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Abstra
t. By a re
ent result, the number of 
ommon tangent lines to four unit

balls in R

3

is bounded by 12 unless the four 
enters are 
ollinear. In the present

paper, we 
omplement this result by showing that indeed every number of tan-

gents k 2 f0; : : : ; 12g 
an be established in real spa
e. Our 
onstru
tions 
ombine

geometri
 and algebrai
 aspe
ts of the tangent problem.

1. Introdu
tion

Several appli
ations in geometri
 modeling [3℄, visibility 
omputations [14℄, and the


omputation of smallest en
losing 
ylinders of a point set [12, 1℄ require to �nd the


ommon tangent lines to four given (not ne
essarily disjoint) unit balls in R

3

. In these

s
enarios the tangent lines 
an be seen as �nite 
hara
terization of 
ertain extreme

situations. However, already the questions of �niteness (under what 
onditions do

there exist only �nitely many 
ommon tangents?) and the number of solutions show

that the tangent problem is mu
h more involved than its simple formulation suggests.

In fa
t, the question on the maximum number of 
ommon tangent lines in the �nite


ase was �rst formulated by David Larman [6℄. It was answered by the following

theorem in [7℄.

Proposition 1. Four unit balls in R

3

have at most 12 
ommon tangent lines unless

their 
enters are lo
ated on the same line. Furthermore, there exists a 
on�guration

with 12 tangents, i.e., the upper bound is tight.

In parti
ular, the se
ond part of this theorem positively answers a question of Karger

[5℄, who asked for a 
on�guration of four points in R

3

with more than 8 (but �nitely

many) unit 
ylinders of revolution whose surfa
es pass through the four points. In

the present paper, we 
omplement the result of Proposition 1 by asking:

For whi
h numbers k 2 f0; : : : ; 12g does there exist a 
on�guration with ex-

a
tly k di�erent 
ommon tangents in real spa
e?

The motivation for studying this question 
omes from several quite di�erent as-

pe
ts. Firstly, any knowledge on the subset K � f0; : : : ; 12g of realizable numbers

gives important information for the mentioned appli
ations. In order to �nd the 
om-

mon tangents we 
an either start from a system of polynomial equations, or we 
an


onstru
t a univariate polynomial equation whose solutions en
ode the tangents. For

both approa
hes the numeri
al 
omputation of the tangents may be
ome instable,

espe
ially for 
on�gurations of 
enters whi
h are 
lose to singular 
on�gurations (e.g.,
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on�gurations 
orresponding to redu
ible polynomials in an algebrai
 des
ription). If

not all numbers k 2 f0; : : : ; 12g 
an be established in real spa
e this o�ers the pos-

sibility of strong and valuable 
onsisten
y 
he
ks within a program. If, however, all

numbers 
an be realized then this would prove the non-existen
e of su
h a 
ontrol

me
hanism.

Se
ondly, the set of realizable numbers gives important insights into the algebrai
,

geometri
 and 
ombinatorial stru
ture of a 
ore problem in 
omputational geometry.

Observe that the 4-ball problem 
an be seen as a purely geometri
 problem. In 
ontrast

to this, the proof of Proposition 1 is mainly of algebrai
 nature and therefore does not

�t well together with additional purely geometri
 
onstraints (e.g., disjointness) on the

balls. Here, the diÆ
ulties in the geometri
 
onstru
tion of 
on
rete 
on�gurations

might be seen as an indi
ation of the diÆ
ulty to establish a purely geometri
 proof.

Thirdly, exploring the realizable numbers allows to relate the 4-ball-problem (whi
h

arose from re
ent appli
ations) to some well-studied problems in 
lassi
al and enu-

merative geometry (whi
h mainly arose from their natural formulations). Con
erning

one of the most famous problem from enumerative geometry, namely the number of 27

lines on a smooth 
ubi
 surfa
e, the question of real solutions has already been studied

long time ago ([11, 13℄, see also [9℄, p. 188). In parti
ular, for a 
ubi
 surfa
e in R

3

only the numbers 3, 7, 15, and 27 
an be established with real lines. Another famous

example in geometry is Apollonius' problem whi
h asks for the 
ir
les tangent to three

given 
ir
les. For this problem, there exist 
on�gurations with k 2 f0; 1; : : : ; 6; 8g real

tangent 
ir
les but provably no 
on�guration with 7 real tangent 
ir
les [8℄.

In the present paper, we show that the situation of the 4-ball-problem is di�erent

from these situations. Namely, we prove:

Theorem 2. For any number k 2 f0; : : : ; 12g there exists a 
on�guration of 4 unit

balls in R

3

whi
h have exa
tly k di�erent 
ommon tangents in R

3

.

For any k 2 f0; : : : ; 12g we give geometri
 
onstru
tions leading to this number of


ommon tangents (of 
ourse, some values of k are trivial). It turns out that for some


onstru
tions a purely geometri
 
orre
tness proof seems to be out of rea
h. However,

in these 
ases the algebrai
 framework of [10, 7℄ helps to establish a rigorous proof.

This leads to ni
e and e�e
tive intera
tions between the geometry and the algebra of

the problem.

Before giving an outline of the paper, we remark that the 
ases with 0, 1, 2, or

1 tangents are trivial. For the unit balls 
entered in 


1

= (0; 0; 0), 


2

= (2; 0; 0),




3

= (4; 0; 0), 


4

= (6; t; 0), the values t = 0, t = 1, t = 2, and t = 3 lead to 1, 2, 1,

and 0 tangents, respe
tively.

The 
onstru
tions with 3; : : : ; 12 tangents are presented in the following order. In

Se
tion 2, we analyze 
onstru
tions with 3, 6, and 12 tangents where the 
enters

are the verti
es of a regular tetrahedron. Based on this analysis, Se
tion 3 deals with


onstru
tions where three 
enters form an equilateral triangle; this gives 
onstru
tions

with 3, 6, 9, and 7 tangents. Parallelogram 
on�gurations of the four 
enters are

dis
ussed in Se
tion 4; in parti
ular, this yields 
onstru
tions with 4, 5, and 8 tangents.

Finally, Se
tion 5 gives 
onstru
tions with 10 and 11 tangents. We 
lose the paper

with a short dis
ussion of the relation between the algebra and the geometry of the

tangent problem.
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2. The Case of a Regular Tetrahedron

In [7℄, a spe
i�
 
on�guration with exa
tly 12 
ommon tangents is given, where the

four 
enters 
onstitute the verti
es of a regular tetrahedron. The following 
omplete


lassi�
ation of a regular tetrahedron 
on�guration will be used within the 
onstru
-

tions in the next se
tions. Let 


1

; : : : ; 


4

be the 
enters of the four balls in Eu
lidean

spa
e, and let B(
; r) denote the (
losed) ball with 
enter 
 2 R

3

and radius r. By

appropriate s
aling, the four balls of radius r 
an be transformed into unit balls.

Lemma 3. Let 


1

; : : : ; 


4

be the verti
es of a regular tetrahedron with edge length 1.

(a) For 1=2 < r < 3

p

2=8 there exist exa
tly 12 
ommon tangents to B(


1

; r), . . . ,

B(


4

; r).

(b) For r = 1=2 and r = 3

p

2=8 there exist exa
tly 3 and 6 
ommon tangents,

respe
tively.

(
) For r < 1=2 or r > 3

p

2=8 there do not exist any 
ommon tangents.

In order to prove this theorem, we use the following framework and results of [10, 7℄

(see also [2℄). Let 


4

= (0; 0; 0)

T

, and let 


1

, 


2

, 


3

be linearly independent. Then the

four 
enters de�ne a tetrahedron in R

3

. Further, let l = fp + �s : � 2 Rg with

p; s 2 R

3

, s 6= 0, p ? s, be a line tangent to the balls B(


i

; r) for some radius

r > 0. Any valid dire
tion ve
tor s of su
h a tangent uniquely determines p and

(sin
e jjpjj = r) also r. Setting M := (


1

; 


2

; 


3

)

T

, the 
orresponding equation is

(1) r =

1

2s

2



















M

�1

0

�

(


1

� s)

2

(


2

� s)

2

(


3

� s)

2

1

A



















:

Let A

i

denote the surfa
e area of the fa
e opposite to 


i

, i.e., A

1

= jj


2

� 


3

jj=2,

A

2

= jj


3

� 


1

jj=2, A

3

= jj


1

� 


2

jj=2, A

4

= jj(


1

� 


2

)� (


2

� 


3

)jj=2, and let

F := (A

2

1

+ A

2

2

+ A

2

3

� A

2

4

)=2:

Further, let t = (t

1

; t

2

; t

3

)

T

denote the 
oeÆ
ient ve
tor expressing s in the basis 


1

,




2

, 


3

. In parti
ular, both s and t are homogeneous ve
tors, i.e., multiplying s or t by

a non-zero 
onstant still gives the same dire
tion. Then the dire
tion ve
tors of the

lines equidistant to 


1

; : : : ; 


4

are given by the non-zero solutions to the homogeneous


ubi
 equation

(2) A

2

1

t

2

t

3

(t

2

+ t

3

) + A

2

2

t

3

t

1

(t

3

+ t

1

) + A

2

3

t

1

t

2

(t

1

+ t

2

) + 2Ft

1

t

2

t

3

= 0:

Based on this framework we prove Lemma 3.

Proof. Let 


4

= (0; 0; 0)

T

, 


1

= (1; 0; 0)

T

, 


2

= (1=2;

p

3=2; 0)

T

, 


3

=

(1=2;

p

3=6;

p

6=3)

T

be the verti
es of a regular tetrahedron with edge length 1. In

parti
ular, we have A = B = C = D = F . In this situation, the 
ubi
 (2) is redu
ible

and 
an be de
omposed into

(3) (t

1

+ t

2

)(t

2

+ t

3

)(t

3

+ t

1

) = 0:

By symmetry of this equation it suÆ
es to 
onsider the fa
tor t

1

+ t

2

= 0. This linear

equation 
an be parametrized by (t

1

; t

2

; t

3

)

T

= (1;�1; �)

T

, �1 < � � 1. Here, the
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�

r(�)

1

3

p

2=8

0:5

Figure 1. The fun
tion r(�) =

�

9�

4

+14�

2

+9

32(�

2

+1)

2

�

1=2


ase � = 1 refers to the homogeneous ve
tor t = (0; 0; 1)

T

. Using (1), r

2

(�) 
an be

expressed by

r

2

(�) =

9�

4

+ 14�

2

+ 9�

32(�

2

+ 1)

2

with nominator of degree 4 and stri
tly positive denominator. The fun
tion graph of

r(�) is depi
ted in Figure 1. Elementary 
al
ulus yields

�

r

2

(�)

�

0

=

�(�

2

� 1)

4(�

2

+ 1)

with stri
tly positive denominator. Hen
e,

min r(�) = r(1) = r(�1) = 1=2;

max r(�) = r(0) = lim

�!�1

r(�) = lim

�!1

r(�) = 3

p

2=8 � 0:5303:

Note that the di�eren
e between min r(�) and max r(�) is rather small. The ex-

treme values and the stri
t monotony of r

2

(�) between these values show: for

1=2 < r < 3

p

2=8 there are four di�erent solutions of � and hen
e four di�erent

tangents. Considering all three fa
tors of (3), there are exa
tly 12 di�erent tangents

altogether.

In 
ase r = 1=2 these 12 tangents 
ollapse to 3 tangents. The dire
tion ve
tors in

t-
oordinates are (1; 1;�1), (1;�1; 1), and (�1; 1; 1), respe
tively. In 
ase r = 3

p

2=8

the 12 tangents 
ollapse to 6 tangents; the dire
tion ve
tors are the dire
tion ve
tors

of the 6 tetrahedron edges. �

Figure 2 shows a regular tetrahedron 
on�guration with edge length 1 and radius

r = 53=100. A tangent to B(


1

; r); : : : ; B(


4

; r) 
an also be interpreted as axis of a


ir
ular 
ylinder with radius r 
ir
ums
ribing the tetrahedron with verti
es 


1

; : : : ; 


4

.

Hen
e, the following statement 
on
erning 
ir
ums
ribing 
ylinders 
an be dedu
ed

immediately.

Corollary 4. Let T be a regular tetrahedron with edge length a > 0. Then the

smallest and largest 
ir
ular 
ylinder 
ir
ums
ribing T have radius a=2 and 3

p

2a=8,

respe
tively.

Remark. The lower bound a=2 in Corollary 4 
an also be dedu
ed from the fa
t

that a minimal 
ir
ular 
ylinder 
ontaining a regular tetrahedron with edge length a

has radius a=2 [15℄.
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5

1

2

Figure 2. Constru
tion of four (non-disjoint) balls with 12 
ommon

tangents. Here, if the 
oordinates of 


1

; : : : ; 


4

are those of Se
tion 3

then there are exa
tly 6 tangents whi
h tou
h all balls with positive

z-
oordinate. These tangents are drawn in grey 
olor.

x

y




1




2




3




4

t =

p

6=3

t = 0:84

t = 0:87

t = 0:90

x

z




s




1

p

3

q

3

p

9

q

9

t

9

t

3

(a) Proje
tion on the xy-plane (b) Se
tion through the xz-plane

Figure 3. Di�erent views of the 
onstru
tions with 3, 6, and 9 tan-

gents. The 
ommon radius of the balls is 0.53.

3. Equilateral Triangle Constru
tions

In this se
tion, we give 
on�gurations with 3, 6, 7, and 9 tangents. We start from

a regular tetrahedron 
on�guration with edge length 1. However, in order to stress

symmetries, we now use the 
oordinates 


1

= (

p

3=3; 0; 0)

T

, 


2

= (�

p

3=6; 1=2; 0)

T

,




3

= (�

p

3=6;�1=2; 0)

T

, 


4

= (0; 0;

p

6=3)

T

. Further, let 1=2 < r < 3

p

2=8. Fig-

ure 3(a) shows the parallel proje
tion of this 
on�guration on the xy-plane. Note that




1

; : : : ; 


3

form an equilateral triangle in the xy-plane with 
enter in the origin. By

Lemma 3, the balls B(


i

; r), 1 � i � 4, have 12 
ommon tangents.
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r t

9

t

3

0:51 0:8463 0:8478

0:52 0:8760 0:9293

0:53 0:9028 1:0172

Table 1. Some values of the radius r and the resulting 
oordinates t

9

and t

3

leading to 9 and 3 
ommon tangents, respe
tively.

In this 
on�guration with 12 tangents, 6 of the tangents tou
h all four balls with pos-

itive z-
oordinate, and 6 tangents tou
h exa
tly two balls with negative z-
oordinates

(see Figure 2). We 
all these tangents the upper and the lower tangents, respe
tively.

Now observe what happens when repla
ing the z-
oordinate in 


4

by in
reasing

values t >

p

6=3. The geometry of this pro
ess implies: the z-
oordinate s

3

=jjsjj of the

unit dire
tion ve
tor in
reases, until eventually { for some value t = t

9

{ the tangent

tou
hes two of the balls B(


1

; r), B(


2

; r), B(


3

; r) at the same point (see Figure 3(a)

for an illustration of the xy-proje
tion). In the latter situation, the 6 upper tangents


ollapse to 3 tangents. Figure 3 depi
ts the se
tion of this 
onstellation through the

xz-plane. One of these 3 remaining upper tangents tou
hes B(


2

; r) and B(


3

; r) in

the same point, namely on the 
ir
le where the boundaries of B(


2

; r) and B(


3

; r)

interse
t; this 
ir
le of interse
tion is lo
ated in the hyperplane y = 0. By symmetry

of the equilateral triangle, the other 4 upper tangents 
ollapse to 2 tangents in the

same way. Sin
e for t = t

9

the lower tangents neither have vanished nor 
ollapsed (see

below), the four balls have exa
tly 9 di�erent 
ommon tangents.

In order to 
ompute t

9

, let 


s

= (�

p

3=6; 0; 0)

T

and r

s

=

p

r

2

� 1=4 denote the


enter and the radius of the 
ir
le of interse
tion. Then, setting b = jj


s

� 


1

jj and

z

9

= ((

p

3=2)

2

� (r� r

s

)

2

)

1=2

, a straightforward geometri
 
omputation yields the two

points on the tangent p

9

, q

9

,

p

9

= (�

p

3=6� r

s

(r � r

s

)=b; 0; r

s

z

9

=b)

T

; q

9

= (

p

3=3� r(r � r

s

)=b; 0; rz

9

=b)

T

:

p

9

is lo
ated on the 
ir
le of interse
tion, and q

9

is lo
ated on the boundary of B(


3

; r)

(see Figure 3(b)). Now the tangent 
ondition for the ball B((0; 0; t

9

)

T

; r) implies a

quadrati
 equation for t

9

. The larger one of the two solutions gives the desired value

of t

9

.

For values t > t

9

there exist at most 6 tangents. Analogous to the 
riti
al 
ase with

9 tangents there exists some value t

3

where the 6 lower tangents 
ollapse to three

tangents. The dashed lines in Figure 3(b) show the se
tion of this situation through

the xz-plane. The tangent in the xz-plane is given by the two points

p

3

= (�

p

3=6 + r

s

(r + r

s

)=b; 0;�r

s

z

3

=b)

T

; q

3

= (

p

3=3� r(r + r

s

)=b; 0; rz

3

=b)

T

;

where z

3

= ((

p

3=2)

2

�(r+r

s

)

2

)

1=2

. For values t > t

3

there does not exist any 
ommon

tangent to the four balls.

In parti
ular, for any given r satisfying 1=2 < r < 3

p

2=8 the two values t

3

and

t

9


an be 
omputed exa
tly. However, sin
e the resulting expressions are quite long,

we only give some numeri
al values to illustrate the relationships in size. Table 1


ontains some values of r together with the resulting numeri
al values of t

3

and t

9

.

Figure 4 illustrates the 
onstru
tion.
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7

1,2

Figure 4. In this 
onstru
tion with 9 tangents, the remaining 3 upper

tangents are drawn in grey 
olor. The tangent labeled by 1,2 stems

from the tangents labeled by 1 and 2 in Figure 2.

For a 
onstru
tion with 7 tangents, we start from the above 
on�guration with 9

tangents. In this 
on�guration, the remaining 3 upper tangents are 
riti
al in the

sense that for any additional in
rement of the z-value of 


4

these tangents vanish.

Now we move the fourth 
enter (0; 0; t

9

)

T

along the line (0; 0; t

9

)

T

+�(q

9

� p

9

), � 2 R.

For any � > 0, the line through p

9

and q

9

is still tangent to the four balls. However,

the other two upper tangents from the situation � = 0 immediately vanish for � > 0.

Hen
e, there exists some � > 0 su
h that any 
on�guration with 0 < � < � leads to

exa
tly 7 
ommon tangents. As an example, for r = 0:53 we 
an 
hoose 0 < � < 1=10.

4. Parallelogram Constru
tions

In order to give 
onstru
tions with 4, 5, and 8 tangents, we start from the following

situation depending on some parameter a 2 R. Let 


1

= (�a � 1;�1; 0)

T

, 


2

=

(�a + 1;�1; 0)

T

, 


3

= (a � 1; 1; 0

T

), 


4

= (a + 1; 1; 0)

T

de�ne a parallelogram in the

xy-plane, and let r = 1. It was shown in [7℄ that a parallelogram 
on�guration gives

at most 8 
ommon tangents.

As illustrated in Figure 5(a), the spe
ial 
ase a = 0 yields a square. Obviously, these

four balls have two 
ommon tangents, namely the lines x = z = 0 and y = z = 0.

Now observe what happens for parameter values 0 < a < 1. For 0 < a < 1,

there exist exa
tly 5 tangents. As before, one of the tangents is the line de�ned by

y = z = 0. However, the tangent x = z = 0 from the 
ase a = 0 splits for a > 0 into

four tangents. More pre
isely, for 0 < a < 1 there are two tangents parallel to the

xy-plane (see the dotted line in Figure 5(b)); these two tangents are symmetri
 with

respe
t to the xy-plane.

For 0 < a < 1, there exist two tangents passing through the origin. These two

tangents are symmetri
 with respe
t to the xz-plane, too. Here, we have to 
ompute

the lines whi
h pass through the origin and whi
h are tangent to B(


3

; 1) and B(


4

; 1).

For 0 < a < 1, there exist two lines with this property. By symmetry, these lines are

also tangent to B(


1

; 1) and B(


2

; 1). For a = 1, these two lines 
ollapse to the line

y = z = 0. Obviously, if 0 < a < 1 then multiplying the y-
oordinates of all four
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x

y

1

1




1




2




3




4

x

y

1

1




1




2




3




4

(a) a = 0 gives two 
ommon tangents. (b) a = 1 gives three 
ommon tangents.

Figure 5. Initial 
on�gurations for 
onstru
tions with 5 and 8 tan-

gents. In the right �gure the dotted line shows the two tangents with

z-
oordinate

p

2 and �

p

2, respe
tively.


enters by a fa
tor � slightly larger than 1 yields a 
on�guration with 4 instead of 5


ommon tangents.

Now we turn towards a 
onstru
tion with 8 tangents. For 0 < a � 1=2, we multiply

the y-
oordinates of all four 
enters by some 0 < � � 1 su
h that jj


1

� 


3

jj =

jj


2

� 


4

jj = 2. Geometri
ally, the upper balls \roll" on top of the lower balls (see

Figure 6(a)). Elementary geometry yields � =

p

1� a

2

=2. Compared to the situation

a = 0, for 0 < a < 1=2 the tangent y = z = 0 is split into 4 tangents in the same way

as in the transition from 2 to 5 tangents.

In parti
ular, sin
e 5

2

+ 12

2

= 13

2

, the 
hoi
e a = 5=13 yields the rational 
o-

ordinates 


1

= (�18;�12; 0)

T

=13, 


2

= (8;�12; 0)

T

=13, 


3

= (�8;�12; 0)

T

=13,




4

= (18;�12; 0)

T

=13. This 
on�guration is depi
ted in Figure 6(b). For a = 1=2

the 4 tangents passing through the origin 
ollapse to 2 tangents; hen
e, this yields

another 
on�guration with 6 tangents.

Note that in the 
on�guration with 8 tangents there are 4 points whi
h belong to

more than one ball. However, the radius 
an be slightly de
reased without altering

the number of 
ommon tangents. After res
aling these disjont balls we obtain a


on�guration of 4 disjoint unit balls with 8 
ommon tangents.

5. Constru
tions with 10 and 11 tangents

In order to give 
onstru
tions with 10 and 11 tangents, we start from the initial reg-

ular tetrahedron in Se
tion 3 (see Figure 3(a)). However, for notational 
onvenien
e,

we ex
hange the 
enters 


3

and 


4

. By Lemma 3, the radius r = 3

p

2=8 leads to 6


ommon tangents, whose dire
tions are the dire
tions of the six tetrahedron edges.

Figure 7 shows the proje
tion of this situation in the dire
tion of the edge 


2




4

. Note

that the lower left dis
 in this �gure refers to the balls B(


2

; r) and B(


4

; r).

In this situation, we move the balls B(


2

; r) and B(


4

; r) slightly in opposite dire
-

tions along the edge 
onne
ting their 
enters. This movement does not 
hange the

position of the tangent with dire
tion 


2




4

. However, the movement will give some

\freedom" to any of the �ve other tangents, and hen
e any of these edges will split
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x

y

1

1




1




2




3




4

(a) Parallel proje
tion on the xz-plane (b) Three-dimensional view

Figure 6. Constru
tion with 8 tangents. In the right pi
ture, tangents

whi
h are parallel to the xy-plane are drawn in grey 
olor.

x

z




1




2

; 


4




3

Figure 7. Parallel proje
tion of B(


1

; r); : : : ; B(


4

; r) in the xz-plane

with r = 3

p

2=8. This is the proje
tion along the edge with dire
tion




2




4

. The position of the 
ommon tangent in this dire
tion is marked

by the 
ross.

into two edges. Intuitively, this situation leads to 11 tangents; by in
reasing the radius

slightly the tangent with dire
tion 


2




3

vanishes.

To formalize this idea, we 
onsider the four 
enters 


1

= (

p

3=3; 0; 0)

T

, 


2

=

(�

p

3=6; 1=2+ a; 0)

T

, 


3

= (0; 0;

p

6=3)

T

, 


4

= (�

p

3=6;�1=2� a; 0)

T

for some a > 0.

In order to apply the algebrai
 framework from Se
tion 2, we translate all 
enters by

�


4

; this translation moves 


4

into the origin. Sin
e the two fa
es 


1




2




3

and 


1




3




4

have the same area, and the two fa
es 


1




2




4

and 


2




3




4

have the same area, we have

A

1

= A

3

and A

2

= A

4

. Hen
e, the 
ubi
 (2) spe
ializes to

(A

2

2

t

1

+ A

2

1

t

3

)(A

2

1

(t

1

t

2

+ t

2

2

+ t

2

t

3

) + A

2

2

t

1

t

3

) = 0:

In parti
ular, the 
ubi
 is redu
ible. Following the redu
ible 
ase of [10, 7℄, the set of

all tangents to the four balls B(


i

; r) for some radius r > 0 
an be parametrized by

the line

(4) (t

1

; t

2

; t

3

)

T

= (A

2

1

; A

2

2

�;�A

2

1

)

T

; �1 < � � 1
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�

r(�)

1

0:50

3

p

2=8

0:54

Figure 8. In the parametrization of the linear fa
tor, the square of

the radius fun
tion r(�) is a rational fun
tion in �.

and the 
oni
 se
tion

(5) (t

1

; t

2

; t

3

)

T

= (�A

2

1

(�� 1)� A

2

2

; A

2

2

�;A

2

1

(�� 1)�)

T

; �1 < � � 1:

For a given radius, the linear fun
tion gives at most 4 
ommon tangents and the


oni
 se
tion gives at most 8 
ommon tangents. Analogous to Se
tion 2, for both

parametrizations the square of the radius fun
tion r(�) is a rational fun
tion in �.

A suitable 
hoi
e of a whi
h will have the desired properties and whi
h leads to

rational values of A

2

1

, A

2

2

is a = (

p

112=100� 1)=2. Then A

2

1

= 78=400, A

2

2

= 84=400,

and the parametrization of the linear fa
tor yields

r

2

(�) =

169(1764�

4

+ 2492�

2

+ 1521)

32(175�

2

+ 169)

2

:

The graph of r(�) is shown in Figure 8. The derivative of r

2

(�) is

�

r

2

(�)

�

0

=

1183�(11438�

2

� 7943)

8(169�

2

+ 175)

3

with nominator of degree 3 and stri
tly positive denominator. In parti
ular, r(0) =

3

p

2=8 � 0:5303 is a lo
al maximum, and

lim

�!�1

r(�) = lim

�!1

r(�) =

r

169 � 1764

32 � 175

2

> 0:54:

Consequently, there exist exa
tly three di�erent values of � with r(�) = 3

p

2=8; and

for slightly larger radii r than 3

p

2=8, say r

1

< r � r

2

with r

1

:= 3

p

2=8, r

2

:= 0:54,

we only obtain two su
h values of �.

It remains to show: for a given radius r 2 [r

1

; r

2

℄, the parametrization of the 
oni


se
tion 
ontains exa
tly 8 values of � with r(�) = r. Figure 9 illustrates the fun
tion

graph of r(�). By (5), the �-values �1, �A

2

2

=A

2

1

+ 1, 0, 1, 1 represent the t-ve
tors

(0; 0; 1)

T

, (0; 1;�1)

T

, (1; 0; 0)

T

, (1;�1; 0)

T

, and (0; 0; 1)

T

, respe
tively. For all these �-

values we obtain r(�) = 3

p

1378=206 > 0:54. These 5 values de
ompose the real axis

into 4 intervals. If any of these intervals 
ontains some value � with r(�) < 3

p

2=8,

then for a given r 2 [r

1

; r

2

℄, there are at least 8 solutions with r(�) = r. We 
an


hoose, e.g., the following values of �: �3=10, �5=100, 2=10, and 2. For any of these

4 values we obtain r(�) < 0:52 whi
h implies the desired result. Sin
e there 
annot

be more than 8 solutions, there are exa
tly 8 solutions.

Finally, it 
an be easily 
he
ked that for A

2

> A

1

the line (4) and the 
oni
 se
-

tion (5) do not have real interse
tion points; so the tangents stemming from the line
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�

r(�)

(1=2)

2

1

(3=2)

2

2

2

�(1=2)

2

�1

�(3=2)

2

�2

2

0:50

3

p

2=8

0:54

Figure 9. r(�) for the parametrization of the 
oni
 se
tion. For better

illustration of the region near � = 0 the �-axis is s
aled quadrati
ally.

and the tangents stemming from the 
oni
 se
tion are indeed di�erent. This 
ompletes

the proof of the 
onstru
tions with 10 and 11 tangents.

6. Dis
ussion

We have shown that for any k 2 f0; : : : ; 12g there exists a 
on�guration with 4 unit

balls and exa
tly k di�erent 
ommon tangents. Although we have motivated every


onstru
tion by purely geometri
 arguments, the rigorous proofs of some 
onstru
tions

(in parti
ular 10, 11 tangents) heavily depend on the algebrai
 des
ription of the

problem. We interpret this observation as an indi
ation why a purely geometri
 proof

of Proposition 1 should be quite hard to establish.

Furthermore, observe that all 
onstru
tions with more than 8 tangents are based

on non-disjoint ball 
on�gurations. In fa
t, we 
onje
ture that in 
ase of disjoint

balls the maximum number of 
ommon tangents is bounded by 8. The diÆ
ulty in

treating this problem is the same one as above. Namely, it is diÆ
ult to exploit the


ondition of disjointness in the algebrai
 setting; but we do not know how to handle

these situations from a purely geometri
 point of view.

Finally, the following open problem plays an important role in the interplay between

the algebra and the geometry of the 4-ball problem. For some famous problems in

enumerative geometry (
exes and bitangents of plane 
urves, lines on hypersurfa
es,


oni
s tangent to �ve given 
oni
s), the resulting Galois groups in the generi
 
ase

are non-solvable [4℄, i.e., the solutions of these problems 
annot be expressed in terms

of roots. This situation re
e
ts the diÆ
ulty of purely geometri
 methods to handle

these problems. It is an open problem to 
hara
terize the (non-)solvability of the

Galois groups for the 4-ball problem.
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