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Abstra
t. We investigate the enumerative geometry aspe
ts of algorithmi
 line

problems when the admissible bodies are balls or polytopes. For this purpose, we

study the 
ommon tangent lines/transversals to k balls of arbitrary radii and 4� k

lines in R

3

. In parti
ular, we 
ompute tight upper bounds for the maximum number

of real 
ommon tangents/transversals in these 
ases. Our results extend the results

of Ma
donald, Pa
h, and Theobald who investigated 
ommon tangents to four unit

balls in R

3

[21℄.

1. Introdu
tion

Algorithmi
 questions involving lines in R

3

belong to the fundamental problems in


omputational geometry [36, 26℄, 
omputer graphi
s [28℄, and roboti
s [33℄. As an

initial referen
e example from 
omputational geometry, 
onsider the problem of de-

termining whi
h bodies of a given s
ene 
annot be seen from any viewpoint outside of

the s
ene. From the geometri
 point of view, this leads to the problem of determining

the 
ommon tangents to 4 given bodies in R

3

(
f. Se
tion 2). Other algorithmi
 tasks

leading to the same geometri
 
ore problem in
lude 
omputing smallest en
losing


ylinders [32℄, 
omputing geometri
 permutations/stabbing lines [27, 2℄, 
ontrolling

a laser beam in manufa
turing [26℄, or pla
ement problems in geometri
 modeling

[10, 17℄.

If the bodies are polytopes, the 
ommon tangents are 
ommon transversals of edges

[27℄; so, in fa
t, the main geometri
 task is to 
ompute the 
ommon transversals to four

given lines in R

3

. This geometri
 problem has been well-known for many years (see,

e.g., [16℄). In parti
ular, if a 
on�guration has only �nitely many 
ommon transversals,

then this number is bounded by 2; and it is well-known how to 
hara
terize the


on�gurations with in�nitely many 
ommon transversals.

On the other hand, the following theorem in [21℄ shows that this situation 
om-

pletely 
hanges if the bodies under investigation are unit balls (see also [35, 23℄).

Proposition 1. Four unit balls in R

3

have at most 12 
ommon tangent lines unless

their 
enters are lo
ated on the same line. Furthermore, there exists a 
on�guration

with 12 tangents, i.e., the upper bound is tight.

Essentially, this means that algebrai
ally this tangent problem is of degree 12. Note

that due to this high degree, proving the 
hara
terization of the 
on�gurations with

in�nitely many 
ommon tangents is a highly nontrivial task.
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upper bound # real solutions of 
hara
terization of

# solutions our 
onstru
tion degenerate instan
es

4 lines 2 (well-known) 2 (well-known) yes (well-known)

3 lines, 1 ball 4 4 yes

2 lines, 2 balls 8 8 {

1 line, 3 balls 12 12 {

4 unit balls 12 [21℄ 12 [21℄ yes [21℄

4 balls 12 ([17℄) 12 [21℄ {

Table 1. Summary of results and referen
es of known results. For the


ase of 4 balls of general radii we are able to provide a formulation with

B�ezout bound 12 (whi
h improves the results from [17℄ substantially;

see Se
tion 4).

However, 
on
erning the 
lass of tangent problems to 4 given bodies, Proposition 1

solves only one parti
ular 
ase. In the present paper, we develop te
hniques to ana-

lyze a substantially larger 
lass of variants. In parti
ular, we aim at �lling the gaps

between the two extreme situations mentioned before by 
onsidering 
ommon tan-

gents/transversals to k balls and 4 � k lines, k 2 f0; : : : ; 4g. For 
onvenien
e of

notation, we 
onsider a transversal of a line as a tangent to the line. Our investiga-

tions do not only 
larify the exa
t growth in algebrai
 degree from 2 to 12, but also

provide e�e
tive means to ta
kle these questions when the symmetry (in the sense

of identi
al bodies) is lost. From the algorithmi
 point of view, these problems of


ommon tangents immediately arise in the mentioned appli
ations when the 
lass of

admissible bodies in the s
ene 
onsists of both balls and polytopes (see Se
tion 2).

As the main 
ontribution of this paper, we 
ompute tight upper bounds for the

number of 
ommon tangents to k balls and 4�k lines in the �nite 
ase, k 2 f0; : : : ; 4g.

Here, tightness refers to the following (quite strong) sense of real algebrai
 geometry

(
f. [34℄): On the one hand, for ea
h k we bound the number of solutions by algebrai


methods, say, by some numberm. Then, on the other hand, we provide a 
onstru
tion

whi
h indeed leads to m solutions in real spa
e R

3

(whi
h would not be possible if any

polynomial formulation 
ontained some 
omplex solutions or solutions at in�nity).

The general diÆ
ulty of proving tight bounds of this kind may be seen by the fol-

lowing two aspe
ts. For the 
lassi
al enumerative geometry problem of 
oni
s tangent

to �ve given 
oni
s (dating ba
k to Steiner in 1847) the existen
e problem of 3264 real

solutions had not been solved until few years ago ([30℄ and [14℄, x7.2). Furthermore,

as pointed out in [34℄, there are nearly no 
riteria or general te
hniques for ta
kling

these type of questions. For these reasons, it is even more remarkable that in all (!)

of the situations there exists a 
onstru
tion mat
hing the upper bound.

Table 1 summarizes our results and provides referen
es of known results. It shows

the upper bounds for the number of solutions and the mat
hing numbers of real

solutions in our 
onstru
tions. The last 
olumn shows that only in a few 
ases, we are

able to expli
itly 
hara
terize the 
on�gurations with an in�nite number of 
ommon

tangents. Namely, besides the already existing results for 4 lines and 4 unit balls, we

add the 
hara
terization for three lines and one ball. In the entries with a \{" we


annot give su
h a 
hara
terization and will dis
uss this issue at the end of the paper.
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Let us point out that the proofs of these results are of quite di�erent 
avors. For

k 2 f1; 2g, the upper bounds immediately follow from B�ezout's Theorem. Whereas

for k = 1 it is easy to give a 
onstru
tion mat
hing this bound, the 
onstru
tion

for k = 2 is quite involved. In parti
ular, for k = 2 we apply tools from algebrai


geometry and 
omputer algebra (e.g., standard bases) to prove 
orre
tness of the


onstru
tion. However, proving the tight upper bound for three balls and one line is


ompletely di�erent. Here, the B�ezout bound in our formulation will be 16 instead

of 12. In order to �nd a better bound for the number of real solutions, we have to

analyze the underlying algebrai
 geometry of the problem in detail. Finally, in the

proof for four balls of general radii we use elementary geometry to �nd a formulation

with B�ezout bound 12. Altogether, we think that this variety of te
hniques 
an serve

to provide many ideas when ta
kling related problems.

This paper is stru
tured as follows. In Se
tion 2, we establish the 
onne
tion

between the algorithmi
 problems and the geometri
 tangent problems. Then, after

providing some algebrai
 ba
kground on Pl�u
ker 
oordinates in Se
tion 3, we prove

the ne
essary results for Table 1 in Se
tion 4. We 
on
lude the paper with a short

dis
ussion of the remaining open questions.

2. Motivation and Algorithmi
 Ba
kground

The problem under investigation represents the algebrai
 
ore problem within sev-

eral algorithmi
 appli
ations mentioned in the introdu
tion. Exemplarily, we des
ribe

two of them.

Partial visibility. Consider the following problem from ray-tra
ing with moving

viewpoints. Here, we want to 
ompute information on the viewpoint positions where

the visibility topology of the s
ene 
hanges. As a spe
ial 
ase, this in
ludes ta
kling

the following 
ore problem of partial visibility.

A set B � R

n

(say, n 2 f2; 3g) is 
alled a (
onvex) body if it is bounded, 
losed,


onvex, and 
ontains an inner point. Now we 
onsider a s
ene 
onsisting of a set B

of (not ne
essarily disjoint) bodies from a spe
i�
 
lass X in R

n

(X might be the set

of all balls or the set of all polytopes). A body B 2 B is 
alled partially visible from

a viewpoint v if there exists a line segment 
onne
ting v and B not interse
ting with

the interior of any other body in B. A body B 2 B is 
alled partially visible if B 
an

be seen from some viewpoint \outside" of the s
ene, i.e., if there exists a ray starting

at B not interse
ting with the interior of any other body in B. We 
all su
h a ray a

visibility ray for B. Bodies whi
h are not partially visible 
an be immediately removed

from the s
ene, whi
h redu
es the 
omplexity of the visualization pro
ess. In 
ase of

dense 
rystals whose atoms are visualized as suÆ
iently large balls, the redu
tion in


omplexity may be quite substantial.

In the two-dimensional 
ase, 
he
king partial visibility of a body B 
an be redu
ed

to a �nite number of geometri
 problems as follows (
f. the treatment of stabbing

lines in [12℄). Without loss of generality let jBj � 2. If there exists a visibility ray

for B then we 
an 
ontinuously transform (i.e., translate and rotate) the visibility ray

until we rea
h a situation where the underlying line is tangent to at least two of the

bodies (one of them might be B itself). Hen
e, it suÆ
es to 
ompute the set of all


ommon tangent lines to a pair of bodies in B and 
he
k whether one of these lines


ontains a visibility ray. For any pair of bodies, the number of 
ommon tangent lines
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is at most 4 (whi
h is a very spe
ial 
ase of the results in [6, 19℄ on the number of


ommon supporting hyperplanes in general dimension).

In the three-dimensional 
ase we 
an essentially pro
eed analogously. Sin
e a line in

R

3

has four degrees of freedom, the 
ore problem is to 
ompute the 
ommon tangents

to four bodies in R

3

(
f. [27, 2℄). However, in the three-dimensional 
ase, there are

also some spe
ial 
ases where we 
an transform a visibility ray only to a situation

with 2 or 3 bodies, or where a 
on�guration with four bodies has an in�nite number

of 
ommon tangents.

For a polytope P , any tangent to P interse
ts an edge of P . Hen
e, if X 
on-

tains balls and polytopes, we have to 
ompute 
ommon tangents/transversals to k

lines and 4 � k balls, 0 � k � 4. An algorithmi
 treatment of the situations with

in�nitely many 
ommon tangents (depending on the 
lass X of bodies) requires an a

priori 
hara
terization of the 
on�gurations with in�nitely many 
ommon tangents.

In 
ontrast to some other problems in 
omputational geometry, 
hara
terizing these

situations 
annot be negle
ted (say, by applying perturbation te
hniques [11℄), sin
e

the large algebrai
 degree involved makes it highly nontrivial to guarantee a 
orre
t

perturbation.

Envelopes. Let B be a 
olle
tion of n 
onvex bodies in R

3

. A line l is 
alled a line

transversal of B if it interse
ts every member of B. The set of line transversals of

B 
an be represented as the region en
losed between an upper and a lower envelope

as follows (see [7, 1, 2℄). These representations are important in the design of data

stru
tures supporting ray shooting queries (i.e., seeking the �rst body, if any, met by

a query ray) [1℄.

If we ex
lude lines parallel to the yz-plane, a line l in R

3


an be uniquely represented

by its proje
tions on the xy- and xz-planes: y = �

1

x + �

2

, z = �

3

x + �

4

. Hen
e, a

line 
an be represented by the quadruple (�

1

; �

2

; �

3

; �

4

) 2 R

4

.

Let B be a 
onvex body in R

3

. For �xed �

1

; �

2

; �

3

, the set of lines (�

1

; �

2

; �

3

; �

4

)

that interse
t B is obtained by translating a line in the z-dire
tion between two ex-

treme values (�

1

; �

2

; �

3

; �

�

B

(�

1

; �

2

; �

3

)) and (�

1

; �

2

; �

3

; �

+

B

(�

1

; �

2

; �

3

)), whi
h represent

lines tangent to B from below and from above, respe
tively. Hen
e, the set of line

transversals to B 
an be represented as

f(�

1

; �

2

; �

3

; �

4

) : max

B2B

�

�

B

(�

1

; �

2

; �

3

) � �

4

� min

B2B

�

+

B

(�

1

; �

2

; �

3

);

whi
h is a region en
losed between a lower envelope and an upper envelope in R

4

.

If the elements of B are balls or polytopes, then the set of line transversals de�nes

a semialgebrai
 set in R

4

(see [2℄). Assuming general position, the verti
es (= zero-

dimensional fa
es) of the boundary of this region 
orrespond to lines whi
h are tangent

to four of the bodies in B. Similar to the �rst s
enario, any implementation of this

basi
 step has to 
ope with the enumerative questions treated in the present paper.

The role of an algebrai
 ora
le. In both of these algorithmi
 s
enarios, the problem

is redu
ed to the 
ore problem of �nding the 
ommon tangents/transversals to k lines

and 4�k balls. In literature, 
ore problems of this type are 
onsidered to be problems

of 
onstant des
ription 
omplexity (see, e.g., [2℄). Often, it is assumed that one has

a

ess to an algebrai
 ora
le 
omputing the ne
essary tangents, and the algorithm is
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formulated in terms of that ora
le. From this point of view, our analysis 
an be seen

as the ne
essary mathemati
al investigations on how to build this algebrai
 ora
le.

In parti
ular, any implementation of this algebrai
 ora
le or any interfa
e to a

bla
k box subroutine establishing that ora
le has to 
ope with the enumerative ques-

tions. From the viewpoint of data stru
tures it is always useful and sometimes even

ne
essary to know a good (i.e., tight) upper bound on the number of these tangent

lines. From the viewpoint of program veri�
ation, knowing a tight upper bound on

the number of tangent lines o�ers the possibility of strong and valuable 
onsisten
y


he
ks within a program (in parti
ular with regard to the ne
essary numeri
al sub-

routines; 
f. Se
tion 5). Finally, from the viewpoint of eÆ
ien
y, understanding the

geometry of the basi
 problem helps to �nd the right polynomial formulations for the

underlying numeri
al algorithms.

3. Pl

�

u
ker Coordinates

In several of the proofs, we use the well-known Pl�u
ker 
oordinates of lines in

proje
tive spa
e P

3

(see, e.g., [16, 8℄). Let x = (x

0

; x

1

; x

2

; x

3

)

T

, y = (y

0

; y

1

; y

2

; y

3

)

T

2

P

3

be two di�erent points on a line l. Then l 
an be represented (of 
ourse not

uniquely) by the 4� 2-matrix L whose two 
olumns are x and y. The Pl�u
ker ve
tor

p = (p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

2 P

5

of the line is de�ned by the determinants of the

2� 2-submatri
es of L, i.e., p

ij

= x

i

y

j

� x

j

y

i

. It is well-known that the set of ve
tors

in P

5

satisfying the Pl�u
ker relation

(1) p

01

p

23

� p

02

p

13

+ p

03

p

12

= 0

is in 1-1-
orresponden
e with the set of lines in P

3

. A line l interse
ts with a line l

0

in

P

3

if and only if their Pl�u
ker ve
tors p and p

0

satisfy

(2) p

01

p

0

23

� p

02

p

0

13

+ p

03

p

0

12

+ p

12

p

0

03

� p

13

p

0

02

+ p

23

p

0

01

= 0:

In order to 
hara
terize lines tangent to balls we 
onsider tangent lines to arbitrary

quadri
s in P

3

. Throughout the presentation, we will identify a quadri
 surfa
e in P

3

with its symmetri
 4 � 4-representation matrix. E.g., the sphere with radius r and


enter (


1

; 


2

; 


3

)

T

2 R

3

, in P

3

des
ribed by (x

1

� 


1

x

0

)

2

+(x

2

� 


2

x

0

)

2

+(x

3

� 


3

x

0

)

2

=

r

2

x

2

0

, is identi�ed with the matrix

0

B

B

�




2

1

+ 


2

2

+ 


2

3

� r

2

�


1

�


2

�


3

�


1

1 0 0

�


2

0 1 0

�


3

0 0 1

1

C

C

A

:

Lemma 2. Let L be a 4 � 2-matrix representing the line l � P

3

. l is tangent to a

quadri
 Q in P

3

if and only if the 2� 2-matrix L

T

QL is singular.

Proof. If we denote the two 
olumns of L by x and y, then the line l 
onsists of all

points

�

z = (z

0

; z

1

; z

2

; z

3

)

T

: z = �x + �y; (�; �)

T

2 R

2

n f(0; 0)

T

g

	

:

By de�nition, l is tangent toQ if and only if this line interse
ts the quadri
 exa
tly on
e

(namely, with multipli
ity 2), or if it is 
ontained in the quadri
. The homogeneous

quadrati
 equation

(�x + �y)

T

Q(�x + �y) = 0
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an be made aÆne by setting � = 1. Sin
e the dis
riminant of this aÆne quadrati


equation in � is

(2x

T

Qy)

2

� 4(x

T

Qx)(y

T

Qy) = �4 det(L

T

QL);

the statement follows immediately. �

In order to transfer this 
ondition to Pl�u
ker 
oordinates, we introdu
e the operator

^

2

: R

m;n

! R

(

m

2

)

;

(

n

2

)

(
f. [35℄). The row and 
olumn indi
es of the resulting matrix are subsets of 
ar-

dinality 2 of f1; : : : ; mg and f1; : : : ; ng, respe
tively. For I � f1; : : : ; mg and

J � f1; : : : ; ng with jIj = jJ j = 2,

(^

2

A)

I;J

:= detA

[I;J℄

;

where A

[I;J℄

denotes the 2�2-submatrix of the given matrix A with row indi
es I and


olumn indi
es J . Let l be a line in P

3

and L be a 4 � 2-matrix representing l. By

interpreting the 6� 1-matrix ^

2

L as a ve
tor in P

5

, we observe ^

2

L = p

l

, where p

l

is

the Pl�u
ker ve
tor of l.

Lemma 3. A line l � P

3

is tangent to a quadri
 Q if and only if the Pl�u
ker ve
tor

p

l

of l satis�es

(3) p

T

l

(^

2

Q)p

l

= 0:

Proof. Let L be a 4� 2-matrix whose two 
olumns 
ontain di�erent points of l. The

Cau
hy-Binet formula from multilinear algebra (see, e.g., [22℄) implies

det(L

T

QL) = (^

2

L

T

)(^

2

Q)(^

2

L)

= (^

2

L)

T

(^

2

Q)(^

2

L):

Now the 
laim follows from Lemma 2. �

For a sphere with radius r and 
enter (


1

; 


2

; 


3

)

T

2 R

3

the quadrati
 form p

T

l

(^

2

Q)p

l

results to

(4)

0

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

A

T

0

B

B

B

B

B

�




2

2

+ 


2

3

� r

2

�


1




2

�


1




3




2




3

0

�


1




2




2

1

+ 


2

3

� r

2

�


2




3

�


1

0 


3

�


1




3

�


2




3




2

1

+ 


2

2

� r

2

0 �


1

�


2




2

�


1

0 1 0 0




3

0 �


1

0 1 0

0 


3

�


2

0 0 1

1

C

C

C

C

C

A

0

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

A

:

4. Proofs and Constru
tions

We show the following theorem.
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Theorem 4. Given 4�k lines and k balls in R

3

, 0 � k � 4. If there exist only �nitely

many 
ommon tangent lines to these four bodies then the number of these tangents is

bounded by

8

>

>

>

<

>

>

>

:

2 if k = 0;

4 if k = 1;

8 if k = 2;

12 if k 2 f3; 4g:

These bounds are tight, i.e., for ea
h k there exists a 
on�guration where the number

of di�erent real tangent lines mat
hes the stated number. The bounds are tight even

if the balls are unit balls.

For brevity, we denote the maximum numbers of tangent lines in the �ve situations

by N

k

, k 2 f0; : : : ; 4g. Before proving the statements in the following lemmas, let us

re
all the following version of B�ezout's theorem (see, e.g., [8℄, p. 91).

Theorem 5. (B�ezout) Let f

1

; : : : ; f

n

be homogeneous polynomials in x

0

; : : : ; x

n

of

degrees d

1

; : : : ; d

n

> 0. If f

1

; : : : ; f

n

have a �nite number of 
ommon zeros in pro-

je
tive n-spa
e P

n

then the number of zeros (
ounted with multipli
ity) is bounded by

d

1

�d

2

� � �d

n

.

Note that the upper bounds N

0

� 2, N

1

� 4, N

2

� 8 immediately follow from

B�ezout's theorem. Namely, sin
e the 
ommon tangent lines to three lines and one

ball 
an be formulated by three linear equations of the form (2), one equation of

the form (3) as well as the Pl�u
ker relation (1) in the six homogeneous variables

p

01

; : : : ; p

23

, we obtain N

1

� 4. Analogously, we obtain N

0

� 2, N

2

� 8.

Further note that the 
ommon transversals to four given lines in 3-dimensional

spa
e are a well-studied problem in enumerative geometry, and it is well-known that

the upper bound of 2 
an be a
tually a
hieved in real spa
e R

3

(see, e.g., [16℄); hen
e

N

0

= 2. The number of 
ommon transversals is �nite if and only if the Pl�u
ker ve
tors

of the four given lines are linearly independent.

In the following, let B(
; r) denote the (
losed) ball with 
enter 
 and radius r.

Lemma 6. N

1

= 4.

Proof. Sin
e N

1

� 4, it suÆ
es to give a 
onstru
tion with 3 lines and 1 ball, leading

to 4 
ommon tangents. Let l

1

be the x

1

-axis, l

2

be the x

2

-axis, and l

3

be parallel to

the x

3

-axis and passing through (0; 2; 0)

T

(see Figure 1); hen
e l

1

\ l

2

= f(0; 0; 0)

T

g

and l

2

\ l

3

= f(0; 2; 0)

T

g.

Ea
h line interse
ting the three lines l

1

, l

2

, and l

3

is lo
ated in the x

1

x

2

-plane (in

whi
h 
ase it passes through (0; 2; 0)

T

) or is lo
ated in the x

2

x

3

-plane (in whi
h 
ase it

passes through the origin). For 1 < r <

p

2 the ball B((1; 1; 1)

T

; r) interse
ts both the

x

1

x

2

-plane and the x

2

x

3

-plane, but does not interse
t with any of the lines l

1

, l

2

, l

3

.

Hen
e, sin
e there are two tangents to the ball passing through the origin and lying in

the x

1

x

2

-plane, and sin
e there are two tangents to the ball passing through (0; 2; 0)

T

and lying in the x

1

x

3

-plane, there are 4 
ommon tangents altogether. Figure 1 shows

a 
on�guration with 1 < r = 11=10 <

p

2. We remark that by appropriate s
aling,

the ball 
an be transformed into a unit ball. Furthermore, by slightly perturbing the


on�guration, the lines 
an be made pairwise skew. �
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0

l1

l2

l3

Figure 1. The �gure shows a 
on�guration with 3 lines l

1

, l

2

, l

3

, and

one ball of radius 11/10, leading to 4 
ommon tangent lines. The two

tangent lines in the x

1

x

2

-plane are drawn in light grey, whereas the two

tangent lines in the x

2

x

3

-plane are drawn in dark grey.

To 
omplete the entries for 3 lines and 1 ball in Table 1, it remains to 
hara
terize

the 
on�gurations with in�nitely many 
ommon tangent lines. If the three lines are

not pairwise skew, then all 
ommon tangent lines lie in the same plane or pass through

a point of interse
tion. Sin
e the resulting 
hara
terization 
an be easily established,

we 
an assume that the three lines are pairwise skew.

It is well-known that the 
ommon transversals of three pairwise skew lines de�ne a

hyperboloid (see, e.g., [31, 3℄). By applying a translation and a rotation, the hyper-

boloid 
an be transformed into

(5)

x

2

1

a

2

+

x

2

2

b

2

�

x

2

3




2

= 1 with a; b; 
 > 0:

This transformation 
hanges the 
enter of the ball into some new 
enter (p

1

; p

2

; p

3

)

T

2

R

3

. Now the 
hara
terization of in�nitely many 
ommon tangent lines is given by the

following lemma.

Lemma 7. Let l

1

; l

2

; l

3

be three pairwise skew lines whose 
ommon transversals gen-

erate a hyperboloid of the form (5), and let B

4

be a ball with 
enter (p

1

; p

2

; p

3

)

T

and

radius r > 0. Then there exist in�nitely many 
ommon tangents to l

1

; l

2

; l

3

; B

4

if and

only if p

1

= p

2

= 0, a = b, and in the x

1

x

3

-plane the 
ir
le x

2

1

+ (x

3

� p

3

)

2

= r

2

is a

tangent 
ir
le to both bran
hes of the hyperbola x

2

1

=a

2

� x

2

3

=


2

= 1.

Proof. The hyperboloid (5) 
an be parametrized by one of the two sets of generating

lines. In parti
ular, this hyperboloid is generated by the set of lines

(

(x

1

; x

2

; 0)

T

+ �

�

�

a

b


x

2

;

b

a


x

1

; 1

�

T

: � 2 R

)

;(6)

where

x

2

1

a

2

+

x

2

2

b

2

= 1(7)

(see, e.g., [18℄). In order to 
hara
terize those lines whi
h are tangent to the ball, we


an apply Lemma 3 to the lines (6) and obtain a polynomial equation in x

1

, x

2

of
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degree at most 4. After bringing the terms of even degree in x

1

to the left side and

the terms of odd degree in x

1

to the right side, squaring the equation yields a new

equation, in whi
h every term is of even degree in x

1

. Now we 
an use (7) to eliminate

x

2

and obtain a polynomial equation of degree at most 8 in x

1

. Sin
e a univariate

polynomial with in�nitely many 
ommon zeros is the zero polynomial, this polynomial

formulation in a single variable implies: if the hyperboloid 
ontains in�nitely many

tangent lines to the ball, then all lines in the parametrization are tangent lines to the

ball.

Sin
e the interse
tion of the hyperboloid with any plane parallel to the x

1

x

2

-axis

is symmetri
 with respe
t to the origin, a ne
essary 
ondition for in�nitely many


ommon tangents is p

1

= p

2

= 0. In this situation, a 
on�guration with in�nitely

many 
ommon tangents further implies a = b. Hen
e, sin
e p

1

= p

2

= 0 and a = b,

both the hyperboloid and the ball are rotational symmetri
 with respe
t to the x

3

-

axis, and it suÆ
es to 
onsider the se
tion through the x

1

x

3

-plane. In this se
tion, the


ir
le x

2

1

+(x

3

� p

3

)

2

= r

2

must be a tangent 
ir
le to both bran
hes of the hyperbola

x

2

1

=a

2

� x

2

3

=


2

= 1.

If, 
onversely, p

1

= p

2

= 0, a = b, and in the x

1

x

3

-plane, the 
ir
le x

2

1

+(x

3

�p

3

)

2

= r

2

is a tangent 
ir
le to the hyperbola x

2

1

=a

2

� x

2

3

=


2

= 1, then the rotational symmetry

implies that every line in the hyperboloid x

2

1

=a

2

+ x

2

2

=b

2

� x

2

3

=


2

= 1 is tangent to the

ball B

4

. Hen
e, there are in�nitely many 
ommon tangents. �

Lemma 8. N

2

= 8.

Proof. Sin
e N

2

� 8, it suÆ
es to give a 
onstru
tion with 2 lines and 2 balls of

the same radius, leading to 8 
ommon tangent lines. We start from the following


on�guration with 6 di�erent 
ommon tangent lines. The two balls are symmetri
ally

lo
ated on the x

1

-axis: 


3

= (
; 0; 0)

T

, 


4

= (�
; 0; 0)

T

; the radius r will be spe
i�ed

below. The lines l

1

and l

2

are 
hosen in a plane x

2

= � for some � > 0 su
h that the

lines interse
t in (0; �; 0)

T

. Hen
e, every 
ommon transversal of the two lines either

lies in the plane x

2

= � or passes through the point (0; �; 0)

T

. If the two balls interse
t

with ea
h other, and � < r, and (0; �; 0)

T

is not 
ontained in the union of the balls

B(


3

; r), B(


4

; r), then there are exa
tly 6 di�erent 
ommon tangents (see Figure 2):

two tangents pass through (0; �; 0)

T

and lie in the plane x

1

= 0; two tangents lie in

the plane x

2

= � and are parallel to the x

1

-axis; and two tangents lie in the plane

x

2

= � and pass through (0; �; 0)

T

. For the following 
onsiderations it is quite useful

to have a su

in
t des
ription of the last two tangents and also to work with integer


oeÆ
ients for �, 
, and r. In parti
ular, we will for
e the two tangents in the plane

x

2

= � and passing through (0; �; 0)

T

to be of the form (0; �; 0)

T

+ �(1; 0;�1)

T

. In

order to obtain these tangents, �, 
 and r have to satisfy �

2

+ 


2

=2 = r

2

and r > 
.

An appropriate 
hoi
e is � = 7, 
 = 8, and r = 9, so that the tangents of the last

type are

t

1

:=

�

(0; 7; 0)

T

+ �(1; 0; 1)

T

: � 2 R

	

and t

2

:=

�

(0; 7; 0)

T

+ �(1; 0;�1)

T

: � 2 R

	

:

Now the key observation is that these two tangents have multipli
ity 2. In order to

prove this we 
onsider the system of Pl�u
ker equations stemming from (2) and (4).

Independent of the spe
i�
 
hoi
e of lines l

1

, l

2

with the above properties, the 
ommon
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x

l1

l2

Figure 2. The �gure shows a 
onstru
tion with 2 lines and 2 balls,

leading to 6 di�erent tangent lines. The two tangents lying in the plane

x

2

= � and passing through (0; �; 0)

T

are drawn in light grey. The other

four tangents are drawn in dark grey.

transversals of l

1

and l

2

are given by the 
ommon zeros of the two linear, homogeneous

polynomials

f

1

= �7p

03

+ p

23

;

f

2

= 7p

01

+ p

12

:

The quadrati
 equations resulting from the balls B(


3

; r) and B(


4

; r) are

f

3

= �81p

2

01

� 17p

2

02

� 17p

2

03

� 16p

02

p

12

+ p

2

12

� 16p

03

p

13

+ p

2

13

+ p

2

23

;

f

4

= �81p

2

01

� 17p

2

02

� 17p

2

03

+ 16p

02

p

12

+ p

2

12

+ 16p

03

p

13

+ p

2

13

+ p

2

23

:

Furthermore let f

5

= p

01

p

23

� p

02

p

13

+ p

03

p

12

be the polynomial of the Pl�u
ker rela-

tion (1).

The tangent t

1

has Pl�u
ker 
oordinate (1; 0; 1;�7; 0; 7)

T

. In order to 
ompute the

multipli
ity of this tangent, we follow the method and the notation in [9℄, x4.4. First

we pass to an aÆne version of the polynomials by adding the polynomial f

6

= p

01

�1;

this for
es p

01

= 1 in any 
ommon zero of the system. Then we move the point t

1

to

the origin by applying the linear variable transformation

(p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

= (q

01

; q

02

; q

03

; q

12

; q

13

; q

23

)

T

+ (1; 0; 1;�7; 0; 7)

T

:

The lo
al interse
tion multipli
ity � 
an be 
omputed as the ve
tor spa
e dimension

of the quotient ring

� = dimR

l

=I

l

;

where R

l

:= C [q

01

; : : : ; q

23

℄

hq

01

;:::;q

23

i

is the lo
al ring whose elements are the rational

fun
tions in q

01

; : : : ; q

23

with non-vanishing denominator at 0. I

l

is the ideal de�ned

by f

1

; : : : ; f

6

in the lo
al ring R

l

.

In order to 
ompute �, we use the fa
t that in 
ase of �nite dimension

dimR

l

=I

l

= dimR

l

=hLT(I

l

)i;

where hLT(I

l

)i denotes the ideal generated by the leading terms of I

l

(see, e.g., [9℄,

Chapter 4, Corollary 4.5). This dimension 
an be easily extra
ted from a standard
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x

Figure 3. Constru
tion with 2 lines and 2 balls, leading to 8 
ommon

tangent lines

basis of I

l

(For the 
onvenien
e of the reader, a short review of standard bases 
an be

found in the appendix). Sin
e by our 
hoi
e of �, 
, and r, all 
oeÆ
ients are integers,

we 
an apply a 
omputer algebra pa
kage (e.g., Singular [15℄), to 
ompute a standard

basis fh

1

; : : : ; h

6

g of the ideal I

l

with respe
t to anti-graded reverse lexi
ographi
al

order:

h

1

= q

01

;

h

2

= 112q

02

+ 34q

03

+ 14q

12

� 16q

13

;

h

3

= 14q

03

+ q

12

;

h

4

= q

12

;

h

5

= 64q

23

;

h

6

= 112q

2

13

:

Hen
e, the leading monomials of h

1

; : : : ; h

6

with respe
t to anti-graded reverse lex-

i
ographi
al order are q

01

, q

02

, q

03

, q

12

, q

23

, q

2

13

. The desired multipli
ity � is the


ardinality of the set of 
osets f1 + I

l

; q

13

+ I

l

g, whi
h implies � = 2. By symmetry,

the tangent t

2

has multipli
ity 2 as well.

Now we 
hoose one parti
ular 
on�guration of the presented 
lass, namely the one

with l

1

:= t

1

and l

2

:= t

2

. By perturbing this 
on�guration, the two double tangent

lines will split into four di�erent tangent lines: �rst, we slightly in
rease the x

2

-


oordinate of the line l

2

, so that the resulting line l

0

2

be
omes (0; �

0

; 0)

T

+�(1; 0;�1)

T

for some �

0

> �. In this pro
ess, the double tangent t

1

splits into two tangents t

a

1

and

t

b

1

interse
ting l

1

and l

0

2

in di�erent orders; i.e., one of the tangents t

a

1

, t

b

1

tou
hes l

1

,

l

2

, B

3

, and B

4

in the order (B

3

; l

1

; l

2

; B

4

), and one of them in the order (B

3

; l

2

; l

1

; B

4

).

However, the tangent t

2

is still a double zero of the system of polynomials, sin
e the

parallel lines t

2

and l

0

2

interse
t in the plane at in�nity of P

3

.

Similarly, we 
an make the double tangent t

2

split into two tangents by slightly

de
reasing the x

2

-
oordinate of the line l

1

; denote the resulting line by l

0

1

. Figure 3

shows the 
on�guration for l

0

1

passing through the points (0; 6:5; 0)

T

, (2; 6:5; 2)

T

, and

l

0

2

passing through the points (0; 7:5; 0)

T

, (2; 7:5;�2)

T

. �

For N

3

the situation is more involved. The B�ezout bound gives 16, but in fa
t,

the number of real 
ommon tangents is bounded by 12. Our proof is based on some
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algebrai
-geometri
 investigations of the 
ommon tangents to 4 unit balls by I.G. Ma
-

donald [20℄. By appropriately applying these 
onsiderations to the situation with three

balls and one line, it will turn out that there are always two solutions at in�nity with

multipli
ity at least 2. For the general ba
kground on the algebrai
 and geometri



on
epts used in the subsequent proofs, easily a

essible introdu
tions 
an be found

in [25, 29℄.

We start with the following observation in [35℄. The sphere with 
enter (


1

; 


2

; 


3

)

T

2

R

3

and radius r has the homogeneous equation in P

3

:

(x

1

� 


1

x

0

)

2

+ (x

2

� 


2

x

0

)

2

+ (x

3

� 


3

x

0

)

2

= r

2

x

2

0

:

In the plane at in�nity x

0

= 0, this gives the equation

x

2

1

+ x

2

2

+ x

2

3

= 0;

whi
h is independent of the 
enter and the radius. Let ! denote this 
oni
 se
tion in

the plane at in�nity. Later in the proof, we will work in the spa
e of lines in P

3

. In

that situation, we will have to 
onsider those tangents through any point z 2 ! in the

plane at in�nity rather than z itself. For this reason, we provide a 
hara
terization of

these tangents:

Lemma 9. Let z = (0; �

1

; �

2

; �

3

)

T

2 !. The tangent to the 
oni
 ! at z whi
h lies in

the plane at in�nity has Pl�u
ker 
oordinate

(p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

= (0; 0; 0; �

3

;��

2

; �

1

)

T

:

In parti
ular, the tangent 
ontains the points (0;��

2

; �

1

; 0)

T

, (0; �

3

; 0;��

1

)

T

, and

(0; 0;��

3

; �

2

)

T

.

Proof. Sin
e �

0

= 0 we 
an 
ompute in proje
tive plane P

2

; so let z = (�

1

; �

2

; �

3

)

T

.

The 
oni
 se
tion

x

T

Ax = 0 with A =

0

�

1 0 0

0 1 0

0 0 1

1

A

is regular in z with tangent fy = (y

1

; y

2

; y

3

)

T

2 P

2

: z

T

Ay = 0g. In parti
ular,

(��

2

; �

1

; 0)

T

, (�

3

; 0;��

1

)

T

, (0;��

3

; �

2

)

T

, and z itself lie on this tangent. Now any two

of these points 
an be used to 
ompute the Pl�u
ker 
oordinate of the tangent line. �

Consider a 
on�guration with a line l

1

and three spheres Q

2

, Q

3

, and Q

4

in R

3

. The

idea to prove the solutions at in�nity is to transfer the geometry of ! to the spa
e

of lines in P

3

. More pre
isely, let t be a tangent to ! at z in the plane at in�nity.

Sin
e the quadri
s ^

2

Q

2

;^

2

Q

3

;^

2

Q

4

2 P

5


hara
terize the tangents to Q

2

; Q

3

; Q

4

, the

Pl�u
ker ve
tor p

t

of t is 
ontained in ^

2

Q

2

, ^

2

Q

3

, and ^

2

Q

4

. Let 
 denote the quadri


in P

5

de�ned by the Pl�u
ker equation (1). Sin
e t is a line in P

3

, t is also 
ontained in


. We will show that the tangent hyperplanes to the quadri
s ^

2

Q

2

, ^

2

Q

3

, ^

2

Q

4

, 


at p

t


ontain a 
ommon subspa
e of dimension 2. In 
onne
tion with the linear form

de�ned by the transversals of the line l

1

, this will prove the multipli
ity of at least 2.

Let us investigate the spheres Q

2

, Q

3

, Q

4

�rst. For i 2 f2; 3; 4g, we are looking for

lines whose Pl�u
ker ve
tors lie in the tangent hyperplane of ^

2

Q

i

at p

t

. The geometri
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on
ept behind this relation is polarity. Re
all that the polar plane of a point a 2 P

n

with respe
t to an arbitrary quadri
 Q is de�ned by

fy 2 P

n

: a

T

Qy = 0g:

If a 2 Q then the polar hyperplane is a tangent hyperplane. The polar line of a line

l 2 P

3

is de�ned by

fy 2 P

3

: a

T

Qy = 0 for all a 2 lg:

The following lemma establishes a 
onne
tion between the tangent hyperplanes to

^

2

Q and the 
on
ept of polarity for a quadri
 Q.

Lemma 10. Let t be a tangent line to a quadri
 Q � P

3

, and let the point a 2 P

3

be


ontained in the polar line of t. Then, for any line l 
ontaining a, the Pl�u
ker ve
tor

p

l

of l is 
ontained in the tangent hyperplane to ^

2

Q at p

t

, i.e., p

T

t

(^

2

Q)p

l

= 0.

Proof. Let T be a representation of t by a 4� 2-matrix as des
ribed in the Se
tion 3.

Further let b be a point on l with b 6= a, and let L = (a; b) be a representation of l by

a 4 � 2-matrix. Sin
e a is 
ontained in the polar line of t, we have T

T

Qa = (0; 0)

T

.

Hen
e, by reasoning as in Lemma 3, we 
an 
on
lude

p

T

t

(^

2

Q)p

l

= det(T

T

QL) = 0:

�

In parti
ular, the following version of a well-known relationship (see, e.g., [25℄)

shows that the pre
ondition of Lemma 10 is satis�ed if a = t \Q.

Lemma 11. If t is tangent to a quadri
 Q at some point a, then a is 
ontained in

the polar line of t.

Proof. Let y 6= a be a point on t. Sin
e t lies on the polar plane (namely, the tangent

plane) of a with respe
t to Q, we have a

T

Qy = 0. Sin
e also a

T

Qa = 0, a lies on the

polar line of t with respe
t to Q. �

Finally, we are ready to prove the upper bound for N

3

.

Lemma 12. N

3

� 12.

Proof. Let L

1

be the hyperplane (2) in P

5


hara
terizing the transversals of the line l

1

,

that is, any point on L

1

whi
h satis�es the Pl�u
ker relation is the Pl�u
ker 
oordinate

of a transversal to l

1

. Let ^

2

Q

2

;^

2

Q

3

;^

2

Q

4

be the quadri
s (4) 
hara
terizing the

tangents to the three balls. Further let z = (0; �

1

; �

2

; �

3

)

T

2 !, and let � � 
 � P

5

be

the set of Pl�u
ker ve
tors whose 
orresponding lines in P

3

pass through z. � 
an be

written as the image of the proje
tive mapping h : P

3

! 
 � P

5

,

h(y

0

; y

1

; y

2

; y

3

) = ^

2

0

B

B

�

0 y

0

�

1

y

1

�

2

y

2

�

3

y

3

1

C

C

A

:

Sin
e h is linear, it follows that � is a two-dimensional plane in P

5

with � � 
.

Let t be the tangent to ! at z in the plane at in�nity. By Lemmas 11 and 10, � is


ontained in the tangent hyperplane to ^

2

Q

i

at p

t

, 2 � i � 4.
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In order to show that � is also 
ontained in the tangent hyperplane to 
 at p

t

, let

y be a point di�erent from z, and let l be a line through z and y. Then, by Lemma 9,

the Pl�u
ker ve
tors p

t

and p

l

satisfy

p

T

t


p

l

= (0; 0; 0; �

3

;��

2

; �

1

) �

1

2

0

B

B

B

B

B

�

0 0 0 0 0 1

0 0 0 0 �1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 �1 0 0 0 0

1 0 0 0 0 0

1

C

C

C

C

C

A

�

0

B

B

B

B

B

�

��

1

y

0

��

2

y

0

��

3

y

0

�

1

y

2

� �

2

y

1

�

1

y

3

� �

3

y

1

�

2

y

3

� �

3

y

2

1

C

C

C

C

C

A

= �

1

2

y

0

(�

2

1

+ �

2

2

+ �

2

3

)

= 0 :

Hen
e, the four tangent hyperplanes of ^

2

Q

2

, ^

2

Q

3

, ^

2

Q

4

, 
 at p

t


ontain a 
ommon

subspa
e of dimension at least 2. By Lemma 9, the tangents to the 
oni
 ! lie on a


oni
 !, namely on

p

2

12

+ p

2

13

+ p

2

23

= 0;

in the two-dimensional subspa
e of P

5

given by p

01

= p

02

= p

03

= 0. The restri
tion

of the hyperplane L

1

to the subspa
e p

01

= p

02

= p

03

= 0 de�nes a one-dimensional

subspa
e L

1

. Sin
e L

1

is one-dimensional, it interse
ts with ! at two points b

1

; b

2

2 P

5

in the plane p

01

= p

02

= p

03

= 0. Further, sin
e b

1

and b

2

satisfy the Pl�u
ker relation,

they are Pl�u
ker ve
tors of some tangents t

1

and t

2

to !. Altogether, the �ve tangent

hyperplanes of ^

2

Q

2

, ^

2

Q

3

, ^

2

Q

4

, 
, L

1

at b

1

and b

2


ontain a 
ommon subspa
e

of dimension at least 1. Hen
e, the tangent hyperplanes are not independent, whi
h

implies that the multipli
ity of interse
tion in b

1

and b

2

is at least 2 (see, e.g., [24℄,

p. 115). �

In order to show that N

3

= 12 it remains to give a 
onstru
tion with one line l

1

and

three balls B

2

, B

3

, B

4

of the same radius r, leading to 12 
ommon tangents. Let l

1

be

the x

3

-axis, and let the 
enters 


2

, 


3

, 


4

of the balls 
onstitute an equilateral triangle

with edge length 1 in the x

1

x

2

-plane, say 


2

= (

p

3=3; 0; 0)

T

, 


3

= (�

p

3=6; 1=2; 0)

T

,




4

= (�

p

3=6;�1=2; 0)

T

(see Figure 4). For 1=2 < r <

p

3=3, the balls are non-

disjoint, and none of them 
ontains the origin.

Let t be a line whi
h interse
ts l

1

, and let H be the plane 
ontaining t and l

1

. The

three 
uts H \B

1

, H \B

2

, and H \B

3

are dis
s (maybe degenerated to single points

or empty sets). Unless H is equidistant to two of the 
enters, one of these dis
s is

stri
tly 
ontained in one of the other two. Hen
e, any 
ommon tangent to the line

and the three balls lies in one of the three planes whi
h 
ontain the x

3

-axis and whi
h

are equidistant to two of the 
enters.

For example, one of these planes is the x

1

x

3

-plane, whi
h is equidistant to 


2

and 


3

.

The se
tion through this plane 
ontains two disjoint dis
s: one representing the (iden-

ti
al) interse
tions of the plane with B

2

and B

3

, and the se
ond one be
ause of B

1

.

These two dis
s are separated by the line l

1

. Hen
e, in this plane there are 4 
ommon

tangents. Altogether, sin
e there are three planes of this kind, we have 12 
ommon

tangents.

Finally, it remains to analyze the 
ommon tangents to four balls (with arbitrary

radii) in R

3

. Of 
ourse, this problem 
an also be formulated in Pl�u
ker 
oordinates.
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l1

Figure 4. Constru
tion with one line and 3 balls, leading to 12 tangents

However, sin
e the solutions of these equations have a 
ommon 
omponent at in�nity

[35℄, we prefer to 
ompute the number of tangents by an elementary approa
h. Re-


ently, in [17℄ the 
ommon tangents to 4 balls have been formulated by polynomial

equations with B�ezout number 24. We improve this result by giving a polynomial

formulation with B�ezout number 12; this is optimal by Proposition 1.

The idea for obtaining the system with B�ezout bound 12 is to generalize the ap-

proa
h for unit balls in [21℄. Note that in the proof we will always refer to the generi



ase. For this reason { in 
ontrast to Proposition 1 { the proof does not provide a

pre
ise 
hara
terization of the 
ases with in�nitely many 
ommon tangent lines.

Lemma 13. N

4

� 12.

Proof. Let 


1

; : : : ; 


4

be aÆnely independent, and without loss of generality, let r

4

be the smallest of the radii. We 
onsider fun
tions �

i

: [0; r

4

℄ ! R with �

i

(0) = 0,

�

i

(r

4

) = r

i

. Let �

4

(t) = t, while �

i

(t) for 1 � i � 3 will be spe
i�ed below. First we

des
ribe the set of lines whi
h are tangent to the balls B(


i

; �

i

(t)) for t > 0.

A line l will be spe
i�ed by its homogeneous dire
tion ve
tor s = (s

1

; s

2

; s

3

)

T

and

its 
losest point p to the origin.

The line l has distan
e �

i

(t) from some point 


i

if and only if the line l � p (whi
h

passes through the origin) has distan
e �

i

(t) from 


i

� p, i.e., if and only if

((


i

� p)� s)

2

= �

2

i

(t)s

2

:

Introdu
ing the moment ve
tor m := p� s and applying Lagrange's identity gives

(8) (


i

� s)

2

� 2h


i

; pis

2

+m

2

� �

2

i

(t)s

2

= 0:

Choosing 


4

to be at the origin and subtra
ting equation (8) for index 4 from this

equation for index i 2 f1; 2; 3g yields linear equations in p:

(9) h


i

; pi =

1

2s

2

(


i

� s)

2

�

1

2

(�

2

i

(t)� t

2

); 1 � i � 3:
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Setting M := (


1

; 


2

; 


3

)

T

, we obtain the ve
tor equation

(10) p =

1

2s

2

M

�1

0

�

(


1

� s)

2

(


2

� s)

2

(


3

� s)

2

1

A

�

1

2

M

�1

0

�

�

2

1

(t)� t

2

�

2

2

(t)� t

2

�

2

3

(t)� t

2

1

A

:

Now the key idea is: if we 
hoose parametrizations �

i

(t) with �

2

i

(t) � t

2

= C

i

for

some 
onstants C

i

2 R, 1 � i � 3, then the ve
tor p is uniquely determined by the

dire
tion ve
tor s. Furthermore, the 
onditions �

i

(r

4

) = r

i

imply C

i

= r

2

i

� r

2

4

; hen
e,

�

2

i

(t) = t

2

+ (r

2

i

� r

2

4

). By Cramer's rule,

M

�1

=

1

6V

(


2

� 


3

; 


3

� 


1

; 


1

� 


2

);

where V := det(


1

; 


2

; 


3

)=6 denotes the oriented volume of the tetrahedron 


1




2




3




4

.

By introdu
ing the normal ve
tors

n

1

:= (


2

� 


3

)=2; n

2

:= (


3

� 


1

)=2; n

3

:= (


1

� 


2

)=2;

and substituting (10) into hp; si = 0, we 
an eliminate p and obtain a homogeneous


ubi
 
ondition for the dire
tion ve
tor s:

3

X

i=1

�

(


i

� s)

2

+ s

2

(r

2

i

� r

2

4

)

�

hn

i

; si = 0:

Any solution s of this equation is the dire
tion ve
tor of a line with distan
es �

i

(t) from

the four 
enters for some parameter t. Substituting the radius 
ondition jjpjj = r

4

into (10) gives an equation of degree 4. Sin
e �

i

(r

4

) = r

i

, 1 � i � 4, any 
ommon

solution of the 
ubi
 and the quarti
 equation gives a 
ommon tangent to the four

balls B(


i

; r

i

). By B�ezout's Theorem, the formulation of the tangent problem by a


ubi
 and a quarti
 equation implies N

4

� 12. �

5. Con
lusion and Open Questions

We have investigated the enumerative geometry questions for the 
ommon tangents

to four bodies in R

3

when the bodies are balls or polytopes. These results re
e
t the

algebrai
 
omplexity inherent in the mentioned appli
ations. In other words, when-

ever we want to fo
us on exa
t 
omputations for the visibility or envelope problems

des
ribed in Se
tion 2, we have to 
ope with solving systems of polynomial equations

of the stated degrees.

The main open problem is to 
omplete the 
hara
terization of the degenerate in-

stan
es in Table 1. For example, in the 
ase of four balls with arbitrary radii there

are some obvious situations with in�nitely many 
ommon tangent lines: whenever the

four 
enters are 
ollinear and the four balls are ins
ribed in the same hyperboloid H.

We 
onje
ture that there does not exist any 
on�guration with four balls of arbitrary

radii, non-
ollinear 
enters and in�nitely many 
ommon tangent lines. However, we

were not able to prove this.

From the pra
ti
al point of view, a
tually 
omputing the numeri
al values of the

solutions (whi
h has, e.g., been done in �nding the 
onstru
tions given in this paper)

requires either multidimensional numeri
al methods su
h as homotopy methods or


ombinations of symboli
 te
hniques with univariate polynomial solvers (for an intro-

du
tion into all these te
hniques see [9℄). Sin
e generally, these te
hniques are still
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omputationally expensive, it is important to apply the most appropriate polynomial

formulations of the 
on
rete problems. From this point of view, our results provide

optimal formulations. Finally, let us mention that there are many resear
h e�orts

in improving the eÆ
ien
y of the two mentioned numeri
al polynomial solving te
h-

niques. In parti
ular, for re
ent improvements and the state of the art of the �rst

te
hnique see [37℄, and with regard to the se
ond te
hnique see [4, 5, 13℄.
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Appendix: Standard bases

We review the de�nitions of a standard basis, starting from Gr�obner basis the-

ory (see [9℄). The theory of Gr�obner bases provides 
omputational methods to �nd

\ni
e" generators for an ideal I in a polynomial ring C [x

1

; : : : ; x

n

℄. The theory

of standard bases extends this theory for ideals in lo
al rings. More pre
isely, let

R

l

:= C [x

1

; : : : ; x

n

℄

hx

1

;:::;x

n

i

be the set of rational fun
tions f=g in x

1

; : : : ; x

n

with

g(0; : : : ; 0) 6= 0. R

l

de�nes a lo
al ring, i.e., it 
ontains exa
tly one maximal ideal.

Sin
e the algebrai
-geometri
 de�nitions of interse
tion multipli
ities are related to the


on
ept of lo
al rings, standard bases provide a powerful tool to e�e
tively 
ompute

interse
tion multipli
ities.

From the various possible term orders, we restri
t ourselves to 
onsider the anti-

graded reverse lexi
ographi
al order (arevlex). For �; � 2 N

n

0

, We have x

�

>

arevlex

x

�

if and only if

n

X

i=1

�

i

<

n

X

i=1

�

i

;
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or

n

X

i=1

�

i

=

n

X

i=1

�

i

and x

�

>

revlex

x

�

;

where >

revlex

denotes the reverse lexi
ographi
al order of Gr�obner basis theory. For

any polynomial f , the leading term of f , denoted LT(f), is the maximal term of f

with regard to the arevlex-order.

For an ideal I in R

l

, the set of leading terms of I, abbreviated LT(I), is the set of

leading terms of elements of I.

A standard basis of I is a set fg

1

; : : : ; g

t

g � I su
h that hLT(I)i =

hLT(g

1

); : : : ;LT(g

t

)i. Given a set of polynomial generators of I, a standard basis

of I 
an be e�e
tively 
omputed by variants of the Bu
hberger algorithm.
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