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Abstract. Amoebas and coamoebas are the logarithmic images of algebraic varieties
and the images of algebraic varieties under the arg-map, respectively. We present new
techniques for computational problems on amoebas and coamoebas, thus establishing
new connections between (co-)amoebas, semialgebraic and convex algebraic geometry
and semidefinite programming.

Our approach is based on formulating the membership problem in amoebas (respec-
tively coamoebas) as a suitable real algebraic feasibility problem. Using the real Nullstel-
lensatz, this allows to tackle the problem by sums of squares techniques and semidefinite
programming. Our method yields polynomial identities as certificates of non-containment
of a point in an amoeba or coamoeba. As the main theoretical result, we establish some
degree bounds on the polynomial certificates. Moreover, we provide some actual compu-
tations of amoebas based on the sums of squares approach.

1. Introduction

For an ideal I ⊂ C[Z1, . . . , Zn] an amoeba (introduced by Gel′fand, Kapranov, and
Zelevinsky [3], see also the surveys [9] or [17]) is the image of the variety V(I) where
each complex coordinate is mapped to (the logarithm of) its absolute value. It is often
customary and useful to consider the logarithmic version of an amoeba

AI = {(log |z1|, . . . , log |zn|) : z ∈ V(I) ∩ (C∗)n}
with C

∗ := C \ {0}, and we denote the unlog amoeba by

UI = {(|z1|, . . . , |zn|) : z ∈ V(I)} .
Similarly, the coamoeba CI is defined as CI := Arg(V(I) ∩ (C∗)n), where Arg denotes the
mapping

(z1, . . . , zn) 7→ (arg(z1), . . . , arg(zn)) ∈ T
n := (R/2πZ)n

and arg denotes the argument of a complex number (see [11, 12, 13, 14]). If I is a principal
ideal generated by a polynomial f , we shortly write Af := A〈f〉 and analogously Uf , Cf .
Studying computational questions of amoebas has been initiated in [26], where in par-

ticular certain special classes of amoebas (e.g., two-dimensional amoebas, amoebas of
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Grassmannians) were studied. One of the natural and fundamental computational ques-
tions is the membership problem, which asks for a given point (λ1, . . . , λn) whether this
point is contained in an (unlog) amoeba respectively coamoeba.
In [20] Purbhoo provided a characterization for the points in the complement of a

hypersurface amoeba which can be used to numerically approximate the amoeba. His
lopsidedness criterion provides an inequality-based certificate for non-containment of a
point in an amoeba, but does not provide an algebraic certificate (in the sense of a
polynomial identity certifying the non-containment). The certificates are given by iterated
resultants. With this technique the amoeba can be approximated by a limit process.
The computational efforts of computing the resultants are growing quite fast, and the
convergence is slow.
A different approach to tackle computational problems on amoebas is to apply suitable

Nullstellen- or Positivstellensätze from real algebraic geometry or complex geometry. For
some natural problems a direct approach via the Nullstellensatz (applied on a realification
of the problem) is possible. Using a degree truncation approach, this allows to find sum-
of-squares-based polynomial identities which certify that a certain point is located outside
of an amoeba or coamoeba. In particular, it is well known from recent lines of research
in computational semialgebraic geometry (see, e.g., [4, 5, 15]) that these certificates can
be computed via semidefinite programming (SDP).
In this paper, we discuss theoretical foundations as well as some practical issues of

such an approach, thus establishing new connections between amoebas, semialgebraic
and convex algebraic geometry and semidefinite programming. Firstly, we present various
Nullstellensatz-type formulations (a standard approach in Statement 3.2 and a monomial
approach in Statement 3.7) and compare their properties to a recent toric Nullstellensatz
of Niculescu and Putinar [10]. Using a degree truncation approach this yields a sequence
of supersets of the amoeba Af , which converges to Af (Theorem 3.11). For every fixed
superset in this sequence, the membership problem can be solved by semidefinite pro-
gramming.
The main theoretical contribution is contained in Section 4. For one of our approaches,

we can provide some degree bounds for the certificates (Corollary 4.5). It is remark-
able and even somewhat surprising that these degree bounds are derived from Purbhoo’s
lopsidedness criterion (which is not at all sum-of-squares-based). We also show that in
certain cases (such as for the Grassmannian of lines) the degree bounds can be reduced
to simpler amoebas (Theorem 4.7).
In Section 5 we provide some actual computations on this symbolic-numerical approach.

Besides providing some results on the membership problem itself, we will also consider
more sophisticated versions (such as bounding the diameter of a complement component
for certain classes).
Finally, in Section 6 we give an outlook on further questions on the approach initiated

in the current paper.
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Figure 1. The amoeba of f = Z2
1Z2 + Z1Z

2
2 − 4Z1Z2 + 1.

2. Preliminaries

In the following, let C[Z] = C[Z1, . . . , Zn] denote the polynomial ring over C in n
variables. For f =

∑

α∈A cαZ
α ∈ C[Z], the Newton polytope New(f) = conv{α ∈ Nn

0 :
α ∈ supp(f)} of f is the convex hull of the exponent vectors, where supp(f) denotes the
support of f .

2.1. Amoebas and coamoebas. We recall some basic statements about amoebas (see
[2, 9, 17]). For any ideal I ⊂ C[Z], the amoeba AI is a closed set. For a polynomial
f ∈ C[Z], the complement of the hypersurface amoeba Af consists of finitely many
convex regions, and these regions are in bijective correspondence with the different Laurent
expansions of the rational function 1/f . See Figure 1 for an example.
The order ν of a point w in the complement Rn \ Af is given by

νj =
1

(2πi)n

∫

Log−1(w)

zj∂jf(z)

f(z)

dz1 · · · dzn
z1 · · · zn

, 1 ≤ j ≤ n ,

where Log(z) is defined as Log(z) = (log |z1|, . . . , log |zn|). The order mapping induces an
injective map from the set of complement components into New(f)∩Zn. The complement
components corresponding to the vertices of New(f) do always exist [2].
Similarly, for f ∈ C[Z] any connected component of the coamoeba complement Tn \ Cf

is a convex set (see Figure 2). If Cf denotes the closure of Cf in the torus Tn, then the
number of connected components of Tn \Cf is bounded by n! vol New(f) (Nisse [14, Thm.
5.19]), where vol denotes the volume.
For technical reasons (see Theorem 3.6) it will be often convenient to consider in the

definition of a coamoeba also those points z ∈ V(I) which have a zero-component. Namely,
if a zero z of I has a zero-component zj = 0 then we associate this component to any
phase. Call this modified version of a coamoeba C′

I , i.e.,

C′
I := {φ ∈ T

n : ∃z ∈ V(I) : arg(zj) = φj or zj = 0 for 1 ≤ j ≤ n}.
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Figure 2. The coamoeba of f = Z2
1Z2+Z1Z

2
2 −4Z1Z2+1 in two different

views of T2, namely [−π, π)2 versus [0, 2π)2.

Note that for principal ideals I = 〈f〉 the difference between CI and C′
I solely may occur

at points which are contained in the closure of CI . The set-theoretic difference of CI and
C′
I is a lower-dimensional subset of Rn (since in each environment of a point in C′

I \ CI we
have a coamoeba point).

2.2. The situation at ∞. It is well-known that the geometry of amoebas at infinity
(i.e., the “tentacles”) can be characterized in terms of logarithmic limit sets and tropical
geometry, and thus amoebas form one of the building blocks of tropical geometry (for
general background on tropical geometry we refer to [8, 9, 22]).

For (large) R > 0 let A(R) denote the scaled version A(R)
I := 1

R
AI ∩ Sn−1, where Sn−1

denotes the (n − 1)-dimensional unit sphere. Extending this definition, the logarithmic

limit set A(∞)
I is the set of points v ∈ Sn−1 such that there exists a sequence vR ∈ A(R)

I

with limR→∞ vR = v. For a polynomial f =
∑

α cαZ
α ∈ C[Z] denote by trop f :=

⊕

0 ⊙ Zα1
1 ⊙ · · · ⊙ Zαn

n its tropicalization (with respect to the trivial valuation) over the
tropical semiring (R,⊕,⊙) := (R ∪ {−∞},max,+). Then (see [8, 24]):

Proposition 2.1. A vector w ∈ Rn \ {0} is contained in the tropical variety of I if and

only if the corresponding unit vector 1
||w||

w is contained in A(∞)
I . Thus the tropical variety

of I coincides with the cone over the logarithmic limit set A(∞)
I .

3. Approximations based on the real Nullstellensatz

We study certificates of points in the complement of the amoeba based on the real
Nullstellensatz and compare them to existing statements in the literature (such as the
toric Nullstellensatz of Niculescu and Putinar). By imposing degree truncations this will
then yield a hierarchy of certificates of bounded degree.
We use the following real Nullstellensatz (see, e.g., [1, 19]):

Proposition 3.1. For polynomials g1, . . . , gr ∈ R[X ] and I := 〈g1, . . . , gr〉 ⊂ R[X ] the
following statements are equivalent:
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• The real variety VR(I) is empty.
• There exist a polynomial G ∈ I and a sum of squares polynomial H with

G+H + 1 = 0 .

Given λ ∈ (0,∞)n, the question if λ is contained in the unlog amoeba UI can be
phrased as the real solvability of a real system of polynomial equations. For a polynomial
f ∈ C[Z] = C[Z1, . . . , Zn] let f re, f im ∈ R[X, Y ] = R[X1, . . . , Xn, Y1, . . . , Yn] be its real
and imaginary parts, i.e.,

f(Z) = f(X + iY ) = f re(X, Y ) + i · f im(X, Y ) .

We consider the ideal I ′ ⊂ R[X, Y ] generated by the polynomials

(3.1) {f re
j , f im

j : 1 ≤ j ≤ r} ∪
{

X2
k + Y 2

k − λ2
k : 1 ≤ k ≤ n

}

.

Corollary 3.2. Let I = 〈f1, . . . , fr〉, and λ ∈ (0,∞)n. Either the point λ is contained
in UI , or there exist a polynomial G ∈ I ′ ⊂ R[X, Y ] and a sum of squares polynomial
H ∈ R[X, Y ] with

(3.2) G+H + 1 = 0 .

Proof. For any polynomial f ∈ C[Z] it suffices to observe that a point z = x + iy is
contained in V(f) if and only if (x, y) ∈ VR(f

re) ∩ VR(f
im), and that |zk| = λk if and only

(x, y) ∈ VR(X
2 + Y 2 − λ2

k). Then the statement follows from Proposition 3.1. �

Corollary 3.2 states that for any point λ 6∈ UI there exists a certificate

r
∑

j=1

pjf
re
j +

r
∑

j=1

p′jf
im
j +

n
∑

k=1

qk(X
2
k + Y 2

k − λ2
k) +H + 1 = 0(3.3)

with polynomials pj , p
′
j, qk and a sum of squares H . We refer to these certificates as

certificates in the standard approach.
We say that a certificate of the form (3.3) is of degree at most d if the (total) degree of

each summand in (3.3) is at most d.

Remark 3.3. By the following fact (which is easy to check), the sum of squares condi-
tion 3.2 can also be stated shortly as

−1 is a sum of squares in the quotient ring R[X, Y ]/I ′ .

Fact 3.4. (Parrilo [16].) Let I = 〈g1, . . . , gr〉 ⊂ R[X ] and f ∈ R[X ]. There exist
p1, . . . , pr ∈ R[X ] such that

f +
∑

i

pigi is a sum of squares in R[X ]

if and only if f is a sum of squares in R[X ]/I.
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Any two of these equivalent conditions in Fact 3.4 is a certificate for the nonnegativity
of f on the variety I.
Before stating a coamoeba version, we note the following normalization properties.

Whenever it is needed for amoebas, we can assume that the point λ in the amoeba
membership problem is the all-1-vector 1 ∈ Rn. Similarly, for the coamoeba membership
problem we can assume that the investigated point is the origin 0 ∈ Tn.

Lemma 3.5. Let I = 〈f1, . . . , fr〉.
(1) A point (λ1, . . . , λn) ∈ (0,∞)n is contained in UI if and only if 1 ∈ U〈g1,...,gr〉, where

gj(Z1, . . . , Zn) := fj(λ1Z1, . . . , λnZn) , 1 ≤ j ≤ r .

(2) A point (z1, . . . , zn) is contained in V(I) with arg zj = µj if and only if the (non-
negative) real vector y with yj := zje

−iµj is contained in V(g1, . . . , gr) where
gj(Z1, . . . , Zn) := fj(Z1e

iµ1 , . . . , Zne
iµn) , 1 ≤ j ≤ r .

Proof. A point (z1, . . . , zn) is contained in V(I) with |zj| = λj if and only if the vector y
defined by yj := zj/λj is contained in V(g1, . . . , gr) with |yj| = 1. The second statement
follows similarly. �

Theorem 3.6. Let I = 〈f1, . . . , fr〉. The point (0, . . . , 0) is contained in the complement
of the coamoeba C′

I if and only if there exists a polynomial identity

(3.4)
r
∑

j=1

cj · fj(X2, Y )re +
r
∑

j=1

c′j · fj(X2, Y )im +
n
∑

k=1

dk · Yk +H + 1 = 0

with polynomials cj , c
′
j, dk ∈ R[X, Y ] and a sum of squares H. Here, fj(X

2, Y ) abbreviates
fj(X

2
1 , . . . , X

2
n, Y1, . . . , Yn).

Proof. Note that the statement 0 ∈ C′
I is equivalent to {z = x + iy ∈ Cn : z ∈

V(I) and xk ≥ 0, yk = 0, 1 ≤ k ≤ n} 6= ∅. Moreover, observe that the condition xk ≥ 0
can be replaced by considering X2

k in the arguments of f1, . . . , fr. Hence, by Proposi-
tion 3.1 the statement 0 6∈ C′

I is equivalent to the existence of a polynomial identity of the
form (3.4). �

Observe that in the proof the use of C′
I (rather than CI) allowed to use the basic

Nullstellensatz (rather than a Positivstellensatz, which would have introduced several
sum of squares polynomials).
The following variant of the Nullstellensatz approach will allow to obtain degree bounds

(see Section 4). For vectors α(1), . . . , α(d) ∈ Nn
0 and coefficients b1, . . . , bd ∈ C∗ let

f =
∑d

j=1 bj · Zα(j) ∈ C[Z]. For any given values of λ1, . . . , λn set

µj := λα(j) = λ
α(j)1
1 · · ·λα(j)n

n , 1 ≤ j ≤ d .

If the rank of the matrix with columns α(1), . . . , α(d) is n (i.e., the vectors α(1), . . . , α(d)
span Rn) then the λ-values can be reconstructed uniquely from the µ-values. We come
up with the following variant of a Nullstellensatz.
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Here, let I := 〈f1, . . . , fr〉 such that fi is of the form
∑di

j=1 bijZ
α(i,j) with α(i, j) ∈ Nn

0 .

Let mij be the monomial mij = Zα(i,j) = Z
α(i,j)1
1 · · ·Zα(i,j)n

n . We consider the ideal I∗ ⊂
R[X, Y ] generated by the polynomials

(3.5) {f re
i , f im

i : 1 ≤ i ≤ r} ∪
{

(mre
ij)

2 + (mim
ij )

2 − µ2
ij : 1 ≤ j ≤ di , 1 ≤ i ≤ r

}

,

where µij = λα(i,j).

Corollary 3.7. Let I := 〈f1, . . . , fr〉, and assume that the set
⋃r

i=1

⋃di
j=1{α(i, j)} spans

Rn. Either a point λ ∈ (0,∞)n is contained in UI , or there exist polynomials G ∈ I∗ ⊂
R[X, Y ] and a sum of squares polynomial H ∈ R[X, Y ] with

(3.6) G+H + 1 = 0 .

We refer to these certificates as certificates in the monomial approach.

For hypersurface amoebas of real polynomials, the membership problem relates to the
following statement of Niculescu and Putinar [10]. Let p = p(X, Y ) ∈ R[X1, . . . , Xn,
Y1, . . . , Yn] be a real polynomial. Then p can be written as a complex polynomial p(X, Y ) =

P (Z,Z) with P ∈ C[Z1 . . . , Zn, Z̄1, . . . , Z̄n] and P (Z,Z) = P (Z, Z̄). Note that there exists
a polynomial Q ∈ C[Z1, . . . , Zn] with

p(x, y)2 = |P (z, z̄)|2 = |Q(z)|2 for z ∈ T n ,

where T := {z ∈ C : |z| = 1}.
The following statement can be obtained by applying the Nullstellensatz on the set

{z = (x, y) : |q(z)|2 = 1, |z1|2 = 1, . . . , |zn|2 = 1}, then applying Putinar’s Theorem [21]
on the multiplier polynomial of |q(Z)|2 (see [10]).

Proposition 3.8. Let q ∈ C[Z1, . . . , Zn]. Then q(z) 6= 0 for all z ∈ T n if and only if
there are complex polynomials p1, . . . , pk, r1, . . . , rl ∈ C[Z1, . . . , Zn] with

(3.7) 1 + |p1(z)|2 + · · ·+ |pk(z)|2 = |q(z)|2(|r1(z)|2 + · · ·+ |rl(z)|2) , z ∈ T n .

Note that the statement is not an identity of polynomials, but an identity for all z in
the n-torus T n.
While Proposition 3.8 provides a nice structural result, due to the following reasons

we prefer Corollary 3.2 for actual computations. In representation (3.7), two sums of
squares polynomials (rather than just one as in (3.2)) are needed in the representation,
and the degree is increased (by the squaring process). Moreover, the theorem is not really
a representation theorem (in terms of an identity of polynomials), but an identity over
T n; therefore in order to express this computationally, the polynomials hidden in this
equivalence (i.e., the polynomials 1− |Z1|2, . . . , 1− |Zn|2) have to be additionally used.

SOS-based approximations. By putting degree truncations on the certificates, we can
transform the theoretic statements into effective algorithmic procedures for constructing
certificates. The idea of degree truncations in polynomial identities follows the same prin-
ciples of the degree truncations with various types of Nullstellen- and Positivstellensätze
in [4, 6, 15]. It is instructive to have a look at two simple examples first.
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Example 3.9. Let f be the polynomial f = Z+z0 with a complex constant z0 = x0+ iy0.
The ideal I ′ of interest is defined by

h1 := f re = X + x0 ,

h2 := f im = Y + y0 ,

h3 := X2 + Y 2 − λ2 .

For values of λ ≥ 0 which correspond to points outside the amoeba (i.e., λ2 6= x2
0+y20), we

have VC(I) = ∅ and thus the Gröbner basis G of 〈h1, h2, h3〉 isG = {1}. The corresponding
multiplier polynomials pj to represent 1 as a linear combination

∑

j pjhj are

p1 =
−X + x0

x2
0 + y20 − λ2

, p2 =
−Y + y0

x2
0 + y20 − λ2

, p3 =
1

x2
0 + y20 − λ2

.

Hence, in particular, −1 can be written as a sum of squares in the quotient ring R[X ]/I ′.
The necessary degree with regard to equation (3.2) is just 2.
For λ2 = x2

0 + y20, the Gröbner basis (w.r.t. a lexicographic variable ordering with
X ≻ Y ) is

X + x0, Y + y0 .

The point (−x0,−y0) is contained in VR(I
′); thus in this case there does not exist a

Nullstellen-type certificate.

Example 3.10. Consider the polynomial f = Z1 +Z2 +5 with Zj = Xj + iYj. The ideal
I ′ of interest is defined by

h1 := X1 +X2 + 5 , h2 := Y1 + Y2 , h3 := X2
1 + Y 2

1 − λ2
1 , h4 := X2

2 + Y 2
2 − λ2

2 .

Consider λ1 = 2, λ2 = 3. Using a lexicographic ordering with X1 ≻ X2 ≻ Y1 ≻ Y2, a
Gröbner basis is

Y 2
2 , Y1 + Y2 , X2 + 3 , X1 + 2 .

The standard monomials are 1 and Y2. It is easy to see that −1 is not a sum of squares
in the quotient ring, which reflects the fact that (2, 3) ∈ UI .
Consider now the choice λ1 = 1 and λ2 = 2. Using lexicographic ordering again, the

Gröbner basis is

25Y 2
2 + 96 , Y1 + Y2 , 5X2 + 14 , 5X1 + 11 .

Hence, 25Y 2
2 ≡ −96 mod I ′, which gives the sum of squares identity

(

5√
96

Y2

)2

≡ −1 mod I ′ ,

and thus shows (1, 2) /∈ UI .

Using the degree truncation approach for sums of squares we can for a given ideal
I = 〈f1, . . . , fr〉 define

Ct := {λ ∈ (0,∞)n \ UI : there exists a certificate of the form (3.3)

for λ of degree ≤ 2t}.
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Similarly, for coamoebas CI let Dt be the subsets of its complement obtained by the
degree truncation. These sequences are the basis of the effective implementation (see
Section 5).

Theorem 3.11. Let I = 〈f1, . . . , fr〉 and t0 := maxj⌈deg fj/2⌉. The sequence (Ct)t≥t0

converges pointwise to the complement of the unlog amoeba UI , and it is monotone in-
creasing in the set-theoretic sense, i.e. Ct ⊂ Ct+1 for t ≥ t0.
Similarly, the sequence (Dt)t≥t0 converges pointwise to the complement of the coamoeba

CI , and it is monotone increasing in the set-theoretic sense, i.e. Dt ⊂ Dt+1 for t ≥ t0.

Proof. For any given point z in the complement of the amoeba there exists a certificate of
minimal degree, say d. For t < ⌈d/2⌉ the point z is not contained in Ct and for t ≥ ⌈d/2⌉
the point z is contained in Ct. In particular, the relaxation process is monotone increasing.
And analogously for coamoebas. �

Remark 3.12. A similar result holds for the monomial approach. Namely, for a given
ideal I = 〈f1, . . . , fr〉, t0 := maxj⌈deg fj/2⌉, and I∗ generated by the polynomials (3.5),
the sets

C∗
t := {λ ∈ (0,∞)n \ UI : there exists a certificate of the form G+H + 1 = 0

with G ∈ I∗ and H SOS for λ of degree ≤ 2t}
(t ≥ t0) converge pointwise to the complement of UI , and, set-theoretically, this sequence
is monotone increasing.

It is well-known (and at the heart of current developments in optimization of polynomial
functions, see [4, 15] or the survey [5]) that SOS conditions with degree constraints of the
form (3.3) can be phrased as semidefinite programs. Finding an (optimal) positive semi-
definite matrix within an affine linear variety is known as semidefinite programming (see
e.g. [28] for a comprehensive treatment). Semidefinite programs can be solved efficiently
both in theory and in practice.
Precisely, any sum-of-squares polynomial H can be expressed as MQMT , where Q

is a symmetric positive semidefinite matrix (abbreviated Q � 0) and M is a vector of
monomials.
Similarly, by the degree restriction the linear combination in (3.2) or (3.6) can be

integrated into the semidefinite formulation by a comparison of coefficients.

4. Special certificates

For a certain class of amoebas, we can provide some explicit classes of Nullstellensatz-
type certificates. As a first warmup-example, we illustrate some ideas for constructing
special certificates systematically for linear amoebas in the standard approach. Then we
show how to construct special certificates for the monomial-based approach.
In this section we concentrate on the case of hypersurface amoebas.

Linear amoebas in the standard approach. Let f = aZ1+bZ2+c be a general linear
polynomial in two variables with real coefficients a, b, c ∈ R. We consider certificates of
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the form (3.2) based on the third binomial formula (α+ β)(α− β) = α2 − β2, and we use
the sums of squares (X1 −X2)

2 and (Y1 − Y2)
2. For simplicity assume a, b > 0. Setting

G1 := (aX1 + bX2 − c)(aX1 + bX2 + c) + (aY1 + bY2)(aY1 + bY2)

−(a2 + ab)(X2
1 + Y 2

1 − λ2
1)− (b2 + ab)(X2

2 + Y 2
2 − λ2

2) ,

H1 := ab(X1 −X2)
2 + ab(Y1 − Y2)

2

the sum G1 +H1 simplifies via elementary cancellation to

γ1 := (a2 + ab)λ2
1 + (b2 + ab)λ2

2 − c2 .(4.1)

Assume that the point (λ1, λ2) is not contained in the unlog amoeba Uf . In order to
obtain the desired polynomial identity (3.2) certifying containment in the complement of
Uf , we require γ1 to be negative. In that case we have

1

|γ1|
(G1 +H1) + 1 = 0 ,

which gives the polynomial identity (3.2). Analogously, we obtain for

G2 := (−aX1 + bX2 + c)(aX1 + bX2 + c) + (−aY1 + bY2)(aY1 + bY2)

a2(X2
1 + Y 2

1 − λ2
1)− (b2 + bc)(X2

2 + Y 2
2 − λ2

2) ,

H2 := bc(X2 − 1)2 + bcY 2
2

via elementary cancellation

γ2 := G2 +H2 = (b2 + bc)λ2
2 + c2 + bc− a2λ2

1 ,

and, symmetrically,

γ3 := (a2 + ac)λ2
1 + c2 + ac− b2λ2

2 .

Example 4.1. Let a = 1, b = 2, c = 5. The curve (in λ1, λ2) given by (4.1) has
a logarithmic image that is shown in Figure 3. Analogous special certificates can be
obtained within the two other complement components.

–2

–1

1

2

–3 –2 –1 1 2 3 4

Figure 3. The boundary of an amoeba of a linear polynomial (black) and
the logarithmic image of the boundary of R1 = {λ ∈ R2 : (a2 + ab)λ2

1 +
(b2 + ab)λ2

2 − c2 < 0}, for which the special certificates of degree 2 exist
(grey).
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Since (by homogenizing the polynomial) there is a symmetry, we obtain similarly an
approximation of the other two complement components. Hence we have:

Lemma 4.2. Let f = aZ1 + bZ2 + c with a, b, c ∈ R, and set

R1 = {λ ∈ R
2 : (a2 + ab)λ2

1 + (b2 + ab)λ2
2 − c2 < 0} ,

R2 = {λ ∈ R
2 : (b2 + bc)λ2

2 + c2 + bc− a2λ2
1 < 0} ,

R3 = {λ ∈ R
2 : (a2 + ac)λ2

1 + c2 + ac− b2λ2
2 < 0} .

Then Rj ∩ Uf = ∅ for 1 ≤ j ≤ 3, and for any λ ∈ R1 ∪ R2 ∪ R3 there exists a certificate
(3.3) of degree at most two.

The monomial-based approach. For the monomial-based approach based on Corol-
lary 3.7 we can provide special certificates for a much more general class. Our point of
departure is Purbhoo’s lopsidedness criterion [20] which guarantees that a point belongs
to the complement of an amoeba Af . In particular, we can provide degree bounds for
these certificates.
In the following let α(1), . . . , α(d) ∈ Nn

0 span Rn and f =
∑d

j=1 bjZ
α(j) ∈ C[Z] with

monomials mj := Zα(j) = Z
α(j)1
1 · · ·Zα(j)n

n . For any point v ∈ Rn define f{v} as the
following sequence of numbers in R>0,

f{v} :=
(

|b1m1(Log
−1(v))|, . . . , |bdmd(Log

−1(v))|
)

.

A list of positive real numbers is called lopsided if one of the numbers is greater than the
sum of all the others. We call a point v ∈ Rn lopsided, if the sequence f{v} is lopsided.
Furthermore set

LA(f) := {v ∈ R
n : f{v} is not lopsided}.

It is easy to see that Af ⊂ LA(f) with Af 6= LA(f) in general. In the following way the
amoeba Af can be approximated based on the lopsidedness concept. For r ≥ 1 let

f̃r(Z) :=

r−1
∏

k1=0

· · ·
r−1
∏

kn=0

f
(

e2πik1/rZ1, . . . , e
2πikn/rZn

)

= Res
(

Res
(

. . .Res(f(U1Z1, . . . , UnZn), U
r
1 − 1), . . . , U r

n−1 − 1
)

, U r
n − 1

)

,

where Res denotes the resultant of two (univariate) polynomials. Then the following
theorem holds.

Theorem 4.3. (Purbhoo [20, Theorem 1])

(a) For r → ∞ the family LA(f̃r) converges uniformly to Af . There exists an integer

N such that to compute Af within ε > 0, it suffices to compute LA(f̃r) for any
r ≥ N . Moreover, N depends only on ε and the Newton polytope (or degree) of f
and can be computed explicitly from these data.

(b) For an ideal I ⊂ C[Z] a point v ∈ R
n is in the amoeba AI if and only if g{v} is

not lopsided for every g ∈ I.
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Based on Theorem 4.3 one can devise a converging sequence of approximations for
the amoeba. Note, however, that the lopsidedness criterion is not a Nullstellensatz in a
strict sense since it does not provide a polynomial identity certifying membership in the
complement of the amoeba.
The aim of this section is to figure out how our SOS approximation is related to the

lopsidedness and transform the lopsidedness certificate into a certificate for the Nullstel-
lensätze presented in Section 3.
By Lemma 3.5 we can assume that the point λ, whose membership to an unlog amoeba

Uf shall be decided, is the all-1-vector 1. In this situation lopsidedness means that there
is an index j ∈ {1, . . . , d} with |bj | >

∑

i 6=j |bi|. If the lopsidedness condition is satisfied in
v, then the following statement provides a certificate of the form G+H +1 and bounded
degree.
Corresponding to the definition of I∗ in (3.5), let the polynomials s1, . . . , sd+2 be defined

by

si =

(

brei
|bi|

·
(

Zα(i)
)re
)2

+

(

bimi
|bi|

·
(

Zα(i)
)im
)2

− 1 , 1 ≤ i ≤ d ,

and sd+1 = f re, sd+2 = f im.

Theorem 4.4. If the point λ = 1 is contained in the complement of Uf with f{0} being
lopsided with dominating element |m1(1)|, then there exists a certificate of (total) degree
2 · deg(f) which is given by

(4.2)

d+2
∑

i=1

sigi +H + 1 = 0 ,

where

g1 = |b1|2 , gi = −|bi| ·
d
∑

k=2

|bk| , 2 ≤ i ≤ d ,

gd+1 =

(

−b1 · Zα(1) +

d
∑

i=2

bi · Zα(i)

)re

, gd+2 =

(

−b1 · Zα(1) +

d
∑

i=2

bi · Zα(i)

)im

,

H =
∑

2≤i<j≤d

|bi| · |bj| ·
(

brei
|bi|

·
(

Zα(i)
)re −

brej
|bj|

·
(

Zα(j)
)re
)2

+|bi| · |bj | ·
(

bimi
|bi|

·
(

Zα(i)
)im − bimj

|bj|
·
(

Zα(j)
)im
)2

.

Proof. By the third binomial formula (α + β) · (α − β) = α2 − β2, substituting the
polynomials si and gj into sd+1gd+1 + sd+2gd+2 yields

−
(

bre1 ·
(

Zα(1)
)re
)2

+

(

d
∑

i=2

(bi · Zα(i))re

)2

−
(

bim1 ·
(

Zα(1)
)im
)2

+

(

d
∑

i=2

(bi · Zα(i))im

)2

.
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Adding g1s1 and the SOS term H yields

−|b1|2 +
(

d
∑

j=2

(

brej
|bj |

·
(

Zα(j)
)re
)2

+

(

bimj
|bj |

·
(

Zα(j)
)im
)2
)

·
(

|bj | ·
d
∑

k=2

|bk|
)

.

Hence, the expression
∑d+2

i=1 sigi +H in (4.2) in total results in

−|b1|2 +
(

d
∑

i=2

|bi|
)2

.

Since all |bi| ≥ 0 and by our assumption of lopsidedness with dominating term |m1(1)|,
this is the certificate we wanted to obtain. By rescaling, we can bring the constant to
−1. �

We say that there exists a certificate for a point w in the complement of the (log)
amoeba Af if there exists a certificate for the point 1 in the complement of the amoeba
Ug in the sense of Theorem 4.4, where g is defined as in Lemma 3.5 and λi := | log−1(wi)|.
Corollary 4.5. Let r ∈ N.

(1) For any w ∈ R
n \ LA(f̃r) ⊂ R

n \ Af there exists a certificate of degree at most
2 · rn · deg(f) which can be computed explicitly.

(2) The certificate determines the order of the complement component to which w
belongs.

Proof. By definition of g, we have w ∈ Af if and only if 1 ∈ Ug. Further 1 belongs to
LA(g̃r) if and only if g̃r{0} is not lopsided. Applying Theorem 4.4 on the function g̃r yields
a certificate for w in the log amoebaAf . Since we have tdeg(g̃r) = tdeg(g)·rn = tdeg(f)·rn
due to the definition of g̃r and g the result follows.
For the second statement, note that passing over from f to g does not change the

order ν of any point in the complement of the amoebas. Now it suffices to show that the
dominating term (which occurs in a distinguished way in the certificate) determines the
order of the complement component. The latter statement follows from Purbhoo’s result
that if w 6∈ LA(f̂r) and the order of the complement component w belongs to is α(i) then

the dominant term in f̃r has the exponent rn · α(i) (see [20, Proposition 4.1]). �

Corollary 4.6. For linear hyperplane amoebas in Rn, any point in the complement of the
amoeba has a certificate whose sum of squares is a sum of squares of affine functions.

Proof. By the explicit characterization of linear hyperplane amoebas in [2, Corollary 4.3],
any point in the complement is lopsided. Hence, the statement follows from Theorem 4.4.

�

Simplified expressions. From a slightly more general point of view, the monomial-
based certificates can be seen as a special case of the following construction. Whenever
the defining polynomials of a variety originate from simpler polynomials with algebraically
independent monomials, then the approximation of the amoeba can be simplified.
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For an ideal I let V := V(I) ⊂ (C∗)n be its subvariety in (C∗)n. Let γ1, . . . , γk
be k monomials in n variables, say, γi = Y α(i) = Y

α(i)1
1 Y

α(i)2
2 · · ·Y α(i)n

n , where α(i) =
(α(i)1, . . . , α(i)n) ∈ Zn. They define a homomorphism γ of algebraic groups from (C∗)n

to (C∗)k. For any subvariety W of (C∗)k, the inverse image γ−1(W ) is a subvariety of
(C∗)n. Note that the map γ is onto if and only if the vectors α(1), . . . , α(k) are linearly
independent (see [26, Lemma 4.1]).
Let J be an ideal with V(J) = γ−1(V ). If the map γ is onto, then computing the

amoeba of J can be reduced to the computation of the amoeba of I. Let γ′ denote the
restriction of γ to the multiplicative subgroup (0,∞)n. Then the following diagram is a
commutative diagram of multiplicative abelian groups:

(C∗)n
γ−→ (C∗)k

↓ ↓
(0,∞)n

γ′

−→ (0,∞)k

where the vertical maps are taking coordinate-wise absolute value. For vectors p =
(p1, . . . , pn) in (C∗)n we write |p| = (|p1|, . . . , |pn|) ∈ (0,∞)n, and similarly for vectors of
length k. Further, for V ⊂ (C∗)n let |V | := {|p| : p ∈ V }. If the map γ is onto then
|γ−1(V )| = γ′−1(|V |) (see [26]).

Theorem 4.7. If a point outside of an unlog amoeba UI has a certificate of total degree
d then a point outside of the unlog UJ has a certificate of degree d · D, where D is the
maximal total degree of the monomials γ1, . . . , γk.

In particular, this statement applies to the certificates from Statements 3.2 and 3.7.

Proof. Let p be a point outside of the unlog amoeba of V ⊂ (C∗)n which has a certificate
of total degree d. By Corollary (3.2), the certificate consists of a polynomial G(X, Y )
in the real ideal I ′ ⊂ R[X, Y ] from (3.1) and by real sums of squares of polynomials in
R[X, Y ]. For the polynomials in the ideals, we observe that the realification process carries
over to the substitution process. W.l.o.g. we can assume that γi is a product of just two
factors. Then, with Z = Z1 + iZ2, Z = PQ we have Z1 + iZ2 = (P1 + iP2)(Q1 + iQ2) and
use the real substitutions Z1 ≡ P1Q1 − P2Q2, Z2 ≡ P1Q2 + P2Q1. And in the same way
the real sum of squares remain real sums of squares (of the polynomials in Pi, Qj) after
substituting. �

Example 4.8. Let G1,3 denote the Grassmannian of lines in 3-space, which is the variety
in P5

C
, defined by

P01P23 − P02P13 + P03P12 = 0 ,

which we consider as a subvariety of (C∗)6. The three terms in this quadratic equation
involve distinct variables and hence correspond to linearly independent exponent vectors.
Note that G1,3 equals γ−1(V ) where

γ : (C∗)6 → (C∗)3 , (p01, p02, p03, p12, p13, p23) 7→ (p01p23, p02p13, p03p12)

and V denotes the plane in 3-space defined by the linear equation X − Y + Z = 0. Since
by Theorem 4.6 any point in the complement has a certificate of degree 2, Theorem 4.7
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Figure 4. SOS certificates of linear amoebas restricted to degree two. The
dark grey points represent infeasible SDPs, and in the light grey points
numerical instabilities were reported in the computations.

implies that every point in the complement of the Grassmannian amoeba has a certificate
of degree 4.

5. Computing the relaxations via semidefinite programming

We close the paper by providing some computational results in order to confirm the
validity of our approach. The subsequent computations have been performed on top
of SOSTools [18] which is a Matlab package for computing sums of squares based
computations. The SDP package underlying SOSTools is SeDuMi [23].

Example 5.1. For the test case of a linear polynomial f := Z1 + 2Z2 + 3, the boundary
contour of the amoeba Af can be explicitly described, and it is given by the curves

exp(z1) = 2 · exp(z2) + 3 ,

2 · exp(z2) = exp(z1) + 3 ,

3 = exp(z1) + 2 · exp(z2) ,
see [2]. We compute the amoeba of f with our SDP via SOSTools on a grid of size
250 × 250 lattice points in the area [−3, 4]2. In the SDP we restrict to polynomials of
degree two. By Theorem 4.4, the approximation is exact in that case (up to numerical
issues). Figure 4 visualizes the SDP-based computation of the SOS certificates. In the
figure, at the white outer regions, certificates are found. At the dark grey points the SDP
is infeasible; at the light grey points, no feasibility is proven, but numerical instabilities are
reported by the SDP solver. The aspect of numerical stability of our SOS-based amoeba
computations and of general SOS computations is an important issue in convex algebraic
geometry which deserves further study. See [7, 25] for existing work in this direction,
based on choosing different bases.
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Example 5.2. As in Figure 1 we consider the class of polynomials f := Z2
1Z2 + Z1Z

2
2 +

c · Z1Z2 + 1 with some constant c ∈ R. We use the monomial-based approach from
Corollary 3.7. In order to compute whether a given point (λ1, λ2) ∈ (0,∞)2 is contained
in the unlog amoeba Uf , we have to consider the polynomials

h1 = (X2
1X2 − 2X1Y1Y2 − Y 2

1 ·X2) + (X1X
2
2 −X1Y

2
2 − 2Y1X2Y2)

+c · (X1X2 − Y1Y2) + 1 ,

h2 = (X2
1Y2 + 2X1Y1X2 − Y 2

1 Y2) + (2X1X2Y2 + Y1X
2
2 − Y1Y

2
2 ) + c · (X1Y2 +X2Y1) ,

h3 = (X2
1X2 − 2X1Y1Y2 − Y 2

1 X2)
2 + (X2

1Y2 + 2X1Y1X2 − Y 2
1 Y2)

2 − (λ2
1 · λ2)

2 ,

h4 = (X1X
2
2 −X1Y

2
2 − 2Y1X2Y2)

2 + (2X1X2Y2 + Y1X
2
2 − Y1Y

2
2 )

2 − (λ1 · λ2
2)

2 ,

h5 = (X1X2 − Y1Y2)
2 + (X1Y2 +X2Y1)

2 − (λ1 · λ2)
2 .

For the case c = 2 and c = −4 we investigate 160×160 points in the area [−4, 4]×[−5, 3]
and restrict the polynomials multiplied with the constraints to degree three, and thus
restrict ourselves to a degree bound of six. The resulting amoeba Af is depicted in
Figure 5. At the white points the SDP is feasible and thus these points belong to the
complement component. At the light grey points the SDP is recognized as feasible with
numerical issues (within a pre-defined range). At the black points in the center the SDP
was infeasible without and at the dark grey points with numerical issues reported. At the
black points in the upper right corner the program stopped due to exceeding numerical
problems. The union of the central black, the dark grey and part of the light grey points
provides the (degree bounded) approximation of the amoeba.

Figure 5. The amoeba of f := Z2
1Z2 + Z1Z

2
2 + c · Z1Z2 + 1 approximated

with SOStools for c = 2 and c = −4. See the text of Example 5.2 for an
explanation of the greyscales and an adress of the numerical issues.

The diameter of inner complement components. We briefly discuss that the SOS-
based certificates can also be used for more sophisticated questions rather than the pure
membership problem. For this, we consider a family of polynomials f ∈ C[Z1, . . . , Zn]
whose Newton polytope is a simplex and which have n + 2 monomials such that one of
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them is located in the interior of the simplex. Amoebas of polynomials of this class have
at most one inner complement component (see [27] for a comprehensive investigation of
that class).

Let f :=
∑n+1

i=0 bi · Zα(i), and let b0 denote the coefficient of the inner monomial. By
the results in [27], for |b0| → ∞ the inner complement component appears at the image

under the Log–map of a minimal point δ of the function f̂ :=
∣

∣

∣

f
arg(b0)·Zα(0)

∣

∣

∣
. δ is explicitly

computable, and |δ| is unique. This allows to certify that a complement component of
the unlog amoeba has a certain diameter d under the scaling |Z| 7→ |Z|2 of the (unlog)
amoeba basis space by solving the SDP corresponding to

3
∑

j=1

sjgj +H + 1 = 0

with s1 =
∑n

i=1(|δi|2−|Zi|2)2−d2/4, s2 =
∑n+1

i=0

(

bi · Zα(i)
)re

and s3 =
∑n+1

i=0

(

bi · Zα(i)
)im

,
where gj ∈ C[Z] (restricted to some total degree) and H is an SOS polynomial.
Feasibility of the SDP certifies that there exists no point v ∈ V(f) ∩ ∂Bd/2(δ) (where

Bd/2(δ) denotes the ball with radius d/2 centered in δ) in the rescaled amoeba basis space.
Hence, the corresponding inner complement component of the unlog amoeba has at least
a diameter d in that space. We have to investigate the rescaled basis space of the unlog
amoeba in order to transform the generic condition (|δi| − |Zi|)2− d2/4 on the basis space
of Uf into a polynomial condition, which is given by s1 here.
Note that this works not only for polynomials in the class under investigation, but for

every polynomial as long as one knows, where a complement component appears.

Example 5.3. As before, let f := Z2
1Z2 + Z1Z

2
2 + c · Z1Z2 + 1 with a real parameter

c. For this class, the inner complement component appears at the point (1, 1) and thus
under the Log-map at the origin of Log(R2). The inner complement component exists
for c > 1 and c < −3 (cf. [27]). We compute a bound for the diameter of the inner
complement component using the upper SDP for the intervals [−3,−9] and [1, 7] with
steplength 0.1. For any of these points we compute 14 SDPs in order to estimate the
radius (based on binary search). In the rescaled amoeba basis space we obtain the bounds
shown in Figure 6.
Observe that these bounds are lower bounds since feasibility of the SDP certifies mem-

bership in the complement of the amoeba but infeasibility only certifies that no certificate
with polynomials of degree at most k (i.e., 3 in our case) exists.

This approach also yields lower bounds for the diameter of the inner complement com-
ponent of the (log) amoeba. The image of the circle

∑n
i=1(|δi|2−|Zi|2)2−r2 under rescaling

and the Log–map, i.e.
∑n

i=1(log |δi| − log |Zi|)2 − r2, contains the set of points
{

(|δ1| · er, . . . , |δn|) , . . . , (|δ1|, . . . , |δn| · er) ,
(

|δ1| · e
r√
n , . . . , |δn| · e

r√
n

)}

.

By convexity of the complement components in Af , the simplex spanned by these points
is contained in the inner complement component. Hence the double radius of the insphere
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Figure 6. Lower bound for the diameter of the inner complement component.

of that simplex is a lower bound for the diameter of the inner complement component
of Af .

6. Outlook

We have developed foundations and techniques for approximating amoebas and coamoe-
bas based on the real Nullstellensatz and sums-of-squares techniques. While our focus was
on developing the core principles of the computational methodology, some experimental
results were provided to show the validity of the approach. Beyond the specific results
we have presented, our approach can be seen as a first systematic treatment of amoebas
from a (computational) real algebraic point of view and we think that this viewpoint will
have more potential to offer.
Major current challenges involve both computational issues (concerning the quality

and efficiency of computations) as well theoretical questions on on the real algebraic
viewpoint on amoebas. To name a specific open question in the latter respect, recall that
in Theorem 4.4, for a hypersurface amoeba Af we could deduce the order of a complement
component from the special certificates we treated in that theorem. However, it is an open
and important structural question how to deduce the order for a point w in the complement
of Af given an arbitrary Nullstellensatz certificate for w.

Acknowledgment. Thanks to Mihai Putinar for pointing out reference [10] and to an
anonymous referee for careful reading and helpful suggestions. Part of this work was done
while the first author was visiting Universidad de Cantabria in Santander. He would like
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7. J. Löfberg and P. Parrilo, From coefficients to samples: a new approach to SOS optimization, 43rd

IEEE Conference on Decision and Control, Atlantis, vol. 3, 2004, pp. 3154–3159.
8. D. Maclagan and B. Sturmfels, Introduction to Tropical Geometry, Manuscript, 2010.
9. G. Mikhalkin, Amoebas of algebraic varieties and tropical geometry, Different faces of geometry, Int.

Math. Ser. (N. Y.), vol. 3, Kluwer/Plenum, New York, 2004, pp. 257–300.
10. S.-I. Niculescu and M. Putinar, A toric Positivstellensatz with applications to delay systems, C. R.

Math. Acad. Sci. Paris 349 (2011), no. 5-6, 327–329.
11. L. Nilsson, Amoebas, Discriminants, and Hypergeometric Functions, Ph.D. thesis, Stockholm Univer-

sity, 2009.
12. L. Nilsson and M. Passare, Discriminant coamoebas in dimension two, J. Commut. Algebra 2 (2010),

no. 4, 447–471.
13. , Mellin Transforms of Multivariate Rational Functions, J. Geom. Anal. 23 (2013), no. 1,

24–46.
14. M. Nisse, Geometric and combinatorial structure of hypersurface coamoebas, Preprint,

arXiv:0906.2729, 2009.
15. P.A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program. 96

(2003), no. 2, Ser. B, 293–320.
16. , Exploiting algebraic structure in sum of squares programs, Positive Polynomials in Control,

Lecture Notes in Control and Inform. Sci., vol. 312, Springer, Berlin, 2005, pp. 181–194.
17. M. Passare and A. Tsikh, Amoebas: their spines and their contours, Idempotent Mathematics and

Mathematical Physics (G.L. Litvinov and V.P. Maslov, eds.), Contemp. Math., vol. 377, Amer. Math.
Soc., Providence, RI, 2005, pp. 275–288.

18. S. Prajna, A. Papachristodoulou, P. Seiler, and P.A. Parrilo, SOSTOOLS and its control applications,
Positive polynomials in control, Lecture Notes in Control and Inform. Sci., vol. 312, Springer, Berlin,
2005, pp. 273–292.

19. A. Prestel and C.N. Delzell, Positive Polynomials, Springer Monographs in Mathematics, Springer-
Verlag, Berlin, 2001.

20. K. Purbhoo, A Nullstellensatz for amoebas, Duke Math. J. 141 (2008), no. 3, 407–445.
21. M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993),

no. 3, 969–984.
22. J. Richter-Gebert, B. Sturmfels, and T. Theobald, First steps in tropical geometry, Idempotent Math-

ematics and Mathematical Physics (G.L. Litvinov and V.P. Maslov, eds.), Contemp. Math., vol. 377,
Amer. Math. Soc., Providence, RI, 2005, pp. 289–317.

23. J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim.
Methods Softw. 11/12 (1999), no. 1-4, 625–653.



20 THORSTEN THEOBALD AND TIMO DE WOLFF

24. B. Sturmfels, Solving Systems of Polynomial Equations, CBMS Regional Conference Series in Math-
ematics, vol. 97, Published for the Conference Board of the Mathematical Sciences, Washington, DC,
2002.

25. J.L. Sun, Low rank decompositions for sum of squares optimization, M.Sc. thesis, M.I.T., 2006.
26. T. Theobald, Computing amoebas, Experiment. Math. 11 (2002), no. 4, 513–526.
27. T. Theobald and T. de Wolff, Amoebas of genus at most one, Adv. Math. 239 (2013), 190–213.
28. H. Wolkowicz, R. Saigal, and L. Vandenberghe (eds.), Handbook of Semidefinite Programming, In-

ternational Series in Operations Research & Management Science, 27, Kluwer Academic Publishers,
Boston, MA, 2000.

Goethe-Universität, FB 12 – Institut für Mathematik, Postfach 11 19 32, D–60054

Frankfurt am Main, Germany

E-mail address : {theobald,wolff}@math.uni-frankfurt.de


