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Abstract. We investigate visibility computations with moving viewpoints.
The initial problems are of discrete and algorithmic nature, but even for simple
classes of objects (such as balls and polytopes), they lead to interesting and
difficult problems from real algebraic geometry. Namely, it is necessary to
characterize and compute the common tangent lines to a given set of convex
bodies.

In particular, we present a new sweep algorithm in dimension 2, as well as
survey and extend recent algebraic-geometric results on the tangent problems
in dimension 3.

1. Introduction

Visibility computations belong to the central tasks in computer graphics and
computational geometry [19]. Depending on the particular framework and on the
particular question to be answered, there is a large variety of mathematical and
algorithmic core problems behind these questions.

In the simplest case of a visibility problem, we are given a fixed viewpoint
v ∈ Rn (say, n ∈ {2, 3}), and the scene consists of a set B of bodies. The task
is to compute a suitable two-dimensional projection of the scene (“to render the
scene”) that reflects which part of the scene is visible from the viewpoint v. In
a more dynamic and interactive setting, the viewpoint can be moved interactively
(see, e.g., [4, 15]). However, in general, after each movement of the viewpoint a
new rendering process is necessary. In order to speed up this process, commercial
renderers apply caching techniques [34].

From the algorithmic and geometric point of view it is desirable to establish a
more global view of the scene in advance and answer questions like: Which of these
bodies can be partially seen from some viewpoint within a given viewpoint area?
Those bodies which are not visible from any of these viewpoints can be removed
from the whole visualization process in advance. In case of dense crystals whose
atoms are visualized as sufficiently large balls, this can reduce the time consumption
of the rendering process significantly (see Fig. 1).
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Figure 1. Dense arrangement of atoms

So far, there exists only few literature on visibility questions with moving view-
points in dimension at least three (see [4, 15, 33]). A major reason for this can be
seen by various intrinsic difficulties in the underlying geometric questions.

From the algebraic-geometric point of view, visibility computations with moving
viewpoints require to study the interaction of the geometric bodies with lines. In
particular, it is essential to characterize certain extreme situations which correspond
to common tangent lines to a given number of bodies. In dimension 2, the resulting
geometric questions typically remain rather elementary, and the main focus is on the
algorithmic side. In contrast to this, in dimension 3, even for simple types of bodies,
such as spheres, the underlying geometric problems have a high algebraic degree
and hence give rise to interesting and difficult questions of real algebraic geometry.
Several recent papers deal with these algebraic-geometric core problems [17, 18,
31, 29, 32]. In particular, the relevant real enumerative aspects constitute a
rich and natural class of geometric examples within the general framework of real
enumerative geometry (see the survey [28]).

In the present paper, we want to explore this range between algorithmic and
real algebraic-geometric issues by exemplifying several corresponding aspects. We
proceed along the following outline. In Section 2, the necessary notation is intro-
duced. Then, in Section 3, we discuss algorithmic aspects of the visibility problems
and present a new sweep algorithm in R2. Section 4 surveys recent results on the
algebraic-geometric tangent problems in R3. By discussing an optimization aspect
of the tangent problems in Section 5, we illustrate some of the proof techniques for
the tangent results, and also establish a connection to the optimization of polyno-
mial functions over the real numbers.

2. Notation

As an example for the applications mentioned in the introduction, consider
the following problem from ray-tracing with moving viewpoints. Here, we want to
compute information on the viewpoint positions where the visibility topology of the
scene changes. As a special case, this includes tackling the following core problem
of partial visibility.

A set B ⊂ Rn (say, n ∈ {2, 3}) is called a (convex) body if it is bounded, closed,
convex, and contains an interior point. Now we consider a scene consisting of a set
B of (not necessarily disjoint) bodies from a specific class X in Rn (X might be
the set of all balls or the set of all polytopes). A body B ∈ B is called partially
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visible from a viewpoint v if there exists a line segment connecting v and B not
intersecting with the interior of any other body in B. A body B ∈ B is called
partially visible if B can be seen from some viewpoint “outside” of the scene, i.e.,
if there exists a ray starting at B not intersecting with the interior of any other
body in B. We call such a ray a visibility ray for B. Bodies which are not partially
visible can be immediately removed from the scene, which reduces the complexity
of the visualization process.

3. A Sweep Algorithm for the Two-Dimensional Case

We present efficient algorithms for solving the partial visibility problem in R2.
Here, we are not only interested in checking partial visibility of one of the bodies
but also in computing all bodies which are not partially visible. In order to avoid
several special cases we assume that the bodies are pairwise disjoint.

Let B := {B1, . . . , Bm} be a set of disjoint bodies in the plane. In the two-
dimensional case, checking partial visibility of a body B ∈ B can be reduced to a
finite number of geometric problems as follows (cf. the treatment of stabbing lines
in [11]). Without loss of generality let |B| ≥ 2 and assume B = B1. If there
exists a visibility ray for B then we can continuously transform (i.e., rotate and
translate) the visibility ray until we reach a situation where the underlying line is
tangent to at least two of the bodies (one of them might be B1 itself). Hence, it
suffices to compute the set of all common tangent lines to a pair of bodies in B and
check whether one of these lines contains a visibility ray. For any pair of disjoint
bodies, the number of common tangent lines is exactly 4 (which can be seen as a
very special case of the results in [6, 16] on the number of common supporting
hyperplanes in general dimension).

In order to handle any class of bodies in the plane algorithmically, we have to
assume that we can perform the following operations on this class.

(1) Compute the 4 common tangent lines to 2 bodies Bi, Bj .
(2) Compute the at most 2 intersections of a ray or a line with a body Bi.

In the following, we assume that we have access to two oracles performing
these operations. Obviously, for the class of discs, the class of polygons, and the
class combining discs and polygons these oracles can be realized quite easily. In
particular, if the maximum number of vertices of any polygon is bounded by a
constant then both oracles can be implemented in constant time.

Definition 1. A straight line is called critical if it is tangent to at least two
bodies Bi, Bj with 1 ≤ i 6= j ≤ m. A ray is called critical if it is contained in a
critical straight line.

Hence, the body B1 is partially visible if and only if there exists a critical
visibility ray for B1. Consequently, it suffices to compute the set of critical lines and
to check whether a critical line contains a visibility ray for B1. Obviously, checking
whether a given straight line contains a visibility ray for B1 can be achieved with
O(m) calls to oracle 2.

Theorem 2. In dimension 2, the set of all partially visible bodies can be com-
puted with O(m3) arithmetic steps, O(m2) calls to the first oracle and O(m3) calls
to the second oracle.
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Figure 2. r- and l-tangent rays from Bi to Bj

Proof. There are 4 · (m
2

)
(not necessarily different) critical lines. For each

critical line l it can be computed with O(m) arithmetic steps and O(m) calls to
the second oracle which bodies intersect with l and which bodies are visible with
regard to the line l. ¤

The algorithm of Theorem 2 computes the set of all partially visible bodies
in cubic time. However, the straighforward idea to modify it to a quadratic time
algorithm for checking partial visibility of one specific body does not work. The
reason is that it is a priori not clear which of the O(m2) critical lines can be omitted.
If we are only interested in partial visibility of one specific body, say B1, we can
do better by using the following plane sweep algorithm requiring O(m2 log m) time
and O(m) space. (For extensive material on sweep techniques we refer to [9].)

We interpret the 4 common tangent lines of two bodies Bi and Bj as rays
starting in some boundary point of Bi. As a consequence of the results in [6, 16],
there are two tangent rays such that Bi is on the left side of these tangent rays
(“r-tangent rays of Bi”); and there are two tangent rays such that Bi is on the
right side of the tangent rays (“l-tangent rays of Bi”), see Figure 2.

For checking visibility of B1 we first investigate the 2(m − 1) (not necessarily
different) r-tangent rays touching B1 and some other body Bi, 2 ≤ i ≤ m. For
each r-tangent ray we consider the outer normal u ∈ S1 where S1 denotes the unit
sphere in R2; with each of these normals u ∈ S1 we associate the corresponding
angle 0 ≤ α < 2π measured from the positive x-axis. As described in the following
algorithm, we sweep the r-tangents according to increasing angles.

Subalgorithm for sweeping the r-tangents of B1 and Bi , 2 ≤ i ≤ m :
(1) Compute the set of r-tangents of B1 and Bi, 2 ≤ i ≤ m, and sort them

by increasing angles.
(2) Compute the number of intersections of the first r-tangent with bodies

Bi, i > 1.
(3) Consider the r-tangents successively in the order of increasing angles. In

each of these steps do:
(a) Update the number of intersections with bodies Bi, i > 1.
(b) If the number of intersections is 0, then B1 is partially visible; STOP.

For the update step we use the following lemma.
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Figure 3. Update step during the sweep

Lemma 3. Let t1 and t2 be r-tangent rays of B1 with angles 0 ≤ α1 < α2 < 2π,
and let C be some body with t1 ∩C 6= ∅, t2 ∩C = ∅. Then there exists an r-tangent
ray to B1 with angle α0 ∈ [α1, α2) which is tangent to C.

Proof. For any α ∈ [0, 2π) there exists some oriented tangent to B1 with
angle α (see, e.g., [5]) and therefore some r-tangent ray to B1 with angle α. Let
α0 be the supremum of α ∈ [α1, α2) such that the tangent with angle α intersects
with C. Since C is compact the tangent with angle α0 is tangent to B1 and C, i.e.,
the supremum is a maximum. ¤

In each step of the sweep we update the number of intersections of the sweep
ray with bodies Bi, i ≥ 2, in the following way. Let us first consider the case
where the new angle α2 is strictly larger than the current angle α1 and where the
r-tangent rays with angle α1 and α2 are each tangent to exactly two bodies. Let
the r-tangent ray with angle α1 be tangent to B1 and Bj , and let the r-rangent
ray with angle α2 be tangent to B1 and Bk, 2 ≤ j 6= k ≤ m. Then we only have to
check whether the ray with angle α2 intersects with Bj (i.e., if the sweep ray is just
“entering” Bj) and if the ray with angle α1 intersects with Bk (i.e., if the sweep ray
is just “leaving” Bk); see Figure 3. Due to Lemma 3 any additional change would
imply the existence of some r-tangent with angle α0 ∈ (α1, α2). Consequently, the
update step can be done in constant time. If there are several r-tangent rays with
the same angle we can combine these update steps. The amortized costs for the
update step are not larger than in the case of different angles. If during the sweep
we reach a situation where the number of intersections is 0 then B1 is partially
visible and we can stop immediately. After the inspection of the r-tangent rays of
B1 the l-tangent rays of B1 are swept in the same way.

So far, we have inspected the r- and l-tangent rays of B1. However, a visibility
ray of B1 is not necessarily tangent to B1, and we also have to investigate the
common tangents of bodies Bi, Bj with 2 ≤ i 6= j ≤ m. More precisely, for every
fixed i ∈ {2, . . . , n}, we consider the critical rays which are tangent to Bi. Here, we
start the sweep with that r-tangent ray from Bi to B1 that has B1 on the left side
(see Figure 4). For this ray we count the number of intersections between Bi and
B1, and separately we count the number of intersections of the backward ray with
other bodies. Now we sweep the r-tangent rays of Bi according to increasing angles
and update the number of intersections between Bi and B1 as well as the number
of intersections of the backward ray. If we reach a situation where both numbers of
intersections are simultaneously zero then B1 is partially visible and we can stop
immediately. In any case, the algorithm can stop if the r-tangent ray to Bi has B1
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Figure 4. Initial and final ray for sweeping the r-tangent rays of
Bi, i ≥ 2

on its right side; see the illustration in Figure 4. After sweeping the l-tangent rays
of Bi the r-tangent rays of Bi are investigated in the same way.

The correctness of the whole algorithm follows from the fact that the sweep
inspects all O(m2) critical visibility lines and that the update step is correct due
to Lemma 3.

For sweeping the tangent rays of some given body Bi, 1 ≤ i ≤ m, the time
requirements are dominated by the time to sort the tangent rays according to
increasing angles. We can conclude:

Theorem 4. Let the dimension be d = 2. Then checking partial visibility of
a body B1 can be done with O(m2 log m) arithmetic steps, O(m2) calls to the first
oracle, and O(m2) calls to the second oracle, as well as O(m) space.

For other recent results on visibility computations in R2 see [3] and the refer-
ences therein.

4. Real enumerative geometry for the three-dimensional case

In the three-dimensional case the basic algorithmic paradigm from Section 3
still holds. Since a line in R3 has four degrees of freedom, the core problem is now
to compute the common tangent lines to four bodies in R3 (cf. [22, 1]). However, in
the three-dimensional case, there are also some special cases where we can transform
a visibility ray only to a situation with 2 or 3 bodies, or where a configuration with
four bodies has an infinite number of common tangents.

In particular, an algorithmic treatment of the latter situations (depending on
the class X of bodies) does not only require to characterize the maximum possible
number of tangents, but also asks for an a priori characterization of the configura-
tions with infinitely many common tangents. In contrast to some other problems in
computational geometry, characterizing these situations cannot be neglected (say,
by applying perturbation techniques [10]), since the large algebraic degree involved
makes it usually highly nontrivial to guarantee a correct perturbation.

If the bodies are polytopes, the common tangents are common transversals
of edges [22]; so, in fact, the main geometric task is to compute the common
transversals to four given lines in R3. This geometric problem has been well-known
for many years (see, e.g., [13]). In particular, if a configuration has only finitely
many common transversals, then this number is bounded by 2; and it is well-known
how to characterize the configurations with infinitely many common transversals.
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However, the subsequent sections show that this situation completely changes if the
set of bodies contains some non-linearly bounded bodies, such as balls.

4.1. Common tangent lines to four unit spheres. The following theorem
in [17] characterizes the real algebraic-geometric situation when all bodies under
investigation are unit balls.

Proposition 5. Four unit spheres in R3 have at most 12 common tangent
lines unless their centers are located on the same line. Furthermore, there exists a
configuration with 12 different real tangents, i.e., the upper bound is tight.

The proof of the upper bound provides a complex bound in the sense that it
bounds the complex solutions of a system of polynomial equation. So, essentially,
the theorem states that algebraically this tangent problem is of degree 12. Note
that due to this high degree, proving the characterization of the configurations with
infinitely many common tangents is a highly nontrivial task.

From the viewpoint of projective geometry, this result is particularly interesting
for the following reason. A line ` in three-dimensional projective space P3 can be
represented in terms of its Plücker coordinates p` ∈ P5 (see, e.g., [13, 8]). In
particular, it is well-known that the set of vectors in P5 satisfying the Plücker
relation

(1) p01p23 − p02p13 + p03p12 = 0

is in 1-1-correspondence with the set of lines in P3.
As described in the following, the condition that a line ` is tangent to a sphere

gives a quadratic equation. Namely, for a given matrix A ∈ Rm,n we can use the
wedge operator

∧2 : Rm,n → R(m
2 ),(n

2)

(cf. [29]). The row and column indices of the resulting matrix are subsets of
cardinality 2 of {1, . . . , m} and {1, . . . , n}, respectively. For I ⊂ {1, . . . ,m} and
J ⊂ {1, . . . , n} with |I| = |J | = 2,

(∧2A)I,J := det A[I,J],

where A[I,J] denotes the 2 × 2-submatrix of the matrix A with row indices I and
column indices J . Describing a sphere with center c ∈ R3 and radius r by the
symmetric matrix

Q =




c2
1 + c2

2 + c2
3 − r2 −c1 −c2 −c3

−c1 1 0 0
−c2 0 1 0
−c3 0 0 1




of the corresponding quadratic form xT Qx, the following characterization of the
tangent condition is applicable (see, e.g., [29]).

Lemma 6. A line ` ⊂ P3 is tangent to a quadric Q if and only if the Plücker
vector p` of ` satisfies

pT
` (∧2Q)p` = 0.

Hence, the set of lines tangent to four given unit spheres can be formulated
by a system of five quadratic equations in P5. The reason why there are at most
12 solution in affine space instead of the (by Bézout’s Theorem) expected 25 = 32
solutions is that there is a one-dimensional component of solutions at infinity. It
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can be shown that this one-dimensional component of solutions accounts for the
“missing” 25−12 = 20 solutions. Quite remarkably, as observed in this intersection-
theoretical analysis [2], the excess component cannot be resolved by a single blow-
up.

Now let us have a look at the situation when the centers of the four spheres
are affinely dependent. In [18] it is shown that under this condition the maximum
number of real tangent lines goes down.

Proposition 7. If the four centers of four unit spheres in R3 are coplanar
but not collinear, then there are at most 8 common tangent lines, and this bound is
tight.

The proof of this statement uses some purely real algebraic arguments in the
following sense. A line tangent to the four unit spheres can be seen as the axis
of a unit cylinder whose surface passes through the four centers. Unless the axis
is parallel to the plane of the four centers, its surface intersects this plane in an
ellipse with semi-minor axis of length 1. Each such ellipse corresponds to two
cylinders. Using an appropriate algebraic description, it is shown in [17] that
there can be at most 6 candidate conic sections satisfying the relevant algebraic
properties, hence giving at most 12 common tangents. In addition to this (complex)
algebraic argument, it is shown in [18] that some of the candidate conic sections
are not ellipses but hyperbolas.

4.2. Realization issues. In order to find the common tangent lines we can
either start from a system of polynomial equations, or we can construct a univariate
polynomial equation whose solutions encode the tangents. For both approaches the
numerical computation of the tangents may become instable, especially for config-
urations of centers which are close to singular configurations (e.g., configurations
corresponding to reducible polynomials in an algebraic description). Hence, it is es-
sential to treat realization questions, such as: For which numbers k ∈ {0, . . . , 12} do
there exist configurations with exactly k different common tangents in real space?

If not all numbers k ∈ {0, . . . , 12} can be established in real space this offers the
possibility of strong and valuable consistency checks within a program. If, however,
all numbers can be realized then this would prove the non-existence of such a control
mechanism. Indeed, the latter result is true, as stated in the following theorem
in [31].

Theorem 8. For any number k ∈ {0, . . . , 12} there exists a configuration of 4
unit spheres in R3 which have exactly k different common tangents in R3.

This result contrasts the 4-sphere-problem to some well-studied problems in
classical and enumerative geometry. For example, concerning one of the most fa-
mous problems from enumerative geometry, the number of 27 lines on a smooth
cubic surface, the question of real solutions has already been studied long time ago
([25, 27], see also [24], p. 188). In particular, for a cubic surface in R3 only the
numbers 3, 7, 15, and 27 can be established with real lines. Another famous exam-
ple in geometry is Apollonius’ problem which asks for the circles tangent to three
given circles. For this problem, there exist configurations with k ∈ {0, 1, . . . , 6, 8}
real tangent circles but provably no configuration with 7 real tangent circles [21].
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Figure 5. Construction of four unit spheres with nine common
tangent lines

As an example of the geometry of the constructions, Figure 5 shows a config-
uration with four unit spheres and nine common tangent lines. For configurations
with twelve common tangent lines see [17, 31].

4.3. Combinations of spheres and polytopes. The next question is, what
happens when the class of admissible bodies in the scene consists of both balls and
polytopes. From the algebraic-geometric viewpoint, this immediately leads to the
problem of finding the common tangents/transversals to k spheres and n− k lines,
k ∈ {0, . . . , 4}. For convenience of notation, we consider a transversal of a line as a
tangent to the line.

Tight upper bounds for the number of common tangents to k spheres and n−k
lines are known in the finite case, k ∈ {0, . . . , 4}. Here, as in Section 4.1, tightness
refers to the following (quite strong) sense of real algebraic geometry (cf. [30]): On
the one hand, for each k we bound the number of solutions by algebraic methods,
say, by some number m. Then, on the other hand, constructions are known which
indeed leads to m solutions in real space R3 (which would not be possible if, say,
any polynomial formulation contained some complex solutions).

The general difficulty of proving tight bounds of this kind may be seen by the
following two aspects. For the classical enumerative geometry problem of conics
tangent to five given conics (dating back to Steiner in 1848) the existence problem
of 3264 real solutions had not been solved until few years ago ([23] and [12], §7.2).
Furthermore, as pointed out in [30] (cf. also [28]), there are nearly no criteria or
general techniques for tackling questions of this type. For these reasons, it is even
more remarkable that in all of the situations there exists a construction matching
the upper bound.

Table 4.3 summarizes the results from [32]. It shows the upper bounds for
the number of solutions and the matching numbers of real solutions in the best
constructions. The last column shows that in only a few cases, explicit charac-
terizations of the configurations with an infinite number of common tangents are
known so far. Namely, besides the already mentioned results for 4 lines and for
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upper bound # real solutions of characterization of
# solutions a construction degenerate instances

4 lines 2 2 yes
3 lines, 1 sphere 4 4 yes
2 lines, 2 spheres 8 8 –
1 line, 3 spheres 12 12 –
4 unit spheres 12 12 yes
4 spheres 12 12 –

Table 1. Summary of results

4 unit spheres, this characterization is only known for the case of three lines and
one sphere. In entries with a “–” such a characterization is not known yet.

Let Nk denote the maximum number of common tangents/transversals to k
spheres and 4 − k lines in the finite case, 0 ≤ k ≤ 4. The proofs for the tight
upper bounds of N0, . . . , N4 in [32] are of quite different flavors. For k ∈ {1, 2},
the upper bounds immediately follow from Bézout’s Theorem. Whereas for k = 1
it is easy to give a construction matching this bound, the correctness proof of
the construction for k = 2 is based on the computer-algebraic technique of using
standard bases. For N3 = 12, the Bézout bound of a projective formulation is
16 instead of 12. In order to prove the bound of 12, by analyzing the underlying
algebraic geometry of the problem, two double solutions at infinity can be spotted.
Finally, for the proof for N4 (for general radii) there are two possibilities. An
appropriate elementary geometric description can be used to deduce a polynomial
formulation with Bézout bound 12, or one can use that the intersection theory
technique mentioned in Section 4.1 also holds for general radii.

5. On the smallest radius giving common tangent lines

In the previous section we dealt with the enumerative geometry problem
to count, characterize, and find the common transversals/tangent lines to given
bodies. In this section we would like to illustrate another relationship between
these problems and real algebraic geometry: that of optimizing polynomial func-
tions. This aspect is not only relevant for optimization aspects with regard to
the visibility/tangent problems, but in particular is also related to the problem
of finding smallest enclosing/circumscribing cylinders of arbitrary point sets in R3

(cf. [1, 7, 26]).
Let c1, . . . , c4 be affinely independent. Then, of course, there does not exist a

line passing through all of these points. However, for every edge of the tetrahedron
c1c2c3c4, there exists a line which is parallel to that edge and which is tangent to
the four spheres S(ci, r) for some radius r > 0 (see [17]). Hence, there exists a
smallest radius r > 0 such that the four spheres S(ci, r) have a common tangent
line. A tangent line for this radius r is called a tangent line with minimal radius. In
general, this problem is a polynomial optimization problem over the real numbers,
and – by the results in Section 4 on the algebraic degree involved – it is hard to find
the exact global optima (cf. the discussion in [20]). In particular, the latter paper
deals with new ideas to find global optima of certain unconstrained real polynomial
optimization problems. Generally, we think that for geometric problems like finding
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the tangent line of minimal radius it is an important and challenging question to
combine general methods for polynomial optimization (like the one mentioned) with
specific geometric insights.

To provide an example for combinations of this kind, let us again look at the
4-sphere-problem. Of course, it is hard to find good geometric characterizations in
the general case. However, for an interesting subclass of 4-sphere-configurations,
we can prove the following geometric characterization.

Theorem 9. Let c1c2c3c4 define an equifacial tetrahedron, and let ` be a tan-
gent line to S(c1, r), . . . , S(c4, r) with minimal radius r. Then the direction vector
of ` is perpendicular to the direction vectors of two opposite edges, and each of these
two edges has length 2r.

In order to prove this theorem, the following notation of [17] is used. Let
c1, . . . , c4 be affinely independent. Then the four centers define a tetrahedron T
in R3. Further, let ` = {p+µs : µ ∈ R} with p, s ∈ R3, s 6= 0, p ⊥ s, be a line. ` is
tangent to the four spheres S(ci, r) with radius r > 0 if the line `− p (which passes
through the origin) has distance r from the four points ci − p, i.e, if and only if

(2) ((ci − p)× s)2 = r2s2, 1 ≤ i ≤ 4.

Proof. It is well-known that the vertices of an equifacial tetrahedron T can
be regarded as four pairwise non-adjacent vertices of a rectangular box (see, e.g.,
[14]). Hence, there exists a representation c1 = (λ1, λ2, λ3)T , c2 = (λ1,−λ2,−λ3)T ,
c3 = (−λ1, λ2,−λ3)T , c4 = (−λ1,−λ2, λ3)T with λ1, λ2, λ3 > 0.

Assuming without loss of generality s2 = 1, application of Lagrange’s identity
on (2) gives

((ci − p)× s)2 = c2
i − 〈ci, s〉2 − 2〈ci, p〉+ p2.

Hence, Equation (2) takes the form

(3) 〈ci, s〉2 + 2〈ci, p〉 =
3∑

j=1

λ2
j + p2 − r2, 1 ≤ i ≤ 4.

Subtracting these equations pairwise gives

4(λ2p2 + λ3p3) = −4(λ1λ3s1s3 + λ1λ2s1s2)

(for indices 1, 2) and analogous equations, so that

λ1p1 = −λ2λ3s2s3, λ2p2 = −λ1λ3s1s3, λ3p3 = −λ1λ2s1s2.

Since 〈p, s〉 = 0, this yields s1s2s3 = 0. Without loss of generality we can assume
s1 = 0. In this case,

p =
(
−λ2λ3

λ1
s2s3, 0, 0

)T

.

So we can express (3) in terms of the direction vector s,

λ2
2s

2
2 + λ2

3s
2
3 =

3∑

j=1

λ2
j +

(
−λ2λ3

λ1
s2s3

)2

− r2,

which, by using s2
2 + s2

3 = 1, gives

(4) λ2
2λ

2
3s

4
2 + (λ2

1λ
2
2 − λ2

1λ
2
3 − λ2

2λ
2
3)s

2
2 + λ2

1(r
2 − λ2

1 − λ2
2) = 0.
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In particular, s = (0, 1, 0)T gives r2 = λ2
1 +λ2

3, and s = (0, 0, 1)T gives r2 = λ2
1 +λ2

2.
By setting z2 = s2

2, Equation (4) defines a quadratic function r2(z2),

r2(z2) =
1
λ2

1

(−λ2
2λ

2
3z

2
2 − (λ2

1λ
2
2 − λ2

1λ
2
3 − λ2

2λ
2
3)z2

)
+ λ2

1 + λ2
2 .

Since this function is concave in z2 ∈ [0, 1], one of the given boundary values of
r2 is the minimum value. Moreover, since both 2

√
λ2

1 + λ2
2 and 2

√
λ2

1 + λ2
3 are the

lengths of a pair of opposite edges, the statement follows. ¤
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