
COMPUTING AMOEBAS

THORSTEN THEOBALD

Abstra
t. We study 
omputational aspe
ts of amoebas asso
iated with varieties

in (C

�

)

n

, both from an exa
t and from an experimental point of view. In parti
ular,

we give expli
it 
hara
terizations for the amoebas of 
lasses of linear and nonlinear

varieties and present homotopy-based te
hniques to 
ompute the boundary of two-

dimensional amoebas.

1. Introdu
tion

The notion of amoebas, introdu
ed by Gel

0

fand, Kapranov and Zelevinsky in 1994

[11℄, serves to study the solution set X � C

n

of a system of polynomial equations.

Namely, it addresses this question from the following viewpoint. Given w 2 [0;1)

n

,

does there exist a ve
tor z 2 X with jz

1

j = w

1

; : : : ; jz

n

j = w

n

? How 
an the subset

of all ve
tors w = (w

1

; : : : ; w

n

) 2 [0;1)

n

be 
hara
terized for whi
h the answer is

\yes" ? For reasons explained below, it is 
onvenient to work in the algebrai
 torus

C

�

:= C n f0g and look at log jz

i

j rather than jz

i

j itself.

Formally, the amoeba of a subset X � (C

�

)

n

is the image of X under the map

Log : (C

�

)

n

! R

n

;

z 7! (log jz

1

j; : : : ; log jz

n

j) ;

where log denotes the natural logarithm. The restri
tion Log

jX

is 
alled the amoeba

map of X. As we will see later in detail, if X is an algebrai
 
urve in the plane (n = 2)

then its amoeba looks like one of those mi
ros
opi
 animals, embra
ing 
onvex regions

and growing tenta
les towards in�nity in various dire
tions (
f. Figure 1).

Amoebas have re
ently been used in several �elds of mathemati
s. Exemplarily,

we mention two of them. In topology, amoebas were used to provide signi�
ant 
on-

tributions with regard to Hilbert's 16th problem (whi
h is still a widely open prob-

lem). Hilbert's problem asks for a 
lassi�
ation of the topologi
al types of real alge-

brai
 manifolds and has initiated the 
orresponding bran
h of mathemati
s. Re
ently,

Mikhalkin used amoebas to prove topologi
al uniqueness of maximally arranged real

plane algebrai
 
urves with respe
t to three lines [15℄.

In the �eld of dynami
al systems, a
tions of Z

n

on 
ompa
t metri
 spa
es 
an

be 
hara
terized in terms of expansive behavior along the half-spa
es of R

n

. In [7℄,

amoebas have been applied to 
hara
terize this expansive behavior for algebrai
 Z

n

-

a
tions, i.e., a
tions of Z

n

by automorphisms of a 
ompa
t abelian group.

Other mathemati
al habitats of amoebas in
lude 
omplex analysis [9, 19℄, mirror

symmetry [18℄, and measure theory [16, 17℄. However, 
omputational handling of

amoebas still involves many diÆ
ulties and unsolved problems.
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Figure 1. Amoeba Log V(f) for f(z

1

; z

2

) =

1

2

z

1

+

1

5

z

2

� 1

In the present paper, we study some 
on
rete 
omputational questions both from

an exa
t and from an experimental point of view. In parti
ular, we will be 
on
erned

with the 
ase where X is a subvariety of the torus (C

�

)

n

with X = V(I) for some

ideal I � C [z

�1

1

; : : : ; z

�1

n

℄.

From the exa
t point of view, we provide expli
it 
hara
terizations for 
ertain 
lasses

of linear varieties, thus extending the results of [9℄ on hyperplane amoebas. We also

give an exa
t 
hara
terization for a 
lass of nonlinear varieties whi
h in
ludes the

Grassmannian of lines in 3-spa
e. These 
hara
terizations 
an be used to answer

algorithmi
 questions, su
h as membership of a given point to the amoeba.

For amoebas of plane algebrai
 
urves whi
h do not �t into these spe
i�
 
lasses, we

show how the topologi
al results of [15℄ 
an be used to establish homotopy-based nu-

meri
al te
hniques to 
ompute the boundary of the amoeba. Experimentally, we have

used these te
hniques and present some results (in terms of visualizations) illustrating

this approa
h.

The paper is stru
tured as follows. In Se
tion 2, we review some basi
 proper-

ties and theorems on amoebas, a

ompanied by experiments visualizing the shape of

amoebas. Then we introdu
e the relevant algorithmi
 questions. In Se
tions 3 and 4,

we give new expli
it 
hara
terizations for some 
lasses of linear and nonlinear varieties,

respe
tively. We 
omplement these 
hara
terizations by some 
omputer-algebrai
 ex-

periments investigating some 
ases not 
overed by the theorems. Finally, in Se
tion 5,

we study homotopy-based te
hniques to draw two-dimensional amoebas.

2. Preliminaries

Let C [z

�1

1

; : : : ; z

�1

n

℄ denote the ring of 
omplex Laurent polynomials in n variables,

i.e., sums of the form

P

�2J




�

z

�

with �nite index sets J � Z

n

(see, e.g., [6℄). For

Laurent polynomials f

1

; : : : ; f

m

, let V(f

1

; : : : ; f

m

) denote the set of 
ommon zeroes of

f

1

; : : : ; f

m

in (C

�

)

n

.

2.1. Hypersurfa
e amoebas. If X is an algebrai
 hypersurfa
e in (C

�

)

n

, then we


all the amoeba of X a hypersurfa
e amoeba [9℄. We assume that X is the zero set of

a single Laurent polynomial f(z) =

P

�2J




�

z

�

.

Example 1. (a) The shaded area in Figure 1 shows the amoeba Log V(f) for the

linear fun
tion

f(z

1

; z

2

) =

1

2

z

1

+

1

5

z

2

� 1 :
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Figure 2. Newton polygon of a dense quarti
 in two variables

Note that this amoeba is a two-dimensional set. When denoting the 
oordinates in

the amoeba plane by w

1

and w

2

, the three tenta
les have the asympoti
s w

1

= log 2,

w

2

= log 5, and w

2

= w

1

+log(5=2). We remark that the amoeba of a two-dimensional

variety V(f) 2 (C

�

)

2

is not always a two-dimensional set. Namely, e.g., for f(z

1

; z

2

) :=

z

1

+ z

2

, we obtain Log V(f) = f(w

1

; w

2

) 2 R

2

: w

1

= w

2

g.

(b) If f 2 C [z

�1

1

; : : : ; z

�1

n

℄ is a binomial in n variables,

f(z) = z

�

� z

�

with � 6= � 2 Z

n

, then the amoeba Log V(f) is a hyperplane in R

n

whi
h passes

through the origin. To see this, �rst note that for any 
omplex solution z of z

�

= z

�

,

the real ve
tor jzj = (jz

1

j; : : : ; jz

n

j) is a solution as well. So it suÆ
es to 
onsider

ve
tors z 2 (0;1)

n

. We 
an rewrite jzj

�

= jzj

�

as jzj

���

= 1, and by using the dot

produ
t of ve
tors we obtain

(�� �) � Log z = 0 :

Sin
e � 6= �, this equation de�nes a hyperplane in the 
oordinates log jz

1

j; : : : ; log jz

n

j

whi
h passes through the origin.

The following basi
 properties of amoebas have been stated in [11, 9℄. They are the

reason why it is often 
onvenient to look at log jz

i

j rather than jz

i

j itself.

Theorem 2. The 
omplement of a hypersurfa
e amoeba Log V(f) 
onsists of �nitely

many 
onvex regions, and these regions are in bije
tive 
orresponden
e with the dif-

ferent Laurent expansions of the rational fun
tion 1=f .

The shape of the amoeba is also related to the support

supp(f) = f� 2 Z

n

: 


�

6= 0g

of the fun
tion f and to the Newton polytope

New(f) = 
onv(supp(f)) :

Example 3. Figure 2 shows the Newton polygon of a dense quarti
 polynomial f

in two variables. Sin
e we are not aware of any visualizations of \real-life" amoebas

of interesting degree in literature (in the sense that the pi
tures do not only fo
us

on topologi
al 
orre
tness), let us present some experiments whi
h illustrate both the

topologi
al and the geometri
 stru
ture of an amoeba. Figure 3 depi
ts a series of

amoebas Log V(f) for dense quarti
 polynomials f 2 R[z

1

; z

2

℄. In the �rst pi
ture in

this series, f is the produ
t of four linear fun
tions f

1

; f

2

; f

3

; f

4

. The amoeba of V(f)

is the union of the amoebas of V(f

1

), V(f

2

), V(f

3

), and V(f

4

). This polynomial f is

perturbed by adding or subtra
ting to every 
oeÆ
ient 


�

of f (with the ex
eption of
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Figure 3. A series of quarti
 amoebas in two variables. The

�rst pi
ture shows the amoeba of V(f

1

� f

2

� f

3

� f

4

), where

f

1

(z

1

; z

2

) =

�

1

30

z

1

+

1

30

z

2

� 1

�

, f

2

(z

1

; z

2

) =

�

1

5

z

1

+ 4z

2

� 1

�

, f

3

(z

1

; z

2

) =

�

3z

1

+

4

7

z

2

� 1

�

, f

4

(z

1

; z

2

) =

�

30z

1

+

1

300

z

2

� 1

�

.

the 
oeÆ
ient 
orresponding to the 
onstant term) independently a random value in

the interval [0;

1

5

j


�

j); see the right pi
ture in the top row. This perturbation pro
ess

is then iterated another four times.

The series of pi
tures has been produ
ed with aMaple program whi
h imposes an

appropriate grid on the 
omplex plane for one of the variables, say z

1

, then solving

the resulting quarti
 polynomials for z

2

.

By Theorem 2, the 
omplement




Log V(f) of an amoeba Log V(f) 
onsists of �nitely

many 
omponents. This gives rise to the following 
omputational de�nition of an order
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in terms of multidimensional 
omplex analysis, originating from the 
omputation of

multidimensional residues [9℄.

De�nition 4. The order of a point w 2




Log V(f) is de�ned by the ve
tor � 2 Z

n

whose 
omponents are

�

j

=

1

(2�i)

n

Z

Log

�1

(w)

z

j

�

j

f(z)

f(z)

dz

1

^ � � � ^ dz

n

z

1

� � � z

n

; 1 � j � n :

It 
an be shown that two di�erent points w;w

0

2




Log V(f) have the same order if

and only if they are 
ontained in the same 
onne
ted 
omponent E of




Log V(f).

Hen
e, � 
an also be 
alled the order of the 
omponent E. Moreover, it 
an be shown

that the order � of any 
omponent of




Log V(f) is 
ontained in the Newton polytope

New(f). In order to 
ompute an order, the following des
ription is useful.

Lemma 5. [9℄ For any ve
tor s 2 Z

n

n f0g and w 2




Log V(f), the dire
tional order

hs; �(f; w)i is equal to the number of zeroes (minus the order of the pole at the origin)

of the one-variable Laurent polynomial

u 7! f(


1

u

s

1

; : : : ; 


n

u

s

n

)

inside the unit 
ir
le juj = 1. Here, 
 2 (C

�

)

n

is any ve
tor with Log(
) = w.

All these results refer to the 
ase where X is an algebrai
 hypersurfa
e. A main

diÆ
ulty in the treatment of amoebas of arbitrary varieties 
omes from the following

simple observation. If X, Y , and Z are subvarieties of (C

�

)

n

with X \ Y = Z, then

Log Z � Log X \ Log Y , but in general the in
lusion is proper.

2.2. Basi
 
omputational questions. Probably the most natural 
omputational

problem on amoebas is the one of membership whi
h has been raised by Douglas Lind

in 
onne
tion with [7℄.

Membership:

Instan
e: Given n, m 2 N , f

1

; : : : ; f

m

2 C [z

�1

1

; : : : ; z

�1

n

℄, x 2 (0;1)

n

:

Question: Does there exist z 2 V(f

1

; : : : ; f

m

) with jz

k

j = x

k

for 1 � k � n ?

(I.e., is (logx

1

; : : : ; logx

n

) 2 Log V(f

1

; : : : ; f

m

) ?)

Expressing every 
omplex number z

k

in the form z

k

= u

k

+ iv

k

with u

k

; v

k

2 R,

the membership problem is a de
ision problem over the real numbers. It is known

from Tarski's results that those problems are de
idable [22℄. From the 
omplexity-

theoreti
al point of view, let us re
all that in the binary Turing ma
hine model, the

size of the input is de�ned as the length of the binary en
oding of the input data [10℄,

so these statements refer to rational input ve
tors and rational input polynomials (i.e.,

polynomials with rational 
oeÆ
ients). The time 
omplexity is measured in terms of

the overall input en
oding. If the dimension n is �xed, then the theory of real 
losed

�elds 
an be de
ided in polynomial time [4, 2℄. More pre
isely, the following holds:

Theorem 6. For �xed dimension n, the following de
ision problem 
an be de
ided

in polynomial time: Given rational polynomials p

1

(x

1

; : : : ; x

n

); : : : ; p

s

(x

1

; : : : ; x

n

), a

Boolean formula '(x

1

; : : : ; x

n

) whi
h is a Boolean 
ombination of polynomial equa-

tions and inequalities, i.e., p

i

(x

1

; : : : ; x

n

) = 0 or p

i

(x

1

; : : : ; x

n

) � 0, and quanti�ers

Q

1

; : : : ; Q

n

, de
ide the truth of the statement

Q

1

(x

1

2 R) : : : Q

n

(x

n

2 R) '(x

1

; : : : ; x

n

) :
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We 
an 
on
lude:

Corollary 7. For �xed dimension n, membership of a point to an amoeba 
an be

solved in polynomial time.

However, despite this (theoreti
al) fa
t that for �xed dimension these problems


an be de
ided in polynomial time, 
urrent implementations are only 
apable to deal

with very small dimensions, say, up to three real variables. Generally, there are two

approa
hes towards pra
ti
al solutions of de
ision problems over the reals. The one

is based on Collins' 
ylindri
al algebrai
 de
omposition (CAD) [4℄, and the other one

is the 
riti
al point method ([13℄; for the state of the art see [1℄).

Another natural 
omputational task is to 
ompute (at least in a numeri
al sense)

the (relative) boundary for the amoeba of a given ideal, e.g, for visualization purposes.

This will be done in Se
tion 5.

2.3. Known results on the membership problem. The best way to answer ques-

tions like the membership problem is to know an expli
it representation of the amoeba,

say, in terms of equalities and inequalities. Example 1 (b) 
ontains a representation of

this kind for the 
lass of binomials. In [9℄, those representations have been derived for

the 
ase of hypersurfa
e amoebas Log V(f), where f is a produ
t of linear fun
tions

f

1

; : : : ; f

m

. Sin
e Log V(g � h) = Log V(g)[ Log V(h) for any Laurent polynomials g,

h, all fa
tors of f 
an be 
onsidered separately; hen
e, we 
an assume m = 1.

Let P

n

R

and P

n

C

denote the n-dimensional real proje
tive spa
e and n-dimensional


omplex proje
tive spa
e, respe
tively. In order to derive an expli
it representation

of a hyperplane amoeba, it is helpful to de
ompose the logarithmi
 map into two

mappings. Firstly, the moment map

P

n

C

! �

n

(z

0

; : : : ; z

n

) 7!

(jz

0

j; jz

1

j; : : : ; jz

n

j)

P

n

i=0

jz

i

j

;

where �

n

is the regular simplex,

�

n

= f(t

0

; : : : ; t

n

) 2 R

n

: t

0

; : : : ; t

n

� 0;

n

X

i=0

t

i

= 1g :

This moment map 
an be 
onsidered on the whole variety V(f) in C

n

or P

n

C

rather

than only on the subvariety of (C

�

)

n

. The se
ond mapping

int(�

n

) ! R

n

(t

0

; : : : ; t

n

) 7!

�

log

t

1

t

0

; : : : ; log

t

n

t

0

�

;

is a homeomorphism from the interior of �

n

to R

n

. Following the notation in [11℄,

the image of a set X under the �rst mapping is 
alled the 
ompa
ti�ed amoeba of

X. In parti
ular, the following theorem from [9℄ shows that it maps hyperplanes to

polytopes.

Theorem 8. [9℄ The 
ompa
ti�ed amoeba of a hyperplane

X = fz 2 P

n

C

:

n

X

i=0

a

i

z

i

= 0g ;
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(1; 0; 0) (0; 1; 0)

(0; 0; 1)

Figure 4. Compa
ti�ed amoeba of f(z

1

; z

2

) =

1

2

z

1

+

1

5

z

2

� 1

a

i

2 C , is the polytope in �

n

de�ned by the inequalities

ja

j

jt

j

�

X

k 6=j

ja

k

jt

k

; 0 � j � n :

If no two of the 
oeÆ
ients a

i

are zero then the polytope has

�

n+1

2

�

verti
es given by

1

ja

i

j+ ja

j

j

(ja

j

je

i

+ ja

i

je

j

) ; 0 � i < j � n ;

where e

k

denotes the k-th unit ve
tor. In parti
ular, for n = 2, the 
ompa
ti�ed

amoeba is the triangle in �

2

with verti
es

1

ja

0

j+ ja

1

j

(ja

1

j; ja

0

j; 0) ;

1

ja

0

j+ ja

2

j

(ja

2

j; 0; ja

0

j) ;

1

ja

1

j+ ja

2

j

(0; ja

2

j; ja

1

j) :

Figure 4 depi
ts the 
ompa
ti�ed amoeba of the (proje
tive 
losure of the) linear

variety V(f) with f(z

1

; z

2

) = z

1

=2 + z

2

=5� 1 from Example 1.

Hen
e, in order to 
he
k whether a given point w 2 R

n

is 
ontained in the amoeba

Log V(f) of a hyperplane V(f) we 
ompute the 
orresponding point t in the 
om-

pa
ti�ed variant by t

i

= e

w

i

=(

P

n

i=0

e

w

i

), 0 � i � n. By Theorem 8, we just have to


he
k 
ontainment of t in a polytope that is given as an interse
tion of �nitely many

halfspa
es.

Figure 5 shows what 
an happen when 
onsidering the amoeba of a plane 
ubi



urve that fa
tors into three lines. The amoeba of that 
urve is the union of the

amoebas of ea
h line. For some of these 
urves the amoeba 
ontains a \hole", i.e., an

additional bounded 
omponent in the 
omplement (as in Figure 5 (a)), and for some

of these 
urves the amoeba does not 
ontain su
h a hole (as in Figure 5 (b)).

3. Amoebas of linear varieties

In this se
tion, we 
onsider linear varieties in P

n

C

of dimension less than n � 1. In

general, the 
ompa
ti�ed amoeba of a variety of this kind is not a polytope, even if

the variety is de�ned by linear equations with real 
oeÆ
ients. A line ` � P

n

C

whi
h is

de�ned by linear equations with real 
oeÆ
ients is 
alled a real line in P

n

C

. Figure 6 (a)

shows the 
ompa
ti�ed amoeba of a real line in P

3

C

.
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(a) With hole (b) Without hole

Figure 5. Compa
ti�ed amoeba of plane 
ubi
 
urves whi
h fa
tor

into three linear terms

(1,0,0,0)

(0,1,0,0) (0,0,1,0)

(0,0,0,1)

(1,0,0,0)

(0,1,0,0) (0,0,1,0)

(0,0,0,1)

(a) Compa
ti�ed amoeba (b) Quadrati
 amoeba

Figure 6. Amoebas of the line f(0; 1; 2) + �(1;�1;�1) : � 2 C g � C

3

In order to answer membership questions for real lines in P

n

C

, we 
onsider the

following quadrati
 amoeba (
f. [18℄) de�ned by the map

P

n

C

! �

n

(z

0

; z

1

; : : : ; z

n

) 7!

(jz

0

j

2

; : : : ; jz

n

j

2

)

jz

0

j

2

+ : : :+ jz

n

j

2

:(1)

Analogous to Se
tion 2, if we know an expli
it representation of a quadrati
 amoeba,

then we 
an easily solve the membership problem.

A line ` � P

n

C


an be represented by its n-dimensional Pl�u
ker 
oordinate

(p

ij

)

0�i<j�n

2 P

(

n+1

2

)

C

as follows (see, e.g., [14, 5℄). If a; b 2 P

n

C

are two di�erent

points on ` then let p

ij

= a

i

b

j

� a

j

b

i

, 0 � i < j � n. It is well-known that the

p

ij

satisfy 
ertain quadrati
 relations, the Pl�u
ker relations. E.g., for n = 3 we have

p

01

p

23

� p

02

p

13

+ p

03

p

12

= 0. The following theorem shows that the quadrati
 amoeba

of a real line in 
omplex n-spa
e is the 
onvex hull of an ellipse. See Figure 6 (b) for

an example.
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Remark. Figures 6 (a) and (b) have been produ
ed with a three-dimensional

surfa
e plot in Maple, where the line ` � P

3

C

is 
onsidered as a two-dimensional

aÆne subspa
e over the reals.

Theorem 9. Let n � 3, and let ` be a real line in P

n

C

with Pl�u
ker 
oordinate

(p

ij

)

0�i<j�n

2 P

n

R

. Furthermore, let none of the 
oeÆ
ients p

ij

be zero.

A point w 2 �

n

is 
ontained in the quadrati
 amoeba of ` if and only if the following

equations and inequality are satis�ed:

(2) p

12

p

1j

p

2j

w

0

� p

02

p

0j

p

2j

w

1

+ p

01

p

0j

p

1j

w

2

� p

01

p

02

p

12

w

j

= 0 ; 3 � j � n

and

(3) 2p

2

13

p

2

23

w

1

w

2

+ 2p

2

12

p

2

23

w

1

w

3

+ 2p

2

12

p

2

13

w

2

w

3

� p

4

23

w

2

1

� p

4

13

w

2

2

� p

4

12

w

2

3

� 0 :

Sin
e the theorem assumes that none of the 
oeÆ
ients p

ij

is zero, the n� 2 equa-

tions in (2) de�ne a two-dimensional subspa
e. Further note that for a line whose

Pl�u
ker 
oeÆ
ients are not all nonzero, equations (2) and inequality (3) might vanish

identi
ally (e.g., for ` = f(0; 0; 0) + �(1; 2; 3) : � 2 C g. However, all these spe
ial


ases 
an be treated separately.

Proof. Consider the points A = (p

01

; 0;�p

12

;�p

13

; : : : ;�p

1n

) and B = (�p

02

;�p

12

;

0; p

23

; : : : ; p

2n

) on `. Then ` 
an be written in the parameterized form �A+ �B with

�; � 2 C , (�; �) 6= (0; 0). Without loss of generality we 
an assume � 2 R.

In order to prove that the image of every point z 2 ` under the quadrati
 amoeba

mapping satis�es (2) and (3), let z have the form �A+ �B. To simplify notation, let

w denote only the numerator of the image de�ned in (1). Then we have

w

0

= j�p

01

� �p

02

j

2

;(4)

w

1

= j�j

2

p

2

12

;(5)

w

2

= �

2

p

2

12

;(6)

w

j

= j � �p

1j

+ �p

2j

j

2

; 3 � j � n :(7)

We expand the sum on the left-hand side of (2) via (4){(7) and jaj

2

= aa, and

separately 
onsider the 
oeÆ
ients of �

2

, j�j

2

, and �(� + �) in this expansion. The


oeÆ
ient of �

2

is

�p

01

p

12

p

1j

(p

01

p

2j

� p

02

p

1j

+ p

0j

p

12

) :

The expression in the bra
kets evaluates to zero by the Pl�u
ker relations. Sin
e the


oeÆ
ients of j�j

2

and of �(�+�) vanish as well, equation (2) is satis�ed for 3 � j � n.

Expanding the sum on the left-hand side of (3), the 
oeÆ
ients of �

4

, �

3

(� + �),

�j�j

2

(� + �), and j�j

4

vanish. With regard to terms of degree 2 in both variables,

there are both terms 
ontaining �

2

j�j

2

and terms 
ontaining �

2

(�+ �)

2

. Namely, we

obtain the expression

4p

2

12

p

2

13

p

4

23

�

2

j�j

2

� p

2

12

p

2

13

p

4

23

�

2

(�+ �)

2

:

Sin
e p

ij

2 R, � 2 R and (�+ �)

2

= 4(Re �)

2

� 4j�j

2

, inequality (3) is ful�lled.

Conversely, assume that a point w 2 �

n

satis�es (2) and (3). We will expli
itly


ompute the parameters � 2 R and � 2 C of a point z 2 ` with

P

n

i=0

jz

i

j

2

= 1 su
h

that w is the image of z under the quadrati
 amoeba mapping.

Sin
e none of the Pl�u
ker 
oeÆ
ients p

ij

is zero, the representations (5) and (6) of

w in terms of �, � imply j�j

2

= w

1

=p

2

12

and �

2

= w

2

=p

2

12

. Furthermore, sin
e the 
ase
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w

1

= w

2

= 0 would lead to a 
ontradi
tion, we have j�j

2

> 0 or �

2

> 0. Equation (7)

for j = 3 implies

(8) ��(�+ �) =

w

3

� �

2

p

2

13

� j�jp

2

23

p

23

p

13

:

In 
ase � 6= 0, squaring this equation and substituting the expressions for j�j

2

and �

2

yields

(Re �)

2

=

(p

2

12

w

3

� p

2

13

w

2

� p

2

23

w

1

)

2

4p

2

12

p

2

13

p

2

23

w

2

:

This equation together with the equation for j�j

2

give a solution for � if and only if

the right-hand side is less than or equal to j�j

2

, whi
h yields the 
ondition

(p

2

12

w

3

� p

2

13

w

2

� p

2

23

w

1

)

2

� 4p

2

13

p

2

23

w

1

w

2

:

However, the latter 
ondition is equivalent to inequality (3). Hen
e, there exists a

solution for � and � satisfying (5), (6), and (7) for j = 3. It remains to show that

this solution also satis�es (4) and (7) for 4 � j � n. With regard to (4), substituting

�(� + �) in (4) by (8) and substituting �

2

, j�j

2

in the resulting equation gives the

linear equation in w,

(p

2

02

p

13

p

23

� p

01

p

02

p

2

23

)w

1

+ (p

2

01

p

13

p

23

� p

2

13

p

01

p

02

)w

2

+ p

01

p

02

p

2

12

w

3

= p

2

12

p

13

p

23

w

0

:

By applying the Pl�u
ker relations on the terms in the bra
kets, this equation is equiv-

alent to (2). Analogously, it 
an be 
he
ked that (7) is satis�ed for 4 � j � n. Finally,

the 
ase � = 0 implies w

2

= 0 and 
an be 
he
ked dire
tly. �

The following 
orollaries express the quadrati
 amoeba dire
tly in terms of the

de�ning inequalities of a real line ` in 3- or 2-spa
e.

Corollary 10. Let ` be a line in P

3

C

given as the solution of the system of linear

equations

a

0

z

0

+ a

1

z

1

+ a

2

z

2

+ a

3

z

3

= 0 ;

b

0

z

0

+ b

1

z

1

+ b

2

z

2

+ b

3

z

3

= 0

with real 
oeÆ
ients a

i

; b

i

. Further, let q = (q

01

; : : : ; q

23

) 2 P

5

R

, q

ij

= a

i

b

j

� a

j

b

i

,

denote the dual Pl�u
ker 
oordinate of `, and let none of the dual Pl�u
ker 
oeÆ
ients

q

ij

be zero. Then the quadrati
 amoeba of ` is given by the set of points w 2 �

3

satisfying

(9) q

01

q

02

q

03

w

0

� q

01

q

12

q

13

w

1

+ q

02

q

12

q

23

w

2

� q

03

q

13

q

23

w

3

= 0

and

(10) 2q

2

01

q

2

02

w

1

w

2

+ 2q

2

01

q

2

03

w

1

w

3

+ 2q

2

02

q

2

03

w

2

w

3

� q

4

01

w

2

1

� q

4

02

w

2

2

� q

4

03

w

2

3

� 0 :

Proof. The statement follows immediately from Theorem 9 and the well-known rela-

tion that the ve
tors (p

01

; : : : ; p

23

) and (q

23

;�q

13

; q

12

; q

03

;�q

02

; q

01

) 
oin
ide in P

5

(see,

e.g., [14℄). �
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Similar to Theorem 9 it 
an be shown:

Corollary 11. Let ` be a line in P

2

C

given as the solution of the linear equation

a

0

z

0

+ a

1

z

1

+ a

2

z

2

= 0

with real 
oeÆ
ients a

i

. Then the quadrati
 amoeba of ` is given by the inequality

2a

2

0

a

2

1

w

0

w

1

+ 2a

2

0

a

2

2

w

0

w

2

+ 2a

2

1

a

2

2

w

1

w

2

�

2

X

i=0

a

4

i

w

2

i

� 0 :

The following statement gives a partial answer to the question how the quadrati


amoebas of hyperplanes look like.

Theorem 12. The quadrati
 amoeba of a hyperplane

X = fz 2 P

n

C

:

n

X

i=0

a

i

z

i

= 0g ;

a

i

2 C , has a boundary whi
h is 
ontained in a hypersurfa
e of degree 2

n�1

. For n = 3

this surfa
e is given by

W

2

W

3

(8W

1

+ 4(W

0

�W

1

�W

2

�W

3

))

2

�(�4W

1

(W

2

+W

3

) + (W

0

�W

1

�W

2

�W

3

)

2

+ 4W

2

W

3

)

2

= 0 ;

where W

i

:= ja

i

jw

i

.

Proof. A

ording to Theorem 8, the fa
ets of the polytope of the 
ompa
ti�ed amoeba

are given by equations of the form

(11) ja

0

jt

0

=

n

X

i=1

ja

i

jt

i

in the variables t

0

; : : : ; t

n

.

By passing over to the quadrati
 amoeba, des
ribed in the variables w

0

; : : : ; w

n

, we

obtain instead

(12)

p

ja

0

jw

0

=

n

X

i=1

p

ja

i

jw

i

:

Without loss of generality we assume n � 2. By n�1 squaring steps we 
an eliminate

the square roots of w

0

; : : : ; w

n�2

. Sin
e the original equation is homogeneous, this

gives an equation in whi
h the only square root is

p

w

n�1

w

n

. This square root 
an

be removed by another squaring operation. In parti
ular, for n = 3 the squaring

operations are applied on Equation (12), on

p

W

1

� 2(

p

W

2

+

p

W

3

) =W

0

�W

1

�W

2

�W

3

� 2

p

W

2

W

3

;

and on

p

W

2

W

3

(8W

1

+ 4(W

0

�W

1

�W

2

�W

3

))

= � 4W

1

(W

2

+W

3

) + (W

0

�W

1

�W

2

�W

3

)

2

+ 4W

2

W

3

:

We obtain the the equation stated in the theorem. Sin
e the equations of the other

fa
ets in Theorem 8 di�er from (11) just by various signs (whi
h be
ome irrelevant

within the squaring pro
ess), they lead to the same equation.

The same method for 
omputing the hypersurfa
e equation 
an be used for any

n � 2. �
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For all the 
lasses of varieties treated in this se
tion, we 
an observe: if the quadrati


amoeba is de�ned by equations with real 
oeÆ
ients, then the relative boundary of

the amoeba is given by the images of real points in the variety V . In parti
ular, for

a point w in the amoeba with a real preimage in V , the inequalities (3) and (10)

be
ome equalities. If we negle
t the 
ommon denominator of all 
omponents, then for

the real points in V , the quadrati
 amoeba mapping is a Veronese mapping P

n

C

! P

n

C

,

z 7! (z

2

0

; : : : ; z

2

n

). So the problem to 
hara
terize the quadrati
 amoeba images for

the real points of a d-dimensional linear subspa
e in P

n

C


orresponds to �nding the

algebrai
 relations of the squares of n+1 homogeneous linear forms on a d-dimensional

proje
tive spa
e. From this point of view, Corollary 10 implies that the squares of

four homogeneous linear forms (in general position) on a one-dimensional proje
tive

spa
e satisfy a linear and a quadrati
 relation.

In order to investigate these algebrai
 relations for higher dimensions, we 
an apply


omputer algebra systems, su
h asMa
aulay 2 [12℄ (see, e.g., [8, p. 19℄ for a related

treatment of the twisted 
ubi
 
urve). In this 
omputer experiment, we work over

the �nite �eld F := Z

32749

, taking into a

ount the experien
e that for these kind of


omputations, we obtain the same qualititative results we would get in 
hara
teristi
 0.

The Ma
aulay 2 program shown below 
hooses n+1 random homogeneous linear

forms L

0

(z

0

; : : : ; z

d

); : : : ; L

n

(z

0

; : : : ; z

d

) in d+ 1 homogeneous variables,

P

d

F

! P

n

F

;

(z

0

; : : : ; z

d

) 7! (L

0

(z

0

; : : : ; z

d

); : : : ; L

n

(z

0

; : : : ; z

d

)) :

Assuming that the linear forms are generi
, the image of this map de�nes a d-

dimensional subspa
e of an n-dimensional proje
tive spa
e. The kernel of the map

de�nes an ideal I � Z

32749

[y

0

; : : : ; y

n

℄ whi
h 
onsists of the algebrai
 relations among

the elements in the image (for the algorithmi
 te
hniques underlying the 
omputation

of this ideal see [3℄).

d = 1

n = 3

R = ZZ/32749[z_0..z_d℄

S = ZZ/32749[y_0..y_n℄

I = kernel( map( R, S, apply(toList(0..n), i -> (random(1,R))^2 )));

d, n, dim I, degree I, apply(first entries mingens I, f -> degree f)

Besides the values of d, n, the dimension of I, and the degree of I, the last line prints

the degrees of a minimal set of generators of I. The output is

(1, 3, 2, 2, {{1}, {2}})

The degrees f1; 2g of a minimal set of generators 
orrespond to the linear and the

quadrati
 relation of Corollary 10. For amoebas of planes in 4-spa
e we have to


onsider d = 2 and n = 4. The 
orresponding Ma
aulay 2 
omputation shows that

the homogeneous ideal of algebrai
 relations for the squares of the �ve linear forms is

generated by seven 
ubi
s:

(2, 4, 3, 4, {{3}, {3}, {3}, {3}, {3}, {3}, {3}})

So these 
omputations give some indi
ation how the quadrati
 amoeba images of the

real points in the linear variety 
an be 
hara
terized. However, we do not know in

how far these te
hniques 
an be exploited to �nd good 
hara
terizations also of the

images of the 
omplex points.
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4. Amoebas of nonlinear varieties

In this se
tion, we explain the 
omputation of an amoeba when the de�ning

equations of the variety have a simpler expression in terms of algebrai
ally inde-

pendent monomials. Let �

1

; : : : ; �

d

be d Laurent monomials in n variables, say,

�

i

= z

a

i

= z

a

i1

1

z

a

i2

2

� � � z

a

in

n

, where a

i

= (a

i1

; : : : ; a

in

) 2 Z

n

. They de�ne a homo-

morphism � of algebrai
 groups from (C

�

)

n

to (C

�

)

d

. Let V be any subvariety of

(C

�

)

d

. Then its inverse image �

�1

(V ) is a subvariety of (C

�

)

n

. Our obje
tive is to


ompute the amoeba of �

�1

(V ) in terms of the amoeba of V .

Lemma 13. The following three 
onditions are equivalent:

(i) The map � is onto.

(ii) The monomials �

1

; : : : ; �

d

are algebrai
ally independent.

(iii) The ve
tors a

1

; : : : ; a

d

are linearly independent.

Proof. Equivalen
e of (ii) and (iii) is stated e.g. in the proof of [20, Lemma 4.2℄: every

Z-linear relation among a

1

; : : : ; a

n

translates into an algebrai
 relation of the form

�

d

1

i

1

� � ��

d

r

i

r

� �

e

1

j

1

� � ��

e

s

j

s

= 0 with d

1

; : : : ; d

r

; e

1

; : : : ; e

s

2 N . The ideal of all algebrai


relations among our monomials is generated by su
h binomials.

In order to show that (iii) implies (i), for a given y 2 (C

�

)

d


hoose x 2 C

d

with

e

x

i

= y

i

, 1 � i � d. If a

1

; : : : ; a

d

are linearly independent then there exists z 2 C

n

with a

i1

z

1

+ : : :+ a

in

z

n

= x

i

for 1 � i � d; hen
e �(e

z

1

; : : : ; e

z

n

) = y.

Finally, in order to show that (i) implies (iii), it suÆ
es to show that the integer

ve
tors a

1

; : : : ; a

d

are linearly independent over R. For a given x 2 R

d

let z be the

preimage of (e

x

1

; : : : ; e

x

d

) under �. We 
an assume z 2 (0;1)

n

, be
ause otherwise

we 
an pass over to (jz

1

j; : : : ; jz

n

j). Sin
e a

i1

z

1

+ : : : + a

in

z

n

= x

i

, 1 � i � d, we 
an


on
lude the linear independen
e. �

Let �

0

denote the restri
tion of � to the multipli
ative subgroup (0;1)

n

. Consider

the following 
ommutative diagram of multipli
ative abelian groups:

(C

�

)

n

�

�! (C

�

)

d

# #

(0;1)

n

�

0

�! (0;1)

d

The verti
al maps are taking 
oordinate-wise absolute value. For ve
tors p =

(p

1

; : : : ; p

n

) in (C

�

)

n

we write jpj = (jp

1

j; : : : ; jp

n

j) 2 (0;1)

n

, and similarly for ve
tors

of length d. Further, for V � (C

�

)

n

let jV j := fjpj : p 2 V g.

Lemma 14. Suppose that the three equivalent 
onditions in Lemma 13 hold. Then

j�

�1

(V )j = �

0�1

(jV j).

Proof. It is straightforward to 
he
k, without any assumptions on �, that �

0

maps

j�

�1

(V )j into jV j. In other words, j�

�1

(V )j is always a subset of �

0�1

(jV j). What we

must prove is �

0�1

(jV j) � j�

�1

(V )j. Let u 2 �

0�1

(jV j). Then �

0

(u) 2 jV j. Fix any

point � in the subvariety V of (C

�

)

d

su
h that j�j = �

0

(u). Now use the assumption

that � is surje
tive: we 
hoose any preimage � of � under �. Thus � is a point in the

subvariety �

�1

(V ) of (C

�

)

n

. Consider now the point � � u � (j�j)

�1

in the algebrai


group (C

�

)

n

. We have

�

�

� � u � (j�j)

�1

�

= �(�) � �(u) � j�(�)j

�1

= � � �

0

(u) � j�j

�1

= � 2 V :
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Thus � � u � (j�j)

�1

lies in �

�1

(V ). Its image under the absolute value map equals

�

�

� � u � (j�j)

�1

�

�

= j�j � juj � (j�j)

�1

= juj ;

and we 
on
lude that u lies in j�

�1

(V )j, as desired. �

Lemma 14 applies to the logarithmi
 amoeba, the 
ompa
ti�ed amoeba, and the

quadrati
 amoeba of �

�1

(V ), sin
e all of these amoebas are images of j�

�1

(V )j.

Corollary 15. Let f =

P

d

i=1




i

�z

a

i1

1

� � � z

a

in

n

be a Laurent polynomial with algebrai
ally

independent terms. Then the 
ompa
ti�ed (respe
tively quadrati
) amoeba of V(f) is

the inverse image under �

0

of the 
ompa
ti�ed (respe
tively quadrati
) amoeba of the

hyperplane

P

d

i=1




i

y

i

= 0. The logarithmi
 amoeba Log V(f) is the inverse image of

the logarithmi
 hyperplane amoeba under the linear map de�ned by the matrix (a

ij

).

Example 16. The Grassmann variety G

1;3

of lines in 3-spa
e is the variety in P

5

C

de�ned by

p

01

p

23

� p

02

p

13

+ p

03

p

12

= 0 :

Here, we 
onsider G

1;3

as a subvariety of (C

�

)

6

. The three terms in this quadrati


equation involve distin
t variables and are hen
e algebrai
ally independent. Note that

G

1;3

equals �

�1

(V ) where

� : (C

�

)

6

! (C

�

)

3

; (p

01

; p

02

; p

03

; p

12

; p

13

; p

23

) 7! (p

01

p

23

; p

02

p

13

; p

03

p

12

)

and V denotes the plane in 3-spa
e de�ned by the linear equation

x � y + z = 0 :

As we saw earlier in Corollary 11, the quadrati
 amoeba of V is de�ned by the

inequality

X

2

+ Y

2

+ Z

2

� 2XY + 2XZ + 2Y Z :

Corollary 15 implies that the quadrati
 amoeba of G

1;3

is de�ned by

P

2

01

P

2

23

+ P

2

02

P

2

13

+ P

2

03

P

2

12

� 2P

01

P

02

P

13

P

23

+ 2P

01

P

03

P

12

P

23

+ 2P

02

P

03

P

12

P

13

:

5. Drawing two-dimensional amoebas

After having investigated spe
i�
 
lasses of varieties, we now want to \
ompute"

the geometry of an arbitrary two-dimensional amoeba in the sense of drawing it. As

already seen in Se
tion 2, the main task is to understand the boundary stru
ture and

topology of the amoeba. In [15℄, the logarithmi
 Gauss map was used to investigate

the border of two-dimensional amoebas from a topologi
al point of view. Here, we

will use these ideas to establish a homotopy-based numeri
al algorithm for drawing an

amoeba. For general referen
es on homotopy-based numeri
al te
hniques in solving

systems of polynomial equations we refer to [6, 23℄.

Let f 2 C [z

1

; z

2

℄, and assume z 2 (C

�

)

2

is a non-singular point in V(f). We

�x a small neighborhood U around z and one bran
h of the holomorphi
 logarithm

fun
tion for this neighborhood. The image of this lo
al logarithm fun
tion log applied

to U \ V(f) de�nes a one-dimensional 
omplex manifold in C

2

. In parti
ular, the

normal dire
tion of this manifold at w = log z is given by the logarithmi
 Gauss map
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Figure 7. Criti
al points of the amoeba of a 
ubi
 fun
tion


 : U \ V(f)! P

1

C

,


(z) =

d(f Æ e

w

)

dw

�

�

�

w=log z

=

�

�f

�z

1

(e

w

);

�f

�z

2

(e

w

)

�

� diag(e

w

1

; e

w

2

)

�

�

�

w=log z

=

�

z

1

�f

�z

1

(z

1

; z

2

) ; z

2

�f

�z

2

(z

1

; z

2

)

�

:

Let 
rit

Log

(f) denote the 
riti
al points of the amoeba mapping, i.e., the points z

where the di�erential mapping of the amoeba mapping is not surje
tive. In order to

exhibit the geometri
 relationships, let us review the following theorem from [15℄.

Theorem 17. Let f 2 C [z

1

; z

2

℄ be a polynomial with real 
oeÆ
ients, and V(f) be

nowhere singular. Further let 
 : V(f)! P

1

C

be its logarithmi
 Gauss map. Then the

set of 
riti
al points of the amoeba mapping is given by 
rit

Log

(f) = 


�1

(P

1

R

).

Proof. A point z is a 
riti
al point of the amoeba mapping if and only if the hypersur-

fa
e de�ned by f 
ontains a tangent dire
tion (t

1

; t

2

) 2 C

2

n f0g su
h that t

k

= i


k

z

k

for some real 
onstants 


k

, k 2 f1; 2g. Combining this with the tangent 
ondition,

t

1

�f

�z

1

(z) + t

2

�f

�z

2

(z) = 0 ;

we obtain the 
ondition




1




1

(z) + 


2




2

(z) = 0 :

This equation has a nonzero real solution for (


1

; 


2

) if and only if 
(z) 2 P

1

R

� P

1

C

. �

Every boundary point of the amoeba is a 
riti
al point of the amoeba mapping.

Quite interestingly, we 
an also have a look at what happens in the situations when

there are less holes than the maximum possible number given by the number of latti
e

points in the Newton polygon. Figure 7 shows an amoeba and its 
riti
al points for

a 
ubi
 polynomial whose amoeba does not have a hole. We observe that the 
riti
al

points bound a non-
onvex region.

However, Figure 7 also shows that besides the boundary points and the 
riti
al

points bounding a non-
onvex region there are even more 
riti
al points. In order

to extra
t useful boundary information from the 
riti
al points we propose to use a
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Figure 8. The 
riti
al points of the amoeba map for the fun
tion

z

2

� z

2

1

+ 2z

1

� 5

homotopy-based method to tra
e the di�erent bran
hes within the set of all 
riti
al

points separately. To illustrate this idea, 
onsider the parabola V(f) in C

2

de�ned by

f(z

1

; z

2

) = z

2

� z

2

1

+ 2z

1

� 5.

Figure 8 shows the 
riti
al points of this fun
tion. By Theorem 17, they 
an be


omputed as follows. For all real s 2 R, we want to solve

f(z

1

; z

2

) = 0 ;(13)

g(z

1

; z

2

; s) := z

1

�f

�z

1

(z

1

; z

2

)� sz

2

�f

�z

2

(z

1

; z

2

) = 0(14)

for z

1

and z

2

. In order to avoid solving many systems of polynomial equations from

s
rat
h, we 
an apply the following numeri
al homotopy te
hnique. If we know a so-

lution z to the system of equations for a given starting parameter s, then we 
an tra
e

the 
orresponding one-dimensional bran
h of solutions by su

essively perturbing s

and numeri
ally 
omputing the new preimage z

new

.

For the parabola, we obtain the two tra
es depi
ted in Figure 9. Note that these

two tra
es 
oin
ide in the lower right part. The two points in whi
h the two tra
es

split are singular points for these 
urves; these points are also depi
ted in Figure 8.

Sin
e there does not exist a unique tangent dire
tion in these two points, they satisfy

(13), (14) as well as the equation

det

 

�f

�z

1

(z

1

; z

2

)

�f

�z

2

(z

1

; z

2

)

�g

�z

1

(z

1

; z

2

; s)

�g

�z

2

(z

1

; z

2

; s)

!

= 0 :

Namely, in 
ase of a nonzero determinant the Impli
it Fun
tion Theorem would guar-

antee a unique tangent dire
tion. Altogether, this gives a system of three polynomial

equations in the variables x, y, s for 
omputing the 
andidates of the splitting points.

Sin
e the set of 
riti
al points is a superset of the amoeba boundary, they de
om-

pose the amoeba into smaller regions. The next task is to de
ide algorithmi
ally

whi
h of the regions in the whole plane belong to the amoeba and whi
h of them

are the 
omplement 
omponents. Numeri
ally, we 
an pro
eed as follows. For every


riti
al point z whi
h we 
ompute during the homotopy method, we sample the neigh-

borhood of z on the 
omplex variety V(f) by numeri
ally 
omputing several points

z

(1)

; : : : ; z

(r)

2 V(f) 
lose to z. For any of these points z

(i)

, we 
ompute and draw the

image Log z

(i)

. Figure 10 shows the images of the sampling points in grey 
olor. By
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Figure 9. The two tra
es of the set of 
riti
al points

Figure 10. Numeri
ally drawing the boundary

de�nition, these additional points lie inside the amoeba. Hen
e, every region whi
h


ontains at least one image of a sampling point belongs to the amoeba.

Note that in Figure 10, sampling the neighborhood of those 
riti
al points whose

images are 
ontained in the interior of the amoeba only give image points towards

the lower-right side. Hen
e, they do not give a 
erti�
ate that the upper-left region is

part of the amoeba. However, this 
erti�
ate is established by the 
riti
al points on

the upper-left boundary. For related topologi
al investigations 
ompare [15℄. (E.g.,

the non-singular 
riti
al points whi
h are 
ontained in both 
urves of Figure 9 stem

from non-real preimages. The non-singular 
riti
al points whi
h appear in only one


urve stem from a real preimage.)

Now, assuming an underlying grid on the whole plane R

2

, te
hniques from 
omputer

graphi
s like �lling algorithms 
an be applied to �ll all the regions in whi
h a non-


riti
al point exists.

We remark that for the distin
tion of amoeba regions from the 
omplement regions,

it would also be helpful to have good algorithmi
 
hara
terizations of the tenta
le

dire
tions. Those 
hara
terizations in terms of universal Gr�obner bases are 
urrently

investigated by Bernd Sturmfels [21℄.
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