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Abstract. We investigate visibility problems with moving viewpoints in n-
dimensional space. We show that these problems are NP-hard if the underlying
bodies are balls, H-polytopes, or V-polytopes. This is contrasted by polynomial
time solvability results for fixed dimension. We relate the computational complex-
ity to existing algebraic-geometric aspects of the visibility problems, to the theory
of packing and covering, and to the view obstruction problem from diophantine
approximation.

1. Introduction

Computer graphics and visualization deal with preparing data in order to show
(“visualize”) these data on a (two-dimensional) computer screen. In computer graph-
ics, the original data typically stem from the three-dimensional Euclidean space R3,
whereas in scientific visualization the data might originate from spaces of much higher
dimension (e.g., in information visualization or high-dimensional sphere models in sta-
tistical mechanics) [28].

In these scenarios, visibility computations play a central role [24]. In the simplest
case, we are given a fixed viewpoint v ∈ Rn, and the scene consists of a set B of bodies.
Now the task is to compute a suitable two-dimensional projection of the scene (“to
render the scene”) that reflects which part of the scene is visible from the viewpoint v.
In a more dynamic setting, the viewpoint can be moved interactively (see, e.g., [3, 21]).
However, in general, after each movement of the viewpoint a new rendering process
is necessary. In order to speed up this process, commercial renderers apply caching
techniques [32].

From the algorithmic and geometric point of view it is desirable to establish a more
global view of the scene in advance and answer questions like: Which of these bodies
can be seen (at least partially) from some viewpoint within a given viewpoint area?
The bodies which are not even partially visible from any of these viewpoints can be
removed from the whole visualization process in advance. In the case of dense scenes
(like in the visualization of dense crystals, consisting of many atoms) this can reduce
the time consumption of the rendering processes significantly. In n-dimensional space
invisibility of a body is a sufficient criterion for its invisibility in any low-dimensional
projection.

As yet, algorithmic treatment of visibility computations with moving viewpoints
in dimension at least three still bears many challenges (see the recent papers [11, 13,
14, 31]). A main reason for this can be seen in various intrinsic difficulties in the
underlying complexity-theoretical, geometric and algebraic questions.
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In the present paper, we analyze the binary Turing machine complexity of visibility
computations in spaces of variable dimension. The classes of geometric bodies under
consideration are that of balls, that of polytopes represented as the convex hull of
finitely many points (“V-polytopes”), and that of polytopes represented by an inter-
section of finitely many halfspaces (“H-polytopes”). Roughly speaking, we show the
following results that characterize the borderline between tractable and hard. If the
dimension of the space is part of the input, then checking visibility of a given body B
in the scene is NP-hard for all three classes. Moreover, these hardness results persist
even for very restricted classes of polytopes. In the case where the given body B
degenerates to a single point, we can prove also membership in NP for the two classes
of polytopes. If however, the dimension is fixed then the visibility problem becomes
solvable in polynomial time for all three classes. (For precise statements of the results
see Theorems 2 and 3.)

Moreover, we relate these complexity results to existing results from several other
perspectives. From the algebraic-geometric point of view, visibility computations with
moving viewpoints require the study of the interaction of the geometric bodies with
lines. In particular, it is essential to characterize certain extreme situations which
correspond to common tangent lines to a given set of bodies. In dimension 2, the
resulting geometric questions typically remain rather elementary (see [24, 25]). How-
ever, in dimension 3 already, and even for simple types of bodies, such as balls, the
underlying geometric problems have a high algebraic degree and hence give rise to
difficult questions of real algebraic geometry [22, 29]. See Section 4 for details.

We also relate our complexity results to Hornich and Fejes Tóth configurations from
the theory of packing and covering. Our results imply that already the test whether
a given visibility configuration is a Hornich or Fejes Tóth configuration is an NP-hard
problem.

Finally, we establish a link between our hardness results and the view obstruction or
lonely runner conjecture from diophantine approximation [33, 9, 4]. Let ||x||I denote
the distance of a real number x to a nearest integer. Then, for each positive integer
n, let

κ(n) = inf
v1,...,vn∈N

sup
τ∈[0,1]

min
1≤i≤n

||τvi||I ,

a measure for simultaneous homogeneous diophantine approximation. Wills [33] and
later Cusick [9] conjectured that κ(n) = 1

n+1
. Although this conjecture has been

investigated in a series of papers in the last 30 years (see the list of references in [7]), the
exact value of κ(n) is known only for values up to 5. Our hardness results can be seen
as a complexity-theoretical indication why the number-theoretical view obstruction
problem is hard.

The present paper is organized as follows. In Section 2, we introduce the necessary
notation and review known algorithmic results in dimension 3. In Section 3, we
determine the computational complexity of the considered visibility problems. Finally,
in Section 4, we establish connections between our complexity-theoretical results and
the other mentioned fields.

2. Preliminaries and Known Results

Throughout this paper let Rn denote the n-dimensional Euclidean space. In partic-
ular, let 〈·, ·〉 and || · || denote the Euclidean scalar product and the Euclidean norm,
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respectively, and let Bn = {x ∈ Rn : ||x|| ≤ 1} and Sn−1 = {x ∈ Rn : ||x|| = 1}
denote the unit ball und unit sphere.

2.1. Geometric objects and the model of computation. The geometric objects
under consideration are particular convex bodies. A convex body (or simply body)
is a bounded, closed, and convex set which contains interior points. Our model of
computation is the binary Turing machine model: all relevant convex bodies are
presented by certain rational numbers, and the size of the input is defined as the
length of the binary encoding of the input data (see, e.g., [16, 18, 19]).

Specifically, a B-ball B is a ball that is represented by a triple (n; c, ρ) with n ∈ N,
c ∈ Qn, and ρ2 ∈ (0,∞) ∩ Q such that B = c + ρBn. Let Bn denote the class of all
B-balls in Rn, and set B =

⋃

n∈N
Bn.

For rational polytopes we distinguish between H- and V-presentations [18]. A V-
polytope is a polytope P which is represented by a tuple (n; k; v1, . . . , vk) with n, k ∈ N,
and v1, . . . , vk ∈ Qn such that P = conv{v1, . . . , vk}, i.e., P is the convex hull of
v1, . . . , vk. An H-polytope is a polytope P represented by a tuple (n; k; A; b) with
n, k ∈ N, a rational k × n-matrix A, and b ∈ Qk such that P = {x ∈ Rn : Ax ≤ b}.
Let Pn

H and Pn
V denote the classes of H- and V-polytopes in Rn, respectively, and set

PH =
⋃

n∈N
Pn

H, PV =
⋃

n∈N
Pn

V .
For fixed dimension H- and V-presentations of a polytope can be transformed into

each other in polynomial time. If, however, the dimension is part of the input then
the size of one presentation may be exponential in the size of the other [23].

2.2. Visibility problems. A ray issuing from x is a set of the form x + [0,∞)w
with some w ∈ Rn \ {0}. If a ray issues from the origin then it is also called a 0-ray.
For m + 1 bodies B0, B1, . . . , Bm from a class X we call B0 visible (with respect to
B1, . . . , Bm) if there exists a visibility ray r for B0, i.e., a ray issuing from some point
p ∈ B0 satisfying r ∩ Bi = ∅ for all 1 ≤ i ≤ m.

Our definition of algorithmic visibility problems depends on the class X of geometric
bodies. Note that the dimension of the ambient space is part of the input.

Problem VisibilityX :

Instance: m, n, bodies B0, B1, . . . , Bm ⊂ Rn from the class X .
Question: Decide whether B0 is visible with respect to B1, . . . , Bm.

A visibility problem is called anchored if B0 is a single point located at the origin.
With regard to a more restricted viewing region, we call B0 visible from the positive
orthant (with respect to B1, . . . , Bm) if there exists a visibility ray for B0 contained
in the (closed) positive orthant.

Problem Quadrant VisibilityX :

Instance: m, n, bodies B0, B1, . . . , Bm ⊂ Rn from the class X .
Question: Decide whether B0 is visible from the positive orthant with respect

to B1, . . . , Bm.

In the basic form we do not require the bodies to be disjoint. We add the index
∅ if the input bodies B0, . . . , Bm are required to be disjoint (e.g., VisibilityB,∅). If
X = PH or X = PV , we will usually denote the bodies by P0, . . . , Pm.
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Remark 1. Using the techniques presented in the treatment of Quadrant Visibil-

ity, it is also possible to prove hardness results for many other classes of restricted
viewing regions. For the sake of simplicity, we restrict ourselves to the one example
of that type that is relevant for the view obstruction problem.

Let ei be the i-th unit vector in Rn. For c ∈ Rn and ρ1, . . . , ρn > 0, conv{c ±
ρiei : 1 ≤ i ≤ n} is called a cross polytope in Rn. A parallelotope is a polytope
c +

∑n
i=1[−1, 1]zi with c ∈ Rn and linearly independent z1, . . . , zn ∈ Rn.

For a set A ⊂ Rn let pos A = {∑k
i=1 λixi : k ∈ N, x1, . . . , xk ∈ A, λ1, . . . , λk ≥ 0}

denote the positive hull of A.
For c ∈ Rn and a j-flat F , let d(c, F ) denote the Euclidean distance of c from F .

3. Complexity Results for Variable Dimension

3.1. Main results. We analyze the binary Turing machine complexity of the visibil-
ity problems for the case of variable dimension. Our main intractability results are
summarized in the following theorem.

Theorem 2. (a) For X ∈ {B,PH,PV} the problems VisibilityX and Quadrant

VisibilityX are NP-hard. The hardness persists even if the instances are restricted to
those for which the bodies are disjoint. Moreover, in case of H-polytopes the hardness
persists if all bodies are axis-aligned cubes, and in case of V-polytopes if all bodies are
axis-aligned cross polytopes.
(b) For X ∈ {PH,PV} the anchored versions of VisibilityX and Quadrant

VisibilityX are NP-complete.

These hardness results are contrasted by the following positive results for fixed
dimension.

Theorem 3. Let X ∈ {B,PH,PV}, and the dimension n be fixed. Then VisibilityX

and Quadrant VisibilityX can be solved in polynomial time.

3.2. Informal description of the hardness proofs. Let us consider an anchored
visibility problem.

In order to show NP-hardness, we provide reductions from the well-known NP-
complete 3-satisfiability (3-Sat) problem [16]. Let C = C1 ∧ . . . ∧ Ck denote a 3-Sat

formula with clauses C1, . . . , Ck in the variables η1, . . . , ηn. Further, let ηi denote the
complement of a variable ηi, and let the literals η1

i and η−1
i be defined by η1

i = ηi,
η−1

i = ηi. Let the clause Ci be of the form

(1) Ci = η
τi1

i1
∨ η

τi2

i2
∨ η

τi3

i3
,

where τi1 , τi2 , τi3 ∈ {−1, 1} and 1 ≤ i1, i2, i3 ≤ n are pairwise different indices.
In our reduction, we construct an anchored visibility problem in Rn. The reduction

consists of two ingredients. First we enforce that any visibility 0-ray has a direction
which is close to a direction in the set {−1, 1}n. For this purpose, consider the
cube [−1, 1]n. For each of the 2n facets of the cube we construct a suitable body (a
ball or a polytope) whose positive hull covers the whole facet with the exception of
“regions near the vertices”. We call these bodies structural bodies. Figure 1(a) shows
this situation for the 3-dimensional case of a ball. Any visibility 0-ray can then be
naturally associated with a 0-ray in one of the directions {−1, 1}n; this imposes a
discrete structure on the problem. The 2n structural bodies are always part of the
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1ξ 1ξ

(a) Placing structural bodies (b) Vertex simplices

Figure 1. Imposing discrete structure

construction, independent of the specific 3-Sat formula. The positions of each of these
2n bodies will depend linearly on some positive parameter γ. In fact, all bodies can
be moved radially and their size be appropriately adjusted so that the crucial covering
properties persist. The parameters will be used later to make the bodies disjoint. In
order to define the “region near a vertex” we consider Figure 1(b). For every vertex
v of [−1, 1]n let the vertex simplex of v be defined as the convex hull of v and those
n points which result by dividing exactly one component of v by 2. The construction
will be such that any point in the boundary of [−1, 1]n that is not contained in the
positive hull of a structural body will be contained in some vertex simplex.

In the second step, we relate satisfying assignments of a clause (1) to certain
visibility 0-rays. Let t : {True,False} → {−1, 1} be defined by t(True) = 1
and t(False) = −1. We utilize the correspondence between a truth assignment
a = (α1, . . . , αn)T ∈ {True,False}n to the variables η1, . . . , ηn and the 0-ray with
direction (t(α1), . . . , t(αn))T ∈ {−1, 1}n.

For each clause (1), we construct a body whose positive hull contains the set

{x = (ξ1, . . . , ξn)T ∈ {−1, 1}n : ξi1 = −t(τi1) ∧ ξi2 = −t(τi2) ∧ ξi3 = −t(τi3)}
as well as the corresponding vertex simplices, but which does not contain the set

{x ∈ {−1, 1}n : ξi1 = t(τi1) ∨ ξi2 = t(τi2) ∨ ξi3 = t(τi3)}.
Again, the position of each body depends linearly on some positive parameter δ, which
will be used to achieve disjointness of the bodies.

The construction will guarantee that a truth assignment a satisfies the given 3-Sat

formula C if and only if there exists a visibility 0-ray.

3.3. The case of balls. The following simple and well-known distance formula is
needed in the subsequent constructions. Here, for x ∈ Rn let x2 := 〈x, x〉.
Remark 4. Let c ∈ Rn, p ∈ Rn and q ∈ Rn \ {0}. Then the distance from c to the
line p + Rq is given by

d(c, p + Rq)2 = (p − c)2 − 〈q, (p − c)〉2
q2

.

Proof. The line p + Rq has distance ρ from c if and only if the quadratic equation
(p + λq − c)2 = ρ2 in λ has a solution of multiplicity two. This gives the equation

〈q, (p − c)〉2
q2

− (p − c)2 + ρ2 = 0 .
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�

Lemma 5. Anchored VisibilityB,∅ is NP-hard. Also, Anchored VisibilityB is
NP-hard even if the instances are restricted to (not necessarily disjoint) balls of the
same radius.

Proof. We complete the construction outlined in Section 3.2 so as to provide a poly-
nomial time reduction from 3-Sat to Anchored VisibilityB,∅. Without loss of
generality let n ≥ 4.

Let us consider the 2n structural balls Si(γi) = (n; si(γi), σi(γi)), 1 ≤ i ≤ 2n, where
γi is the scaling parameter of Si as described above. Naturally, we place these balls
symmetrically so that their centers lie on coordinate axes, i.e., let

si(γi) = γiei and sn+i(γn+i) = −γn+iei , 1 ≤ i ≤ n.

In order to specify the radii σi(γi) of the structural balls, let us consider S1(γ1); see
Figure 1(a). (The construction of the other balls is done analogously.) For convenience
of notation, we shortly write S = (n; s, σ).

In order to impose the discrete structure we will satisfy the following two conditions.
Firstly, pos(S) must not contain the vertices {1}×{−1, 1}n−1. Secondly, pos(S) must
contain those points which result from the vertices of the facet {1} × [−1, 1]n−1 after
dividing exactly one of the last n− 1 components by 2. The two conditions will yield
an upper and a lower bound for σ.

We start with the first condition. Since any of the 0-rays {1} × {−1, 1}n−1 has the
same distance from the center s, it suffices to consider [0,∞)q with q = (1, 1, . . . , 1)T .
By Remark 4,

d(s, [0,∞)q)2 = γ2n − 1

n
.

Consequently, we have to choose σ2 < γ2(n−1)/n. For the second condition, consider
the point q = (1, . . . , 1, 1/2)T . Then Remark 4 yields

d(s, [0,∞)q)2 = γ2 4n − 7

4n − 3
.

Therefore, a ball centered in s with radius σ satisfying

(2) γ24n − 7

4n − 3
< σ2 < γ2 n − 1

n

guarantees the two conditions. The construction of structural balls for all 2n facets
guarantees that any point in a facet of [−1, 1]n that is not contained in the positive
hull of a structural ball is contained in a facet of some vertex simplex.

Now we turn to the balls Ci(δi) = (ci(δi), ρi(δi)), 1 ≤ i ≤ k, representing the k
clauses. For notational convenience we describe the construction for the clause

C = η−1
1 ∨ η1

2 ∨ η−1
3 .

It should of course be clear that the construction works just as well for other clauses.
We abbreviate the ball for the clause C by C = (n; c, ρ) (without referring explicitly
to the dependence on the parameter δ := δi). We set c = δ(1,−1, 1, 0, . . . , 0)T , hence
all the Boolean variables η4, . . . , ηn are treated similarly.

In order to represent the given clause by the ball C we guarantee the following two
properties. First, none of the 0-rays spanned by {−1, 1}n \ (1,−1, 1) × {−1, 1}n−3

must be contained in pos(C). Within this set of rays, the ray [0,∞)q with q =
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(1,−1,−1, 1, . . . , 1)T (among others) leads to the smallest distance from C. Remark 4
implies

d(c, [0,∞)q)2 = δ23n − 1

n
which yields the condition ρ2 < δ2(3n − 1)/n.

Moreover, we guarantee the following second property. The positive hull of C must
contain all the points in (1,−1, 1) × {−1, 1}n−3 as well as their vertex simplices.
Among all these points and among the vertices of the vertex simplices, the vector
q = (1,−1, 1/2, 1, . . . , 1)T leads to the ray with the largest distance from c. Remark 4
implies

d(c, [0,∞)q)2 = δ2 12n − 34

4n − 3
.

Hence, a ball centered in c with radius ρ satisfying

δ212n − 34

4n − 3
< ρ2 < δ2 3n − 1

n

guarantees the two conditions for the clause ball. Note that the upper bound implies
that the origin is not contained in the ball.

As yet, the definitions of the 2n structural balls and the k clause balls depend
on the positive parameters γ1, . . . , γ2n and δ1, . . . , δk, respectively. By choosing these
parameters appropriately, we make the balls disjoint. Since σi < γi

√

(n − 1)/n for
the structural balls, we choose the parameter γi of the i-th structural ball successively
so that

γi − γi

√

n − 1

n
> γi−1 + γi−1

√

n − 1

n
.

Then

(γiei − γjej)
2 > (σi + σj)

2 for i > j.

Setting γ0 = 1, this leads to the condition

γi >





1 +
√

n−1
n

1 −
√

n−1
n





i

=
(

2n − 1 + 2
√

n · (n − 1)
)i

.

Hence, choosing γi = (4n − 1)i for 1 ≤ i ≤ 2n guarantees that the structural balls
are pairwise disjoint. Note that the binary logarithm of these numbers grows only
polynomially in the number of balls, i.e., we can choose rational centers and (squares
of) radii of the structural balls of polynomial size. Similarly, the parameters δ1, . . . , δk

of the clause balls can be chosen. In particular, when also choosing δ1 sufficiently
large, then the clause balls are disjoint from the structural balls.

Now it is easy to show that the given 3-Sat formula C can be satisfied if and
only if the single point B0 is visible. Let (α1, . . . , αn)

T be a satisfying assignment
of C. Then there does not exist any ball B in the construction whose positive hull
contains the 0-ray in direction (t(α1), . . . , t(αn))T . Hence, B0 is visible. Conversely,
let q be a visibility ray for B0. Due to the structural balls the ray q intersects with
the vertex simplex of some vector v = (ν1, . . . , νn)T ∈ {−1, 1}n. Consequently, the
truth assignment (t−1(ν1), . . . , t

−1(νn))T is a satisfying assignment because otherwise
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the positive hull of some clause ball would contain the vertex simplex of v. Hence, C
can be satisfied.

In order to achieve the result for balls of the same size, the role of σ and γ (respec-
tively, ρ and δ) in (2) is interchanged in the sense that the radius σ is now given and
a condition on γ is imposed. Clearly, these conditions for γ1, . . . , γ2n can be satisfied
in the same way as the conditions on the radius before. �

Corollary 6. VisibilityB,∅ is NP-hard.

Proof. It is obvious that the proof for the case that B0 is a single point generalizes to
the case of a non-degenerated ball centered in 0 with some sufficiently small radius
σ0 > 0. In the following we will outline the precise argument.

Let Si = (n; si, σi), 1 ≤ i ≤ 2n, and Cj = (n; cj, ρj), 1 ≤ j ≤ k, be the structural

balls and the clause balls in the proof of Lemma 5, and set B̂0 = (n; 0, σ0), where σ0 is
such that the inequalities given in the proofs of Lemma 5 hold for both σi, ρj and for
σ′

i := σi − σ0, ρ′
j := ρj − σ0, 1 ≤ i ≤ 2n, 1 ≤ j ≤ k. Further, let S ′

i = (n; si, σi − σ0),
1 ≤ i ≤ 2n, and C ′

j = (n; cj , ρj − σ0), 1 ≤ j ≤ k. Then it follows from the fact that
(B0, S1, . . . , S2n, C1, . . . , Ck) and (B0, S

′
1, . . . , S

′
2n, C ′

1, . . . , C
′
k) are Yes-instances of the

visibility problem if and only if the given Boolean expression is satisfiable that the
same holds for (B̂0, S1, . . . , S2n, C1, . . . , Ck). �

3.4. The case of V-polytopes.

Lemma 7. Anchored VisibilityPV ,∅ is NP-hard. This result persists if the instance
are restricted to axes-aligned cross polytopes.

Proof. We establish a polynomial time reduction from 3-Sat to Anchored

VisibilityPV ,∅ based on the framework in Section 3.2. Again we assume n ≥ 4.
This time, we choose the 2n structural bodies as cross polytopes of the form Si(γi) =

conv{si(γi)+σij(γi)ej : 1 ≤ j ≤ n} with rational coefficients si(γi), σij(γi) depending
on the scaling parameter γi. The centers of the cross polytopes are defined by

si(γi) = γiei and sn+i(γn+i) = −γn+iei , 1 ≤ i ≤ 2n .

Now we specify the coefficients σij . We describe the construction of S1(γ1) which for
simplicity will be abbreviated by S = conv{s + σjej : 1 ≤ j ≤ n}. The construction
of the other structural bodies is then similar.

For any choice of the parameters σ2, . . . , σn > 0, the (n − 1)-dimensional cross
polytope S ′ = conv{s + σjej : 2 ≤ j ≤ n} is contained in the hyperplane ξ1 = γ.
Similar to the case of the balls, two conditions are imposed on the choice of σ2, . . . , σn.
Firstly, the positive hull of S ′ must not contain the vertices {1}×{−1, 1}n. Secondly,
the positive hull of S ′ must contain those points resulting from the vertices of the
facet {1} × [−1, 1]n−1 by dividing exactly one of the last n − 1 components by 2.

We choose σ2 = . . . = σn. The necessary upper and lower bounds for σ2 result
as follows. Without loss of generality we consider the 0-ray [0,∞)(1, . . . , 1)T . The
vertex γ(1, . . . , 1)T of γ[−1, 1]n is contained in a facet of the (n − 1)-dimensional
cross polytope conv{s ± γ(n − 1)ej : 2 ≤ j ≤ n}. On the other hand, the point
γ(1, 1, 1, . . . , 1, 1/2)T is contained in a facet of the (n− 1)-dimensional cross polytope
with vertices conv{s ± γ(n − 3/2)ej}, 2 ≤ j ≤ n. Hence, if σ2 satisfies

γ

(

n − 3

2

)

< σ2 < γ (n − 1)
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then the two conditions enforcing the discrete structure are satisfied.
In order to make the (n − 1)-dimensional polytope S ′ full-dimensional we consider

some ε with 0 < ε < γ. Then s− εe1 ∈ pos S ′. Hence, by adding the vertices s± εe1

we obtain an n-dimensional cross polytope S with pos(S) = pos(S ′).
Now we show how to represent a clause by a cross polytope. Again, we describe the

construction for the clause η−1
1 ∨η1

2 ∨η−1
3 . The associated cross polytope will be of the

form C = conv{c±ρjej : 2 ≤ j ≤ n} with c = δ(1,−1, 1, 0, . . . , 0)T and coefficients ρj

(also depending on the parameter δ). For any choice of parameters ρ4, . . . , ρn > 0, the
(n−3)-dimensional cross polytope C ′ = conv{c±ρjej : 4 ≤ j ≤ n} is contained in the
(n− 3)-dimensional flat ξ1 = δ, ξ2 = −δ, ξ3 = δ. We choose ρ4 = . . . = ρn. As before,
we add the vertices c ± εej , 1 ≤ j ≤ 3, for some parameter 0 < ε < δ to obtain a
full-dimensional cross polytope. If ρ4 = 2(n−3) then the point δ(1,−1, 1/2, 1, . . . , 1)T

is contained in the n-dimensional cross polytope. Hence, by choosing ρ4 > 2(n − 3)
the positive hull of C contains all the points in (1,−1, 1)×{−1, 1}n−3 as well as their
vertex simplices. Moreover, since pos(C) is contained in the cone defined by ξ1 ≥ 0,
ξ2 ≤ 0, ξ3 ≥ 0, none of the vectors in {−1, 1}n \ (1,−1, 1) × {−1, 1}n−3 is contained
in the positive hull of the cross polytope.

Similarly to the proof of Lemma 5, we can choose the parameters γ1, . . . , γ2n,
δ1, . . . , δk, and ε (for making the bodies n-dimensional) in such a way that the bodies
are pairwise disjoint and that their encoding lengths remain polynomially bounded.
Hence, the polynomial time reduction from 3-Sat follows in the same way as in the
proof of Theorem 5. �

Using an inclusion technique like in Corollary 6 we readily obtain the following
corollary.

Corollary 8. VisibilityPV ,∅ is NP-hard even for axis-aligned cross polytopes.

Lemma 9. Anchored VisibilityPV
is contained in NP.

Proof. Let (m; n; P0, . . . , Pm) be an instance of Anchored VisibilityPV
with P0 =

{0} and V-polytopes P1, . . . , Pm, and let Fn−2(Pi) denote the set of all (n − 2)-
dimensional faces of Pi, 1 ≤ i ≤ m. The set of all linear subspaces lin F ,
F ∈ Fn−2(Pi), naturally decomposes the unit sphere Sn−1 into (n − 1)-dimensional
sectors. For two 0-rays belonging to the (relative) interior (w.r.t. Sn−1) of the same
sector either both of them are visibility rays or none of them is. Each 0-ray through
a vertex of a sector can be computed in polynomial time. In particular, two such
vertices have a distance that is bounded below by a polynomial in the input. Hence
for each sector there does indeed exist a polynomial size vector specifying a ray that
meets the sector in its (relative) interior (w.r.t. Sn−1). Hence there exists a polynomial
size certificates for candidates for visibility rays.

It remains to show that it can be verified in polynomial time that a given witness
ray does not intersect any of the polytopes Pi. Since the number of polytopes is
bounded by the input length of the instance, it suffices to explain this polynomial
verification method for a single polytope P ∈ {P1, . . . , Pm}. Let the V-presentation
of P be P = conv{v1, . . . , vk}. P does not intersect the ray [0,∞)q if and only if the
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ξ1

ξ2

1

1

Figure 2. In order to represent the 2-clause y1
1 ∨y−1

2 , all visibility rays
in the orthant ξ1 ≤ 0, ξ2 ≥ 0 have to be blocked. This can be achieved
by placing two unit squares centered at (−2, 1)T and (−1, 2)T .

system
∑k

i=1 µivi = λq,
∑k

i=1 µi = 1,
µi ≥ 0, 1 ≤ i ≤ k,
λ ≥ 0

does not have a solution. This can be checked in polynomial time by linear program-
ming. �

3.5. The case of H-polytopes.

Lemma 10. Anchored VisibilityPH
and VisibilityPH

are NP-hard. These state-
ments persist if we restrict the polytopes to be axis-aligned n-dimensional unit cubes.
The hardness also persists if we restrict the polytopes to be disjoint axis-aligned n-
dimensional cubes.

Proof. We give a polynomial time reduction from 3-Sat, but this time the proof differs
from the framework in Section 3.2. We begin with the anchored version, in which P0

is a single point located in the origin.
Let C = C1∧ . . .∧Ck be an instance of 3-Sat with clauses C1, . . . , Ck in the variables

η1, . . . , ηn. Let
Ci = η

τi1

i1
∨ η

τi2

i2
∨ η

τi3

i3
.

We construct a set of axis-aligned unit cubes ensuring that 0-rays spanned by any
(non zero) vector b = (β1, . . . , βn)T with sgn(βi1) ∈ {−τi1 , 0}, sgn(βi2) ∈ {−τi2 , 0},
sgn(βi3) ∈ {−τi3 , 0} cannot be visibility rays. Figure 2 depicts the idea of the con-
struction for two variables y1 and y2 and the 2-clause y1

1 ∨ y−1
2 . Define the 2n − 3

axis-aligned unit cubes

P1 = −2τi1ei1 − τi2ei2 − τi3ei3 + [−1, 1]n ,

P2 = −τi1ei1 − 2τi2ei2 − τi3ei3 + [−1, 1]n ,

P3 = −τi1ei1 − τi2ei2 − 2τi3ei3 + [−1, 1]n .

P ′
j = −τi1ei1 − τi2ei2 − τi3ei3 + 2ej + [−1, 1]n , j ∈ {1, . . . , n} \ {i1, i2, i3} ,

P ′′
j = −τi1ei1 − τi2ei2 − τi3ei3 − 2ej + [−1, 1]n , j ∈ {1, . . . , n} \ {i1, i2, i3} .
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All these cubes are contained in the set {x = (ξ1, . . . , ξn)
T ∈ Rn : sgn(ξi1) ∈

{−τi1 , 0}, sgn(ξi2) ∈ {−τi2 , 0}, sgn(ξi3) ∈ {−τi3 , 0}}, and none of the cubes contains
the origin. The union of the 2n − 3 cubes contains all facets of the cube

−τi1ei1 − τi2ei2 − τi3ei3 + [−1, 1]n

except the three facets which are contained in one of the hyperplanes ξi1 = 0, ξi2 = 0,
or ξi3 = 0. Namely, P1, P2, and P3 contain the facets in the hyperplanes ξi1 = −2τi1 ,
ξi2 = −2τi2 , and ξi3 = −2τi3 , respectively, and for j ∈ {1, . . . , n} \ {i1, i2, i3} the
cubes Pj and P ′

j contain the facets in the hyperplanes ξj = 1 and ξj = −1. Hence,
a ray [0,∞)b intersects one of the 2n − 3 cubes if and only if sgn(βi1) ∈ {−τi1 , 0},
sgn(βi2) ∈ {−τi2 , 0}, and sgn(βi3) ∈ {−τi3 , 0}.

Altogether, a ray [0,∞)b is a visibility ray for P0 if and only if C can be satisfied.
Hence, Anchored VisibilityPH

is NP-hard even if we restrict the polytopes to be
axis-aligned n-dimensional unit cubes. Note that if the instance cannot be satisfied
then the union of the polytopes in our construction contains the boundary of the cube
[−1, 1]n. Hence, the single point P0 can be replaced by the cube [−1, 1]n, which shows
that VisibilityPH

is NP-hard even if the polytopes are restricted to be axis-aligned
n-dimensional unit cubes.

In order to show that Anchored VisibilityPH,∅ and VisibilityPH,∅ are NP-hard,
we can scale the cubes as in the earlier proofs. �

Lemma 11. Anchored VisibilityPH
is contained in NP.

Proof. The proof is analogous to that of Lemma 9. �

3.6. Polynomial solvability results for fixed dimension. In order to prove the
polynomial solvability results for fixed dimension, we use the fact that the theory of
real closed fields can be decided in polynomial time [2, 8]. More precisely, for ratio-
nal polynomials p1(ξ1, . . . , ξn), . . . , pl(ξ1, . . . , ξn) in the variables ξ1, . . . , ξn, a Boolean
formula over p1, . . . , pl is defined as a Boolean combination (allowing the operators
∧, ∨, ¬) of polynomial equations and inequalities of the type pi(ξ1, . . . , ξn) = 0 or
pi(ξ1, . . . , ξn) ≤ 0. We consider the following decision problem for quantified Boolean
formulas over the real numbers.

Problem Real Quantifier Elimination:

Instance: n, l, rational polynomials p1(ξ1, . . . , ξn), . . . , pl(ξ1, . . . , ξn), a
Boolean formula ϕ(ξ1, . . . , ξn) over p1, . . . , pl, and quantifiers
Q1, . . . , Qn ∈ {∀ , ∃ }.

Question: Decide the truth of the statement

Q1(ξ1 ∈ R) . . . Qn(ξn ∈ R) ϕ(ξ1, . . . , ξn) .

In [2, 8] it was shown:

Proposition 12. For fixed dimension n, Real Quantifier Elimination can be
decided in polynomial time.

Remark 13. Despite of this polynomial solvability result for fixed dimension, current
implementations are only capable of dealing with very small dimensions. Generally,
there are two approaches towards practical solutions of decision problems over the
reals. One is based on Collins’ cylindrical algebraic decomposition (CAD) [8], and the
other is the critical point method ([17]; for the state of the art see [1]).
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In order to prove polynomial solvability of VisibilityB for fixed dimension, we
formulate the problem algebraically. We represent a ray p + λq, λ ≥ 0, by its initial
vector p ∈ Rn and a direction vector q ∈ Rn with ||q|| = 1. B0 is visible with respect
to B1 = (n; c1, ρ1), . . . , Bm = (n; cm, ρm) if and only if there exist p, q ∈ Rn such that
for all λ ∈ R the following formula holds:

||q||2 = 1 ,
and ||p − c0||2 ≤ ρ2

0 ,
and (λ < 0 or ||p + λq − ci||2 ≥ ρ2

i ), 1 ≤ i ≤ m .

Hence, we have to decide the truth of the following statement:

∃p ∈ Rn ∃q ∈ Rn ∀λ ∈ R

||q||2 = 1 ∧ ||p − c0||2 ≤ ρ2
0 ∧

(

(λ < 0 ∨ ||p + λq − ci||2 ≥ ρ2
i ), 1 ≤ i ≤ m

)

.

After expanding the Euclidean norm and applying some trivial transformations (such
as establishing the mentioned normal form pi(ξ1, . . . , ξn) ≤ 0 for the polynomial in-
equalities), this is a quantified Boolean formula of the required form. Hence, Propo-
sition 12 implies the following statement.

Lemma 14. For fixed dimension n, VisibilityB can be solved in polynomial time.

For the case of H-polytopes, let Pi = {x ∈ Rn : Aix ≤ bi} with Ai ∈ Qki×n,
bi ∈ Qki , 0 ≤ i ≤ m. P0 is visible if and only if there exist p, q ∈ Rn such that for all
λ ∈ R we have

||q||2 = 1 ,
and A0p ≤ b0 ,
and ¬( Ai(p + λq) ≤ bi ), 1 ≤ i ≤ m.

Applying Proposition 12 on this formulation we can conclude:

Lemma 15. For fixed dimension n, VisibilityPH
can be solved in polynomial time.

Since for fixed dimension n, a V-polytope can be transformed into a H-polytope in
polynomial time [15], this also implies

Corollary 16. For fixed dimension n, VisibilityPV
can be solved in polynomial time.

Similarly, by small modifications of the proofs, the polynomial time solvability
results for Visibility can also be transferred to Quadrant Visibility.

4. On the frontiers of the results and their relations to our other

fields

4.1. Relations to algebraic geometry. Theorems 2 and 3 do not guarantee mem-
bership of VisibilityB in NP. Let us illuminate this situation from the algebraic
point of view. First note that even though quantifier elimination methods can decide
Anchored VisibilityB or VisibilityB for fixed dimension in polynomial time (see
Lemma 14), it is not known how to compute a short witness of a positive solution
with these methods (see [2]).

For “Yes” instances of Anchored VisibilityB or VisibilityB there always exists
a ray in the closure of all visibility rays whose underlying line is simultaneously tangent
to several balls. Hence, the question of membership in NP is tightly connected to the
algebraic characterization of the lines simultaneously tangent to a given set of balls
in Rn. In particular, it is essential to characterize the lines tangent to 2n − 2 balls,
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since the Grassmannian of lines in n-space has dimension 2n−2 (i.e., a line in Rn has
2n−2 degrees of freedom). In [27] it was shown that for n ≥ 3, 2n−2 balls in general
position in Rn have 3 · 2n−1 (complex) common tangent lines. Hence, the visibility
problem in dimension n is tightly connected to an algebraic problem of degree 3 ·2n−1.

Similarly, Theorems 2 and 3 do not guarantee membership of VisibilityPH
or

VisibilityPV
in NP. These questions are tightly connected to the common transver-

sals to 2n−2 given (n−2)-dimensional flats in Rn. The generic number of (complex)
transversals to 2n − 2 given (n − 2)-flats in Rn is 1

n

(

2n−2
n−1

)

; (see, e.g., [20, 26]).

In both cases (balls and polytopes), the algebraic degree is reflected by our hardness
results in the Turing machine model.

4.2. Relations to the theory of packing and covering. Concerning NP-hardness,
Theorem 2 does not include a result for Anchored VisibilityB,∅ or VisibilityB,∅

if the balls are unit balls. However, the following statement shows that in “No”-
instances of VisibilityB,∅ the number of balls necessarily grows exponentially in the
input dimension n. Even if this does not rule out the existence of a polynomial time
algorithm (since the running time of the algorithm is not measured in terms of the
dimension n but in the overall length of the input size which in this case is exponential
in n), it might give a useful sufficient criterion for large input dimensions.

Lemma 17. Let n ≥ 6, m ∈ N, and let B0, B1, . . . , Bm be disjoint unit balls in Rn.
If m <

√
3n e

3

8
(n−1) then B0 is visible with respect to B1, . . . , Bm.

Proof. Without loss of generality we can assume that B0 is the unit ball centered
at the origin. Let 0 < r < 1 and H be a hyperplane in Rn at distance r from the
origin. Then the set of points on the unit sphere separated from the origin by H is
called an r-cap. Since any ball Bi, 1 ≤ i ≤ m, is disjoint from B0, an elementary
geometric computation shows that pos(Bi) intersects the unit sphere in an r-cap with√

3/2 < r < 1. A necessary condition for B0 being invisible is that these r-caps cover
the unit sphere. Let τ(n, r) denote the minimum number of r-caps covering the unit
sphere. By Lemma 5.2 in [6], we have for r > 2/

√
n

τ(n, r) ≥ 2r
√

ner2(n−1)/2 .

Substituting the value r =
√

3/2 into this formula yields the desired estimation. �

Moreover, the problem Visibility is closely related to difficult problems in the
theory of packing and covering (see [30] or [35, Chapter 12]). A Hornich configuration
in Rn is a set {B1, . . . , Bm} of disjoint unit balls with {B1, . . . , Bm} ∩ Bn = ∅ such
that the origin is not visible with respect to B1, . . . , Bm. The Hornich number hn is
the smallest number m of disjoint unit balls B1, . . . , Bm such that {B1, . . . , Bm} is a
Hornich configuration. Hence, for the class of unit spheres, Anchored VisibilityB,∅

asks whether a given configuration is a Hornich configuration. Similarly, a Fejes
Tóth configuration in Rn is a set {B0, . . . , Bm} of disjoint unit balls such that B0

is not visible with respect to B1, . . . , Bm. The Fejes Tóth number ℓn in Rn is the
smallest number m of disjoint unit balls B0, . . . , Bm such that there exists a Fejes
Tóth configuration with m balls.

Even in dimension 3, the Hornich number h3 is not known, and the best known
bounds are 30 ≤ h3 ≤ 42. Lower and upper bounds for general dimensions n can
be found in [35]. Concerning the Fejes Tóth number, Zong gave the upper bound

ℓn ≤ (8e)n(n + 1)n−1n(n2+n−2)/2 [34].
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If the balls are allowed to be of different radius then Theorem 2 implies that al-
ready the test whether a given configuration is a (generalized) Hornich or Fejes Tóth
configuration is NP-hard.

4.3. Quadrant visibility and view obstruction. In Sections 3.2–3.5 our hardness
results for Visibility were based on reductions from 3-Sat in which any assignment
a ∈ {True,False}n was identified with one of the 2n quadrants in Rn. For that
reason, the question arises whether the hardness results still hold for more restricted
viewing areas, say, for those viewing areas which are contained in a single quadrant.

In the following we prove the correponding part of Theorem 2.

Lemma 18. Anchored Quadrant VisibilityB,∅ is NP-hard. Moreover, An-

chored Quadrant VisibilityB is NP-hard even if all balls are restricted to (not
necessarily disjoint) balls of the same radius.

Proof. Once more, we provide a reduction from 3-Sat, and therefore consider a 3-Sat

formula in the variables η1, . . . , ηn. The essential idea of the reduction is to construct
an instance of Quadrant Visibility in (n + 1)-dimensional space Rn+1. The 0-
ray with direction v := (1, . . . , 1)T is contained in the positive orthant Q of Rn+1.
By considering a hyperplane which is orthogonal to v and which intersects (0,∞)v,
we transfer the proof ideas of Anchored Visibility to Anchored Quadrant

Visibility.
In order to simplify the notation, we apply an orthogonal transformation to trans-

form the diagonal ray [0,∞)v into [0,∞)en+1, the non-negative part of the ξn+1-axis.
By this operation, Q is transformed into a cone Q′. As in the proof of Lemma 5, we
impose a discrete structure on the visibility problem. Namely, for some positive pa-
rameter τ > 0 specified below, we associate the 2n truth assignments {True,False}n

with the 0-rays spanned by the vectors {1}×{−τ, τ}n. Note that the set {1}×[−τ, τ ]n

is an n-dimensional cube in Rn+1.
In order to achieve this discrete structure, we place 2n+1 structural balls Si(γi, τ) =

(n; si(γi, τ), σi(γi, τ)), 0 ≤ i ≤ 2n, at the centers c0 = γ0en+1, ci = γi(en+1 + τei),
cn+i = γn+i(en+1 − τei), 1 ≤ i ≤ n. In contrast to the proofs for Anchored Visi-

bility, the centers of the structural balls do not only depend on positive parameters
γi, but also on the global positive parameter τ . Figure 3 shows this situation for the
case n = 2. The parameter τ is chosen so that the n-dimensional cube {1} × [−τ, τ ]n

is contained in Q′. The radii si(γi, τ), 1 ≤ i ≤ n, of the structural balls can be chosen
such that any visibility ray must be close to a vertex of the n-dimensional cube; this
establishes the discrete structure. In a second step, the parameters γi can be used to
scale the balls in order to make them disjoint.

Then, similarly to the proof of Lemma 5, we can construct balls representing the
clauses of the 3-Sat formula in order to complete the desired polynomial time reduc-
tion. �

Clearly, the hardness result can be extended to the case of Quadrant

VisibilityB,∅, where B0 is a proper ball. Moreover, by combining the proofs in
Sections 3.4 and 3.5 with a lifting into Rn+1, the hardness results can also be estab-
lished for the case of V- and H-polytopes. (For H-polytopes, the construction from
the proof of Lemma 10 is carried out in the hyperplane given by ξn+1 = γ; and – as
in that lemma – the construction manages without any structural bodies.)
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ξn+1 = ξ3

ξ1

ξ2

c1

ξn+1 = ξ3

ξ1

ξ2

c1

ξn+1 = ξ3

ξ1

ξ2

c1

ξn+1 = ξ3

ξ1

ξ2

c1

ξn+1 = ξ3

ξ1

ξ2

c1

ξn+1 = ξ3

ξ1

ξ2

c1 ξ1

ξ2

c0 c1

c2

c3

c4

Figure 3. The figure shows how to impose discrete structure on An-

chored Quadrant Visibility in case n = 2 and γ0 = . . . = γ2n =: γ
(so all the centers of the structural balls are contained in the hyperplane
ξn+1 = γ). The positive hull of the triangle on the left represents Q′, the
positive orthant after the orthogonal transformation. The right figure
shows the section of the balls through the hyperplane ξn+1 = γ.

ξ1

ξ2

1

1

Figure 4. The picture shows the situation of the view obstruction
problem in R2. In particular, λ(2) = 1

3
.

Note that the proof technique of Lemma 18 can also be generalized to establish
hardness results for other classes of viewing areas.

The problem Anchored Quadrant Visibility is related to the problem of dio-
phantine approximation introduced by Wills [33] of determining

κ(n) = inf
v1,...,vn∈N

sup
τ∈[0,1]

min
1≤i≤n

||τvi||I .

Based on the pigeonhole principle, Wills showed 1
2n

≤ κ(n) ≤ 1
n+1

and conjectured

κ(n) = 1
n+1

. This conjecture was later restated by Cusick [9] who interpreted it as a

visibility problem called view obstruction. Let C = [−1
2
, 1

2
]n. For some factor α > 0,
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consider the infinite set of cubes

(3)

{

(

γ1 +
1

2
, . . . , γn +

1

2

)T

+ αC : γ1, . . . , γn ∈ N0

}

.

Now the problem is to determine the supremum of α > 0 such that there exists a
visibility ray in the strictly positive orthant (see Figure 4). This supremum, called
λ(n), can be written as follows

λ(n) = 2 sup
ω1,...,ωn∈(0,∞)

inf
ξ∈(0,∞)

max
1≤i≤n

||ωiξ −
1

2
||I .

The connection between Wills’ problem and the view obstruction problem is estab-
lished by the statement that for n ≥ 2 we have λ(n) = 1 − 2κ(n) (see [33, 9]).

Yet another approach to the same core problem called lonely runner has been given
in [4]. In spite of many research efforts during the last 30 years, the exact value of
κ(n) is known only for values up to 5 ([5]). For n ≥ 5, only upper and lower bounds
have been determined. If one considers balls instead of cubes [10], then also the exact
values for the view obstruction problem are known only up to dimension 5 [12].

Although, of course, the view obstruction problem involves an infinite number of
bodies, our complexity results for finite instances can be seen as a certain complexity-
theoretical indication for the hardness of the computation of λ(n) for larger n. Namely,
by Theorem 3, for fixed dimension Anchored Visibility or Anchored Quadrant

Visibility can be solved in polynomial time. However, if the dimension is part of the
input, then the problem becomes NP-hard by Theorem 2. In a non-rigorous sense,
this can be seen as a quantification of the strong influence of the dimension compared
to the other input parameters.
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