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Abstract. We propose and investigate a hierarchy of bimatrix games (A, B), whose
(entry-wise) sum of the pay-off matrices of the two players is of rank k, where k is a
constant. We will say the rank of such a game is k. For every fixed k, the class of rank k-
games strictly generalizes the class of zero-sum games, but is a very special case of general
bimatrix games. We study both the expressive power and the algorithmic behavior of
these games. Specifically, we show that even for k = 1 the set of Nash equilibria of
these games can consist of an arbitrarily large number of connected components. While
the question of exact polynomial time algorithms to find a Nash equilibrium remains
open for games of fixed rank, we present polynomial time algorithms for finding an ε-
approximation.

1. Introduction

Models of non-cooperative game theory serve to analyze situations of strategic interac-
tions, and the concept of an equilibrium plays a prominent role. For some basic models of
game theory, such as the zero-sum games introduced by von Neumann and Morgenstern
[19], the natural equilibrium concepts are rather well understood. Zero-sum games can
be described by a single m × n-matrix A. These games always possess an equilibrium,
and the set of all equilibria (which is geometrically a polyhedral set and thus in particular
connected) can be computed efficiently using linear programming (see, e.g., [6]).

Nash investigated the model of bimatrix games (A, B) (and more generally N -player
games) [17, 18], in which the gain of one player does not necessarily agree with the loss of
the other player, thus adding much expressive power to the model of zero-sum games. By
Nash’s results any bimatrix game has at least one equilibrium (“Nash equilibrium”), and it
is well-known that under weak non-degenericity assumptions the number of Nash equilibria
in a given bimatrix game is finite and odd (see [12]). However, many questions concerning
the combinatorics and the computation of Nash equilibria in general bimatrix games are
still open today, thus demonstrating a wide gap between the difficulty in understanding
zero-sum games and general bimatrix games. Among the open questions are the following
outstanding ones.

Expressive power. The number of Nash equilibria of an m × n-bimatrix game does not
only depend on m and n, but also on the entries of the payoff matrices A and B. The
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maximum number of Nash equilibria of an m×n-game is not known, only lower and upper
bounds are available; see Section 3.

Computation of equilibria. A central computational question is to understand the best
ways to find one respectively all Nash equilibria. In the common computer science view-
point, the running time of an algorithm is measured in terms of the length of the input,
and a central aspect for judging the quality of an algorithm is whether it runs in poly-
nomial time in the input size or not. In 2004, Stengel and Savani [24] have shown that
the well-known Lemke-Howson algorithm [12] for finding a Nash equilibrium is not a
polynomial-time algorithm.

Within the computer science community, the question whether an equilibrium can be
computed in polynomial time at all has been named in 2001 by Papadimitriou to be the
most concrete open question on the boundary of the class of polynomial-time solvable
problems [21]. Recently, Chen and Deng [3] gave a complexity-theoretical argument that
such an algorithm is not to be expected by showing that the problem of finding a Nash
equilibrium in a bimatrix game belongs to the complexity class of PPAD-complete prob-
lems introduced in [20]. Moreover, together with Teng, they showed that even the problem
of computing a 1/nΘ(1)-approximate solution remains PPAD-complete [4]. With regard to
positive approximation results, Kontogiannis, Panagopoulou, and Spirakis have provided
an algorithm for computing a 3

4
-approximate Nash equilibrium [11]. For quasi-polynomial

time approximation algorithms see Lipton, Markakis, and Mehta [13].

As a consequence of this large gap between understanding zero-sum games and general
bimatrix games, it will be of interest to impose restrictions on bimatrix games which while
preserving expressive power of the games may admit simple polynomial time algorithms.
Lipton et al. [13] investigated games where both payoff matrices A, B are of fixed rank k.
They showed that in this restricted model a Nash equilibrium can be found in polynomial
time. However, for a fixed rank k, the expressive power of that model is limited; in
particular, most zero-sum games do not belong to that class.

In this paper, we propose and investigate a related model based on low-rank restrictions,
but which is a strict superset of the model of zero-sum games. The viewpoint we start
with is that in a zero-sum game, the sum of the payoff matrices C := A + B ∈ R

m×n is
the zero matrix, which for our purposes we consider as a matrix of rank 0. In a general
bimatrix game the rank of C can take any value up to min{m, n}. Here, we consider the
hierarchy given by the class of games in which we restrict C to be of rank at most k for
some given k. We call these games rank k-games.

We show that the expressive power of fixed rank-games is significantly larger than that
of zero-sum games. In order to provide this separation, we exhibit a sequence of d × d-
games of rank 1 whose number of connected components of equilibria exceeds any given
constant. Our lower bound for the maximal number of Nash equilibria of a d× d-game is
linear in d. This bound is not tight.

Although the problem of finding a Nash equilibrium in a game of fixed rank is a very
special case of the problem of finding a Nash equilibrium in an arbitrary bimatrix game,
we do not know if there exists an exact polynomial time algorithm for this problem. Note
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that the problem strictly generalizes linear programming (see, e.g., [6, Ch. 13.2] for the
equivalence of linear programming and zero-sum games).

However, we provide approximation results for two approximation models. Hereby, we
concentrate on deterministic approximation algorithms. Firstly, we propose a model of
ε-approximation for rank k-games which is a stronger approximation model than the one
used in [4, 11] (see Section 2.2). Using existing results from quadratic optimization, we
show that we can approximate Nash equilibria of constant rank-games in polynomial time,
with an error relative to a natural upper bound on the “maximum loss” of the game (as
defined in Section 4.1).

Secondly, we present a polynomial time approximation algorithm for relative approxi-
mation (with respect to the payoffs in an equilibrium) provided that the matrix C has a
nonnegative decomposition.

2. Preliminaries

We consider an m × n-bimatrix game with payoff matrices A, B ∈ Z
m×n. Let

S1 =
{
x ∈ R

m :

m∑

i=1

xi = 1 , x ≥ 0
}

and S2 =
{
y ∈ R

n :

n∑

j=1

yj = 1 , y ≥ 0
}

be the sets of mixed strategies of the two players, and let S1 = {x ∈ R
m :

∑m

i=1 xi = 1}
and S2 = {y ∈ R

n :
∑n

j=1 yj = 1} denote the underlying affine subspaces. The first

player (the row player) plays x ∈ S1 and the second player (the column player) plays
y ∈ S2. The payoffs for player 1 and player 2 are xT Ay and xT By, respectively.

Let C(i) denote the i-th row of a matrix C (as a row vector), and let C(j) denote the j-th
column of C (as a column vector). A pair of mixed strategies (x, y) is a Nash equilibrium
if

(2.1) xT Ay ≥ xT Ay and xT By ≥ xT By

for all mixed strategies x, y. Equivalently, (x, y) is a Nash equilibrium if and only if

(2.2) xT Ay = max
1≤i≤m

A(i)y and xT By = max
1≤j≤n

xT B(j) .

2.1. Economic interpretation of low-rank games. If A + B = 0 then the game is
called a zero-sum game. The economic interpretation of a zero-sum game is “What is good
for player 1 is bad for player 2”. In order to describe game-theoretic situations which are
close to that behavior, we consider a model where aij + bij is a function which depends
on i and j in a simple way, that is,

aij + bij = f(i, j)

where f is a simple function. If f : {1, . . . , m} × {1, . . . , n} → Z is an additive function,
f(i, j) = ui +vj with constants u1, . . . , um, v1, . . . , vn, then there is an equivalent zero-sum
game, i.e., a game having the same set of Nash equilibria. Namely, define the payoff
matrices A′ and B′ by

a′
ij = aij − vj , b′ij = bij − ui .
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That is, A′ results from A by subtracting the column vector (vj , . . . , vj)
T to the j-th

column (1 ≤ j ≤ n) and B′ results from B by subtracting the row vector (ui, . . . , ui) to
the i-th row (1 ≤ i ≤ m). Now

xT A′y − xT A′y = xT Ay −
n∑

j=1

vjyj − xT Ay +
n∑

j=1

vjyj = xT Ay − xT Ay

and a similar relation w.r.t. B holds. So the zero-sum game (A′, B′) has the same Nash
equilibria as (A, B). We remark that the case vj = 0 yields the row-constant games
introduced in [9].

If f is a multiplication function, f(i, j) = uivj with constants u1, . . . , um, v1, . . . , vn, this
is a rank 1-game. If f is a sum of k multiplication functions, this is a game of rank at
most k.

Example 2.1. The following instantiation of the famous prisoners’ dilemma is of rank 1.
Here, the first and second pure strategy of each player refer to “don’t confess” and “con-
fess”, respectively. A payoff −x represents an imprisonment for x years.

A =

(
−4 −12
0 −9

)

, B =

(
−4 0
−12 −9

)

.

Rank-1 games also occur under the term “multiplication games” in the paper [2] by
Bulow and Levin.

2.2. Approximate Nash equilibria. Whenever efficient algorithms for a certain prob-
lem are not available, a natural question is whether an approximate solution can be found
(see, e.g., [29] as a general reference for approximation algorithms). Therefore we will also
consider approximate equilibria. To define them, suppose x is not necessarily an optimal
strategy for player 1 given that player 2 has played y. Then the “loss” for player 1 (from
optimum) is maxi A

(i)y − xT Ay. Similarly, if y is not optimal for player 2 given that the
first player has played x, the loss for player 2 would be maxj xT B(j) − xT By. We will
mainly use the total of the two losses – i.e.,

ℓ(x, y) = max
i

A(i)y + max
j

xT B(j) − xT (A + B)y

as a measure of how much (x, y) is off from equilibrium. For a matrix X ∈ R
m×n let

|X| = max1≤i≤m,1≤j≤n |xij|.
Definition 2.2. Let ε ≥ 0.

(i) A pair (x, y) of mixed strategies is a weak ε-approximate equilibrium if

(2.3) max
i

A(i)y − xT Ay ≤ ε|A| and max
j

xT B(j) − xT By ≤ ε|B| .

(ii) A pair (x, y) of mixed strategies is an ε-approximate equilibrium if

(2.4) ℓ(x, y) ≤ ε|A + B| .
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Note that if (x, y) is an ε-approximate equilibrium then it is also a weak ε-approximate
equilibrium, but because of possible cancellations in the entries of A + B a similar state-
ment in the converse direction does not hold. Consequently, the term |A+B| on the right
hand side provides a stronger approximation model compared to the term |A|+ |B|. Our
approximation result holds for that stronger model, while in the papers [4, 11] the weak
approximation model is used. Also observe that |A + B| is an upper bound for the term
xT (A + B)y.

For a game with A − B 6= 0, a pair of strategies is an exact equilibrium if and only
if it is a 0-approximate equilibrium. Besides the notion of “absolute” approximation in
Definition 2.2, in Section 4.2 we will also consider a notion of “relative” approximation.

Lemma 2.3. Suppose (x, y) is an ε-approximate equilibrium. Then

(2.5) xT Ay + xT By − xT (A + B)y ≤ ε|A + B| for any other mixed strategies x, y .

Also, conversely, if a pair of mixed strategies (x, y) satisfies (2.5) then it is an ε-approximate
equilibrium.

Proof. The proof follows from the equivalence of the statements (2.1) and (2.2). �

2.3. Approximation of games by low-rank games. If the matrix C = A + B of a
bimatrix game is “close” to a game with rank k, then the game can be approximated by
a rank k-game (A′, B′) in such a way that the Nash equilibria of the original game (A, B)
remain approximate Nash equilibria in the game (A′, B′).

Definition 2.4. Let (A, B) be an m × n-game and C = A + B. If a matrix C ′ ∈ R
m×n

satisfies |C − C ′| < ε|A + B| then the game (A′, B′) with A′ = A + 1
2
(C ′ − C), B′ =

B + 1
2
(C ′ − C) ε-approximates (A, B).

Note that A′ + B′ = C ′.
Under the perturbation of the game, Nash equilibria of the original game are approxi-

mate equilibria of the perturbed game (cf. [5, Lemma 2]).

Theorem 2.5. Let (A′, B′) be an ε-approximation of the game (A, B) and ε < 1. If (x, y)
is a Nash equilibrium of the game (A, B), then (x, y) is a 2ε-approximate Nash equilibrium
for the game (A′, B′).

Proof. The loss ℓ′(x, y) for (x, y) with respect to the perturbed game (A′, B′) satisfies

ℓ′(x, y) ≤ max
i

(A′ − A)(i)y + max
j

xT (B′ − B)(j) − xT (C ′ − C)y

≤ ε

2
+

ε

2
+ ε = 2ε .

�

We can apply the Singular Value Decomposition (SVD) to approximate the matrix C
by a matrix of some given rank k. That is, for some C ∈ R

m×n and k ∈ N, we want
to find the matrix with rank k which is closest to C. If C = UDV T with an orthogonal
matrix U ∈ R

m×m, an orthogonal matrix V ∈ R
n×n and a matrix D ∈ R

m×n with
D = diag(σ1 ≥ σ2 ≥ · · · ≥ σn), then the product UDV T is called the Singular Value
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Decomposition of C. The diagonal entries of D are the singular values of C. It is well-
known that every matrix has a singular value decomposition (see, e.g., [8]):

Proposition 2.6. Let m ≥ n and C ∈ R
m×n be of rank greater than k. Further let C =

UDV T be the singular value decomposition of C. Denoting D′ = diag(σ1, . . . , σk, 0, . . . , 0),
then the matrix C ′ = UD′V T is the rank k-matrix which approximates C best in the
Frobenius norm.

Approximating the matrix C of a game by a matrix of some given rank k, the approx-
imation quality in Theorem 2.5 is then a function of the singular values of C.

3. The expressive power of low-rank games

3.1. The combinatorics of Nash equilibria. One measure for the expressive power of
a game-theoretic model is the number of Nash equilibria it can have (depending on the
number of strategies m, n). For simplicity, we will concentrate on the case d := m = n.
If the Nash equilibria are not isolated, then we might count the number of connected
components, but we will mainly concentrate on non-degenerate games in which there
exist only a finite number of Nash equilibria.

Note that the usual definition of a non-degenerate game is slightly stronger than just
requiring isolated Nash equilibria (see the discussion in [26]).

Definition 3.1. A bimatrix game is called non-degenerate if the number of the pure best
responses of player 1 to a mixed strategy y of player 2 never exceeds the cardinality of
the support supp y := {j : yj 6= 0} and if the same holds true for the best pure responses
of player 2.

If d ≤ 4, then a non-degenerate d×d-game can have at most 2d−1 Nash equilibria, and
this bound is tight (see [10, 16]). For d ≥ 5, determining the maximal number of equilibria
of a non-degenerate d×d-game is an open problem (see [25]). Based on McMullen’s Upper
Bound Theorem for polytopes, Keiding [10] gave an upper bound of Φd,2d − 1, where

Φd,k :=







k

k− d

2

(
k− d

2

k−d

)
if d even ,

2
(

k− d+1

2

k−d

)
if d odd .

A simple class of configurations which yields an exponential lower bound of 2d − 1 is the
game where the payoff matrices of both players are the identity matrix Id (see [23]).

The best known lower bound was given by von Stengel [25], who showed that for even
d there exists a non-degenerate d × d-game having

(3.1) τ(d) := f(d/2) + f(d/2 − 1) − 1

Nash equilibria, where f(n) :=
∑n

k=0

(
n+k

k

)(
n

k

)
. Asymptotically, τ grows as τ(d) ∼

0.949 (1+
√

2)d

√
d

.

If the ranks of A and B are bounded by a fixed constant, then the number of Nash
equilibria is bounded polynomially in d:
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Theorem 3.2. For any d × d-bimatrix game (A, B) in which the ranks of both A and
B are bounded by a fixed constant k, the number of connected components of the Nash

equilibria is bounded by
(

d

k+1

)2
.

In particular, for a non-degenerate game the number of Nash equilibria is at most
(

d

k+1

)2
,

i.e., that number is bounded polynomially in d.

Proof. Let A and B be of rank at most k. The column space of Ay has dimension at
most k. By applying Carathéodory’s Theorem on the columns of Ay, it was shown in [13,
Theorem 4] that for every Nash equilibrium (x, y) there exists a Nash equilibrium (x, y′)
in which the second player plays at most k + 1 pure strategies with positive probability.
The same argument can be used to bound the number of pure strategies which are used
by player 1. It follows from that argument that there exists a continuous path from the
original Nash equilibrium to the Nash equilibrium with small support.

Since for a given support of the equilibria, the set of equilibria with that support is a
polyhedral set, the number of connected components of the equilibria of the game (A, B)

is at most
(

d

k+1

)2
. �

Now we show that the expressive power of fixed rank-games is significantly higher than
the expressive power of zero-sum games. In order to achieve this, we prove that the
number of Nash equilibria of a rank 1-game can exceed any given constant and give a
linear lower bound.

Theorem 3.3. For any d ∈ N there exists a non-degenerate d× d-game of rank 1 with at
least 2d − 1 many Nash equilibria.

The following questions remain unsolved.

Open problem 3.4. Is the maximal number of Nash equilibria for non-degenerate d×d-
games of rank k smaller than the maximal number of Nash equilibria of non-degenerate d×
d-games of arbitrary rank? Is the maximal number of Nash equilibria for non-degenerate
d × d-games of rank k polynomially bounded in d?

In order to prove Theorem 3.3, we use the following representation of Nash equilibria
introduced by Mangasarian [15].

Definition 3.5. For an m×n-bimatrix game (A, B), the polyhedra P and Q are defined
by

P = {(x, v) ∈ R
m × R : x ≥ 0

︸ ︷︷ ︸

inequalities 1,...,m

, xT B ≤ 1T v
︸ ︷︷ ︸

inequalities m+1,...,m+n

, 1T x = 1} ,(3.2)

Q = {(y, u) ∈ R
n × R : Ay ≤ 1u

︸ ︷︷ ︸

inequalities 1,...,m

, y ≥ 0
︸ ︷︷ ︸

inequalities m+1,...,m+n

, 1T y = 1} .(3.3)

A pair of mixed strategies (x, y) ∈ S1 × S2 is a Nash equilibrium if and only if there
exist u, v ∈ R such that (x, v) ∈ P , (y, u) ∈ Q and for all i ∈ {1, . . . , m + n}, the
i-th inequality of P or Q is binding. Here, u and v represent the payoffs of player 1
and player 2, respectively. For i ∈ {1, . . . , m} we call the inequality xi ≥ 0 the i-th
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nonnegativity inequality of P , and for j ∈ {1, . . . , n} we call the inequality xT B(j) ≤ v the

j-th best response inequality of P . And analogously for Q.

3.2. A class of low-rank games with arbitrarily many Nash equilibria. We con-
struct a sequence (Ad, Bd) of d×d-games of rank 1 in which all pairs (i, i) of pure strategies
(1 ≤ i ≤ d) are Nash equilibria. For convenience of notation, we will omit the index d in
the notation of the game. In order to achieve the desired properties, we enforce that for
every i ∈ {1, . . . , d} the element aii is the maximal element in the i-th column of A and
the element bii is the maximal element in the i-th row of B.

Let us begin with an auxiliary sequence of games (A, B). Let A, B ∈ R
d×d be defined

by

(3.4) aij = bij = −(i − j)2 .

Then for every i ∈ {1, . . . , d} the element aii is the largest element in the i-th column of
A, and the element bii is the largest element in the i-th row of B. Expanding (3.4) shows
that both A and B can be written as the sum of three rank 1-matrices; since A = B, it
follows that the game (A, B) is a rank 3-game.

In order to transform (A, B) into a rank 1-game, we observe that adding a constant
column vector to a column of A or adding a constant row vector to a row of B does
not change the set of Nash equilibria. For j ∈ {1, . . . , d}, we add the constant vector
(2j2, . . . , 2j2)T to the j-th column of A, and for i ∈ {1, . . . , d} we add the constant vector
(2i2, . . . , 2i2) to the i-th row of B. Let A, B ∈ R

d×d be the resulting matrices, i.e.,

(3.5) aij = 2ij − i2 + j2 , bij = 2ij + i2 − j2 .

Since A + B = (4ij)i,j, the matrix A + B is of rank 1. Note that the game (A, B) is
symmetric, i.e., A = BT .

Lemma 3.6. For any mixed strategy x ∈ S1 there are at most two pure best responses for
player 2. And for any mixed strategy y ∈ S2 there are at most two pure best responses for
player 1.

Proof. Let y be a mixed strategy of player 2 with support J := {j1, . . . , jk}. We assume
that there exists a 3-element subset I = {i1, i2, i3} ⊂ {1, . . . , d} such that

(3.6) (Ay)i1 = (Ay)i2 = (Ay)i3 ≥ (Ay)i for all i 6∈ I .

The equations in (3.6) imply that for all distinct i, i′ ∈ I we have
∑

j∈J

(
2ij − i2 + j2

)
yj =

∑

j∈J

(
2i′j − i′2 + j2

)
yj ,

which, using
∑

j∈J yj = 1, is equivalent to 2(i − i′)
∑

j∈J jyj = (i2 − i′2) . Hence,

2
∑

j∈J jyj = (i + i′). The left hand side of this equation is independent of i. Therefore
there cannot be more than two indices in I such that this equation is satisfied for all pairs
of these indices.

The proof of the other statement is symmetric. �
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Lemma 3.7. Each of the two polyhedra P and Q has d
6
(d2 + 5) vertices, which come in

two classes:

(1) There exists a j ∈ {1, . . . , d} such that the best response inequality of Q with index
j is binding and all nonnegativity inequalities of Q but the one with index j are
binding (d vertices).

(2) There exist j1, j2 ∈ {1, . . . , d}, j1 < j2 and i ∈ {j1, . . . , j2 − 1} such that the best
response inequalities with indices i and i + 1 are binding and all nonnegativity
inequalities except those with indices j1, j2 are binding (altogether

∑d−1
k=1 k(d − k)

vertices).

And similarly for P .

Proof. We consider the polyhedron Q. By Lemma 3.6, at most two best response inequal-
ities can be binding at a vertex of Q.

If there is a single binding best response inequality, say, with index i, then, at a vertex v,
at least d−1 of the nonnegativity inequalities must be binding, and therefore there exists
a single index j such that yj is nonzero; hence yj = 1. Now the condition v ∈ Q implies
aij ≥ aij′ for all j′ ∈ {1, . . . , d}, and it suffices to observe that for a fixed j the value aij

is maximized for i = j, and this defines indeed a vertex.
Now assume that there are two binding best response inequalities i1 and i2 with i1 < i2.

Then there are at most two nonzero components of y, say yj1 and yj2. We can assume
that j1 6= j2 since otherwise we are in the situation discussed before.

We claim that i1 and i2 are neighboring indices. Otherwise there would exist an i′ with
i1 < i′ < i2. Now, similar to the calculations in the proof of Lemma 3.6, the property
i′ + i2 > i1 + i2 implies that 2(j1yj1 + j2yj2) = (i1 + i2) < (i′ + i2) and therefore

(Ay)i′ > (Ay)i1 = (Ay)i2 .

This contradicts v ∈ Q.
Now let i2 = i1 + 1. Computing the solutions for yj1 and yj2 of the equations

2j1yj1 + 2j2yj2 = i1 + i2 ,

yj1 + yj2 = 1

yields

yj1 =
2j2 − (i1 + i2)

2(j2 − j1)
, yj2 =

(i1 + i2) − 2j1

2(j2 − j1)
,

which in connection with y ≥ 0 shows j1 ≤ i1 and j2 > i1.
It remains to show that the stated pairs indeed define vertices. In order to prove this,

we have to show that for i′ < i1 or i′ > i2 we obtain (Ay)i′ < (Ay)i1, which follows in the
same way as in the case i1 < i′ < i2 that was discussed before.

Now summing up over all the possibilities proves the stated number. �

Corollary 3.8. A pair of mixed strategies (x, y) is a Nash equilibrium of the game (A, B)
if and only if x = y = ei for some unit vector ei, 1 ≤ i ≤ d, or x = y = 1

2
(ei + ei+1) for

some i ∈ {1, . . . , d − 1}.
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Proof. By the characterization of the vertices in Lemma 3.7, the Nash equilibria come
in two classes. If for some i ∈ {1, . . . , d} both players play the i-th pure strategy, then
this gives a Nash equilibrium. Moreover, for every i ∈ {1, . . . , d − 1}, if both players
only use the i-th and the (i + 1)-th pure strategy, there exists a Nash equilibrium. It is
easy to check that in this situation, both players play both of their pure strategies with
probability 1

2
. �

Combining Theorem 3.3 for rank 1-games with von Stengel’s result, we obtain the
following lower bound for rank k-games.

Corollary 3.9. For odd d ≥ 3 and k ≤ d, there exists a d × d-game of rank k with at
least τ(k − 1) · (2(d − k) + 1) Nash equilibria, where τ is defined as in (3.1). For fixed k,
this sequence converges to ∞ as d tends to ∞.

Proof. We construct a d × d-game (A, B) of rank k with

A =

(
A′ 0
0 A′′

)

and B =

(
B′ 0
0 B′′

)

where A′, B′ ∈ R
k−1 × R

k−1 define a (k − 1) × (k − 1)-game with τ(k − 1) equilibria,
which exists by von Stengel’s construction. Moreover, let A′′, B′′ ∈ R

d−k+1 × R
d−k+1

define a (d − k + 1) × (d − k + 1)-game of rank 1 with 2(d − k + 1) − 1 equilibria based
on the construction in Theorem 3.3. Then the game (A, B) is of rank k and has at least
τ(k − 1) · (2(d − k) + 1) equilibria. �

Remark 3.10. Generalizing the construction in (3.4), for a mapping g : {1, . . . , d} → R

and a polynomial p =
∑n

i=0 aix
i of degree n, the matrix C ∈ R

d×d defined by

cij = p(g(i) − g(j))

has rank at most 1
2
(n + 1)(n + 2). This follows immediately from applying the Binomial

Theorem on p(g(i) − g(j)),

p(g(i) − g(j)) =

n∑

k=0

ak

k∑

l=0

(
k

l

)

g(i)l(−g(j))k−l ,

and observing that the rank of C is bounded by the number of terms in this expansion.

4. Approximation algorithms

For general bimatrix games, no polynomial time algorithm for ε-approximating a Nash
equilibrium is known. In the model of weak approximation, Lipton et. al. [13] have
provided the first subexponential algorithm for finding an approximate equilibrium (i.e.,

an algorithm whose running time is bounded by 2O(
√
L), where L is the total input length.)

Kontogiannis et. al. [11] showed that the following simple algorithm yields a 3
4
-approxi-

mation algorithm in the weak approximation model. Defining the indices i1, i2, j1, j2, by
ai1,j1 = maxi,j ai,j and bi2,j2 = maxi,j bi,j , then player 1 plays his pure strategies i1, i2 with
probability 1

2
, and player 2 plays his pure strategies j1, j2 with probability 1

2
.
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4.1. ε-approximating Nash equilibria of low-rank games. Here, we show the fol-
lowing result for our restricted class of bimatrix games.

Theorem 4.1. Let k be a fixed constant and ε > 0. If A + B is of rank k then an ε-
approximate Nash equilibrium can be found in time poly(L, 1/ε), where L is the bit length
of the input.

Set

Q =






0 1
2
(A + B)

1
2
(AT + BT ) 0




 and z =

(
x
y

)

so that the quadratic form xT (A+B)y can be written as 1
2
zT Qz with a symmetric matrix

Q. We assume that A + B has rank k for a fixed constant k; thus Q has rank 2k. Since
the trace of the matrix Q is zero, this matrix is either the zero matrix or an indefinite
matrix. Hence, in the case Q 6= 0 the quadratic form defined by Q is indefinite.

We use the following straightforward formulation of a Nash equilibrium as a solution
of a system of linear and quadratic inequalities.

Lemma 4.2. A pair of mixed strategies z =
(

x

y

)
∈ S1 × S2 is a Nash equilibrium if and

only if there exists an s ∈ R such that

zT Qz ≥ s

s ≥
(
A(i) |BT

(j)

)
z for all i ∈ {1, . . . , m}, j ∈ {1, . . . , n}.

Since zT Qz ≤ s in any feasible solution of this optimization problem, we have zT Qz = s
for any feasible solution. Hence, the Nash equilibria are exactly the optimal solutions of
the quadratic optimization problem

(4.1)

(QP :) min s − zT Qz

s ≥
(

A(i) |BT
(j)

)

z for all i ∈ {1, . . . , m}, j ∈ {1, . . . , n},
z ∈ S1 × S2 .

This quadratic optimization problem with objective function of fixed rank can be well
approximated. Namely, Vavasis has shown the following polynomial approximation result
for quadratic optimization problems with compact polyhedral feasible set [27, 28].

Proposition 4.3. Let min{1
2
xT Qx + qT x : Ax ≤ b} be a quadratic optimization prob-

lem with compact support set P = {x ∈ R
n : Ax ≤ b}, and let the rank k of Q be a

fixed constant. If x∗ and x# denote points minimizing and maximizing the objective func-
tion f(x) := 1

2
xT Qx + qT x in the feasible region, respectively, then one can find in time

poly(L, 1/ε) a point x♦ satisfying

f(x♦) − f(x∗) ≤ ε(f(x#) − f(x∗)) ,

where L is the bit length of the quadratic problem. Such a point x♦ is called an ε-
approximation of the quadratic problem.
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To provide some intuition on the ideas underlying this statement, consider the case
where the quadratic form f depends only on the first k variables. Let C = π(P ) ⊂
R

k be the projection of the feasible set P onto the first k variables, and consider the
optimization problem as an optimization problem over C. We can compute in polynomial
time a weak Löwner-John pair for the convex body C in the k-dimensional space (see [14,
Theorem 2.4.1]). This is a pair of concentric ellipsoids E1, E2 such that E1 ⊂ C ⊂ E2

and E1 is obtained from E2 by shrinking each dimension by 1/((k + 1)
√

k). After an
affine transformation, we can assume that the Löwner-John pair for C is given by the
pair (S1, S2) of spheres centered in the origin with radii 1 and (k + 1)

√
k, respectively.

These two spheres are contained in the box B = [−(k +1)
√

k, (k +1)
√

k]k. Dividing each

of these k intervals into ⌈k(k+1)√
ε

⌉ many pieces establishes a grid on B. Approximating

the quadratic form f on the each grid cell by its linear Taylor approximation yields the
desired approximation result.

We can now prove our approximation result on Nash equilibria.

Proof of Theorem 4.1. The feasible region of the quadratic program (4.1) is un-
bounded. Since the value of zT Qz is at most |A + B| for any feasible solution z and since
the objective value for a Nash equilibrium is 0, we can add the constraint s ≤ |A + B|
to (4.1), which makes the feasible region compact. Denote the resulting quadratic opti-
mization problem by QP’ and recall that the approximation ratio of the quadratic program
depends on the maximum objective value in the feasible region.

By Proposition 4.3, we can compute in polynomial time an ε-approximation (z♦, s♦)
with z♦ = (x♦, y♦) of QP′. Since the optimal value of QP′ is 0, we have

s♦ − (z♦)T Qz♦ = f(z♦, s♦) ≤ εf(z#, s#) ≤ ε|A + B| .

Hence, (x♦, y♦) is an ε-approximate Nash equilibrium of the game (A, B). �

Remark 4.4. The proof in [27] computes an LDLT factorization of the matrix Q defining
the quadratic form and then constructs a sufficiently fine grid in the fixed-dimensional
space. Since the quadratic form xT Qy is bilinear, we can also directly apply an LDUT

factorization on the matrix of the bilinear form.

4.2. Relative approximation in case of a nonnegative decomposition. The right
hand side in Definition 2.2 of an approximate Nash equilibrium depends only on ε and on
|A + B|. Since different equilibria in the same game can differ strongly in their payoffs,
we introduce a notion of relative approximation with respect to a Nash payoff which takes
into account these differences.

Consider the quadratic problem (4.1). In a Nash equilibrium (x, y) ∈ S1×S2 there exists
an s ∈ R such that (x, y, s) is a feasible solution to (4.1); in this situation s coincides with
the sum of the payoffs of the two players. In the relative approximation, we aim at finding
pairs of strategies (x, y) for which there exists an s ∈ R such that (x, y, s) is feasible and

s − xT (A + B)y ≤ ρs
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for some approximation ratio ρ. Using our notion of loss, by observing s = maxi A
(i)y +

maxj xT B(j) for an optimally chosen s, this means

ℓ(x, y) ≤ ρ(max
i

A(i)y + max
j

xT B(j)) .

We provide an efficient approximation algorithm for the case that C = A + B has a
known decomposition of the form

(4.2) C =

k∑

i=1

u(i)(v(i))T

with non-negative vectors u(i) and v(i).

Theorem 4.5. If C has a known decomposition of the form (4.2) then for any given
ε > 0 a relatively approximate Nash equilibrium with approximation ratio 1 − 1

(1+ε)2
can

be computed in time poly(L, 1/ log(1 + ε)), where L is the bit length of the input.

Let zi = xT · u(i), wi = (v(i))T · y. We put a grid on each of the zi and on each of the wi

in a geometric progression: denoting by

(zi)min = min
x∈S1

xT · u(i) and (zi)max = max
x∈S1

xT · u(i)

the minimum and the maximum possible value for zi, we partition the interval [(zi)min, (zi)max]
into the intervals [(zi)min, (1 + ε)(zi)min], [(1 + ε)(zi)min, (1 + ε)2(zi)min], and so on. And
analogously for the wi.

For every cell we construct a linear program which “approximates” the quadratic pro-
gram (4.1). Let the intervals of a grid cell be [αi, (1 + ε)αi] and [βi, (1 + ε)βi], i.e.,

αi ≤ zi ≤ (1 + ε)αi ,

βi ≤ wi ≤ (1 + ε)βi .

Then for any pair of strategies (x, y) ∈ S1 × S2 falling into that cell, the quadratic form
xT Cy satisfies

(4.3)

k∑

i=1

αiβi ≤ xT Cy ≤ (1 + ε)2

k∑

i=1

αiβi ,

where the left inequality uses that all the values in the decomposition are nonnegative.
For the grid cell, we consider the linear program

min s −∑k

i=1 αiβi

αi ≤ xT · u(i) ≤ (1 + ε)αi ,
βi ≤ (v(i))T · y ≤ (1 + ε)βi ,

s ≥
(

A(i) |BT
(j)

)

z for all i ∈ {1, . . . , m}, j ∈ {1, . . . , n},
(x, y) ∈ S1 × S2 , s ∈ R .
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In at least one of the cells there exists a Nash equilibrium. The linear program corre-
sponding to that cell yields a solution with

(4.4)
k∑

i=1

αiβi ≤ s ≤ (1 + ε)2

(
k∑

i=1

αiβi

)

.

Hence, by the left inequality in (4.3) and the right inequality in (4.4) we have

xT Cy ≥
k∑

i=1

αiβi ≥ s

(1 + ε)2
.

We conclude

s − xT Cy ≤ s

(

1 − 1

(1 + ε)2

)

,

which shows Theorem 4.5.

5. Conclusion and future research

We have introduced the model of games of fixed rank and presented various combina-
torial and algorithmic results on games of fixed rank. Both from the viewpoint of game
theory and from the viewpoint of generalizations of linear programming, we think that
this model has much to offer and suggest further investigation.

From the viewpoint of game theory, it provides a flexible hierarchy between zero-sum
games and general bimatrix games. As mentioned above, some fundamental questions,
such as the question whether an exact Nash equilibrium in a game of fixed rank can be
found in polynomial time, remain open, and deserve further algorithmic study.

From the computational viewpoint, besides the deterministic algorithms, a central issue
is to understand randomized approximation algorithms for games of fixed rank. Current
work aims at generalizing these optimization techniques for low-rank games to more gen-
eral optimization problems with some suitable “low-rank” structure.
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