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Abstrat. We investigate the enumerative geometry aspets of algorithmi line

problems when the admissible bodies are balls or polytopes. For this purpose, we

study the ommon tangent lines/transversals to k balls of arbitrary radii and 4� k

lines in R

3

. In partiular, we ompute tight upper bounds for the maximum number

of real ommon tangents/transversals in these ases. Our results extend the results

of Madonald, Pah, and Theobald who investigated ommon tangents to four unit

balls in R

3

[21℄.

1. Introdution

Algorithmi questions involving lines in R

3

belong to the fundamental problems in

omputational geometry [36, 26℄, omputer graphis [28℄, and robotis [33℄. As an

initial referene example from omputational geometry, onsider the problem of de-

termining whih bodies of a given sene annot be seen from any viewpoint outside of

the sene. From the geometri point of view, this leads to the problem of determining

the ommon tangents to 4 given bodies in R

3

(f. Setion 2). Other algorithmi tasks

leading to the same geometri ore problem inlude omputing smallest enlosing

ylinders [32℄, omputing geometri permutations/stabbing lines [27, 2℄, ontrolling

a laser beam in manufaturing [26℄, or plaement problems in geometri modeling

[10, 17℄.

If the bodies are polytopes, the ommon tangents are ommon transversals of edges

[27℄; so, in fat, the main geometri task is to ompute the ommon transversals to four

given lines in R

3

. This geometri problem has been well-known for many years (see,

e.g., [16℄). In partiular, if a on�guration has only �nitely many ommon transversals,

then this number is bounded by 2; and it is well-known how to haraterize the

on�gurations with in�nitely many ommon transversals.

On the other hand, the following theorem in [21℄ shows that this situation om-

pletely hanges if the bodies under investigation are unit balls (see also [35, 23℄).

Proposition 1. Four unit balls in R

3

have at most 12 ommon tangent lines unless

their enters are loated on the same line. Furthermore, there exists a on�guration

with 12 tangents, i.e., the upper bound is tight.

Essentially, this means that algebraially this tangent problem is of degree 12. Note

that due to this high degree, proving the haraterization of the on�gurations with

in�nitely many ommon tangents is a highly nontrivial task.
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upper bound # real solutions of haraterization of

# solutions our onstrution degenerate instanes

4 lines 2 (well-known) 2 (well-known) yes (well-known)

3 lines, 1 ball 4 4 yes

2 lines, 2 balls 8 8 {

1 line, 3 balls 12 12 {

4 unit balls 12 [21℄ 12 [21℄ yes [21℄

4 balls 12 ([17℄) 12 [21℄ {

Table 1. Summary of results and referenes of known results. For the

ase of 4 balls of general radii we are able to provide a formulation with

B�ezout bound 12 (whih improves the results from [17℄ substantially;

see Setion 4).

However, onerning the lass of tangent problems to 4 given bodies, Proposition 1

solves only one partiular ase. In the present paper, we develop tehniques to ana-

lyze a substantially larger lass of variants. In partiular, we aim at �lling the gaps

between the two extreme situations mentioned before by onsidering ommon tan-

gents/transversals to k balls and 4 � k lines, k 2 f0; : : : ; 4g. For onveniene of

notation, we onsider a transversal of a line as a tangent to the line. Our investiga-

tions do not only larify the exat growth in algebrai degree from 2 to 12, but also

provide e�etive means to takle these questions when the symmetry (in the sense

of idential bodies) is lost. From the algorithmi point of view, these problems of

ommon tangents immediately arise in the mentioned appliations when the lass of

admissible bodies in the sene onsists of both balls and polytopes (see Setion 2).

As the main ontribution of this paper, we ompute tight upper bounds for the

number of ommon tangents to k balls and 4�k lines in the �nite ase, k 2 f0; : : : ; 4g.

Here, tightness refers to the following (quite strong) sense of real algebrai geometry

(f. [34℄): On the one hand, for eah k we bound the number of solutions by algebrai

methods, say, by some numberm. Then, on the other hand, we provide a onstrution

whih indeed leads to m solutions in real spae R

3

(whih would not be possible if any

polynomial formulation ontained some omplex solutions or solutions at in�nity).

The general diÆulty of proving tight bounds of this kind may be seen by the fol-

lowing two aspets. For the lassial enumerative geometry problem of onis tangent

to �ve given onis (dating bak to Steiner in 1847) the existene problem of 3264 real

solutions had not been solved until few years ago ([30℄ and [14℄, x7.2). Furthermore,

as pointed out in [34℄, there are nearly no riteria or general tehniques for takling

these type of questions. For these reasons, it is even more remarkable that in all (!)

of the situations there exists a onstrution mathing the upper bound.

Table 1 summarizes our results and provides referenes of known results. It shows

the upper bounds for the number of solutions and the mathing numbers of real

solutions in our onstrutions. The last olumn shows that only in a few ases, we are

able to expliitly haraterize the on�gurations with an in�nite number of ommon

tangents. Namely, besides the already existing results for 4 lines and 4 unit balls, we

add the haraterization for three lines and one ball. In the entries with a \{" we

annot give suh a haraterization and will disuss this issue at the end of the paper.
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Let us point out that the proofs of these results are of quite di�erent avors. For

k 2 f1; 2g, the upper bounds immediately follow from B�ezout's Theorem. Whereas

for k = 1 it is easy to give a onstrution mathing this bound, the onstrution

for k = 2 is quite involved. In partiular, for k = 2 we apply tools from algebrai

geometry and omputer algebra (e.g., standard bases) to prove orretness of the

onstrution. However, proving the tight upper bound for three balls and one line is

ompletely di�erent. Here, the B�ezout bound in our formulation will be 16 instead

of 12. In order to �nd a better bound for the number of real solutions, we have to

analyze the underlying algebrai geometry of the problem in detail. Finally, in the

proof for four balls of general radii we use elementary geometry to �nd a formulation

with B�ezout bound 12. Altogether, we think that this variety of tehniques an serve

to provide many ideas when takling related problems.

This paper is strutured as follows. In Setion 2, we establish the onnetion

between the algorithmi problems and the geometri tangent problems. Then, after

providing some algebrai bakground on Pl�uker oordinates in Setion 3, we prove

the neessary results for Table 1 in Setion 4. We onlude the paper with a short

disussion of the remaining open questions.

2. Motivation and Algorithmi Bakground

The problem under investigation represents the algebrai ore problem within sev-

eral algorithmi appliations mentioned in the introdution. Exemplarily, we desribe

two of them.

Partial visibility. Consider the following problem from ray-traing with moving

viewpoints. Here, we want to ompute information on the viewpoint positions where

the visibility topology of the sene hanges. As a speial ase, this inludes takling

the following ore problem of partial visibility.

A set B � R

n

(say, n 2 f2; 3g) is alled a (onvex) body if it is bounded, losed,

onvex, and ontains an inner point. Now we onsider a sene onsisting of a set B

of (not neessarily disjoint) bodies from a spei� lass X in R

n

(X might be the set

of all balls or the set of all polytopes). A body B 2 B is alled partially visible from

a viewpoint v if there exists a line segment onneting v and B not interseting with

the interior of any other body in B. A body B 2 B is alled partially visible if B an

be seen from some viewpoint \outside" of the sene, i.e., if there exists a ray starting

at B not interseting with the interior of any other body in B. We all suh a ray a

visibility ray for B. Bodies whih are not partially visible an be immediately removed

from the sene, whih redues the omplexity of the visualization proess. In ase of

dense rystals whose atoms are visualized as suÆiently large balls, the redution in

omplexity may be quite substantial.

In the two-dimensional ase, heking partial visibility of a body B an be redued

to a �nite number of geometri problems as follows (f. the treatment of stabbing

lines in [12℄). Without loss of generality let jBj � 2. If there exists a visibility ray

for B then we an ontinuously transform (i.e., translate and rotate) the visibility ray

until we reah a situation where the underlying line is tangent to at least two of the

bodies (one of them might be B itself). Hene, it suÆes to ompute the set of all

ommon tangent lines to a pair of bodies in B and hek whether one of these lines

ontains a visibility ray. For any pair of bodies, the number of ommon tangent lines
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is at most 4 (whih is a very speial ase of the results in [6, 19℄ on the number of

ommon supporting hyperplanes in general dimension).

In the three-dimensional ase we an essentially proeed analogously. Sine a line in

R

3

has four degrees of freedom, the ore problem is to ompute the ommon tangents

to four bodies in R

3

(f. [27, 2℄). However, in the three-dimensional ase, there are

also some speial ases where we an transform a visibility ray only to a situation

with 2 or 3 bodies, or where a on�guration with four bodies has an in�nite number

of ommon tangents.

For a polytope P , any tangent to P intersets an edge of P . Hene, if X on-

tains balls and polytopes, we have to ompute ommon tangents/transversals to k

lines and 4 � k balls, 0 � k � 4. An algorithmi treatment of the situations with

in�nitely many ommon tangents (depending on the lass X of bodies) requires an a

priori haraterization of the on�gurations with in�nitely many ommon tangents.

In ontrast to some other problems in omputational geometry, haraterizing these

situations annot be negleted (say, by applying perturbation tehniques [11℄), sine

the large algebrai degree involved makes it highly nontrivial to guarantee a orret

perturbation.

Envelopes. Let B be a olletion of n onvex bodies in R

3

. A line l is alled a line

transversal of B if it intersets every member of B. The set of line transversals of

B an be represented as the region enlosed between an upper and a lower envelope

as follows (see [7, 1, 2℄). These representations are important in the design of data

strutures supporting ray shooting queries (i.e., seeking the �rst body, if any, met by

a query ray) [1℄.

If we exlude lines parallel to the yz-plane, a line l in R

3

an be uniquely represented

by its projetions on the xy- and xz-planes: y = �

1

x + �

2

, z = �

3

x + �

4

. Hene, a

line an be represented by the quadruple (�

1

; �

2

; �

3

; �

4

) 2 R

4

.

Let B be a onvex body in R

3

. For �xed �

1

; �

2

; �

3

, the set of lines (�

1

; �

2

; �

3

; �

4

)

that interset B is obtained by translating a line in the z-diretion between two ex-

treme values (�

1

; �

2

; �

3

; �

�

B

(�

1

; �

2

; �

3

)) and (�

1

; �

2

; �

3

; �

+

B

(�

1

; �

2

; �

3

)), whih represent

lines tangent to B from below and from above, respetively. Hene, the set of line

transversals to B an be represented as

f(�

1

; �

2

; �

3

; �

4

) : max

B2B

�

�

B

(�

1

; �

2

; �

3

) � �

4

� min

B2B

�

+

B

(�

1

; �

2

; �

3

);

whih is a region enlosed between a lower envelope and an upper envelope in R

4

.

If the elements of B are balls or polytopes, then the set of line transversals de�nes

a semialgebrai set in R

4

(see [2℄). Assuming general position, the verties (= zero-

dimensional faes) of the boundary of this region orrespond to lines whih are tangent

to four of the bodies in B. Similar to the �rst senario, any implementation of this

basi step has to ope with the enumerative questions treated in the present paper.

The role of an algebrai orale. In both of these algorithmi senarios, the problem

is redued to the ore problem of �nding the ommon tangents/transversals to k lines

and 4�k balls. In literature, ore problems of this type are onsidered to be problems

of onstant desription omplexity (see, e.g., [2℄). Often, it is assumed that one has

aess to an algebrai orale omputing the neessary tangents, and the algorithm is
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formulated in terms of that orale. From this point of view, our analysis an be seen

as the neessary mathematial investigations on how to build this algebrai orale.

In partiular, any implementation of this algebrai orale or any interfae to a

blak box subroutine establishing that orale has to ope with the enumerative ques-

tions. From the viewpoint of data strutures it is always useful and sometimes even

neessary to know a good (i.e., tight) upper bound on the number of these tangent

lines. From the viewpoint of program veri�ation, knowing a tight upper bound on

the number of tangent lines o�ers the possibility of strong and valuable onsisteny

heks within a program (in partiular with regard to the neessary numerial sub-

routines; f. Setion 5). Finally, from the viewpoint of eÆieny, understanding the

geometry of the basi problem helps to �nd the right polynomial formulations for the

underlying numerial algorithms.

3. Pl

�

uker Coordinates

In several of the proofs, we use the well-known Pl�uker oordinates of lines in

projetive spae P

3

(see, e.g., [16, 8℄). Let x = (x

0

; x

1

; x

2

; x

3

)

T

, y = (y

0

; y

1

; y

2

; y

3

)

T

2

P

3

be two di�erent points on a line l. Then l an be represented (of ourse not

uniquely) by the 4� 2-matrix L whose two olumns are x and y. The Pl�uker vetor

p = (p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

2 P

5

of the line is de�ned by the determinants of the

2� 2-submatries of L, i.e., p

ij

= x

i

y

j

� x

j

y

i

. It is well-known that the set of vetors

in P

5

satisfying the Pl�uker relation

(1) p

01

p

23

� p

02

p

13

+ p

03

p

12

= 0

is in 1-1-orrespondene with the set of lines in P

3

. A line l intersets with a line l

0

in

P

3

if and only if their Pl�uker vetors p and p

0

satisfy

(2) p

01

p

0

23

� p

02

p

0

13

+ p

03

p

0

12

+ p

12

p

0

03

� p

13

p

0

02

+ p

23

p

0

01

= 0:

In order to haraterize lines tangent to balls we onsider tangent lines to arbitrary

quadris in P

3

. Throughout the presentation, we will identify a quadri surfae in P

3

with its symmetri 4 � 4-representation matrix. E.g., the sphere with radius r and

enter (

1

; 

2

; 

3

)

T

2 R

3

, in P

3

desribed by (x

1

� 

1

x

0

)

2

+(x

2

� 

2

x

0

)

2

+(x

3

� 

3

x

0

)

2

=

r

2

x

2

0

, is identi�ed with the matrix

0

B

B

�



2

1

+ 

2

2

+ 

2

3

� r

2

�

1

�

2

�

3

�

1

1 0 0

�

2

0 1 0

�

3

0 0 1

1

C

C

A

:

Lemma 2. Let L be a 4 � 2-matrix representing the line l � P

3

. l is tangent to a

quadri Q in P

3

if and only if the 2� 2-matrix L

T

QL is singular.

Proof. If we denote the two olumns of L by x and y, then the line l onsists of all

points

�

z = (z

0

; z

1

; z

2

; z

3

)

T

: z = �x + �y; (�; �)

T

2 R

2

n f(0; 0)

T

g

	

:

By de�nition, l is tangent toQ if and only if this line intersets the quadri exatly one

(namely, with multipliity 2), or if it is ontained in the quadri. The homogeneous

quadrati equation

(�x + �y)

T

Q(�x + �y) = 0
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an be made aÆne by setting � = 1. Sine the disriminant of this aÆne quadrati

equation in � is

(2x

T

Qy)

2

� 4(x

T

Qx)(y

T

Qy) = �4 det(L

T

QL);

the statement follows immediately. �

In order to transfer this ondition to Pl�uker oordinates, we introdue the operator

^

2

: R

m;n

! R

(

m

2

)

;

(

n

2

)

(f. [35℄). The row and olumn indies of the resulting matrix are subsets of ar-

dinality 2 of f1; : : : ; mg and f1; : : : ; ng, respetively. For I � f1; : : : ; mg and

J � f1; : : : ; ng with jIj = jJ j = 2,

(^

2

A)

I;J

:= detA

[I;J℄

;

where A

[I;J℄

denotes the 2�2-submatrix of the given matrix A with row indies I and

olumn indies J . Let l be a line in P

3

and L be a 4 � 2-matrix representing l. By

interpreting the 6� 1-matrix ^

2

L as a vetor in P

5

, we observe ^

2

L = p

l

, where p

l

is

the Pl�uker vetor of l.

Lemma 3. A line l � P

3

is tangent to a quadri Q if and only if the Pl�uker vetor

p

l

of l satis�es

(3) p

T

l

(^

2

Q)p

l

= 0:

Proof. Let L be a 4� 2-matrix whose two olumns ontain di�erent points of l. The

Cauhy-Binet formula from multilinear algebra (see, e.g., [22℄) implies

det(L

T

QL) = (^

2

L

T

)(^

2

Q)(^

2

L)

= (^

2

L)

T

(^

2

Q)(^

2

L):

Now the laim follows from Lemma 2. �

For a sphere with radius r and enter (

1

; 

2

; 

3

)

T

2 R

3

the quadrati form p

T

l

(^

2

Q)p

l

results to

(4)

0

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

A

T

0

B

B

B

B

B

�



2

2

+ 

2

3

� r

2

�

1



2

�

1



3



2



3

0

�

1



2



2

1

+ 

2

3

� r

2

�

2



3

�

1

0 

3

�

1



3

�

2



3



2

1

+ 

2

2

� r

2

0 �

1

�

2



2

�

1

0 1 0 0



3

0 �

1

0 1 0

0 

3

�

2

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

A

:

4. Proofs and Construtions

We show the following theorem.
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Theorem 4. Given 4�k lines and k balls in R

3

, 0 � k � 4. If there exist only �nitely

many ommon tangent lines to these four bodies then the number of these tangents is

bounded by

8

>

>

>

<

>

>

>

:

2 if k = 0;

4 if k = 1;

8 if k = 2;

12 if k 2 f3; 4g:

These bounds are tight, i.e., for eah k there exists a on�guration where the number

of di�erent real tangent lines mathes the stated number. The bounds are tight even

if the balls are unit balls.

For brevity, we denote the maximum numbers of tangent lines in the �ve situations

by N

k

, k 2 f0; : : : ; 4g. Before proving the statements in the following lemmas, let us

reall the following version of B�ezout's theorem (see, e.g., [8℄, p. 91).

Theorem 5. (B�ezout) Let f

1

; : : : ; f

n

be homogeneous polynomials in x

0

; : : : ; x

n

of

degrees d

1

; : : : ; d

n

> 0. If f

1

; : : : ; f

n

have a �nite number of ommon zeros in pro-

jetive n-spae P

n

then the number of zeros (ounted with multipliity) is bounded by

d

1

�d

2

� � �d

n

.

Note that the upper bounds N

0

� 2, N

1

� 4, N

2

� 8 immediately follow from

B�ezout's theorem. Namely, sine the ommon tangent lines to three lines and one

ball an be formulated by three linear equations of the form (2), one equation of

the form (3) as well as the Pl�uker relation (1) in the six homogeneous variables

p

01

; : : : ; p

23

, we obtain N

1

� 4. Analogously, we obtain N

0

� 2, N

2

� 8.

Further note that the ommon transversals to four given lines in 3-dimensional

spae are a well-studied problem in enumerative geometry, and it is well-known that

the upper bound of 2 an be atually ahieved in real spae R

3

(see, e.g., [16℄); hene

N

0

= 2. The number of ommon transversals is �nite if and only if the Pl�uker vetors

of the four given lines are linearly independent.

In the following, let B(; r) denote the (losed) ball with enter  and radius r.

Lemma 6. N

1

= 4.

Proof. Sine N

1

� 4, it suÆes to give a onstrution with 3 lines and 1 ball, leading

to 4 ommon tangents. Let l

1

be the x

1

-axis, l

2

be the x

2

-axis, and l

3

be parallel to

the x

3

-axis and passing through (0; 2; 0)

T

(see Figure 1); hene l

1

\ l

2

= f(0; 0; 0)

T

g

and l

2

\ l

3

= f(0; 2; 0)

T

g.

Eah line interseting the three lines l

1

, l

2

, and l

3

is loated in the x

1

x

2

-plane (in

whih ase it passes through (0; 2; 0)

T

) or is loated in the x

2

x

3

-plane (in whih ase it

passes through the origin). For 1 < r <

p

2 the ball B((1; 1; 1)

T

; r) intersets both the

x

1

x

2

-plane and the x

2

x

3

-plane, but does not interset with any of the lines l

1

, l

2

, l

3

.

Hene, sine there are two tangents to the ball passing through the origin and lying in

the x

1

x

2

-plane, and sine there are two tangents to the ball passing through (0; 2; 0)

T

and lying in the x

1

x

3

-plane, there are 4 ommon tangents altogether. Figure 1 shows

a on�guration with 1 < r = 11=10 <

p

2. We remark that by appropriate saling,

the ball an be transformed into a unit ball. Furthermore, by slightly perturbing the

on�guration, the lines an be made pairwise skew. �
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0

l1

l2

l3

Figure 1. The �gure shows a on�guration with 3 lines l

1

, l

2

, l

3

, and

one ball of radius 11/10, leading to 4 ommon tangent lines. The two

tangent lines in the x

1

x

2

-plane are drawn in light grey, whereas the two

tangent lines in the x

2

x

3

-plane are drawn in dark grey.

To omplete the entries for 3 lines and 1 ball in Table 1, it remains to haraterize

the on�gurations with in�nitely many ommon tangent lines. If the three lines are

not pairwise skew, then all ommon tangent lines lie in the same plane or pass through

a point of intersetion. Sine the resulting haraterization an be easily established,

we an assume that the three lines are pairwise skew.

It is well-known that the ommon transversals of three pairwise skew lines de�ne a

hyperboloid (see, e.g., [31, 3℄). By applying a translation and a rotation, the hyper-

boloid an be transformed into

(5)

x

2

1

a

2

+

x

2

2

b

2

�

x

2

3



2

= 1 with a; b;  > 0:

This transformation hanges the enter of the ball into some new enter (p

1

; p

2

; p

3

)

T

2

R

3

. Now the haraterization of in�nitely many ommon tangent lines is given by the

following lemma.

Lemma 7. Let l

1

; l

2

; l

3

be three pairwise skew lines whose ommon transversals gen-

erate a hyperboloid of the form (5), and let B

4

be a ball with enter (p

1

; p

2

; p

3

)

T

and

radius r > 0. Then there exist in�nitely many ommon tangents to l

1

; l

2

; l

3

; B

4

if and

only if p

1

= p

2

= 0, a = b, and in the x

1

x

3

-plane the irle x

2

1

+ (x

3

� p

3

)

2

= r

2

is a

tangent irle to both branhes of the hyperbola x

2

1

=a

2

� x

2

3

=

2

= 1.

Proof. The hyperboloid (5) an be parametrized by one of the two sets of generating

lines. In partiular, this hyperboloid is generated by the set of lines

(

(x

1

; x

2

; 0)

T

+ �

�

�

a

b

x

2

;

b

a

x

1

; 1

�

T

: � 2 R

)

;(6)

where

x

2

1

a

2

+

x

2

2

b

2

= 1(7)

(see, e.g., [18℄). In order to haraterize those lines whih are tangent to the ball, we

an apply Lemma 3 to the lines (6) and obtain a polynomial equation in x

1

, x

2

of
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degree at most 4. After bringing the terms of even degree in x

1

to the left side and

the terms of odd degree in x

1

to the right side, squaring the equation yields a new

equation, in whih every term is of even degree in x

1

. Now we an use (7) to eliminate

x

2

and obtain a polynomial equation of degree at most 8 in x

1

. Sine a univariate

polynomial with in�nitely many ommon zeros is the zero polynomial, this polynomial

formulation in a single variable implies: if the hyperboloid ontains in�nitely many

tangent lines to the ball, then all lines in the parametrization are tangent lines to the

ball.

Sine the intersetion of the hyperboloid with any plane parallel to the x

1

x

2

-axis

is symmetri with respet to the origin, a neessary ondition for in�nitely many

ommon tangents is p

1

= p

2

= 0. In this situation, a on�guration with in�nitely

many ommon tangents further implies a = b. Hene, sine p

1

= p

2

= 0 and a = b,

both the hyperboloid and the ball are rotational symmetri with respet to the x

3

-

axis, and it suÆes to onsider the setion through the x

1

x

3

-plane. In this setion, the

irle x

2

1

+(x

3

� p

3

)

2

= r

2

must be a tangent irle to both branhes of the hyperbola

x

2

1

=a

2

� x

2

3

=

2

= 1.

If, onversely, p

1

= p

2

= 0, a = b, and in the x

1

x

3

-plane, the irle x

2

1

+(x

3

�p

3

)

2

= r

2

is a tangent irle to the hyperbola x

2

1

=a

2

� x

2

3

=

2

= 1, then the rotational symmetry

implies that every line in the hyperboloid x

2

1

=a

2

+ x

2

2

=b

2

� x

2

3

=

2

= 1 is tangent to the

ball B

4

. Hene, there are in�nitely many ommon tangents. �

Lemma 8. N

2

= 8.

Proof. Sine N

2

� 8, it suÆes to give a onstrution with 2 lines and 2 balls of

the same radius, leading to 8 ommon tangent lines. We start from the following

on�guration with 6 di�erent ommon tangent lines. The two balls are symmetrially

loated on the x

1

-axis: 

3

= (; 0; 0)

T

, 

4

= (�; 0; 0)

T

; the radius r will be spei�ed

below. The lines l

1

and l

2

are hosen in a plane x

2

= � for some � > 0 suh that the

lines interset in (0; �; 0)

T

. Hene, every ommon transversal of the two lines either

lies in the plane x

2

= � or passes through the point (0; �; 0)

T

. If the two balls interset

with eah other, and � < r, and (0; �; 0)

T

is not ontained in the union of the balls

B(

3

; r), B(

4

; r), then there are exatly 6 di�erent ommon tangents (see Figure 2):

two tangents pass through (0; �; 0)

T

and lie in the plane x

1

= 0; two tangents lie in

the plane x

2

= � and are parallel to the x

1

-axis; and two tangents lie in the plane

x

2

= � and pass through (0; �; 0)

T

. For the following onsiderations it is quite useful

to have a suint desription of the last two tangents and also to work with integer

oeÆients for �, , and r. In partiular, we will fore the two tangents in the plane

x

2

= � and passing through (0; �; 0)

T

to be of the form (0; �; 0)

T

+ �(1; 0;�1)

T

. In

order to obtain these tangents, �,  and r have to satisfy �

2

+ 

2

=2 = r

2

and r > .

An appropriate hoie is � = 7,  = 8, and r = 9, so that the tangents of the last

type are

t

1

:=

�

(0; 7; 0)

T

+ �(1; 0; 1)

T

: � 2 R

	

and t

2

:=

�

(0; 7; 0)

T

+ �(1; 0;�1)

T

: � 2 R

	

:

Now the key observation is that these two tangents have multipliity 2. In order to

prove this we onsider the system of Pl�uker equations stemming from (2) and (4).

Independent of the spei� hoie of lines l

1

, l

2

with the above properties, the ommon
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x

l1

l2

Figure 2. The �gure shows a onstrution with 2 lines and 2 balls,

leading to 6 di�erent tangent lines. The two tangents lying in the plane

x

2

= � and passing through (0; �; 0)

T

are drawn in light grey. The other

four tangents are drawn in dark grey.

transversals of l

1

and l

2

are given by the ommon zeros of the two linear, homogeneous

polynomials

f

1

= �7p

03

+ p

23

;

f

2

= 7p

01

+ p

12

:

The quadrati equations resulting from the balls B(

3

; r) and B(

4

; r) are

f

3

= �81p

2

01

� 17p

2

02

� 17p

2

03

� 16p

02

p

12

+ p

2

12

� 16p

03

p

13

+ p

2

13

+ p

2

23

;

f

4

= �81p

2

01

� 17p

2

02

� 17p

2

03

+ 16p

02

p

12

+ p

2

12

+ 16p

03

p

13

+ p

2

13

+ p

2

23

:

Furthermore let f

5

= p

01

p

23

� p

02

p

13

+ p

03

p

12

be the polynomial of the Pl�uker rela-

tion (1).

The tangent t

1

has Pl�uker oordinate (1; 0; 1;�7; 0; 7)

T

. In order to ompute the

multipliity of this tangent, we follow the method and the notation in [9℄, x4.4. First

we pass to an aÆne version of the polynomials by adding the polynomial f

6

= p

01

�1;

this fores p

01

= 1 in any ommon zero of the system. Then we move the point t

1

to

the origin by applying the linear variable transformation

(p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

= (q

01

; q

02

; q

03

; q

12

; q

13

; q

23

)

T

+ (1; 0; 1;�7; 0; 7)

T

:

The loal intersetion multipliity � an be omputed as the vetor spae dimension

of the quotient ring

� = dimR

l

=I

l

;

where R

l

:= C [q

01

; : : : ; q

23

℄

hq

01

;:::;q

23

i

is the loal ring whose elements are the rational

funtions in q

01

; : : : ; q

23

with non-vanishing denominator at 0. I

l

is the ideal de�ned

by f

1

; : : : ; f

6

in the loal ring R

l

.

In order to ompute �, we use the fat that in ase of �nite dimension

dimR

l

=I

l

= dimR

l

=hLT(I

l

)i;

where hLT(I

l

)i denotes the ideal generated by the leading terms of I

l

(see, e.g., [9℄,

Chapter 4, Corollary 4.5). This dimension an be easily extrated from a standard
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x

Figure 3. Constrution with 2 lines and 2 balls, leading to 8 ommon

tangent lines

basis of I

l

(For the onveniene of the reader, a short review of standard bases an be

found in the appendix). Sine by our hoie of �, , and r, all oeÆients are integers,

we an apply a omputer algebra pakage (e.g., Singular [15℄), to ompute a standard

basis fh

1

; : : : ; h

6

g of the ideal I

l

with respet to anti-graded reverse lexiographial

order:

h

1

= q

01

;

h

2

= 112q

02

+ 34q

03

+ 14q

12

� 16q

13

;

h

3

= 14q

03

+ q

12

;

h

4

= q

12

;

h

5

= 64q

23

;

h

6

= 112q

2

13

:

Hene, the leading monomials of h

1

; : : : ; h

6

with respet to anti-graded reverse lex-

iographial order are q

01

, q

02

, q

03

, q

12

, q

23

, q

2

13

. The desired multipliity � is the

ardinality of the set of osets f1 + I

l

; q

13

+ I

l

g, whih implies � = 2. By symmetry,

the tangent t

2

has multipliity 2 as well.

Now we hoose one partiular on�guration of the presented lass, namely the one

with l

1

:= t

1

and l

2

:= t

2

. By perturbing this on�guration, the two double tangent

lines will split into four di�erent tangent lines: �rst, we slightly inrease the x

2

-

oordinate of the line l

2

, so that the resulting line l

0

2

beomes (0; �

0

; 0)

T

+�(1; 0;�1)

T

for some �

0

> �. In this proess, the double tangent t

1

splits into two tangents t

a

1

and

t

b

1

interseting l

1

and l

0

2

in di�erent orders; i.e., one of the tangents t

a

1

, t

b

1

touhes l

1

,

l

2

, B

3

, and B

4

in the order (B

3

; l

1

; l

2

; B

4

), and one of them in the order (B

3

; l

2

; l

1

; B

4

).

However, the tangent t

2

is still a double zero of the system of polynomials, sine the

parallel lines t

2

and l

0

2

interset in the plane at in�nity of P

3

.

Similarly, we an make the double tangent t

2

split into two tangents by slightly

dereasing the x

2

-oordinate of the line l

1

; denote the resulting line by l

0

1

. Figure 3

shows the on�guration for l

0

1

passing through the points (0; 6:5; 0)

T

, (2; 6:5; 2)

T

, and

l

0

2

passing through the points (0; 7:5; 0)

T

, (2; 7:5;�2)

T

. �

For N

3

the situation is more involved. The B�ezout bound gives 16, but in fat,

the number of real ommon tangents is bounded by 12. Our proof is based on some
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algebrai-geometri investigations of the ommon tangents to 4 unit balls by I.G. Ma-

donald [20℄. By appropriately applying these onsiderations to the situation with three

balls and one line, it will turn out that there are always two solutions at in�nity with

multipliity at least 2. For the general bakground on the algebrai and geometri

onepts used in the subsequent proofs, easily aessible introdutions an be found

in [25, 29℄.

We start with the following observation in [35℄. The sphere with enter (

1

; 

2

; 

3

)

T

2

R

3

and radius r has the homogeneous equation in P

3

:

(x

1

� 

1

x

0

)

2

+ (x

2

� 

2

x

0

)

2

+ (x

3

� 

3

x

0

)

2

= r

2

x

2

0

:

In the plane at in�nity x

0

= 0, this gives the equation

x

2

1

+ x

2

2

+ x

2

3

= 0;

whih is independent of the enter and the radius. Let ! denote this oni setion in

the plane at in�nity. Later in the proof, we will work in the spae of lines in P

3

. In

that situation, we will have to onsider those tangents through any point z 2 ! in the

plane at in�nity rather than z itself. For this reason, we provide a haraterization of

these tangents:

Lemma 9. Let z = (0; �

1

; �

2

; �

3

)

T

2 !. The tangent to the oni ! at z whih lies in

the plane at in�nity has Pl�uker oordinate

(p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

= (0; 0; 0; �

3

;��

2

; �

1

)

T

:

In partiular, the tangent ontains the points (0;��

2

; �

1

; 0)

T

, (0; �

3

; 0;��

1

)

T

, and

(0; 0;��

3

; �

2

)

T

.

Proof. Sine �

0

= 0 we an ompute in projetive plane P

2

; so let z = (�

1

; �

2

; �

3

)

T

.

The oni setion

x

T

Ax = 0 with A =

0

�

1 0 0

0 1 0

0 0 1

1

A

is regular in z with tangent fy = (y

1

; y

2

; y

3

)

T

2 P

2

: z

T

Ay = 0g. In partiular,

(��

2

; �

1

; 0)

T

, (�

3

; 0;��

1

)

T

, (0;��

3

; �

2

)

T

, and z itself lie on this tangent. Now any two

of these points an be used to ompute the Pl�uker oordinate of the tangent line. �

Consider a on�guration with a line l

1

and three spheres Q

2

, Q

3

, and Q

4

in R

3

. The

idea to prove the solutions at in�nity is to transfer the geometry of ! to the spae

of lines in P

3

. More preisely, let t be a tangent to ! at z in the plane at in�nity.

Sine the quadris ^

2

Q

2

;^

2

Q

3

;^

2

Q

4

2 P

5

haraterize the tangents to Q

2

; Q

3

; Q

4

, the

Pl�uker vetor p

t

of t is ontained in ^

2

Q

2

, ^

2

Q

3

, and ^

2

Q

4

. Let 
 denote the quadri

in P

5

de�ned by the Pl�uker equation (1). Sine t is a line in P

3

, t is also ontained in


. We will show that the tangent hyperplanes to the quadris ^

2

Q

2

, ^

2

Q

3

, ^

2

Q

4

, 


at p

t

ontain a ommon subspae of dimension 2. In onnetion with the linear form

de�ned by the transversals of the line l

1

, this will prove the multipliity of at least 2.

Let us investigate the spheres Q

2

, Q

3

, Q

4

�rst. For i 2 f2; 3; 4g, we are looking for

lines whose Pl�uker vetors lie in the tangent hyperplane of ^

2

Q

i

at p

t

. The geometri



AN ENUMERATIVE GEOMETRY FRAMEWORK FOR ALGORITHMIC LINE PROBLEMS IN R

3

13

onept behind this relation is polarity. Reall that the polar plane of a point a 2 P

n

with respet to an arbitrary quadri Q is de�ned by

fy 2 P

n

: a

T

Qy = 0g:

If a 2 Q then the polar hyperplane is a tangent hyperplane. The polar line of a line

l 2 P

3

is de�ned by

fy 2 P

3

: a

T

Qy = 0 for all a 2 lg:

The following lemma establishes a onnetion between the tangent hyperplanes to

^

2

Q and the onept of polarity for a quadri Q.

Lemma 10. Let t be a tangent line to a quadri Q � P

3

, and let the point a 2 P

3

be

ontained in the polar line of t. Then, for any line l ontaining a, the Pl�uker vetor

p

l

of l is ontained in the tangent hyperplane to ^

2

Q at p

t

, i.e., p

T

t

(^

2

Q)p

l

= 0.

Proof. Let T be a representation of t by a 4� 2-matrix as desribed in the Setion 3.

Further let b be a point on l with b 6= a, and let L = (a; b) be a representation of l by

a 4 � 2-matrix. Sine a is ontained in the polar line of t, we have T

T

Qa = (0; 0)

T

.

Hene, by reasoning as in Lemma 3, we an onlude

p

T

t

(^

2

Q)p

l

= det(T

T

QL) = 0:

�

In partiular, the following version of a well-known relationship (see, e.g., [25℄)

shows that the preondition of Lemma 10 is satis�ed if a = t \Q.

Lemma 11. If t is tangent to a quadri Q at some point a, then a is ontained in

the polar line of t.

Proof. Let y 6= a be a point on t. Sine t lies on the polar plane (namely, the tangent

plane) of a with respet to Q, we have a

T

Qy = 0. Sine also a

T

Qa = 0, a lies on the

polar line of t with respet to Q. �

Finally, we are ready to prove the upper bound for N

3

.

Lemma 12. N

3

� 12.

Proof. Let L

1

be the hyperplane (2) in P

5

haraterizing the transversals of the line l

1

,

that is, any point on L

1

whih satis�es the Pl�uker relation is the Pl�uker oordinate

of a transversal to l

1

. Let ^

2

Q

2

;^

2

Q

3

;^

2

Q

4

be the quadris (4) haraterizing the

tangents to the three balls. Further let z = (0; �

1

; �

2

; �

3

)

T

2 !, and let � � 
 � P

5

be

the set of Pl�uker vetors whose orresponding lines in P

3

pass through z. � an be

written as the image of the projetive mapping h : P

3

! 
 � P

5

,

h(y

0

; y

1

; y

2

; y

3

) = ^

2

0

B

B

�

0 y

0

�

1

y

1

�

2

y

2

�

3

y

3

1

C

C

A

:

Sine h is linear, it follows that � is a two-dimensional plane in P

5

with � � 
.

Let t be the tangent to ! at z in the plane at in�nity. By Lemmas 11 and 10, � is

ontained in the tangent hyperplane to ^

2

Q

i

at p

t

, 2 � i � 4.



14 T. THEOBALD

In order to show that � is also ontained in the tangent hyperplane to 
 at p

t

, let

y be a point di�erent from z, and let l be a line through z and y. Then, by Lemma 9,

the Pl�uker vetors p

t

and p

l

satisfy

p

T

t


p

l

= (0; 0; 0; �

3

;��

2

; �

1

) �

1

2

0

B

B

B

B

B

�

0 0 0 0 0 1

0 0 0 0 �1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 �1 0 0 0 0

1 0 0 0 0 0

1

C

C

C

C

C

A

�

0

B

B

B

B

B

�

��

1

y

0

��

2

y

0

��

3

y

0

�

1

y

2

� �

2

y

1

�

1

y

3

� �

3

y

1

�

2

y

3

� �

3

y

2

1

C

C

C

C

C

A

= �

1

2

y

0

(�

2

1

+ �

2

2

+ �

2

3

)

= 0 :

Hene, the four tangent hyperplanes of ^

2

Q

2

, ^

2

Q

3

, ^

2

Q

4

, 
 at p

t

ontain a ommon

subspae of dimension at least 2. By Lemma 9, the tangents to the oni ! lie on a

oni !, namely on

p

2

12

+ p

2

13

+ p

2

23

= 0;

in the two-dimensional subspae of P

5

given by p

01

= p

02

= p

03

= 0. The restrition

of the hyperplane L

1

to the subspae p

01

= p

02

= p

03

= 0 de�nes a one-dimensional

subspae L

1

. Sine L

1

is one-dimensional, it intersets with ! at two points b

1

; b

2

2 P

5

in the plane p

01

= p

02

= p

03

= 0. Further, sine b

1

and b

2

satisfy the Pl�uker relation,

they are Pl�uker vetors of some tangents t

1

and t

2

to !. Altogether, the �ve tangent

hyperplanes of ^

2

Q

2

, ^

2

Q

3

, ^

2

Q

4

, 
, L

1

at b

1

and b

2

ontain a ommon subspae

of dimension at least 1. Hene, the tangent hyperplanes are not independent, whih

implies that the multipliity of intersetion in b

1

and b

2

is at least 2 (see, e.g., [24℄,

p. 115). �

In order to show that N

3

= 12 it remains to give a onstrution with one line l

1

and

three balls B

2

, B

3

, B

4

of the same radius r, leading to 12 ommon tangents. Let l

1

be

the x

3

-axis, and let the enters 

2

, 

3

, 

4

of the balls onstitute an equilateral triangle

with edge length 1 in the x

1

x

2

-plane, say 

2

= (

p

3=3; 0; 0)

T

, 

3

= (�

p

3=6; 1=2; 0)

T

,



4

= (�

p

3=6;�1=2; 0)

T

(see Figure 4). For 1=2 < r <

p

3=3, the balls are non-

disjoint, and none of them ontains the origin.

Let t be a line whih intersets l

1

, and let H be the plane ontaining t and l

1

. The

three uts H \B

1

, H \B

2

, and H \B

3

are diss (maybe degenerated to single points

or empty sets). Unless H is equidistant to two of the enters, one of these diss is

stritly ontained in one of the other two. Hene, any ommon tangent to the line

and the three balls lies in one of the three planes whih ontain the x

3

-axis and whih

are equidistant to two of the enters.

For example, one of these planes is the x

1

x

3

-plane, whih is equidistant to 

2

and 

3

.

The setion through this plane ontains two disjoint diss: one representing the (iden-

tial) intersetions of the plane with B

2

and B

3

, and the seond one beause of B

1

.

These two diss are separated by the line l

1

. Hene, in this plane there are 4 ommon

tangents. Altogether, sine there are three planes of this kind, we have 12 ommon

tangents.

Finally, it remains to analyze the ommon tangents to four balls (with arbitrary

radii) in R

3

. Of ourse, this problem an also be formulated in Pl�uker oordinates.
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l1

Figure 4. Constrution with one line and 3 balls, leading to 12 tangents

However, sine the solutions of these equations have a ommon omponent at in�nity

[35℄, we prefer to ompute the number of tangents by an elementary approah. Re-

ently, in [17℄ the ommon tangents to 4 balls have been formulated by polynomial

equations with B�ezout number 24. We improve this result by giving a polynomial

formulation with B�ezout number 12; this is optimal by Proposition 1.

The idea for obtaining the system with B�ezout bound 12 is to generalize the ap-

proah for unit balls in [21℄. Note that in the proof we will always refer to the generi

ase. For this reason { in ontrast to Proposition 1 { the proof does not provide a

preise haraterization of the ases with in�nitely many ommon tangent lines.

Lemma 13. N

4

� 12.

Proof. Let 

1

; : : : ; 

4

be aÆnely independent, and without loss of generality, let r

4

be the smallest of the radii. We onsider funtions �

i

: [0; r

4

℄ ! R with �

i

(0) = 0,

�

i

(r

4

) = r

i

. Let �

4

(t) = t, while �

i

(t) for 1 � i � 3 will be spei�ed below. First we

desribe the set of lines whih are tangent to the balls B(

i

; �

i

(t)) for t > 0.

A line l will be spei�ed by its homogeneous diretion vetor s = (s

1

; s

2

; s

3

)

T

and

its losest point p to the origin.

The line l has distane �

i

(t) from some point 

i

if and only if the line l � p (whih

passes through the origin) has distane �

i

(t) from 

i

� p, i.e., if and only if

((

i

� p)� s)

2

= �

2

i

(t)s

2

:

Introduing the moment vetor m := p� s and applying Lagrange's identity gives

(8) (

i

� s)

2

� 2h

i

; pis

2

+m

2

� �

2

i

(t)s

2

= 0:

Choosing 

4

to be at the origin and subtrating equation (8) for index 4 from this

equation for index i 2 f1; 2; 3g yields linear equations in p:

(9) h

i

; pi =

1

2s

2

(

i

� s)

2

�

1

2

(�

2

i

(t)� t

2

); 1 � i � 3:
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Setting M := (

1

; 

2

; 

3

)

T

, we obtain the vetor equation

(10) p =

1

2s

2

M

�1

0

�

(

1

� s)

2

(

2

� s)

2

(

3

� s)

2

1

A

�

1

2

M

�1

0

�

�

2

1

(t)� t

2

�

2

2

(t)� t

2

�

2

3

(t)� t

2

1

A

:

Now the key idea is: if we hoose parametrizations �

i

(t) with �

2

i

(t) � t

2

= C

i

for

some onstants C

i

2 R, 1 � i � 3, then the vetor p is uniquely determined by the

diretion vetor s. Furthermore, the onditions �

i

(r

4

) = r

i

imply C

i

= r

2

i

� r

2

4

; hene,

�

2

i

(t) = t

2

+ (r

2

i

� r

2

4

). By Cramer's rule,

M

�1

=

1

6V

(

2

� 

3

; 

3

� 

1

; 

1

� 

2

);

where V := det(

1

; 

2

; 

3

)=6 denotes the oriented volume of the tetrahedron 

1



2



3



4

.

By introduing the normal vetors

n

1

:= (

2

� 

3

)=2; n

2

:= (

3

� 

1

)=2; n

3

:= (

1

� 

2

)=2;

and substituting (10) into hp; si = 0, we an eliminate p and obtain a homogeneous

ubi ondition for the diretion vetor s:

3

X

i=1

�

(

i

� s)

2

+ s

2

(r

2

i

� r

2

4

)

�

hn

i

; si = 0:

Any solution s of this equation is the diretion vetor of a line with distanes �

i

(t) from

the four enters for some parameter t. Substituting the radius ondition jjpjj = r

4

into (10) gives an equation of degree 4. Sine �

i

(r

4

) = r

i

, 1 � i � 4, any ommon

solution of the ubi and the quarti equation gives a ommon tangent to the four

balls B(

i

; r

i

). By B�ezout's Theorem, the formulation of the tangent problem by a

ubi and a quarti equation implies N

4

� 12. �

5. Conlusion and Open Questions

We have investigated the enumerative geometry questions for the ommon tangents

to four bodies in R

3

when the bodies are balls or polytopes. These results reet the

algebrai omplexity inherent in the mentioned appliations. In other words, when-

ever we want to fous on exat omputations for the visibility or envelope problems

desribed in Setion 2, we have to ope with solving systems of polynomial equations

of the stated degrees.

The main open problem is to omplete the haraterization of the degenerate in-

stanes in Table 1. For example, in the ase of four balls with arbitrary radii there

are some obvious situations with in�nitely many ommon tangent lines: whenever the

four enters are ollinear and the four balls are insribed in the same hyperboloid H.

We onjeture that there does not exist any on�guration with four balls of arbitrary

radii, non-ollinear enters and in�nitely many ommon tangent lines. However, we

were not able to prove this.

From the pratial point of view, atually omputing the numerial values of the

solutions (whih has, e.g., been done in �nding the onstrutions given in this paper)

requires either multidimensional numerial methods suh as homotopy methods or

ombinations of symboli tehniques with univariate polynomial solvers (for an intro-

dution into all these tehniques see [9℄). Sine generally, these tehniques are still
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omputationally expensive, it is important to apply the most appropriate polynomial

formulations of the onrete problems. From this point of view, our results provide

optimal formulations. Finally, let us mention that there are many researh e�orts

in improving the eÆieny of the two mentioned numerial polynomial solving teh-

niques. In partiular, for reent improvements and the state of the art of the �rst

tehnique see [37℄, and with regard to the seond tehnique see [4, 5, 13℄.

Aknowledgments. The author would like to thank Abhi Dattasharma for his

useful omments and the anonymous referees for their suggestions and for pointing

out the issue of envelopes.
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Appendix: Standard bases

We review the de�nitions of a standard basis, starting from Gr�obner basis the-

ory (see [9℄). The theory of Gr�obner bases provides omputational methods to �nd

\nie" generators for an ideal I in a polynomial ring C [x

1

; : : : ; x

n

℄. The theory

of standard bases extends this theory for ideals in loal rings. More preisely, let

R

l

:= C [x

1

; : : : ; x

n

℄

hx

1

;:::;x

n

i

be the set of rational funtions f=g in x

1

; : : : ; x

n

with

g(0; : : : ; 0) 6= 0. R

l

de�nes a loal ring, i.e., it ontains exatly one maximal ideal.

Sine the algebrai-geometri de�nitions of intersetion multipliities are related to the

onept of loal rings, standard bases provide a powerful tool to e�etively ompute

intersetion multipliities.

From the various possible term orders, we restrit ourselves to onsider the anti-

graded reverse lexiographial order (arevlex). For �; � 2 N

n

0

, We have x

�

>

arevlex

x

�

if and only if

n

X

i=1

�

i

<

n

X

i=1

�

i

;
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or

n

X

i=1

�

i

=

n

X

i=1

�

i

and x

�

>

revlex

x

�

;

where >

revlex

denotes the reverse lexiographial order of Gr�obner basis theory. For

any polynomial f , the leading term of f , denoted LT(f), is the maximal term of f

with regard to the arevlex-order.

For an ideal I in R

l

, the set of leading terms of I, abbreviated LT(I), is the set of

leading terms of elements of I.

A standard basis of I is a set fg

1

; : : : ; g

t

g � I suh that hLT(I)i =

hLT(g

1

); : : : ;LT(g

t

)i. Given a set of polynomial generators of I, a standard basis

of I an be e�etively omputed by variants of the Buhberger algorithm.
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