. For any of these

4 values we obtain r(�) < 0:52 whih implies the desired result. Sine there annot

be more than 8 solutions, there are exatly 8 solutions.

Finally, it an be easily heked that for A

2

> A

1

the line (4) and the oni se-

tion (5) do not have real intersetion points; so the tangents stemming from the line
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�

r(�)

(1=2)

2

1

(3=2)

2

2

2

�(1=2)

2

�1

�(3=2)

2

�2

2

0:50

3

p

2=8

0:54

Figure 9. r(�) for the parametrization of the oni setion. For better

illustration of the region near � = 0 the �-axis is saled quadratially.

and the tangents stemming from the oni setion are indeed di�erent. This ompletes

the proof of the onstrutions with 10 and 11 tangents.

6. Disussion

We have shown that for any k 2 f0; : : : ; 12g there exists a on�guration with 4 unit

balls and exatly k di�erent ommon tangents. Although we have motivated every

onstrution by purely geometri arguments, the rigorous proofs of some onstrutions

(in partiular 10, 11 tangents) heavily depend on the algebrai desription of the

problem. We interpret this observation as an indiation why a purely geometri proof

of Proposition 1 should be quite hard to establish.

Furthermore, observe that all onstrutions with more than 8 tangents are based

on non-disjoint ball on�gurations. In fat, we onjeture that in ase of disjoint

balls the maximum number of ommon tangents is bounded by 8. The diÆulty in

treating this problem is the same one as above. Namely, it is diÆult to exploit the

ondition of disjointness in the algebrai setting; but we do not know how to handle

these situations from a purely geometri point of view.

Finally, the following open problem plays an important role in the interplay between

the algebra and the geometry of the 4-ball problem. For some famous problems in

enumerative geometry (exes and bitangents of plane urves, lines on hypersurfaes,

onis tangent to �ve given onis), the resulting Galois groups in the generi ase

are non-solvable [4℄, i.e., the solutions of these problems annot be expressed in terms

of roots. This situation reets the diÆulty of purely geometri methods to handle

these problems. It is an open problem to haraterize the (non-)solvability of the

Galois groups for the 4-ball problem.
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