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ABSTRACT. We consider an algorithmic framework for two-player non-zero-sum
semidefinite games, where each player’s strategy is a positive semidefinite matrix
with trace one. We formulate the computation of Nash equilibria in such games as
semidefinite complementarity problems and develop symbolic-numeric techniques to
trace generalized Lemke—Howson paths. These paths generalize the piecewise affine-
linear trajectories of the classical Lemke-Howson algorithm for bimatrix games, re-
placing them with nonlinear curve branches governed by eigenvalue complementarity
conditions.

A key feature of our framework is the introduction of event points, which corre-
spond to curve singularities. We analyze the local behavior near these points using
Puiseux series expansions. We prove the smoothness of the curve branches under
suitable non-degeneracy conditions and establish connections between our approach
and both the classical combinatorial and homotopy-theoretic interpretations of the
Lemke—Howson algorithm.

1. INTRODUCTION

In the classical model of a bimatrix game, Nash equilibria can be characterized as
the solutions of a linear complementarity problem with a product structure [10]. The
combinatorial description of these linear complementarity problems gives rise to an
algorithm for computing a Nash equilibrium, known as Lemke-Howson algorithm [27].
This approach provides a piecewise linear path in an extended Cartesian product of
strategy spaces and the algorithmic key idea is to follow this path until we reach a Nash
equilibrium. The path, known as Lemke-Howson path and an underlying combinatorial
graph are cornerstones for both structural and computational results in bimatrix game
theory [37,/42]. Conceptually, Rosenmiiller [35] extended the Lemke-Howson algorithm
for finite N-person games, where the affine-linear curve branches are replaced by
nonlinear curve branches.

There has been significant recent interest in the study of quantum games, where
players can store, process, and exchange quantum information; see, e.g., [19] 20}, 32, 25|
15]. A notable subclass are semidefinite games, involving players whose strategies are
represented by density matrices, i.e., Hermitian (or symmetric) positive semidefinite
matrices with trace equal to one, and whose utilities are multilinear functions in these
strategies [23].
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For two-player zero-sum semidefinite games, Nash equilibria are guaranteed to exist
and we can compute them efficiently using semidefinite programming (SDP) [23]. This
framework has been further extended to zero-sum network semidefinite games [24].
Additionally, no-regret learning algorithms have been developed for computing equi-
libria in zero-sum semidefinite games [28], 29] [40].

However, beyond the zero-sum case, the problem of computing or approximating
Nash equilibria in general semidefinite games remains largely open. Notably, Bostanci
and Watrous [7] posed the specific question of whether a Lemke-Howson-style algo-
rithm could be designed for computing or approximating Nash equilibria in the context
of non-zero-sum semidefinite games.

We take on this challenge and we develop the theory of the structure of the gener-
alized Lemke-Howson paths for two-player semidefinite games. We rely on the theory
of semidefinite games to introduce naturally the generalized Lemke-Howson paths. In
turn, these provide the basis for symbolic-numeric algorithmic approaches to compute
Nash equilibria in non-zero-sum semidefinite games.

The first step of our study consists of providing a comprehensive eigenvalue view
on the Nash equilibria in semidefinite games. Then, by exploiting the formulation of
the Nash equilibria in semidefinite games as a semidefinite complementarity prob-
lem [24], we reveal the interplay of the eigenvalues of the underlying matrices for the
Nash equilibrium problem in Section [3] Consequently, using rank characterizations
of the strict complementarity conditions from semidefinite programming, we turn the
eigenvalue characterizations into a non-degeneracy notion for semidefinite games. For
the special case of diagonal semidefinite games, which correspond to bimatrix games,
our approach specializes to the (classical) set of equivalent non-degeneracy notions,
presented by von Stengel [42, Chapter 45].

These tools, based on eigenvalues, provide us with the means to study the general-
ized Lemke-Howson paths. We replace the combinatorial view of bimatrix games by
the interplay of eigenvalues in semidefinite games and we replace the bilinear comple-
mentarity conditions by bilinear polynomial equations coming from a product of two
positive semidefinite matrices (equal to zero). In this way, we generalize the Lemke-
Howson paths by providing a distinguished finite set of points, which we call event
points, where the combinatorics of the eigenvalue complementarity pairing changes,
within an extended pair of strategy spaces. The event points are interconnected by
curve branches. While the curve branches are no longer affine-linear as in the case
of bimatrix games, but inherently nonlinear, they still retain similar combinatorial
properties as the affine-linear pieces from the bimatrix setting. We address some al-
gebraic and numerical aspects of computing, identifying, and tracing the non-linear
curve branches, and also how to pick the correct next branch in an event point, see
Section [5] Locally at an event point, the branches are described in terms of Puiseux
series.

In settings related to numerical algorithms for tracing or approximating a specific
algebraic curve in a finite-dimensional space, an essential question is whether the
underlying algebraic curve is smooth. For example, the central path in semidefinite
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programming, which is numerically followed by interior point methods, is known to
be a smooth curve, see [I1]. For the Lemke-Howson paths, we show in Section @ that
under the non-degeneracy condition, the curve branches between two event points are
smooth.

One basis of our treatment is the classical combinatorial view on the Lemke-Howson
algorithm. A second fruitful point of departure is to view the Lemke-Howson algorithm
for bimatrix games as a homotopy algorithm; see Govindan and Wilson [I8, Section
5.4] and Herings and Peeters [21]. To prepare for the generalized semidefinite setting,
it is beneficial to connect the combinatorial view on the Lemke-Howson approach with
the homotopy view. Therefore, we review the Lemke-Howson algorithm for bimatrix
games in Section from the point of view of a homotopy algorithm.

To ensure that the homotopy methods work generically for bimatrix games, we
use the Kohlberg-Mertens structure theorem [26]. This provides a topological descrip-
tion of the "graph of the Nash equilibrium correspondence”. The Kohlberg-Mertens
structure theorem is also valid in more general semialgebraic contexts, see Bich and
Fixary [6], and in particular it holds for semidefinite games.

2. PRELIMINARIES

2.1. Nash equilibria in semidefinite games. Let S, be the set of symmetric n xn
matrices and S C S,, be the subset of positive semidefinite matrices. We consider
semidefinite games between two players with the strategy spaces of real-valued density
matrices X = {X € §& : tr(X) =1} and Y = {Y € S : tr(Y) = 1}, where tr
denotes the trace of a matrix. The payoff functions of a semidefinite game on X x )
are

pA(X,Y) = ZXiinjlekl and pB(X,Y) = ZXijBijlekl-
i,5.k,l i,5.k,l

If we define the symmetric m x m-matrix ®4(Y) and the symmetric n x n-matrix
P35 (X) as

(I)A(Y)z‘j = Z Aijklykl and (I)/B<X)kl = Z Xisz'jkla
k=1 ij=1
then the payoffs are
pa(X,Y) = (X,04(Y)) and pp(X,Y) = (B(X),Y),
where (-, ) denotes the Frobenius dot product. In [24], the following statement was
shown in the more general context of semidefinite network games.

Theorem 2.1. The set of Nash equilibria of a semidefinite game are the solutions to
a semidefinite complementarity problem. Namely, a point (X*,Y*) € X x Y is a Nash
equilibrium if and only if

(2.1)

1y ry

OO OO
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where w is the payoff of the first player and v is the payoff of the second player.
For convenience of the reader and to set up the notation, we recall the proof.

Proof. A point (X*,Y™) is a Nash equilibrium of the game if and only if X* is a best
response to Y* and vice versa, i.e.,

X" e argmaxycp (X, P4(Y™)) and Y™ € argmaxy ¢y, (PR(X7),Y).
The dual of the optimization problem maxxecx (X, P4(Y™)) is given by
min{w : w- I, — ®PA(Y") = 0, w € R}
and the dual of the optimization problem maxy ¢y (®3(X*),Y) is given by
min{v : —PL(X*)+v-I, = 0,veR}.

By strong duality, we see that a point (X*,Y*) € X x ) is a Nash equilibrium if and
only if the two semidefinite conditions and the two equations in (2.1]) are satisfied. The
last two equations ensure that the payoffs to the players are w and v, respectively. [J

2.2. The homotopy view on the Lemke-Howson algorithm. Let G = (A, B)
be a bimatrix game with m x n-matrices A, B and denote the mixed strategy spaces

by

A, = {zeR":2>0, inzl} and A, = {yeR": 2 >0, Zyizl}.
i=1 i=1
It is useful to mention the following characterization of Nash equilibria in bimatrix
games, which, in turn, we can view as a special case of Theorem [2.1

Theorem 2.2. The set of Nash equilibria of a bimatrix game are the solutions of
a linear complementarity problem. Namely, a point (z*,y*) € A,, X A, is a Nash
equilibrium if and only if Ay < wl , BTz < v1, and the following complementarity
conditions hold

(2.2) >oai(wl—Ay) = 0, 3 y;(vl - B"z); = 0,
i=1 j=1
where w and v are the payoffs of the first and the second player.

In the literature, the indices in the complementarity conditions are often viewed as
“labels” attributed to strategy pairs, see, e.g., [42, Chapter 45]. Using the notation
M={1,...,m}and N := {m+1,...,m+n}, the set of labels is M UN. The indices
in M refer to the m terms in the first sum of and the indices in N refer to the
n terms in the second sum of . We associate a set of labels to every strategy x
of the first player, which indicates which of the two factors of the summands of the
complementarity conditions is zero; namely,

{ieM:z;=0Uu{m+j€eN : (v1-B"z); =0}.
Similarly, for a strategy y of the second player, we associate the labels
{ieM: (wl—-Ay);,=0U{m+j€N : y;=0}.
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We can also consider the situation where all the labels in M are associated to the
first player. This corresponds to the artificial strategy = = 0, which does not satisfy
Yo x; = 1. Similarly, we can consider the artificial strategy y = 0 of the second
player. The point (0,0) can be regarded as an artificial equilibrium. For the artificial
strategy 0 of the first player, always the first factor in each term of the sum is binding,
and similarly for the second player.

We assume non-degeneracy of the bimatrix game and detail this in the next section.
The Lemke-Howson algorithm starts from the artificial equilibrium (0,0). We fix a
strategy for one of the players, say the first, by picking & € M. Then, the k-th
complementary condition becomes loose, by omitting the label k. We can assume that
k refers to a pure strategy of the first player. Formally, we look for a solution of
in which the term with index k is omitted. In the viewpoint of the labels, the k-th label
is dropped. We say that a strategy pair (x,y) is k-almost completely labeled if (x,y) is
a solution to the complementarity conditions , where the term k is omitted from
the first sum.

By considering the k-almost completely labeled strategy pairs we define a transition
from the artificial equilibrium to a situation where one of the labels of the first player
appears twice. Throughout the algorithm, whenever a label occurs twice, it is dropped
once and this leads to a new pair of strategies where another (possibly appearing
twice) label is taken. As soon as a player has moved away from 0, her combinatorial
choice corresponds to a real mixed strategy. Eventually, the algorithm reaches a pair
of strategies that is completely labeled and this pair is a Nash equilibrium.

The omission of a label can be captured in the homotopy view by adding a bonus
to the k-th strategy. Let ty be a sufficiently large bonus so that if we add ¢y to the
k-th strategy of the first player, then this becomes a dominant strategy for the first
player. For t € [0, o], let G(t) = (A(t), B(t)) be the game resulting from G where we
set ay;(t) = ar; +t for j € {1,...,n} and all other payoff entries in G(¢) are taken
from G.

For the k-almost completely labeled points, in the homotopy view there exists a
bonus value t in the homotopy view such that the k-strategy of the first player becomes
a best response. We record this in the following way (see [I8, Section 5.4] and [21]
Sections 4.1 and 5]).

Proposition 2.3. A strategy pair (x,y) is k-almost completely labeled if and only if
there exists some t > 0 such that (z(t),y(t)) is a Nash equilibrium of the game G(t).

The set of solutions of the equations and inequalities in Proposition defines a
set S C (A, U{0}) x (A, U{0}) which is a finite union of polytopes.

For a non-degenerate game, the polytopes in & are at most one-dimensional and
they define a graph. Moreover, as a consequence of the non-degeneracy definition, every
vertex of the graph has at most two adjacent edges [42]. Topologically, S consists of
finitely many paths and loops. We call the union of the segments the Lemke-Howson
paths. We call a strategy pair (x,y) an event point if

(1) for every i we have z; = 0 or (wl — Ay); = 0 and for every j we have y; =0
or (vl — BTx); =0, and
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(2) there exists an ¢ with z; = (w1l — Ay); = 0 or there exists a j with y; =
(U]_ — BTI')]' = 0,
where w and v are the payoffs of the first and second player.

In a non-degenerate game, there are only finitely many event points and they are ver-
tices of the graph. Moreover, the non-degeneracy definition implies that event points
have at most two incident edges in the graph. Hence, if on the homotopy path an
event point is reached, then there is at most one way to leave it. The fact that we can
leave from a non-Nash equilibrium event point can be deduced from combinatorial

arguments or from general statements on homotopies (see Section [4in a more general
context).

3. AN EIGENVALUE VIEW ON SEMIDEFINITE NASH EQUILIBRIA

Let G be a semidefinite game and (X,Y’) be a Nash equilibrium of G. By Theo-
rem 2.1, (X,Y) satisfies the complementarity conditions

(3.1) (X,w- I, —®4Y)) = 0,
(3.2) and (Y,v-I, —®R(X)) = 0.

The inner product conditions (3.1) and (3.2]) are equivalent to the matrix equations
X(w-Ip—®4(Y)) = 0and Y(v- I, — P(X)) = 0.

Namely, it is well known (see, for example, [2]) that if two matrices S, T € S, satisfy
tr(ST) = 0, then SY2TSY? ¢ St and tr(SY?TS"?) = tr(ST) = 0, which implies
SY2TSY? = (0 and thus ST = 0. Note that the product of two positive semidefinite
matrices has nonnegative eigenvalues, but in general the product is not a symmetric
matrix.

Using the abbreviations W = W(Y) :=w- I, —®4(Y)and V =V (X) :=v - [, —
d’5(X), we can write the system of matrix equations as

X -W(Y) =0 and V-V(X) = 0.

If two real n x n-matrices U,V satisty UV = 0, then the sum of the multiplicities
of the eigenvalue 0 in U and in V is at least n. This follows from Sylvester’s rank
inequality rank(UV') > rank(U) +rank(V') —n, e.g., [30], hence in our case rank(U) +
rank(V) <n.

We transfer the underlying condition "z has certain labels” from the bimatrix games
to an eigenvalue condition. Since X - W = 0, we also have W - X = (X7 - WT)T =
(X -W)T =0, that is, the matrices X and W commute. Hence, there exists a common
system of eigenvectors (see [22] or, in our context, [2, Lemma 3]). Thus, there exists
an orthogonal matrix Q € R™", with Q7Q = I, such that

X = Q"diagM(X),..., (X))@,
W = QTdiag()‘l(W)v"'7)‘m(W))Q>
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where A (X), ..., \p(X) and A (W), ..., A (W) are the eigenvalues of X and of W.
In other words, the matrices are simultaneously diagonalizable. Notice that we cannot
assume that both sequences of eigenvalues are decreasing. We have

(3.3) XW = Q" diag( A (X)M(W), ..., A (X)An(W))Q .

Hence, at a Nash equilibrium, (X, Y"), we find that for each common eigenvector v; of
X and W, at least one of the eigenvalues \;(X) or A;(WW) is zero. A similar statement is
true for Y and V. These statements, combined with the degeneracy condition discussed
in the sequel, lead to the conclusion that the sum of the multiplicities of the eigenvalue
0in X and W is m.

Non-degeneracy of semidefinite games. In the generic situation, if X,Y is a
Nash equilibrium and W, V' are defined as above, then the sum of the multiplicities of
0 as an eigenvalue of X and W is m and and for Y and V' is n. However, from Pataki’s
rank results for semidefinite programming [33], the situation is more complicated than
in the case of linear programming in the following sense. If a linear program is pri-
mally and dually non-degenerate, then strict complementarity holds. For semidefinite
programs this is not true and to capture this, the theory of strict complementarity for
semidefinite programs was developed (see [2]).

Definition 3.1. Let U,V € S, with UV = 0. We say that strict complementarity
holds if

rank U +rankV =n,
i.e., if and only if for every i € {1,...,n}, exactly one of the conditions A;(U) = 0 or
Ai(V) = 0 is satisfied. Here, we used the earlier notation A;(-) from the simultaneous
diagonalization.

Definition 3.2. Let (X,Y) be a Nash equilibrium of the semidefinite game G on
Sy xSy and let W = W(X) and V = V(Y) be as defined previously. We say that
the Nash equilibrium (X,Y) satisfies the strict complementarity condition if

rank X +rankW =m and rankY +rankV =n.

For a bimatrix game (A, B) on A, X A,, we have the following equivalent conditions
to define a non-degenerate game (see, e.g., [42]). We use the labels M = {1,...,m}
and N = {m+1,...,n} from Section [2[ and denote by suppz := {i : z; # 0} the
support of a mixed strategy x. Every point in A,, U {0} and every point in A, U {0}
carries a set of labels in M U N. For i € M and j € N, set

X@) = {ze€A,: z;=0},
X(m+j) = {r€l, : j=argmax;y, (Br);y
V(i) = {yeld, :i=argmax;c,,(Ay)s
Y(m+j) = {yel, : y;=0}.
Note that for 7 € [n], the set X(m + j) is the set of strategies of the first player

for which the j-th pure strategy of the second player is a best response. Similarly,
for i € [m], the set Y (i) is the set of strategies of the second player for which the

}
}

Y
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1-th pure strategy of the first player is a best response. A bimatrix game is called
non-degenerate if one of the following equivalent conditions is satisfied.

i) For any mixed strategy z of the first player, the second player has at most
| supp(x)| best pure responses and vice versa.

ii) For any x € A,, with a set of labels K C [m+n] and y € A,, with a set of labels
L C [m + n], the set (.5 X (k) has dimension m — |K| and the set (., Y () has
dimension n — |L|.

The non-degeneracy notion can be seen as formalizing that certain intersections have
the expected dimension. Note that even for bimatrix games, non-degeneracy questions
often involve nontrivial aspects. Proving that some of the various non-degeneracy
definitions in the literature are equivalent requires nontrivial proofs (see [42]). From
an algorithmic point of view, even deciding whether i), or equivalently ii), is satisfied
in a sparse game is an NP-hard problem [I3]. For our purposes, the following non-
degeneracy condition for semidefinite games is useful:

Definition 3.3. A semidefinite game is non-degenerate if the following two conditions
are satisfied:

I) For any pair of mixed strategies X,Y of rank k; and ko respectively, we have
rank V(X) > n — k; and rank W(Y') > m — k.

IT) The intersection of the two varieties defined by X-W(Y) = 0and by Y-V(X) =0
is zero-dimensional.

Here, the varieties in II) are considered as varieties over the complex numbers. In
a Nash equilibrium, this implies that rank V(X) = n — k; and rank W(Y) = m — ko
and furthermore that the strategies X and Y must be of equal rank k = k; = ks.

For the special case of diagonal games, which correspond to bimatrix games, the
conditions i) and I) are equivalent and condition ii) implies IT). Namely, for IT) we have
to consider only m equations, where the left-hand side of each equation is a product
of a variable and an affine-linear form. The complex algebraic variety is the union of
linear varieties. Using the projective view (see, e.g., [42]), the additional variable can
be normalized to 1, where we have to assume without loss of generality that all entries
in the payoff matrices are positive. Hence, in the special case of diagonal games, our
definition is equivalent to the non-degeneracy definition for bimatrix games. Note that
while condition i) is equivalent to ii) for each bimatrix game, condition I) does not
imply II) for each semidefinite game, see Example

The two conditions I) and IT) are needed for our treatment of the Lemke-Howson
paths. As a consequence of statement IT), the number of Nash equilibria is finite.
Namely, the zero-dimensionality means that the variety consists of a finite number
of complex points, and hence the number of (real) density matrices satisfying the
equations is finite.

We remark that our non-degeneracy assumptions are stronger than just requiring
the game to have a finite number of Nash equilibria. This is analogous to the common
non-degeneracy notions for bimatrix games (see [42]). Further note that earlier results
of Bich and Fixary [6] (in a more general semialgebraic setting) imply that in the
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generic case, the number of Nash equilibria in a semidefinite game is finite and odd.
From the viewpoint of complexity, deciding whether a semidefinite game in sparse
encoding is non-degenerate is at least NP-hard, since already the decision problem for
the special case of diagonal games is an NP-hard problem.

Lemma 3.4. In a non-degenerate semidefinite game, any Nash equilibrium satisfies
strict complementarity.

Proof. Consider a Nash equilibrium (X, Y") in a non-degenerate semidefinite game. Let
W =W()and V = V(X) be defined as above and let rank X = rankY = k. Since
WX =0, we know that rank W < m — k. Furthermore, any matrix X’ that satisfies
W - X' =0is a best response to Y by construction. Since the game is non-degenerate
any such matrix must be of rank at most k£ and therefore rank W > m — k. Therefore,
rank W = m — k and likewise rank V' =n — k. 0

Example 3.5. a) For given 7,5 € {1,...,m}, denote by A;; the slice (Ajjrs)1<rs<n
of the payoff tensor A. Consider the semidefinite game given by

1 0 0 0 0 0
All..:<0 0)7A12..:(C8)71421..:(68)71422..:(0 1>

with some constant ¢ > %, and B;j. = Aj;; for 1 < 4,5 < 2. There are five Nash
equilibria (see [23]):

X:y:<(1) 8>,X:Y:(8 ?),X:Y:C(/)Q 1(/)2>,

X=Y= Gg %g) and X =Y = <_11//22 _11/22> :

All of these five Nash equilibria are strict complementary.

b) Now consider the variation where aggeo and bagge are replaced by zero, i.e.,

1 0 0 0 0 0
All..:<0 0)’1412“:(08)71421“:(08)71422“:(0 O>

with ¢ > 1/2, and B;;. = A;; for 1 < 4,5 < 2. Then the payoff of each player is
p(X,Y) = zyy11 + 4exiayie . Since ¢ > 1/2; it is possible that the payoffs of each
player become larger than 1. For the Nash equilibria (X,Y’) with 215 = 0, we obtain

10 0 0
X:Y:<0 0), WhereW:V:(O O)’

0 0 00
as well as X—Y—(O 1), WhereW—V_(O O)’

and thus these two Nash equilibria are not strictly complementary.
In the case x5 # 0, we can assume positive signs for the non-diagonal elements

of both players as well as x12 = /T112722 and y12 = /Y11y22. Hence, the payoffs are
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p(X,Y) = z1yn +4c\/x11(1 — xn)\/yn(l — 211). In a Nash equilibrium, the partial

derivatives
26\/ yll(l — 3/11)(1 — 233'11) i 20\/ .1'11(1 — :I;n)(l — 2y11)

p$11 =Y ) pyu - 11

z11(1 — 211) Y1 (1 —yn)
of p(X,Y’) vanish. This system gives exactly one solution, x1; = y;1 = 43f1. Alto-

gether, in the case x12 # 0, we obtain the two Nash equilibria

2% 2¢(2¢—1) 2% v/ 2¢(2¢—1)

X =Y = 4c—1 4c—1 and X =Y = 4c—1 4c—1
2¢(2c-1) 2c—1 2¢(2¢—1) 2c—1
dc—1 4c—1 T 41 4c—1

which are both strict complementary.
Note that the total number of Nash equilibria of the game is not odd, but it is even.
To illuminate this degeneracy, we note that the related bimatrix game with payoff

matrices ((1) 8) , <(1) 8) has an even number of Nash equilibria as well, namely two.

Example 3.6. Consider the semidefinite game given by ®4(Y) =Y and ®5(X) = X.
This is exactly the previous Example a) with ¢ = % This game satisfies the non-
degeneracy condition I) but not IT). Indeed, for any ¢ € [0, 1] the pair

XE:Y:Z( ﬂf—t) ?ilw)

forms a Nash equilibrium. The corresponding matrices
1—t —/t(1—1)
W(Y)=V(X)=
1) =vix) = (_ ety TV
are of rank one.
Nash equilibria satisfying strict complementarity provide a good situation. Indeed,
we assume that for all but finitely many ¢ (were t > 0), the Nash equilibria in the

game G/(t) satisfy strict complementarity. The exceptional values for ¢ induce the event
points. For a matrix M, denote by dety M the vector of all £ x k-minors of M.

Lemma 3.7. Let (X (t),Y (t)) be an event point which is not a Nash equilibrium. Then
there exists some t > 0 such that

(1) E)X(t), Y (t)) is satisfies the equations. X (t)- W (Y (t)) =0 and Y (t)-V(X(t)) =
(2) There exists some k € {1,...,m} with

deti (X (t)) =0, dety,— 1 (W (Y(2))) =0
or there exists some l € {1,...,n} with

dety_r1 (Y (£)) = 0, det,(V(X(2))) = 0.
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Proof. Assume that the event point is not a Nash equilibrium. Then in every product
of two corresponding eigenvalues, at least one of the is zero, and there exists a product
where both of the eigenvalues are zero. Hence, rank X (t) + rank W (Y (¢)) <m — 1 or
rank Y (¢) +rank V' ((X)) < n — 1. This translates into the determinantal conditions of
the statement of the lemma. 0

4. LEMKE-HOWSON PATHS

The framework of Lemke-Howson paths for bimatrix games presented in Section
generalizes to semidefinite games. We begin from the homotopy view described in
Section 2l Choosing the k-th strategy in the bimatrix setting carries over to choosing
the k-th diagonal strategy for some k and adding the bonus means to increase the
payoff entries ag. by some bonus value t for every r. That is, every entry of the slice
(Akkrs)1<rs<n Of the payoff tensor A is increased by the bonus value t. The homotopy
is based on the following general result from Mas-Colell [31], see also Herings and
Peeters [21].

Theorem 4.1. Let C # () be a compact, convex subset of R? and let H : [0,1]xC — C
be an upper hemicontinuous correspondence which is nonempty and convex-valued.
Further, let

Fy = {(\z2)€0,1]xC : z€ H\x)}
be the set of fixed points of H. Then, Fy contains a connected set Gy such that
{0} x CYNGy £ 0 and ({1} x C) NGy # 0.

For a degeneracy discussion, see the consideration after [21, Theorem 2]. Further,
as described in [21] in the generic case, we obtain a finite collection (in the topological
sense) of arcs and loops.

For semidefinite games, we consider the parameter values [tg, 0] for some sufficiently
large to, and we can map that interval to [0, 1]. The correspondence H : [tg,t] X (X X
V) — (X x V) is given by

H<t7 (X7 Y)) = 61(t7(X7 Y)) X BQ(ta <X7Y>)
where
Bi(t, (X,Y)) = argmaxgcp(X,P4(Y)),
62 (t’ (X7 Y)) = argmaxf/ey@%;(X)a Y>
are the best response correspondences of the two players.

Lemma 4.2. H is upper hemicontinuous.

Proof. Recall that a correspondence F' between two topological spaces is called com-
pact-valued if for every x € A the set F'(x) is compact. A compact-valued correspon-
dence is upper-hemicontinuous at a point a € A if and only if for every sequence
(a,) — a and every sequence (b,) € B with b, € F(a,) for all n, there exists a
converging subsequence of (b,) whose limit point b is in F'(a) (see, e.g., [1, Corollary
17.17]). Since the best response correspondence is compact-valued, the characteriza-
tion implies that H is upper hemicontinuous. 0
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Let ty be the sufficiently large bonus added to the k-th diagonal strategy of player 1.
That is, we set gy (t) = aggpr +t for r € {1,...,n}. For t € [0,%,], we consider the
set of the game G(t), where G(t) is defined by adding the bonus ¢ to the k-th strategy
of player 1.

As a generalization of the Lemke-Howson algorithm, we describe a sequence of
(nonlinear) curve segments and explain how the combinatorics changes in the end-
points of the curve segments. For each ¢, we consider the complementarity conditions
X()W(t) = 0 and Y(¢)V(t) = 0. Considering the solution from Theorem as
t varies, the eigenvectors continuously vary with ¢. In generalization of the Lemke-
Howson algorithm for bimatrix games, an event point occurs if one of the eigenvalues
additionally reaches 0 or if ¢ reaches zero. In the case of reaching ¢ = 0, we have
found a Nash equilibrium for our original problem. Note that, when interpreting the
parameter ¢ as time, tracing the homotopy might require us to consider larger values
of t (see [21]).

At the parameter value tg, player 1 plays the k-th diagonal strategy. Player 2 plays
the best response s to the k-th diagonal strategy of the first player. Now, let ¢ decrease
from ty. As long as t is still sufficiently large, player 1 still plays the k-th diagonal
strategy and thus player 2 still plays s. Hence, at the beginning of the homotopy, as
long as t is sufficiently large, the strategies of both players stay constant.

If an additional eigenvalue reaches zero, say, for example, in the local situation
Ai(X(t)) = 0 on a branch, an eigenvalue \;(W(¢)) becomes additionally zero for
some value ¢, then an event point occurs. In this point, strict complementarity is
not satisfied. In order to continue the path, non-negativity of the eigenvalues must be
preserved, so that for ¢ infinitesimally larger than ¢, the eigenvalue \;(W (t)) will stay
zero and the eigenvalue \;(X (¢)) will become positive. Note that the joint eigenvectors
will continuously change with ¢.

To concentrate on the main ideas, we consider an appropriate non-degeneracy. We
assume that at every event point, at most two curve branches leave from that event
point. A finiteness result on the number of event points and thus on the number of
curve branches can be obtained as a consequence of Lemma, |3.7]

Corollary 4.3. Assume that for allk € {1,...,m} andl € {1,...,n} the systems
dety (X (t)) =0, dety, 1 (W(Y(2))) =0

and
det, 11 (Y(t)) =0, dety;(V(X(t))) =0

have a finite number of real solutions (X,Y,w,v,t) € X x ¥ x R x R x Ryq. Then,

the number of event points is finite.

Proof. By Lemma for every event point which is not a Nash equilibrium there
exists some ¢ > 0 such that one of the systems has a real solution. 0

In generalization of the bimatrix situation, the event points together with the non-
linear curve segments connecting the event points define a combinatorial graph. Since
already in the case of n xn bimatrix games, Lemke-Howson paths can be exponentially
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long (see [36]), there cannot be a polynomial bound on the number of event points for
semidefinite games.

5. TRACING THE LEMKE-HOWSON PATHS

To trace the curve segments in the regions of t free of event points, we exploit the
fact that these curve segments are smooth and we can employ a predictor-corrector
method, based on the implicit function theorem and Newton’s operator to trace them.
There is a lot of related work on these subjects as this problem appears in different
contexts. For example, in the numerical algebraic geometry community, curve tracing
is the main operation of homotopy continuation algorithms, e.g., [45,5]. Also, they are
commonly treated in the community of geometric modeling, e.g., |16} [17, 38]. Starting
from a regular point on the curve, say p, we compute a vector tangent, say t, and we
compute the point p + 77”7’5”, where 7 is the step size; this is the prediction phase. If n
is small, then the new point is close to the curve and we correct it using a variant of
Newton’s method. We should also note that other methods also exist, especially for
real curves, e.g. [3], 38].

The event points correspond to singularities of the curve. Many branches can go
through an event point. To understand the local geometry around the event points
and to select the correct branch for the Lemke-Howson path we employ the fact that
locally, that is, around the singularity, we can parametrize the curve branches using
Puiseux series, e.g., [4, 43]. This computation raises many numerical challenges, e.g.,
[14, 34 [41], and the same is true for the numerical tracing of the Lemke-Howson
paths close and so not close to the event points. We leave the algorithmic details
of these computations for a future communication. In the sequel, we present a short
introduction to Puiseux series and expansions and explicitly work out symbolically
an example of tracing the Lemke-Howson path, to give an overview of the various
computations.

5.1. Parametrization of the branches of a curve and Puiseux series. Consider
a plane algebraic curve C, defined implicitly as the zero locus of the equation f(x,y) =
0, where f € Clz,y| is a polynomial in two variables with complex coefficients of
degree n w.r.t. y. Further assume a point on C which, without loss of generality, we
can assume (after translation) to be the origin. If C is smooth at 0, then we can exploit
the implicit function theorem and we can locally parametrize the unique branch going
through 0. However, if 0 is not a smooth point, that is, if it is a singular point, then
several branches might go through it. Moreover, the implicit function theorem is not
applicable anymore.

Under some mild assumptions, we can compute the number of branches going
through the origin and also find a local parametrization for them, by computing
solutions y(z) for f; that is, we interpret f as a polynomial in y with coefficients poly-
nomials in z. The solutions are of the form y = )7, a;z"/™, and this representation
leads to a parametrization of the branches of the form

r=1t", y= Zzl a;t’,
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where t is a new variable; the parametrization is a formal power series.

We compute a parametrization (t", ¢(t)) using Newton’s algorithm, where n € N,
¢ € CJ[t]] and C[[t]] denotes the ring of power series in ¢ with complex coefficients.
One can prove that they are locally convergent and that

f(" o)) =0 in C[t].
We can rewrite the previous equation as f(x,¢(y'/")) = 0, which allows to deduce
that if we consider f as a polynomial in y with coefficients in C[z], then ¢(z'/") is a
root of f in the larger ring C[[z'/"]] D Cl[z].

The value of n can vary for different polynomials. Even more, the various branches
going through a singular point have different parametrizations, therefore, they are
associated with different values of n; we call this the ramification index. This leads to
the introduction of the more general ring of Puiseux series

Cllz")) == J Cll="").
neN
The quotient field of this ring, C((x)), the field of Puiseuz series, consists of Puiseux
series having, eventually, finitely many negative exponents. The field of Puiseux series
is algebraically closed. In particular, f splits over C((z)) in linear factors and thus has
deg, (f) formal parametrizations, counted with multiplicities. We refer the interested
reader to the classical literature on algebraic curves for further details [} 9] 43].

In the case where the polynomial that defines the curve C has integer (or rational)
coefficients, that is f € Z[z, y|, there is a variant of Newton’s algorithm that allows us
to compute rational Puiseux series [14]; there are even effective bit complexity bounds
[34, [44] for the corresponding algorithms. Hence, all the computation remain in the
rationals. When we are interested only in the real branches, then it is possible to
exploit more geometric methods to determine their number, e.g., [12].

If the curve lives in the C? (or R?), where d > 3, then it is still possible to compute
the Puiseux expansions of its branches through a singular point by first projecting the
curve to the plane and then lift the parametrization [39).

5.2. An example on tracing.

Example 5.1. To keep notation simple, we consider a hybrid game, where the strategy
space of the first player is a simplex with two pure strategies and the strategy space of
the second player is the set of 2 x 2 real density matrices. To keep it in the framework
of semidefinite games, we can also write this, as in the following, as a 2 x 2 X 2 X 2
semidefinite game, but we enforce x15 = w91 = 0. For given 1, j, we write A;; for the
slice (Ajijrs)1<rs<n) of the tensor A. Let

1 0 0 0 0 0 2 2
All..:(o 1>7A12..:<0 0)7A21..:(0 0)7A22..:(20 20>

and

2 0 0 0 00 2
Bll..:(o 1)7312..:<0 0)7321..:<0 0)7B22.A:(C
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Specifically, we consider the choice ¢ = 1/10. In the homotopy setting, we add t to
each entry of Ay;. so that Ay;. then becomes

o (t+1 ot
A”--_( t t+1)’

For large t, in particular t > 1 (see below), the unique Nash equilibrium is

(5.1) X:(ég>Y:(ég)

For decreasing values of ¢ with ¢ > 1, this Nash equilibrium remains the unique Nash
equilibrium for the game G(t). We have

vo=(o 1) wo=(o .2 )

For t = 1, an event point occurs and the combinatorics changes. Namely, the matrix
W becomes the zero matrix and for t-values slightly smaller than 1, the matrix W
stays the zero matrix. For t-values slightly smaller than 1, the matrix X is a rank 2
matrix. Indeed, in the course of decreasing ¢ from 1, the left upper entry of X becomes
smaller and the right lower entry becomes larger.

Locally at ¢ = 1, besides the solution , the following branches exist locally in
the event point. We substitute ¢ = s + 1. Note that for t < 1 we have s < 0.

20s+8+255y/10s+4 0
x® ( 4(55+2) ”s ) :
0 T 2\/10s+4
5(35+2+£V10s+4) 5s
yh 5s+4 " 2(5s+4)
- 5s 5(%5-&-%—%\/@) ’
T 2(55+4) 5s+4
60s + 24 + /25053 + 50052 + 3205 + 64 9s + 8
v = w = .
8(5s + 2) ’ 55+ 4

The solutions are the solutions of the parametric systems of equations, obtained
symbolically. The other real branches leave the strategy spaces, as in the case of
bimatrix games.

We give the corresponding Puiseux series. This has to be seen as a vector of Puiseux
series, in the sense that the components have to fit together. For example, as it is the
case here, there might be several Puiseux series for w which are candidates by just
looking at the symbolic expression for w; in the example, w can be computed from

25, 125 .2, 1875 .3 15625
xO — I+ Fs— 55"+ 8"~ 512 5 T 0
= 25,125 2 1875 .3, 15625 4, . |°
0 15t 765 — 1285 T 512 5 T
y® —

_25.2,125.3 81254, . _5.,25.2 125.3,625.4

1 =515 "+ 1585 — 5065 T g8t 38  — 1S T 512 T

5.,25.2 125.3, 625 .4 25 .2 125 .3, 8125 4,
g5t 338  — 1385 T 5125 615 — 1285 T 10065 T
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and

95 . 125 . 9375
- 9 R - oY 4
v t61® T 128" Ta00®

5 5, 254 125,
WS R T T
On the branch for s < 0, the eigenvalues of the diagonal matrix X can be read off
from the diagonal elements and the eigenvalues of the matrix W are both zeroes, i.e.,
in that branch W is the zero matrix. On that branch, the eigenvalues of Y are 1
and 0 and the eigenvalues of V' are % and 0. With respect to a joint system of
eigenvectors, we have a pairing of the eigenvalues of Y and of V' such that the product
always gives zero.

At some value to, the next event point occurs. Here, the left upper entry of X
becomes 0 and thus the right lower entry becomes 1. Using a parametric description
in ¢, we can symbolically compute the t-value, where the left upper entry of X becomes
zero. Namely, this happens at

129 44/26
ty = 195 125~ 0.86883.

For values smaller than t5, X remains the matrix

w-(41)

For t-values slightly smaller than 1, the matrix Y is a rank 2 matrix and the nondi-
agonal entries increase from zero and take nonzero-values. In fact, locally one of the
eigenvalues decreases starting from 1 and the other 1 increases starting from 0. At
t = 0, the next event point occurs and we arrive at the Nash equilibrium
1, 5v26 V26
Y _ 0 0 v — 3+ = ~ 0.9903 0.0981 .
0 1) V26 1 _ 5v26 0.0981 0.0097
52 2 52
O

Note that in our example, besides the event point (X1, Y'™) there exists another
point which satisfies the are solutions of the equations in Lemma /3.7, namely the point
1 1 . T .
X = (O ?), Y = (8 1) which is a Nash equilibrium of the parametric game G(t)
for t = 1. However for this point, the matrix V(X (¢)) is not positive semidefinite.

6. ON THE SMOOTHNESS OF THE CURVE

Clearly, the event points are non-smooth points on the Lemke-Howson path. In this
section, we study the smoothness of the path segments between two event points. We
show that if a game is non-degenerate then the path segments between two event
points are smooth curves. To this end, we study the derivatives of the equations.

To reveal the interplay of the derivatives with the combinatorics, it is useful to
start from the polyhedral situation of usual bimatrix games. Let (A, B) be a bimatrix
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game, where we can assume A, B > 0, that is, all entries are positive. A point on the
Lemke-Howson path is a tuple (z,y,t) such that

f([)?,y,)—l’@( —Aty)—OG]Rm g(l‘,y,t):(ln—BTQ,’)@y:OERn,

where ® denotes the Hadamard product, i.e., the componentwise multiplication.

In this setting, any non-event point is obviously smooth by construction, as the
paths are all piecewise linear. Regardless of this fact, we include a formal proof for
this statement in terms of the derivatives, which we will generalize in the following to
prove the smoothness in the case of semidefinite games.

By the Jacobian criterion, a point (z,y,t) is smooth on the curve, if the Jacobian

f

matrix of with respect to x and y is regular, i.e., it has full rank. Here, the

Jacobian is the (m + n) x (m + n) matrix

diag(1,, — Awy)  —diag(z) - 4,
—diag(y)BT  diag(1, — BTz) )

At any point on the Lemke-Howson path, which is not an event point, the Jacobian
is indeed regular. However, a more useful viewpoint for us in this context is to use
differentials. Consider the differentials

dz,yf(ﬂl'?y,t) - d(l}@( —Aty)—xCDAdy,
doyg(z,y,t) = —B'dzoy+ (L, —B'z)ody.

We record the following conversion between the view as differential and the view as
a Jacobian matrix, which we will prove in a more general version later on.

Lemma 6.1. The Jacobian of (g) = (gé?g’g) 1s reqular if and only if there does

not exist (dr,dy) # (0,0) € R™ x R" such that both differentials d,f(x,y,t) and
dyy9(x,y,t) equal zero.

We can now verify that for bimatrix games every non-event point of the Lemke-
Howson path is smooth.

Proof. Let (z,y,t) be a non-event point of the Lemke-Howson path, that is f(z,y,t) =
0, g(z,y,t) = 0. Let K := supp(z), K := [m]\K, L :=supp(y), L := [n]\L. By
construction, supp(1,, — Ayy) = K¢ and supp(1,, — Bfz) = L°.

Let dwf(x,y, t) =0 and d,y9(x,y,t) = 0. The property d,, f(z,y,t) = 0 implies
supp(dz) C K¢ and similarly we obtain supp(dy) C L¢. Since the game is non-
degenerate, the columns of the |K| x |L¢| submatrix of BT with entries by for k €
K, l € L¢ are linearly independent. Therefore dz = 0 and analogously we see that
dy = 0. This proves the claim that the point (z,y,t) is smooth. O

For semidefinite games, it is beneficial to describe the derivatives in terms of differ-
entials. We start from

FXY, 1) = X-(Im—®a(Y)),
G(X,Y,1) Yo (I, — (X))
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Note that ®4 depends on t. However, in our considerations t is a fixed parameter and
we therefore omit the dependency from ¢ in the notation. The differentials are

DxyF(X, Y, t)[H, K] = (In—Qa(Y))H — X - ®4(K),
DxyG(X, Y, )[H, K] = —Y - ®(H) + (I, — ®s(X)K .

We record the following conversion between the view as differential and the view as
a Jacobian matrix similar to the Lemma [6.2]

Lemma 6.2. The Jacobian of (g) 1s reqular if and only if there does not exist

(H,K) # (0,0) € R™*™ x R™™ such that
(6.1) DxyF(X,Y,)[H, K] = 0 € R"™m
(6.2) and DxyG(X,Y,t)[H, K] = 0 € R"™",

Proof. The rows of the Jacobian J are indexed by either (i,j) € [m] x [m] (referring
to F) or by (i,5) € [n] x [n] (referring to G). Similarly, a vector v € R™*+"*| can be
written as a pair of two matrices, say, called H* € R™*™ and K* € R"*".

For the rows of J that refer to F', the matrix-vector product of the row indexed by

(,7) and v evaluates to
m a i
Z (anlFij> Hkl

k=1
and analogously for the rows referring to G

n
3}
> (960 ) K
k=1 (aykl
Hence, the vector v is contained in the kernel of J if and only if the matrix (6.1)
evaluates to the zero matrix at (H*, K*). Since a matrix is singular if and only if it

contains a non-zero vector in the kernel, the claim follows. 0

In the diagonal situation, this coincides with the previous discussion of the bimatrix
case, where the matrices X and Y are diagonal matrices. Thus, when we consider the
differentials, only the elements on the diagonal matter matter, that is, dX;; and dY};.

Note that when considering the derivatives or differentials for points on the central
path, we can drop the symmetry requirement for our matrices. This is well known in
similar contexts, for example, the central path in semidefinite programming ([11, proof
of Theorem 3.3]). Namely, we know that in the relative interior of the curve branches
between two event points, there exists a solution which meets the symmetry require-
ments. If we show that the Jacobian in the space without symmetry requirements is
non-degenerate then this implies that there cannot be any other infinitesimally near
unsymmetric solution on the central path.

We arrive at the following sufficient condition for the smoothness of the Lemke-
Howson path in a given point.
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Theorem 6.3. Consider a non-degenerate semidefinite game and let (X,Y,t) be on
the Lemke-Howson path and neither an event point nor a Nash equilibrium. Then
(X,Y,t) is a smooth point on the Lemke-Howson path.

Proof. Let X € X and Y € Y be of rank k and ¢ > 0 be fixed. Recall the notation
W(Y)=1,—®4Y) and V(X) = I, — Pp(X).

By construction, im(X) = ker(W(Y)), ker(X) = im(W(Y)), im(Y) = ker(V (X))
and ker(Y) = im(V(X)), where im and ker denote the image and the kernel of a
matrix. Now recall the functions

F(X.,Y,t) = X -W(Y), GX.,Y,t) =Y V(X).

By the theorem of the implicit function and lemma , (X,Y) is a smooth point on
the Lemke-Howson path if the differentials Dy y F[H, K| and DxyG[H, K| do not
vanish for any (H, K) # (0,0).

First we observe what it means for Dy y F[H, K| to vanish,

DxyF[H, K] =W (Y)H — X®4(K) = 0.

That implies W(Y)H = 0 = X®4(K) because (every column of) W (Y')H is contained
in the kernel of X and (every column of) X®,4(K) is contained in the image of X.
Similarly, if

DxyG[H,K]|=-Y®R(H)+V(X)K =0

then V(X)K = 0 = Y®3(H). We are left to show that (H, K) = (0,0). Consider
X' := X + AH for some arbitrary and fixed A € R. We can see that

X'W(Y)=XW(Y)+ HW(Y) = 0,
YV(X) =Y (I, = ¥y(X + AH)) = V(I — Py(X) — APy (H)) =YV (X) = 0.

Since the game is non-degenerate, only finitely many matrices (X', Y") can be in both
of those varieties, therefore H = 0. Using an analogous argument, we see K = 0,
which completes the proof. O

7. CONCLUSION AND OUTLOOK

We have provided a generalization of Lemke-Howson paths for bimatrix games to
semidefinite games, offering both a structural perspective on the Nash equilibria of
semidefinite games and numerically-algebraic algorithmic techniques for computing
them. Our discussion of Lemke-Howson paths began with a formulation of a semidef-
inite game as a semidefinite complementarity problem. Analogous to the connection
between Lemke-Howson paths and linear complementarity problems in the bimatrix
case, our approach for semidefinite games naturally extends to the broader class of
semidefinite complementarity problems, which encompass a range of noncommutative
complementarity problems.

The investigation of Lemke—Howson paths has also led to natural questions regard-
ing degeneracy in semidefinite games. In the case of bimatrix games, degeneracy is
well understood, and several equivalent formulations exist from different perspectives
(see [42]). We have initiated the study of degeneracy in semidefinite games, and a key
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direction for future research is to understand how the various notions of degeneracy
known for bimatrix games can be extended and adapted to the semidefinite setting.
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