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Abstract. Spectrahedra are the feasible sets of semidefinite programming and provide
a central link between real algebraic geometry and convex optimization. In this ex-
pository paper, we review some recent developments on effective methods for handling
spectrahedra. In particular, we consider the algorithmic problems of deciding emptiness
of spectrahedra, boundedness of spectrahedra as well as the question of containment
of a spectrahedron in another one. These problems can profitably be approached by
combinations of methods from real algebra and optimization.

1. Introduction

In the last decade tremendous developments around the connections between algebraic
geometry, convexity and optimization have brought the geometric concept of a spectra-
hedron into the focus of research activities. A spectrahedron, whose terminology is due
to Ramana and Goldman [33], is the feasible region of a semidefinite program. Hence,
spectrahedra are a natural generalization of polyhedra (which are the feasible sets of lin-
ear programs). Spectrahedra are basic semialgebraic sets and provide a major concept in
modern computational real algebraic geometry [4, 15, 30].

Formally, let Sk be the set of real symmetric k × k-matrices, S+
k ⊆ Sk be the subset

of positive semidefinite matrices, and Sk[x] be the set of symmetric k × k-matrices with
polynomial entries in x = (x1, . . . , xn). For A0, . . . , An ∈ Sk, denote by A(x) the linear
(matrix) pencil A(x) = A0 + x1A1 + · · ·+ xnAn ∈ Sk[x]. The set

(1.1) SA = {x ∈ Rn : A(x) � 0}

is called a spectrahedron, where A(x) � 0 denotes positive semidefiniteness of the matrix
A(x).

Recent work by a number of authors have advanced a theory of spectrahedral compu-
tation. In this expository paper, we review some of these developments, equipped with a
view towards real and convex algebraic geometry. A particular focus will then be given
on the question whether one given spectrahedron is contained in another one.

Precisely, given linear matrix pencils A(x) and B(x) we consider the following problems:

Emptiness: Is SA empty?
Boundedness: Is SA bounded?
Containment: Does SA ⊆ SB hold?

Key words and phrases. Spectrahedron, spectrahedral computation, real algebraic geometry, convex
algebraic geometry, containment.
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Most of the results discussed here come from the work of Helton, Kellner, Klep, McCul-
lough, Schweighofer, Trabandt as well as the author. Rather than to focus on complete
coverage, our goal is to provide an insightful window into these research developments.
Most proofs are omitted and can be found in the original papers.

The paper is structured as follows. In Section 2, we introduce polyhedra and spectrahe-
dra and highlight some occurrences of spectrahedra in real and convex algebraic geometry.
In Section 3, we discuss some fundamental algorithmic problems, in particular the empti-
ness and boundedness problem. Then, in Section 4, we deal with fundamental aspects of
the containment problem. Section 5 is devoted to hierarchical semidefinite approaches to
the containment problem.

Acknowledgment. The author was partially supported through DFG grant 1333/3-1
within the Priority Program 1489 “Algorithmic and Experimental Methods in Algebra,
Geometry, and Number Theory.”

2. From polyhedra to spectrahedra

Starting from polyhedra as a classical cornerstone of mathematics (see the monographs
of Grünbaum [11] or Ziegler [38]), we then introduce some basic notions of spectrahedra.

2.1. Polyhedra and polytopes. For a matrix A ∈ Rm×n and a vector b ∈ Rm, the set
P = {x ∈ Rn : b+Ax ≥ 0} is called a polyhedron. Geometrically, P is the intersection of a
finite number of halfspaces (H-presentation of a polyhedron, or, for short, H-polyhedron).
If the polyhedron P is a bounded set, then P is called a polytope. Polytopes can also
be represented as the convex hull of finitely many points, P = conv{p(1), . . . , p(l)} with
p(1), . . . , p(l) ∈ Rn (V-presentation of a polytope or, for short, V-polytope).

As an occurrence of polyhedra in real algebraic geometry, let us state Handelman’s
Theorem [12], which provides a characterization of the positive polynomials on a given
polytope. And under a degree restriction it gives a polyhedron of solutions, since all
conditions are linear.

Theorem 2.1 (Handelman). Let g1, . . . , gm ∈ R[x] be affine-linear polynomials such that
K = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0} is non-empty and bounded, that is, a polytope.
Any polynomial p ∈ R[x] which is strictly positive on K can be written as a finite sum

(2.1) p =
∑
β

cβ

m∏
j=1

g
βj
j

with coefficients cβ ≥ 0 (β ∈ Nm
0 ). For a fixed upper bound t on the degree, where t ≥ deg p,

the set of solutions (cβ)|β|≤t of

p =
∑
|β|≤t

cβ

m∏
j=1

g
βj
j

is a polyhedron.
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The latter condition can be transformed into an optimization version to find lower
bounds for p on K.

Though polytopes and polyhedra are defined by linear inequalities, they have a rich geo-
metric and combinatorial structure. Denote by V (P ) the set of vertices (i.e., 0-dimensional
faces) of a polytope P , and by F (P ) the set of facets (i.e., faces of codimension 1). By
McMullen’s Upper bound Theorem [28], any n-dimensional polytope with k vertices has
at most

(2.2)

(
k − dn

2
e

bn
2
c

)
+

(
k − 1− dn−1

2
e

bn−1
2
c

)
facets. This bound, which is of inherent importance for polyhedral computation software
such as polymake [9], is sharp for neighborly polytopes, that is, for polytopes with the
property that every set of at most bn/2c vertices is the vertex set of a face of P . For
example, cyclic polytopes are neighborly. And, dual to the statement, the maximum
number of vertices of any n-dimensional polytope with k facets is given by (2.2) as well,
with equality for dually neighborly polytopes.

2.2. Spectrahedra. We build upon the terminology from the Introduction. Specifically,
for A0, . . . , An ∈ Sk, let SA = {x ∈ Rn : A(x) = A0 +

∑n
i=1 xiAi � 0} denote the

spectrahedron as defined in (1.1). The inequality A0 +
∑n

i=1 xiAi � 0 is called a linear
matrix inequality (LMI). Since the operator A(·) is linear, any spectrahedron is a convex
set.

Example 2.2. Figure 1 shows the example of the elliptope

SA =
{
x ∈ R3 :

 1 x1 x2

x1 1 x3

x2 x3 1

 � 0
}

(see, e.g., [26]).

Figure 1. Visualization of an elliptope.
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Note that every polyhedron P = {x ∈ Rn : b + Ax ≥ 0} can be regarded as a
spectrahedron,

(2.3) P = PA =

x ∈ Rn : A(x) =

a1(x) 0 0

0
. . . 0

0 0 ak(x)

 � 0

 ,

where ai(x) denotes the i-th entry of the vector b + Ax. PA contains the origin in its
interior if and only if the inequalities can be scaled so that b is the all-ones vector 1k in
Rk. In this case, A(x) is called the normal form of the polyhedron PA.

Example 2.3. The unit disc {x ∈ R2 : x2
1 + x2

2 ≤ 1} is a spectrahedron. This follows
from setting

A0 =

(
1 0
0 1

)
, A1 =

(
1 0
0 −1

)
, A2 =

(
0 1
1 0

)
and observing that

A(x) =

(
1 + x1 x2

x2 1− x1

)
is positive semidefinite if and only if 1− x2

1 − x2
2 ≥ 0.

Every spectrahedron S is a basic closed semialgebraic set. This can be seen by writing
S = {x ∈ Rn : pi(x) ≥ 0 , i ∈ I} where the pi(x) are the principal minors of A(x),
indexed by the set I = 2{1,...,k} \ ∅. A slightly more concise representation is given by the
following well-known statement, where Ik denotes the k × k identity matrix.

Proposition 2.4. Any spectrahedron S = SA is a basic closed semialgebraic set. In
particular, given the modified characteristic polynomial

(2.4) t 7→ det(A(x) + tIk) =: tk +
k−1∑
i=0

pi(x)ti ,

S has the representation S = {x ∈ Rn : pi(x) ≥ 0, 0 ≤ i ≤ k − 1}.

Proof. Denoting by λ1(x), . . . , λk(x) the eigenvalues of the linear pencil A(x), we observe

det(A(x) + tIk) = (t+ λ1(x)) · · · (t+ λk(x)) .

Since A(x) is symmetric, all λi(x) are real, for any x ∈ Rn. Comparing the coefficients
then shows

pk−i(x) =
∑

t1<···<ti

λt1(x) · · ·λti(x) , 1 ≤ i ≤ k .

Now “⊆” of the desired representation follows from the fact that positive semidefinite-
ness of A(x) at a given x ∈ Rn implies non-negativity of all eigenvalues λ1(x), . . . , λk(x)
and thus non-negativity of all pi(x). Conversely, if for a given x ∈ Rn we have pi(x) ≥ 0 for
all i, then the modified characteristic polynomial has no sign changes. Thus, by Descartes’
rule of signs, it has no positive roots, and therefore A(x) is positive semidefinite. �
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It is an open question to provide good effective criteria to test whether a given convex
semialgebraic set is a spectrahedron or the linear projection of a spectrahedron. Recently,
the conjecture that every convex semialgebraic set would be the linear projection of a
spectrahedron (“Helton-Nie conjecture”) has been disproven by Scheiderer [34].

2.3. Spectrahedra in real and convex algebraic geometry. Spectrahedra occur in
many places of real and convex algebraic geometry. We point out three connections to
the algorithmic problems mentioned in Section 3.

Non-negative polynomials and sums of squares. A polynomial p =
∑

α cαx
α ∈

R[x] = R[x1, . . . , xn] is called a sum of squares (sos) if it can be written as a finite sum∑
i ui(x)2 with polynomials ui ∈ R[x]. The total degree deg p of an sos-polynomial p is

even. Sum of squares polynomials are ubiquitous in real and convex algebraic geometry
and provide a fundamental sufficient condition for the property that a polynomial p is
non-negative. In order to phrase the sos-property in terms of a spectrahedral property,
let y denote the

(
n+deg p/2

n

)
-dimensional vector of all monomials in x up to half of the total

degree of p. And for some m ≥ 0 and k =
(
n+deg p/2

n

)
, let A(w) = A0 +

∑m
i=1 wiAi be a

matrix pencil spanning the subspace in Sk defined by the equations

(2.5) cα =
∑

β+γ=α

zβ,γ for all α of total degree at most deg p

in the symmetric matrix of variables Z = (zβ,γ)|β|,|γ|≤deg p/2.

Proposition 2.5. A polynomial p ∈ R[x] can be written as a sum of squares if and only
if the spectrahedron SA is non-empty.

Proof. The comparison of the coefficients in (2.5) is satisfied if and only if there exists a
matrix Z with yTZy = c, where c is the coefficient vector of p. Since Z has a Choleski
decomposition LLT if and only if it is positive semidefinite, the claim follows. �

Computation of amoebas. For an ideal I = 〈f1, . . . , fr〉 ⊆ C[z] = C[z1, . . . , zn], the
algebraic amoeba (or unlog amoeba) AI is the image of its zero set V(I) under the absolute
value map, that is, AI = {|z| : z ∈ V(I)}. Given λ = (λ1, . . . , λn) ∈ Rn

≥0, the amoeba
membership problem asks whether λ ∈ AI .

For f ∈ C[z], let <(f) and =(f) ∈ R[x, y] be given through

f(x+ iy) = <(f)(x, y) + i=(f)(x, y) .

Now consider the ideal J generated by the set of polynomials

<(fj),=(fj) 1 ≤ j ≤ r, x2
k + y2

k − λ2
k, 1 ≤ k ≤ n .

By the real Nullstellensatz, we have λ ∈ AI unless there exists a polynomial G ∈ J and
an sos-polynomial H such that G + H + 1 = 0. Given a fixed degree bound, the set of
all the certificates satisfying that bound defines a spectrahedron, and thus the amoeba
membership problem can be approached through a hierarchy of spectrahedral feasibility
problems, see [37].
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Non-negative biquadratic forms. Given a biquadratic form

F (x, y) =
∑

(i,j,s,t)∈Λ

bijklxiyjxsyt

with Λ = {(i, j, s, t) : 1 ≤ i, s ≤ k, 1 ≤ j, t ≤ l} and real coefficients bijkl, we ask whether
F is non-negative. We can assume that the coefficients satisfy the symmetry condition
bijkl = bkjil and bijkl = bilkj

In order to phrase this question as a containment problem of spectrahedra, set n =(
k+1

2

)
. For notational convenience, we can then identify x = (x1, . . . , xn) with a matrix

X ∈ Sk. Let A(X) = X and B(X) ∈ Sl[X] be given by bj,t(X) =
∑

1≤i,s≤k bijstxis,
1 ≤ j, t ≤ l.

Proposition 2.6. The biquadratic form F is non-negative if and only if the spectrahedron
SA is contained in the spectrahedron SB.

Proof. If SA ⊆ SB then any positive semidefinite matrix X satisfies B(X) � 0, and thus
for every (x, y) ∈ Rk × Rl we have F (x, y) = yTB(xxT )y ≥ 0. Hence, F is positive
semidefinite.

Conversely, let F (x, y) be a positive semidefinite biquadratic form. Since any positive
semidefinite matrix X can be written as a finite sum X =

∑
i x

(i)(x(i))T with vectors
x(i) ∈ Rk, linearity implies yTB(X)y =

∑
i y

TB(x(i)(x(i))T )y =
∑

i F (x(i), y) ≥ 0 for any
y ∈ Rl. Hence, B(X) � 0. �

3. Fundamental algorithmic concepts

In the early years, spectrahedra were mainly considered within optimization frame-
works. The stronger focus on the geometry of these sets has established new connections
to real algebraic geometry and effective computation.

3.1. Infeasibility certificates. Given a linear matrix pencil A(x) ∈ Sk[x], we study the
question whether SA = ∅.

Remark 3.1. For polytopes PA = {x ∈ Rn : b + Ax ≥ 0}, the question whether PA is
non-empty can be phrased as a linear program and thus can be decided in polynomial
time for a rational input polytope. Also note that even deciding whether a polytope has
an interior point can be decided by a linear program as well (see, e.g., [18, Example 4.3]).

Testing whether SA = ∅ can be regarded as the complement of a semidefinite feasibility
problem (SDFP), which asks whether for a given linear pencil A(x) the spectrahedron SA
is nonempty. While semidefinite programs (with rational input data) can be approximated
in polynomial time (see [6]), the complexity of SDFP is open, see [32]. In practice, however,
SDFPs can numerically be solved efficiently by semidefinite programming.

In view of the classical Nullstellensätze and Positivstellensätze from real algebraic ge-
ometry, it is a natural question how to certify the emptiness of a spectrahedron. For
polytopes, the classical Farkas’ Lemma (see, e.g., [35, Cor. 7.1e]) characterizes the empti-
ness of a polytope in terms of an identity of affine functions coming from a geometric cone
condition.
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Theorem 3.2. A polyhedron P = {x ∈ Rn : Ax + b ≥ 0} is empty if and only if the
constant polynomial −1 can be written as −1 =

∑
i si(Ax+b)i with si ≥ 0; or, equivalently,

if −1 can be written as −1 = c+
∑

i si(Ax+ b)i with c ≥ 0, si ≥ 0.

Let A(x) ∈ Sk[x]. A(x) is called feasible if the spectrahedron SA is non-empty. Further,
A(x) is called strongly feasible if A(x) is feasible and there exists an x ∈ Rn with A(x) � 0.
In relation to this, the spectrahedron SA is called strongly empty if A(x) it is not strongly
feasible.

In order to extend Farkas’ Lemma to spectrahedra, denote by CA the convex cone in
Sk[x] defined by

CA = {c+ 〈A, S〉 : c ≥ 0, S ∈ S+
k }

= {c+
∑
i

uTi Aui : c ≥ 0, ui ∈ Rn} ,

where 〈A, S〉 = Tr(AS) is the dot product underlying the Frobenius norm and Tr denotes
the trace of a matrix. Since A = A(x) is a linear pencil in Sk[x], every element in CA is a
linear polynomial which is non-negative on the spectrahedron SA.

Theorem 3.3 (Sturm [36]). Given A(x) ∈ Sk[x], the spectrahedron SA is strongly empty
if and only if −1 ∈ CA.

An exact characterization for the emptiness of SA can be established in terms of a
quadratic module associated to A(x). Recall that a subset M of a commutative ring R
with 1 is called a quadratic module if it satisfies the conditions

1 ∈M, M +M ⊆M and a2M ⊆M for any a ∈ R .
Given a linear pencil matrix A = A(x), denote by MA the quadratic module in R[x]

MA = {s+ 〈A, S〉 : s ∈ Σ[x], S ∈ R[x]k×k an sos-matrix}(3.1)

= {s+
∑
i

uTi Aui : s ∈ Σ[x], ui ∈ R[x]k} ,(3.2)

where Σ[x] denotes the subset of sums of squares of polynomials within R[x] and an sos-
matrix is a matrix polynomial of the form P TP for some matrix polynomial P . Note
that if a polynomial f ∈ R[x] is contained in MA then it is non-negative on SA. Further,

denote by M
(t)
A the truncated quadratic module

M
(t)
A = {s+ 〈A, S〉 : s ∈ Σ[x] ∩ R[x]2t, S ∈ R[x]k×k2t sos-matrix}

= {s+
∑
i

uTi Aui : s ∈ Σ[x]2t, ui ∈ R[x]kt } ⊆ R[x]2t+1 ,

where R[x]t denotes the set of polynomials of total degree at most t.

Theorem 3.4 (Klep, Schweighofer [23]). For A(x) ∈ Sk[x], the following are equivalent:

(1) The spectrahedron SA is empty.
(2) −1 ∈MA.

(3) −1 ∈M (2min{n,k−1})
A .
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The third of these statements provides the ground for a computational treatment in
terms of algebraic certificates for infeasibility. Namely, the question whether such a repre-
sentation of bounded degree exists can be formulated as a semidefinite feasibility problem.

In order to carry out this formulation as a semidefinite program, set t = 2min{n,k−1}.
Then the value

max
{
γ ∈ R : −1− γ = s+ 〈A, S〉, s ∈ Σ[x] ∩ R[x]2t, S ∈ R[x]k×k2t sos-matrix

}
coincides with the value of the semidefinite program

(3.3)

max γ
s.t. −1− γ = Tr(P1X) + Tr(Q1Y )

0 = Tr(PiX) + Tr(QiY ) for 2 ≤ i ≤ mw :=
(
n+2t+1

2t+1

)
,

X � 0, Y � 0 .

Here, denoting by w = w(x) and y = y(x) the vectors of monomials in x1, . . . , xn of
degrees up to 2t + 1 and t in lexicographic order, Qi is defined through y(x)y(x)T =∑mw

i=1 Qiwi(x). And, setting my =
(
n+t
t

)
, the permutation matrix P ∈ Rkmy×kmy is given

via P (Ik ⊗ y(x)) = y(x)⊗ Ik, and the matrices Pi are defined through

P (Ik ⊗ y(x)) · A(x) · (P (Ik ⊗ y(x)))T =
mw∑
i=1

Piwi(x) ∈ R[x]kmy×kmy .

Hence, −1 ∈ M (2 min{n,k−1})
A if and only if the objective value of (3.3) is non-negative.

This decision problem is a semidefinite feasibility problem, since the property of a non-
negative linear objective function can also be viewed as an additional linear constraint.

Example 3.5. Let

A(x) =

1 + x 1 0
1 0 −1
0 −1 x

 =

1 1 0
1 0 −1
0 −1 0

+ x

1 0 0
0 0 0
0 0 1

 .

Since min{n, k − 1} = {1, 3− 1} = 1, we can assume y = y(x) = (1, x)T . We obtain

Q1 =

(
1 0
0 0

)
, Q2 =

(
0 1
1 0

)
, Q3 =

(
0 0
0 1

)
, Q4 =

(
0 0
0 0

)
,

and the matrices P1, . . . , P4 are

P1 =


1 1 0 0 0 0
1 0 −1 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , P2 =


1 0 0 1 1 0
0 0 0 1 0 −1
0 0 1 0 −1 0
1 1 0 0 0 0
1 0 −1 0 0 0
0 −1 0 0 0 0

 ,
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P3 =


0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
1 0 0 1 1 0
0 0 0 1 0 −1
0 0 1 0 −1 0

 , P4 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

 .

Since the positive semidefinite matrices

X =


1 0 0 0 0 0
0 2 1 0 0 0
0 1 2 0 3

2
0

0 0 0 0 0 0
0 0 3

2
0 2 0

0 0 0 0 0 0

 , Y =

(
0 0
0 0

)

provide a feasible solution of the semidefinite program (3.3) with objective value 0, we see
that the spectrahedron SA is empty. By a Choleski factorization

X = LLT with L =


1 0 0 0

0
√

2 0 0

0
√

2/2
√

6/2 0
0 0 0 0

0 0
√

6/2
√

2/2
0 0 0 0

 ,

we can deduce from the semidefinite program (3.3) that u1 = (1, 0, 0)T , u2 = (0,
√

2,
√

2/2)T ,
u3 = (0,

√
6/2x,

√
6/2)T , u4 = (0,

√
2/2x, 0)T provides the desired algebraic certificate

−1 ∈ MA, where the ui are as in (3.2). We remark that u4 can be omitted due to
uT4A(x)u4 = 0.

Origin in the interior. We shortly point out a fine point which explains a technical
assumption in later statements. Clearly, if the constant matrix A0 of a pencil A(x) is
positive semidefinite then the origin is contained in the spectrahedron SA. However, in
general it is not true that A0 is positive definite if and only if the origin is contained in the
interior of SA. Fortunately, by [33, Corollary 5], if a spectrahedron SA is full-dimensional,
then there exists a so-called reduced linear pencil that is positive definite exactly on the
interior of SA. Hence, in the case of a reduced pencil we have 0 ∈ intSA if and only
A0 � 0. Moreover, for arbitrary dimension of SA, we have 0 ∈ intSA if and only if there is
a linear pencil A′(x) with the same positivity domain such that A′0 = Ik (see [15]). Such
a pencil is called monic.

3.2. Boundedness. In order to certify that a given spectrahedron is bounded, the qua-
dratic module (3.1) is applied as well. Recall that a quadratic module M ⊆ R[x] is called
archimedean if it contains a polynomial of the form N −

∑n
i=1 x

2
i for some N > 0.

Theorem 3.6 (Klep, Schweighofer [23]). Given A(x) ∈ Sk[x], the spectrahedron SA is
bounded if and only if MA is archimedean.
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Example 3.7. In order to show that the spectrahedron SA of

A(x) =

x 1 0
1 x 0
0 0 −x+ 2


is bounded, we ask for u ∈ R[x]3 and sos-polynomials s0, s1 with

N −
3∑
i=1

x2
i = uTAu+ s2

1(−x+ 2) + s0

for some N > 0. The choice u = (x − 1
2
,−x + 1, 0)T , s1 = 2x2 + 17

4
, s0 = 0 and N = 17

2
gives an algebraic certificate for the boundedness of SA.

There exist spectrahedra whose elements have coordinates of double-exponential size
in the number of variables and whose distance to the origin grows double-exponentially
in the number of variables (see [1, 33]). Hence, in general one cannot expect to have a
certificate of polynomial size for the boundedness of the spectrahedron.

4. Containment problems

As a next step in the class of algorithmic problems on spectrahedra, we consider con-
tainment problems: Given two linear pencils A(x) ∈ Sk[x] and B(x) ∈ Sl[x], is SA ⊆ SB?

Figure 2. Visualization of an elliptope in a ball.

Containment problems of convex sets are a classical topic in convex geometry (see,
e.g., Gritzmann and Klee for the containment of polytopes and a number of computa-
tional aspects [10]). In the context of spectrahedra, the study of algorithmic approaches
and relaxations has been initiated by Ben-Tal and Nemirovski [2] who investigated the
case where SA is a cube and SB is an arbitrary spectrahedron (“matrix cube problem”).
Figure 2 visualizes an elliptope in a ball.
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4.1. Complexity of containment problems for spectrahedra. It is useful to start
from the case of polytopes. Here, it is well-known that the computational complexity of
deciding containment of a given polytope P in a given polytope Q strongly depends on
the type of input representations. We assume that all input data is given in terms of
rational numbers, and the dimension is part of the input.

Proposition 4.1. [7] The following problems can be decided in polynomial time.

(1) Given H-polytopes P and Q, is P ⊆ Q?
(2) Given V-polytopes P and Q, is P ⊆ Q?
(3) Given a V-polytope P and an H-polytope Q, is P ⊆ Q?

In contrast to this, deciding whether an H-polytope is contained in a V-polytope is co-NP-
complete.

In [21], this classification has been extended to containment problems involving poly-
topes and spectrahedra, where the spectrahedra are given by a linear pencil with rational
entries. The main hardness results are given by the subsequent Theorems 4.2 and Propo-
sition 4.3.

Theorem 4.2. [21] The following problems are co-NP-hard:

(1) Given a spectrahedron SA and a V-polytope Q, is SA ⊆ Q?
(2) Given an H-polytope P and a spectrahedron SB, is P ⊆ SB?

The latter hardness statement persists if the H-polytope is a standard cube or if the outer
spectrahedron is a ball.

Since deciding whether a given rational matrix is positive semidefinite can be done
in polynomial time, it can be decided in polynomial time whether a V-polytope is con-
tained in a spectrahedron. As mentioned earlier, the question “Can semidefinite feasibility
problems SDFP be solved in polynomial time?” is an open complexity question. Con-
sequently, the following statement on containment of a spectrahedron in an H-polytope
does not give a complete answer concerning polynomial solvability of these containment
questions in the Turing machine model. If the additional inequalities were non-strict, then
we had to decide a finite set of problems from the complement of the class SDFP.

Proposition 4.3. [21] The problem of deciding whether a spectrahedron is contained in
an H-polytope can be formulated by the complement of semidefinite feasibility problems
(involving also strict inequalities), whose sizes are polynomial in the input data.

Since Theorem 4.2 also implies that deciding containment of a spectrahedron in a spec-
trahedron is co-NP-hard, all the relevant cases are covered. See Table 1 for a condensed
presentation, where H, V and S stand for H-polytope, V-polytope and spectrahedron,
respectively.

For the computational question of deciding whether a spectrahedron is a polyhedron
see Bhardwaj, Rostalski and Sanyal [3], and for sos-based approaches to the NP-hard
containment problem of deciding whether an H-polytope is contained in a V-polytope see
Kellner and Theobald [20].
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H V S
H P co-NP-complete co-NP-hard

V P P P

S “SDFP” co-NP-hard co-NP-hard

Table 1. Computational complexity of containment problems, where the
rows refer to the inner set and the columns to the outer set. “SDFP” refers
to the formulations through semidefinite feasibility problems as described
in Proposition 4.3.

4.2. From Farkas-type characterizations for polytopes to relaxations for spec-
trahedra. In this section, we present some recent results on semidefinite relaxations
which provide a sufficient criterion for the containment problem of spectrahedra. Here,
relaxation means that some conditions are omitted from the original problem in order to
obtain a more tractable, semidefinite formulation.

It is helpful to start from the containment problem for pairs of H-polytopes, which by
Proposition 4.1 can be decided in polynomial time. Indeed, as a consequence of the affine
form of Farkas’ Lemma, this can be achieved by solving a linear program, as stated by
the following necessary and sufficient criterion (see, e.g., [21]). Recall that a real matrix
with non-negative entries is called right stochastic if each row sums to one.

Proposition 4.4. Let PA = {x ∈ Rn : 1k +Ax ≥ 0} and PB = {x ∈ Rn : 1l +Bx ≥ 0}
be polytopes. Then PA ⊆ PB if and only if there exists a right stochastic matrix C with
B = CA.

For the treatment of containment of spectrahedra, a good starting point is the sufficient
criterion given by Helton, Klep and McCullough [14]. As earlier, let A(x) ∈ Sk[x] and
B(x) ∈ Sl[x] be linear pencils. In the subsequent statement, the indeterminate matrix

C = (Cij)
k
i,j=1 is a symmetric kl × kl-matrix where the Cij are l × l-blocks.

Theorem 4.5. ([14, Theorem 4.3], see also [21, Theorems 4.3 and 4.4]) Let A(x) ∈ Sk[x]
and B(x) ∈ Sl[x] be linear pencils. If one of the systems

(4.1) C = (Cij)
k
i,j=1 � 0, ∀p = 0, . . . , n : Bp =

k∑
i,j=1

apijCij

or

(4.2) C = (Cij)
k
i,j=1 � 0, B0 −

k∑
i,j=1

a0
ijCij � 0, ∀p = 1, . . . , n : Bp =

k∑
i,j=1

apijCij

is feasible, then SA ⊆ SB. Here, apij denotes the (i, j)-entry of Ap.

Note that whenever (4.1) is satisfied, condition (4.2) is satisfied as well. However, (4.2)
contains an additional sos-condition. An elementary proof of Theorem 4.5 was given
in [21] – here, we provide a slight variant of that proof.
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Proof of Theorem 4.5. For x ∈ SA, the last two conditions in (4.2) imply

B(x) = B0 +
n∑
p=1

xpBp �
k∑

i,j=1

a0
ij Cij +

n∑
p=1

k∑
i,j=1

xp a
p
ij Cij =

k∑
i,j=1

(A(x))ij Cij .(4.3)

For any block matrices S = (Sij)ij and T = (Tij)ij, consisting of k × k blocks of size
p×p and q× q, the Khatri-Rao product of S and T is defined as the block-wise Kronecker
product of S and T , i.e.,

S ∗ T = (Sij ⊗ Tij)ij ∈ Skpq .
If both S and T are positive semidefinite, then the Khatri-Rao product S ∗ T is positive
semidefinite as well, see [27, Theorem 5].

In our situation, we have p = 1 and q = l, and the Khatri-Rao product

A(x) ∗ C = ((A(x))ij ⊗ Cij)ki,j=1 = ((A(x))ijCij)
k
i,j=1

is positive semidefinite. And since B(x) is given in (4.3) as a sum of submatrices of
A(x) ∗ C, we obtain that B(x) is positive semidefinite, i.e., x ∈ SB.

When starting from system (4.1), the inequality chain in (4.3) becomes an equality, and
the remaining part of the proof remains valid. �

For both systems (4.1) and (4.2) the feasibility depends on the linear pencil represen-
tation of the sets involved. If SB is contained in the positive orthant, a stronger version
can be given.

Corollary 4.6. Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be linear pencils and let SA be con-
tained in the non-negative orthant. If the system

(4.4) C = (Cij)
k
i,j=1 � 0, B0 −

k∑
i,j=1

a0
ijCij � 0, ∀p = 1, . . . , n : Bp −

k∑
i,j=1

apijCij � 0

is feasible, then SA ⊆ SB.

Proof. Since SA is contained in the non-negative orthant, any x ∈ SA has non-negative
coordinates, and hence,

B(x) = B0 +
n∑
p=1

xpBp �
k∑

i,j=1

a0
ij Cij +

n∑
p=1

k∑
i,j=1

xp a
p
ij Cij =

k∑
i,j=1

(A(x))ij Cij .

�

The version (4.4) is strictly stronger than system (4.1). There are cases, where a solution
to the condition (4.4) exists, even though the original system (4.1) is infeasible.

4.3. Exact cases of the relaxation. It turns out that the sufficient semidefinite crite-
ria (4.1) and (4.2) even provide exact containment characterizations in several important
cases.

Recall the normal form for polyhedral spectrahedra introduced in Section 2, and let us
also introduce a normal form for the class of centered and aligned ellipsoids. Here, an
ellipsoid is called centered if it is centrally symmetric, and it is called aligned if its axes
are aligned to the directions of the coordinate axes. A centered and aligned ellipsoid with
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semi-axes of lengths a1, . . . , an can be written as the spectrahedron SA of the monic linear
pencil

(4.5) A(x) = In+1 +
n∑
p=1

xp
ap

(Ep,n+1 + En+1,p),

where Eij denotes the matrix with a one in position (i, j) and zeros elsewhere. This
representation is called the the normal form of the ellipsoid. If a1 = · · · = an, this gives
the normal form of a ball. The exact characterizations also use the following extended
form SÂ of a spectrahedron SA. Given a linear pencil A(x) ∈ Sk[x], we call the linear
pencil with an additional 1 on the diagonal

(4.6) Â(x) =

(
1 0
0 A(x)

)
∈ Sk+1[x]

the extended linear pencil of SA = SÂ. Note that the spectrahedra SA = SÂ coincide. The

entries of Âp in the pencil Â(x) = Â0 +
∑n

p=1 xpÂp are denoted by â pij for i, j = 0, . . . , k.

Theorem 4.7. [21] Let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be monic linear pencils. In the
following cases the criteria (4.1) as well as (4.2) are necessary and sufficient for the
inclusion SA ⊆ SB:

(1) if A(x) and B(x) are normal forms of centered and aligned ellipsoids,
(2) if A(x) and B(x) are normal forms of a ball and an H-polyhedron, respectively,
(3) if B(x) is the normal form of a polytope,

(4) if Â(x) is the extended form of a spectrahedron and B(x) is the normal form of a
polyhedron.

Recently, Fritz, Netzer and Thom have shown the following exactness result which
distinguishes the simplex situation within the situation that SA is a polytope.

Theorem 4.8. [8, Cor. 5.3] For a fixed polytope SA, the criterion (4.1) is exact for any
spectrahedron SB if and only if SA is a simplex, and this statement is independent of the
representing pencil of the polytope SA.

Note that all the exactness statements presented in this section refer to exact charac-
terizations of the containment problem in terms of a formulation as semidefinite program.
Similar to the case of the infeasibility certificates in Section 3, when it comes to actually
solving the semidefinite programs, in case of employing numerical solvers this involves
additional numerical aspects.

5. Sufficient semidefinite hierarchies for containment of spectrahedra

In this section, we present two hierarchical approaches for the containment problem
in terms of polynomial matrix inequalities (PMI). The underlying PMI hierarchy was
developed by Kojima [24], Hol and Scherer [17], as well as Henrion and Lasserre [16], and
it generalizes the Lasserre hierarchy for polynomial optimization [25]. We then discuss
the relation of the two approaches for containment to each other as well as the connection
to positive maps.
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5.1. From the sufficient criterion to a moment hierarchy of sufficient criteria.
As before, let A(x) ∈ Sk[x] and B(x) ∈ Sl[x], and assume that SA 6= ∅. By definition
of a positive semidefinite matrix, we have SA ⊆ SB if and only if the infimum µ of the
polynomial optimization problem

µ = inf zTB(x)z

s.t. A(x) � 0

g(z) := zT z − 1 = 0

(5.1)

in the variables (x, z) = (x1, . . . , xn, z1, . . . , zl) is non-negative (cf. [22] for improved nu-
merical stability). Setting GA(x, z) to be the matrix with blocks A(x) as well as the two
1× 1-blocks g(z) and −g(z), the constraints can be written as GA(x, z) � 0.

The general framework of moment relaxations for PMIs translates the optimization
problem into a semidefinite hierarchy as a relaxation to problem (5.1). Assuming, for
ease of notation, that we are working over the variables x = (x1, . . . , xn), let y = (yα)
be a real sequence indexed by the monomials in x. Let M(y) be the infinite moment
matrix defined by (M(y))α,β = Ly(([x][x]T )α,β) = yα+β, where [x] is the infinite vector of
monomials in x1, . . . , xn and Ly is the linearization operator that maps a monomial xα

to the associated moment variable yα. Mt(y) denotes the truncated moment matrix that
contains only entries (M(y))α,β with |α|, |β| ≤ t.

The positive semidefiniteness constraint on a matrix polynomial G(x) ∈ Sk[x] is cap-
tured by the localizing matrices. The truncated localizing matrix Mt(Gy) is defined as
Mt(Gy) = Ly([x]t[x]Tt ⊗ G(x)), where application of the linearization operator Ly is
component-wise. If dG denotes the highest degree of a polynomial appearing in G(x),
then only linearization variables coming from monomials of degree at most 2t+dG appear
in Mt(Gy).

For t ≥ 2, the t-th relaxation of the polynomial optimization problem (5.1) becomes

µmom(t) = inf Ly(z
TB(x)z)

s.t. Mt(y) � 0

Mt−1(GAy) � 0 .

(5.2)

Note that t = 2 is the initial relaxation order. The sequence µmom(t) for t ≥ 2 is monotone
non-decreasing. If for some t∗ the condition µmom(t∗) ≥ 0 is satisfied, then SA ⊆ SB.

The following connection will be further refined and extended in Theorems 5.5 and 5.7.

Theorem 5.1. [22] Let SA 6= ∅. Then µmom(2) ≥ 0 (and thus µmom(t) ≥ 0 for all t ≥ 2)
if and only if the SDFP (4.1) has a solution C � 0, that is, if and only if the sufficient
containment criterion in Theorem 4.5 is satisfied.

5.2. The Hol-Scherer hierarchy. The background of the second hierarchical approach
is provided by Hol-Scherer’s Positivstellensatz. In order to characterize matrix polynomi-
als which are positive semidefinite on a spectrahedron, we consider a generalization of the
quadratic module (3.1) for a matrix polynomial G ∈ Sk[x]. For any l ≥ 0, let

MG,l = {S0 + 〈S,G〉l : S0 ∈ R[x]l×l sos-matrix, S ∈ R[x]kl×kl sos-matrix} ,
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where for matrices U = (Uij)
l
i,j=1 ∈ Skl and V ∈ Sk the lth scalar product is defined by

〈U, V 〉l = (〈Uij, V 〉)li,j=1 ∈ Sl .

Proposition 5.2 (Hol, Scherer [17]). Let G(x) be a matrix polynomial in Sk[x]. Further
assume that there exists a polynomial p(x) = s(x) + 〈S(x), G(x)〉 for some sos-polynomial
s(x) ∈ R[x] and some sos-matrix S(x) ∈ Sk[x], such that the level set {x ∈ Rn : p(x) ≥ 0}
is compact. Then every matrix polynomial F ∈ Sl[x] which is positive semidefinite on
{x ∈ Rn : G(x) � 0} is contained in the quadratic module MG,l.

As before, let A(x) ∈ Sk[x] and B(x) ∈ Sl[x] be linear pencils, and consider for t ≥ 0
the truncated quadratic module

(5.3) M
(t)
A,l = {S0 + 〈S,A〉l : S ∈ R[x]l×l2t sos-matrix, S ∈ R[x]kl×kl2t sos-matrix} .

Proposition 5.3. [19, 22] Let A(x) ∈ Sk[x], B[x] ∈ Sl[x] be linear pencils.

(1) If B(x) ∈M (t)
A,l for some t ≥ 0, then SA ⊆ SB.

(2) Let SA be bounded and B(x) be a reduced pencil. If SA is contained in the interior

of SB then there exists some t ≥ 0 such that B(x) ∈M (t)
A,l.

For computational purposes and to relate the hierarchy to the moment approach in
Section 5.1, it is useful to pass over to a robust optimization version. First note that
SA ⊆ SB if and only there exists some λ ≥ 0 with

B(x)− λIl � 0 for all x ∈ SA .
Now we consider the hierarchy of optimization problems

λsos(t) = sup λ

s.t. B(x)− λIl − (〈Si,j(x), A(x)〉)li,j=1 sos-matrix

S(x) = (Si,j(x))li,j=1 ∈ Skl[x] sos-matrix,

(5.4)

where S(x) has l × l blocks of size k × k with entries of degree at most 2t ≥ 0. Given
some t ≥ 0, we observe that λsos(t) ≥ 0 implies that SA ⊆ SB.

Theorem 5.4. [22] Let A(x) ∈ Sk[x] be a linear pencil such that the spectrahedron SA
is bounded. Then the optimal values of the moment relaxation (5.2) and of the sos-
relaxation (5.4) converge from below to the optimal value of the polynomial optimization
problem (5.1), i.e., µmom(t) ↑ µ and λsos(t) ↑ µ as t→∞.

The following theorem shows that that the sufficient criteria coming from the hierarchies
of relaxations are at least as strong as the criterion (4.1) by showing that feasibility of
the criterion (4.1) implies µ(t) ≥ 0 and λsos(t) ≥ 0 in the initial relaxation steps of
the semidefinite hierarchies (5.2) and (5.4). From this relation, we get that in some
cases already the initial relaxation step of the hierarchies gives an exact answer to the
containment problem; see Section 5.3.

Theorem 5.5. [22] Let SA 6= ∅. Then for the properties

(1) the SDFP (4.1) has a solution C � 0,



SOME RECENT DEVELOPMENTS IN SPECTRAHEDRAL COMPUTATION 17

(2) λsos(0) ≥ 0,
(3) µmom(2) ≥ 0,
(4) SA ⊆ SB,

we have the implications 1 ⇐⇒ 2 =⇒ 3 =⇒ 4 .

For further aspects on the Hol-Scherer hierarchy for containment see also Kellner’s
dissertation [19].

5.3. (Completely) positive maps. We briefly discuss the connection of the hierarchies
to the theory of positive maps and completely positive maps. For background on positive
and completely positive maps see, e.g., [31].

Definition 5.6. Given two linear subspaces A ⊆ Rk×k and B ⊆ Rl×l, a linear map
Φ : A → B is called positive if Φ(A) � 0 for any A ∈ A with A � 0.

The map Φ is called d-positive if the map Φd : Rd×d⊗A → Rd×d⊗B, M⊗A 7→M⊗Φ(A)
is positive, i.e., if M⊗Φ(A) � 0 whenever M⊗A � 0. And Φ is called completely positive
if Φd is positive for all d ≥ 1.

As explained in the following, checking positivity of a map on a subspace is equivalent
to checking containment for spectrahedra. This does not only provide a structural con-
nection, but also allows to apply the hierarchy for the containment question to positivity
questions of maps on subspaces, such as the ones in [13]. Note that for the special case
of detecting positivity of a map on the whole space, Nie has recently shown that this can
be done by solving a finite number of semidefinite relaxations [29].

For simplicity, we restrict to the situation that A0, . . . , An are linearly independent and
that SA is bounded. Let the linear map ΦAB : A → B be defined through

ΦAB(Ap) = Bp for 0 ≤ p ≤ n .

Then the following extension of Theorem 5.5 states the connection of the semidefinite
hierarchies with positive and completely positive maps.

Theorem 5.7. [22] Let A0, . . . , An be linearly independent and SA be non-empty and
bounded. Then for the properties

(1) ΦAB is completely positive,
(2) the SDFP (4.1) has a solution C � 0,
(3) λsos(0) ≥ 0,
(4) µmom(2) ≥ 0,
(5) SA ⊆ SB,
(6) ΦAB is positive,

we have the implications 1 ⇐= 2 ⇐⇒ 3 =⇒ 4 =⇒ 5 ⇐⇒ 6. If A contains a positive
definite matrix, then the implication 1⇐= 2 is an equivalence.

Note that Theorem 5.4 implies a partial converse of the implication 3 =⇒ 4. Namely,
if ∅ 6= SA ⊆ SB and SA is bounded, then µmom(t) ↑ µ ≥ 0 for t→∞.

Theorem 5.7 allows to extend the exactness results from Theorem 4.7 to the initial step
of the hierarchy (5.2).
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Remark 5.8. It is well-known that the map ΦAB connects to the characterization of
biquadratic forms in Proposition 2.6 (see [5]). A positive linear map Φ : Sk → Sl
is completely positive if and only if Φ can be written as Φ(A) =

∑
s V

T
s AVs for some

matrices Vs ∈ Rk×l if and only if the corresponding biquadratic form F (x, y) is a sum of
squares of bilinear forms, F (x, y) =

∑
s(x

TVsy)2.

6. Final remarks

We have reviewed some recent developments on fundamental algorithmic problems in
spectrahedral computation. While containment questions for spectrahedra are co-NP-
hard in general, the hierarchical relaxation techniques give a practical way of certifying
containment. For detailed experiments of the two approaches (5.2) and (5.4), see [21] and
[22]. In practice, the sufficient criteria perform well already for small relaxation orders.

While in many situations the running times of the two hierarchical approaches for
containment are comparable, the number of linearization variables in the moment ap-
proach (5.2) does not depend on the size k of the pencil A(x). Therefore, for problems
with relatively large k, this approach to the containment problem seems to be superior to
the approach based on Hol-Scherer’s hierarchy.
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[11] B. Grünbaum. Convex Polytopes, volume 221 of Graduate Texts in Mathematics. Springer-Verlag,
New York, second edition, 2003.



SOME RECENT DEVELOPMENTS IN SPECTRAHEDRAL COMPUTATION 19

[12] D. Handelman. Representing polynomials by positive linear functions on compact convex polyhedra.
Pacific J. Math., 132(1):35–62, 1988.

[13] T. Heinosaari, M.A. Jivulescu, D. Reeb, and M.M. Wolf. Extending quantum operations. J. Math.
Physics, 53(10):102208, 2012.

[14] J.W. Helton, I. Klep, and S. McCullough. The matricial relaxation of a linear matrix inequality.
Math. Program., 138(1-2, Ser. A):401–445, 2013.

[15] J.W. Helton and V. Vinnikov. Linear matrix inequality representation of sets. Comm. Pure Appl.
Math., 60(5):654–674, 2007.

[16] D. Henrion and J.B. Lasserre. Convergent relaxations of polynomial matrix inequalities and static
output feedback. IEEE Trans. Autom. Control, 51(2):192–202, 2006.

[17] C.W.J. Hol and C.W. Scherer. Sum of squares relaxations for polynomial semidefinite programming.
In Proc. Symp. Mathematical Theory of Networks and Systems, Leuven, Belgium, 2004.

[18] M. Joswig and T. Theobald. Polyhedral and Algebraic Methods in Computational Geometry. Univer-
sitext. Springer, London, 2013.

[19] K. Kellner. Positivstellensatz Certificates for Containment of Polyhedra and Spectrahedra. PhD thesis,
Goethe University, Frankfurt am Main, 2015.

[20] K. Kellner and T. Theobald. Sum of squares certificates for containment of H-polytopes in V-
polytopes. SIAM J. on Discrete Math., 30(2):763–776, 2016.

[21] K. Kellner, T. Theobald, and C. Trabandt. Containment problems for polytopes and spectrahedra.
SIAM J. Optim., 23(2):1000–1020, 2013.

[22] K. Kellner, T. Theobald, and C. Trabandt. A semidefinite hierarchy for containment of spectrahedra.
SIAM J. Optim., 25(2):1013–1033, 2015.

[23] I. Klep and M. Schweighofer. An exact duality theory for semidefinite programming based on sums
of squares. Math. of Oper. Res., 38(3):569–590, 2013.

[24] M. Kojima. Sums of squares relaxations of polynomial semidefinite programs. Technical report,
Research Report B-397, Dept. Math. Comput. Sc., Tokyo Inst. Tech, Japan, 2003.

[25] J.B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM J. Optim.,
11(3):796, 2001.

[26] M. Laurent and S. Poljak. On a positive semidefinite relaxation of the cut polytope. Linear Algebra
Appl., 223:439–461, 1995.

[27] S. Liu. Matrix results on the Khatri-Rao and Tracy-Singh products. Linear Algebra and its Appli-
cations, 289(1-3):267–277, 1999.

[28] P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika, 17:179–184, 1970.
[29] J. Nie and X. Zhang. Positive maps and separable matrices. SIAM J. Optim., 26(2):1236–1256, 2016.
[30] G. Pataki. The geometry of semidefinite programming. In Handbook of Semidefinite Programming,

pages 29–65. Kluwer Acad. Publ., Boston, MA, 2000.
[31] V. Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge University Press, 2003.
[32] M. Ramana. An exact duality theory for semidefinite programming and its complexity implications.

Math. Program., 77(1, Ser. A):129–162, 1997.
[33] M. Ramana and A.J. Goldman. Some geometric results in semidefinite programming. J. Global

Optim., 7(1):33–50, 1995.
[34] C. Scheiderer. Semidefinitely representable convex sets. Preprint, arXiv:1612.07048, 2016.
[35] A. Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Math-

ematics. John Wiley & Sons Ltd., Chichester, 1986.
[36] J.F. Sturm. Theory and algorithms of semidefinite programming. In High performance optimization,

volume 33 of Appl. Optim., pages 1–194. Kluwer Acad. Publ., Dordrecht, 2000.
[37] T. Theobald and T. de Wolff. Approximating amoebas and coamoebas by sums of squares. Math.

Comp., 84(291):455–473, 2015.
[38] G.M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer, New York, 1995.



20 THORSTEN THEOBALD

Goethe-Universität, FB 12 – Institut für Mathematik, Postfach 11 19 32, D-60054
Frankfurt am Main, Germany

E-mail address: theobald@math.uni-frankfurt.de


