
COMPUTING AMOEBAS

THORSTEN THEOBALD

Abstrat. We study omputational aspets of amoebas assoiated with varieties

in (C

�

)

n

, both from an exat and from an experimental point of view. In partiular,

we give expliit haraterizations for the amoebas of lasses of linear and nonlinear

varieties and present homotopy-based tehniques to ompute the boundary of two-

dimensional amoebas.

1. Introdution

The notion of amoebas, introdued by Gel

0

fand, Kapranov and Zelevinsky in 1994

[11℄, serves to study the solution set X � C

n

of a system of polynomial equations.

Namely, it addresses this question from the following viewpoint. Given w 2 [0;1)

n

,

does there exist a vetor z 2 X with jz

1

j = w

1

; : : : ; jz

n

j = w

n

? How an the subset

of all vetors w = (w

1

; : : : ; w

n

) 2 [0;1)

n

be haraterized for whih the answer is

\yes" ? For reasons explained below, it is onvenient to work in the algebrai torus

C

�

:= C n f0g and look at log jz

i

j rather than jz

i

j itself.

Formally, the amoeba of a subset X � (C

�

)

n

is the image of X under the map

Log : (C

�

)

n

! R

n

;

z 7! (log jz

1

j; : : : ; log jz

n

j) ;

where log denotes the natural logarithm. The restrition Log

jX

is alled the amoeba

map of X. As we will see later in detail, if X is an algebrai urve in the plane (n = 2)

then its amoeba looks like one of those mirosopi animals, embraing onvex regions

and growing tentales towards in�nity in various diretions (f. Figure 1).

Amoebas have reently been used in several �elds of mathematis. Exemplarily,

we mention two of them. In topology, amoebas were used to provide signi�ant on-

tributions with regard to Hilbert's 16th problem (whih is still a widely open prob-

lem). Hilbert's problem asks for a lassi�ation of the topologial types of real alge-

brai manifolds and has initiated the orresponding branh of mathematis. Reently,

Mikhalkin used amoebas to prove topologial uniqueness of maximally arranged real

plane algebrai urves with respet to three lines [15℄.

In the �eld of dynamial systems, ations of Z

n

on ompat metri spaes an

be haraterized in terms of expansive behavior along the half-spaes of R

n

. In [7℄,

amoebas have been applied to haraterize this expansive behavior for algebrai Z

n

-

ations, i.e., ations of Z

n

by automorphisms of a ompat abelian group.

Other mathematial habitats of amoebas inlude omplex analysis [9, 19℄, mirror

symmetry [18℄, and measure theory [16, 17℄. However, omputational handling of

amoebas still involves many diÆulties and unsolved problems.

Key words and phrases. Amoebas, ideals, varieties, Laurent polynomials, Grassmannian, homo-

topy ontinuation methods.
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Figure 1. Amoeba Log V(f) for f(z

1

; z

2

) =

1

2

z

1

+

1

5

z

2

� 1

In the present paper, we study some onrete omputational questions both from

an exat and from an experimental point of view. In partiular, we will be onerned

with the ase where X is a subvariety of the torus (C

�

)

n

with X = V(I) for some

ideal I � C [z

�1

1

; : : : ; z

�1

n

℄.

From the exat point of view, we provide expliit haraterizations for ertain lasses

of linear varieties, thus extending the results of [9℄ on hyperplane amoebas. We also

give an exat haraterization for a lass of nonlinear varieties whih inludes the

Grassmannian of lines in 3-spae. These haraterizations an be used to answer

algorithmi questions, suh as membership of a given point to the amoeba.

For amoebas of plane algebrai urves whih do not �t into these spei� lasses, we

show how the topologial results of [15℄ an be used to establish homotopy-based nu-

merial tehniques to ompute the boundary of the amoeba. Experimentally, we have

used these tehniques and present some results (in terms of visualizations) illustrating

this approah.

The paper is strutured as follows. In Setion 2, we review some basi proper-

ties and theorems on amoebas, aompanied by experiments visualizing the shape of

amoebas. Then we introdue the relevant algorithmi questions. In Setions 3 and 4,

we give new expliit haraterizations for some lasses of linear and nonlinear varieties,

respetively. We omplement these haraterizations by some omputer-algebrai ex-

periments investigating some ases not overed by the theorems. Finally, in Setion 5,

we study homotopy-based tehniques to draw two-dimensional amoebas.

2. Preliminaries

Let C [z

�1

1

; : : : ; z

�1

n

℄ denote the ring of omplex Laurent polynomials in n variables,

i.e., sums of the form

P

�2J



�

z

�

with �nite index sets J � Z

n

(see, e.g., [6℄). For

Laurent polynomials f

1

; : : : ; f

m

, let V(f

1

; : : : ; f

m

) denote the set of ommon zeroes of

f

1

; : : : ; f

m

in (C

�

)

n

.

2.1. Hypersurfae amoebas. If X is an algebrai hypersurfae in (C

�

)

n

, then we

all the amoeba of X a hypersurfae amoeba [9℄. We assume that X is the zero set of

a single Laurent polynomial f(z) =

P

�2J



�

z

�

.

Example 1. (a) The shaded area in Figure 1 shows the amoeba Log V(f) for the

linear funtion

f(z

1

; z

2

) =

1

2

z

1

+

1

5

z

2

� 1 :
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Figure 2. Newton polygon of a dense quarti in two variables

Note that this amoeba is a two-dimensional set. When denoting the oordinates in

the amoeba plane by w

1

and w

2

, the three tentales have the asympotis w

1

= log 2,

w

2

= log 5, and w

2

= w

1

+log(5=2). We remark that the amoeba of a two-dimensional

variety V(f) 2 (C

�

)

2

is not always a two-dimensional set. Namely, e.g., for f(z

1

; z

2

) :=

z

1

+ z

2

, we obtain Log V(f) = f(w

1

; w

2

) 2 R

2

: w

1

= w

2

g.

(b) If f 2 C [z

�1

1

; : : : ; z

�1

n

℄ is a binomial in n variables,

f(z) = z

�

� z

�

with � 6= � 2 Z

n

, then the amoeba Log V(f) is a hyperplane in R

n

whih passes

through the origin. To see this, �rst note that for any omplex solution z of z

�

= z

�

,

the real vetor jzj = (jz

1

j; : : : ; jz

n

j) is a solution as well. So it suÆes to onsider

vetors z 2 (0;1)

n

. We an rewrite jzj

�

= jzj

�

as jzj

���

= 1, and by using the dot

produt of vetors we obtain

(�� �) � Log z = 0 :

Sine � 6= �, this equation de�nes a hyperplane in the oordinates log jz

1

j; : : : ; log jz

n

j

whih passes through the origin.

The following basi properties of amoebas have been stated in [11, 9℄. They are the

reason why it is often onvenient to look at log jz

i

j rather than jz

i

j itself.

Theorem 2. The omplement of a hypersurfae amoeba Log V(f) onsists of �nitely

many onvex regions, and these regions are in bijetive orrespondene with the dif-

ferent Laurent expansions of the rational funtion 1=f .

The shape of the amoeba is also related to the support

supp(f) = f� 2 Z

n

: 

�

6= 0g

of the funtion f and to the Newton polytope

New(f) = onv(supp(f)) :

Example 3. Figure 2 shows the Newton polygon of a dense quarti polynomial f

in two variables. Sine we are not aware of any visualizations of \real-life" amoebas

of interesting degree in literature (in the sense that the pitures do not only fous

on topologial orretness), let us present some experiments whih illustrate both the

topologial and the geometri struture of an amoeba. Figure 3 depits a series of

amoebas Log V(f) for dense quarti polynomials f 2 R[z

1

; z

2

℄. In the �rst piture in

this series, f is the produt of four linear funtions f

1

; f

2

; f

3

; f

4

. The amoeba of V(f)

is the union of the amoebas of V(f

1

), V(f

2

), V(f

3

), and V(f

4

). This polynomial f is

perturbed by adding or subtrating to every oeÆient 

�

of f (with the exeption of
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Figure 3. A series of quarti amoebas in two variables. The

�rst piture shows the amoeba of V(f

1

� f

2

� f

3

� f

4

), where

f

1

(z

1

; z

2

) =

�

1

30

z

1

+

1

30

z

2

� 1

�

, f

2

(z

1

; z

2

) =

�

1

5

z

1

+ 4z

2

� 1

�

, f

3

(z

1

; z

2

) =

�

3z

1

+

4

7

z

2

� 1

�

, f

4

(z

1

; z

2

) =

�

30z

1

+

1

300

z

2

� 1

�

.

the oeÆient orresponding to the onstant term) independently a random value in

the interval [0;

1

5

j

�

j); see the right piture in the top row. This perturbation proess

is then iterated another four times.

The series of pitures has been produed with aMaple program whih imposes an

appropriate grid on the omplex plane for one of the variables, say z

1

, then solving

the resulting quarti polynomials for z

2

.

By Theorem 2, the omplement



Log V(f) of an amoeba Log V(f) onsists of �nitely

many omponents. This gives rise to the following omputational de�nition of an order
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in terms of multidimensional omplex analysis, originating from the omputation of

multidimensional residues [9℄.

De�nition 4. The order of a point w 2



Log V(f) is de�ned by the vetor � 2 Z

n

whose omponents are

�

j

=

1

(2�i)

n

Z

Log

�1

(w)

z

j

�

j

f(z)

f(z)

dz

1

^ � � � ^ dz

n

z

1

� � � z

n

; 1 � j � n :

It an be shown that two di�erent points w;w

0

2



Log V(f) have the same order if

and only if they are ontained in the same onneted omponent E of



Log V(f).

Hene, � an also be alled the order of the omponent E. Moreover, it an be shown

that the order � of any omponent of



Log V(f) is ontained in the Newton polytope

New(f). In order to ompute an order, the following desription is useful.

Lemma 5. [9℄ For any vetor s 2 Z

n

n f0g and w 2



Log V(f), the diretional order

hs; �(f; w)i is equal to the number of zeroes (minus the order of the pole at the origin)

of the one-variable Laurent polynomial

u 7! f(

1

u

s

1

; : : : ; 

n

u

s

n

)

inside the unit irle juj = 1. Here,  2 (C

�

)

n

is any vetor with Log() = w.

All these results refer to the ase where X is an algebrai hypersurfae. A main

diÆulty in the treatment of amoebas of arbitrary varieties omes from the following

simple observation. If X, Y , and Z are subvarieties of (C

�

)

n

with X \ Y = Z, then

Log Z � Log X \ Log Y , but in general the inlusion is proper.

2.2. Basi omputational questions. Probably the most natural omputational

problem on amoebas is the one of membership whih has been raised by Douglas Lind

in onnetion with [7℄.

Membership:

Instane: Given n, m 2 N , f

1

; : : : ; f

m

2 C [z

�1

1

; : : : ; z

�1

n

℄, x 2 (0;1)

n

:

Question: Does there exist z 2 V(f

1

; : : : ; f

m

) with jz

k

j = x

k

for 1 � k � n ?

(I.e., is (logx

1

; : : : ; logx

n

) 2 Log V(f

1

; : : : ; f

m

) ?)

Expressing every omplex number z

k

in the form z

k

= u

k

+ iv

k

with u

k

; v

k

2 R,

the membership problem is a deision problem over the real numbers. It is known

from Tarski's results that those problems are deidable [22℄. From the omplexity-

theoretial point of view, let us reall that in the binary Turing mahine model, the

size of the input is de�ned as the length of the binary enoding of the input data [10℄,

so these statements refer to rational input vetors and rational input polynomials (i.e.,

polynomials with rational oeÆients). The time omplexity is measured in terms of

the overall input enoding. If the dimension n is �xed, then the theory of real losed

�elds an be deided in polynomial time [4, 2℄. More preisely, the following holds:

Theorem 6. For �xed dimension n, the following deision problem an be deided

in polynomial time: Given rational polynomials p

1

(x

1

; : : : ; x

n

); : : : ; p

s

(x

1

; : : : ; x

n

), a

Boolean formula '(x

1

; : : : ; x

n

) whih is a Boolean ombination of polynomial equa-

tions and inequalities, i.e., p

i

(x

1

; : : : ; x

n

) = 0 or p

i

(x

1

; : : : ; x

n

) � 0, and quanti�ers

Q

1

; : : : ; Q

n

, deide the truth of the statement

Q

1

(x

1

2 R) : : : Q

n

(x

n

2 R) '(x

1

; : : : ; x

n

) :
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We an onlude:

Corollary 7. For �xed dimension n, membership of a point to an amoeba an be

solved in polynomial time.

However, despite this (theoretial) fat that for �xed dimension these problems

an be deided in polynomial time, urrent implementations are only apable to deal

with very small dimensions, say, up to three real variables. Generally, there are two

approahes towards pratial solutions of deision problems over the reals. The one

is based on Collins' ylindrial algebrai deomposition (CAD) [4℄, and the other one

is the ritial point method ([13℄; for the state of the art see [1℄).

Another natural omputational task is to ompute (at least in a numerial sense)

the (relative) boundary for the amoeba of a given ideal, e.g, for visualization purposes.

This will be done in Setion 5.

2.3. Known results on the membership problem. The best way to answer ques-

tions like the membership problem is to know an expliit representation of the amoeba,

say, in terms of equalities and inequalities. Example 1 (b) ontains a representation of

this kind for the lass of binomials. In [9℄, those representations have been derived for

the ase of hypersurfae amoebas Log V(f), where f is a produt of linear funtions

f

1

; : : : ; f

m

. Sine Log V(g � h) = Log V(g)[ Log V(h) for any Laurent polynomials g,

h, all fators of f an be onsidered separately; hene, we an assume m = 1.

Let P

n

R

and P

n

C

denote the n-dimensional real projetive spae and n-dimensional

omplex projetive spae, respetively. In order to derive an expliit representation

of a hyperplane amoeba, it is helpful to deompose the logarithmi map into two

mappings. Firstly, the moment map

P

n

C

! �

n

(z

0

; : : : ; z

n

) 7!

(jz

0

j; jz

1

j; : : : ; jz

n

j)

P

n

i=0

jz

i

j

;

where �

n

is the regular simplex,

�

n

= f(t

0

; : : : ; t

n

) 2 R

n

: t

0

; : : : ; t

n

� 0;

n

X

i=0

t

i

= 1g :

This moment map an be onsidered on the whole variety V(f) in C

n

or P

n

C

rather

than only on the subvariety of (C

�

)

n

. The seond mapping

int(�

n

) ! R

n

(t

0

; : : : ; t

n

) 7!

�

log

t

1

t

0

; : : : ; log

t

n

t

0

�

;

is a homeomorphism from the interior of �

n

to R

n

. Following the notation in [11℄,

the image of a set X under the �rst mapping is alled the ompati�ed amoeba of

X. In partiular, the following theorem from [9℄ shows that it maps hyperplanes to

polytopes.

Theorem 8. [9℄ The ompati�ed amoeba of a hyperplane

X = fz 2 P

n

C

:

n

X

i=0

a

i

z

i

= 0g ;
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(1; 0; 0) (0; 1; 0)

(0; 0; 1)

Figure 4. Compati�ed amoeba of f(z

1

; z

2

) =

1

2

z

1

+

1

5

z

2

� 1

a

i

2 C , is the polytope in �

n

de�ned by the inequalities

ja

j

jt

j

�

X

k 6=j

ja

k

jt

k

; 0 � j � n :

If no two of the oeÆients a

i

are zero then the polytope has

�

n+1

2

�

verties given by

1

ja

i

j+ ja

j

j

(ja

j

je

i

+ ja

i

je

j

) ; 0 � i < j � n ;

where e

k

denotes the k-th unit vetor. In partiular, for n = 2, the ompati�ed

amoeba is the triangle in �

2

with verties

1

ja

0

j+ ja

1

j

(ja

1

j; ja

0

j; 0) ;

1

ja

0

j+ ja

2

j

(ja

2

j; 0; ja

0

j) ;

1

ja

1

j+ ja

2

j

(0; ja

2

j; ja

1

j) :

Figure 4 depits the ompati�ed amoeba of the (projetive losure of the) linear

variety V(f) with f(z

1

; z

2

) = z

1

=2 + z

2

=5� 1 from Example 1.

Hene, in order to hek whether a given point w 2 R

n

is ontained in the amoeba

Log V(f) of a hyperplane V(f) we ompute the orresponding point t in the om-

pati�ed variant by t

i

= e

w

i

=(

P

n

i=0

e

w

i

), 0 � i � n. By Theorem 8, we just have to

hek ontainment of t in a polytope that is given as an intersetion of �nitely many

halfspaes.

Figure 5 shows what an happen when onsidering the amoeba of a plane ubi

urve that fators into three lines. The amoeba of that urve is the union of the

amoebas of eah line. For some of these urves the amoeba ontains a \hole", i.e., an

additional bounded omponent in the omplement (as in Figure 5 (a)), and for some

of these urves the amoeba does not ontain suh a hole (as in Figure 5 (b)).

3. Amoebas of linear varieties

In this setion, we onsider linear varieties in P

n

C

of dimension less than n � 1. In

general, the ompati�ed amoeba of a variety of this kind is not a polytope, even if

the variety is de�ned by linear equations with real oeÆients. A line ` � P

n

C

whih is

de�ned by linear equations with real oeÆients is alled a real line in P

n

C

. Figure 6 (a)

shows the ompati�ed amoeba of a real line in P

3

C

.
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(a) With hole (b) Without hole

Figure 5. Compati�ed amoeba of plane ubi urves whih fator

into three linear terms

(1,0,0,0)

(0,1,0,0) (0,0,1,0)

(0,0,0,1)

(1,0,0,0)

(0,1,0,0) (0,0,1,0)

(0,0,0,1)

(a) Compati�ed amoeba (b) Quadrati amoeba

Figure 6. Amoebas of the line f(0; 1; 2) + �(1;�1;�1) : � 2 C g � C

3

In order to answer membership questions for real lines in P

n

C

, we onsider the

following quadrati amoeba (f. [18℄) de�ned by the map

P

n

C

! �

n

(z

0

; z

1

; : : : ; z

n

) 7!

(jz

0

j

2

; : : : ; jz

n

j

2

)

jz

0

j

2

+ : : :+ jz

n

j

2

:(1)

Analogous to Setion 2, if we know an expliit representation of a quadrati amoeba,

then we an easily solve the membership problem.

A line ` � P

n

C

an be represented by its n-dimensional Pl�uker oordinate

(p

ij

)

0�i<j�n

2 P

(

n+1

2

)

C

as follows (see, e.g., [14, 5℄). If a; b 2 P

n

C

are two di�erent

points on ` then let p

ij

= a

i

b

j

� a

j

b

i

, 0 � i < j � n. It is well-known that the

p

ij

satisfy ertain quadrati relations, the Pl�uker relations. E.g., for n = 3 we have

p

01

p

23

� p

02

p

13

+ p

03

p

12

= 0. The following theorem shows that the quadrati amoeba

of a real line in omplex n-spae is the onvex hull of an ellipse. See Figure 6 (b) for

an example.
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Remark. Figures 6 (a) and (b) have been produed with a three-dimensional

surfae plot in Maple, where the line ` � P

3

C

is onsidered as a two-dimensional

aÆne subspae over the reals.

Theorem 9. Let n � 3, and let ` be a real line in P

n

C

with Pl�uker oordinate

(p

ij

)

0�i<j�n

2 P

n

R

. Furthermore, let none of the oeÆients p

ij

be zero.

A point w 2 �

n

is ontained in the quadrati amoeba of ` if and only if the following

equations and inequality are satis�ed:

(2) p

12

p

1j

p

2j

w

0

� p

02

p

0j

p

2j

w

1

+ p

01

p

0j

p

1j

w

2

� p

01

p

02

p

12

w

j

= 0 ; 3 � j � n

and

(3) 2p

2

13

p

2

23

w

1

w

2

+ 2p

2

12

p

2

23

w

1

w

3

+ 2p

2

12

p

2

13

w

2

w

3

� p

4

23

w

2

1

� p

4

13

w

2

2

� p

4

12

w

2

3

� 0 :

Sine the theorem assumes that none of the oeÆients p

ij

is zero, the n� 2 equa-

tions in (2) de�ne a two-dimensional subspae. Further note that for a line whose

Pl�uker oeÆients are not all nonzero, equations (2) and inequality (3) might vanish

identially (e.g., for ` = f(0; 0; 0) + �(1; 2; 3) : � 2 C g. However, all these speial

ases an be treated separately.

Proof. Consider the points A = (p

01

; 0;�p

12

;�p

13

; : : : ;�p

1n

) and B = (�p

02

;�p

12

;

0; p

23

; : : : ; p

2n

) on `. Then ` an be written in the parameterized form �A+ �B with

�; � 2 C , (�; �) 6= (0; 0). Without loss of generality we an assume � 2 R.

In order to prove that the image of every point z 2 ` under the quadrati amoeba

mapping satis�es (2) and (3), let z have the form �A+ �B. To simplify notation, let

w denote only the numerator of the image de�ned in (1). Then we have

w

0

= j�p

01

� �p

02

j

2

;(4)

w

1

= j�j

2

p

2

12

;(5)

w

2

= �

2

p

2

12

;(6)

w

j

= j � �p

1j

+ �p

2j

j

2

; 3 � j � n :(7)

We expand the sum on the left-hand side of (2) via (4){(7) and jaj

2

= aa, and

separately onsider the oeÆients of �

2

, j�j

2

, and �(� + �) in this expansion. The

oeÆient of �

2

is

�p

01

p

12

p

1j

(p

01

p

2j

� p

02

p

1j

+ p

0j

p

12

) :

The expression in the brakets evaluates to zero by the Pl�uker relations. Sine the

oeÆients of j�j

2

and of �(�+�) vanish as well, equation (2) is satis�ed for 3 � j � n.

Expanding the sum on the left-hand side of (3), the oeÆients of �

4

, �

3

(� + �),

�j�j

2

(� + �), and j�j

4

vanish. With regard to terms of degree 2 in both variables,

there are both terms ontaining �

2

j�j

2

and terms ontaining �

2

(�+ �)

2

. Namely, we

obtain the expression

4p

2

12

p

2

13

p

4

23

�

2

j�j

2

� p

2

12

p

2

13

p

4

23

�

2

(�+ �)

2

:

Sine p

ij

2 R, � 2 R and (�+ �)

2

= 4(Re �)

2

� 4j�j

2

, inequality (3) is ful�lled.

Conversely, assume that a point w 2 �

n

satis�es (2) and (3). We will expliitly

ompute the parameters � 2 R and � 2 C of a point z 2 ` with

P

n

i=0

jz

i

j

2

= 1 suh

that w is the image of z under the quadrati amoeba mapping.

Sine none of the Pl�uker oeÆients p

ij

is zero, the representations (5) and (6) of

w in terms of �, � imply j�j

2

= w

1

=p

2

12

and �

2

= w

2

=p

2

12

. Furthermore, sine the ase
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w

1

= w

2

= 0 would lead to a ontradition, we have j�j

2

> 0 or �

2

> 0. Equation (7)

for j = 3 implies

(8) ��(�+ �) =

w

3

� �

2

p

2

13

� j�jp

2

23

p

23

p

13

:

In ase � 6= 0, squaring this equation and substituting the expressions for j�j

2

and �

2

yields

(Re �)

2

=

(p

2

12

w

3

� p

2

13

w

2

� p

2

23

w

1

)

2

4p

2

12

p

2

13

p

2

23

w

2

:

This equation together with the equation for j�j

2

give a solution for � if and only if

the right-hand side is less than or equal to j�j

2

, whih yields the ondition

(p

2

12

w

3

� p

2

13

w

2

� p

2

23

w

1

)

2

� 4p

2

13

p

2

23

w

1

w

2

:

However, the latter ondition is equivalent to inequality (3). Hene, there exists a

solution for � and � satisfying (5), (6), and (7) for j = 3. It remains to show that

this solution also satis�es (4) and (7) for 4 � j � n. With regard to (4), substituting

�(� + �) in (4) by (8) and substituting �

2

, j�j

2

in the resulting equation gives the

linear equation in w,

(p

2

02

p

13

p

23

� p

01

p

02

p

2

23

)w

1

+ (p

2

01

p

13

p

23

� p

2

13

p

01

p

02

)w

2

+ p

01

p

02

p

2

12

w

3

= p

2

12

p

13

p

23

w

0

:

By applying the Pl�uker relations on the terms in the brakets, this equation is equiv-

alent to (2). Analogously, it an be heked that (7) is satis�ed for 4 � j � n. Finally,

the ase � = 0 implies w

2

= 0 and an be heked diretly. �

The following orollaries express the quadrati amoeba diretly in terms of the

de�ning inequalities of a real line ` in 3- or 2-spae.

Corollary 10. Let ` be a line in P

3

C

given as the solution of the system of linear

equations

a

0

z

0

+ a

1

z

1

+ a

2

z

2

+ a

3

z

3

= 0 ;

b

0

z

0

+ b

1

z

1

+ b

2

z

2

+ b

3

z

3

= 0

with real oeÆients a

i

; b

i

. Further, let q = (q

01

; : : : ; q

23

) 2 P

5

R

, q

ij

= a

i

b

j

� a

j

b

i

,

denote the dual Pl�uker oordinate of `, and let none of the dual Pl�uker oeÆients

q

ij

be zero. Then the quadrati amoeba of ` is given by the set of points w 2 �

3

satisfying

(9) q

01

q

02

q

03

w

0

� q

01

q

12

q

13

w

1

+ q

02

q

12

q

23

w

2

� q

03

q

13

q

23

w

3

= 0

and

(10) 2q

2

01

q

2

02

w

1

w

2

+ 2q

2

01

q

2

03

w

1

w

3

+ 2q

2

02

q

2

03

w

2

w

3

� q

4

01

w

2

1

� q

4

02

w

2

2

� q

4

03

w

2

3

� 0 :

Proof. The statement follows immediately from Theorem 9 and the well-known rela-

tion that the vetors (p

01

; : : : ; p

23

) and (q

23

;�q

13

; q

12

; q

03

;�q

02

; q

01

) oinide in P

5

(see,

e.g., [14℄). �
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Similar to Theorem 9 it an be shown:

Corollary 11. Let ` be a line in P

2

C

given as the solution of the linear equation

a

0

z

0

+ a

1

z

1

+ a

2

z

2

= 0

with real oeÆients a

i

. Then the quadrati amoeba of ` is given by the inequality

2a

2

0

a

2

1

w

0

w

1

+ 2a

2

0

a

2

2

w

0

w

2

+ 2a

2

1

a

2

2

w

1

w

2

�

2

X

i=0

a

4

i

w

2

i

� 0 :

The following statement gives a partial answer to the question how the quadrati

amoebas of hyperplanes look like.

Theorem 12. The quadrati amoeba of a hyperplane

X = fz 2 P

n

C

:

n

X

i=0

a

i

z

i

= 0g ;

a

i

2 C , has a boundary whih is ontained in a hypersurfae of degree 2

n�1

. For n = 3

this surfae is given by

W

2

W

3

(8W

1

+ 4(W

0

�W

1

�W

2

�W

3

))

2

�(�4W

1

(W

2

+W

3

) + (W

0

�W

1

�W

2

�W

3

)

2

+ 4W

2

W

3

)

2

= 0 ;

where W

i

:= ja

i

jw

i

.

Proof. Aording to Theorem 8, the faets of the polytope of the ompati�ed amoeba

are given by equations of the form

(11) ja

0

jt

0

=

n

X

i=1

ja

i

jt

i

in the variables t

0

; : : : ; t

n

.

By passing over to the quadrati amoeba, desribed in the variables w

0

; : : : ; w

n

, we

obtain instead

(12)

p

ja

0

jw

0

=

n

X

i=1

p

ja

i

jw

i

:

Without loss of generality we assume n � 2. By n�1 squaring steps we an eliminate

the square roots of w

0

; : : : ; w

n�2

. Sine the original equation is homogeneous, this

gives an equation in whih the only square root is

p

w

n�1

w

n

. This square root an

be removed by another squaring operation. In partiular, for n = 3 the squaring

operations are applied on Equation (12), on

p

W

1

� 2(

p

W

2

+

p

W

3

) =W

0

�W

1

�W

2

�W

3

� 2

p

W

2

W

3

;

and on

p

W

2

W

3

(8W

1

+ 4(W

0

�W

1

�W

2

�W

3

))

= � 4W

1

(W

2

+W

3

) + (W

0

�W

1

�W

2

�W

3

)

2

+ 4W

2

W

3

:

We obtain the the equation stated in the theorem. Sine the equations of the other

faets in Theorem 8 di�er from (11) just by various signs (whih beome irrelevant

within the squaring proess), they lead to the same equation.

The same method for omputing the hypersurfae equation an be used for any

n � 2. �



12 T. THEOBALD

For all the lasses of varieties treated in this setion, we an observe: if the quadrati

amoeba is de�ned by equations with real oeÆients, then the relative boundary of

the amoeba is given by the images of real points in the variety V . In partiular, for

a point w in the amoeba with a real preimage in V , the inequalities (3) and (10)

beome equalities. If we neglet the ommon denominator of all omponents, then for

the real points in V , the quadrati amoeba mapping is a Veronese mapping P

n

C

! P

n

C

,

z 7! (z

2

0

; : : : ; z

2

n

). So the problem to haraterize the quadrati amoeba images for

the real points of a d-dimensional linear subspae in P

n

C

orresponds to �nding the

algebrai relations of the squares of n+1 homogeneous linear forms on a d-dimensional

projetive spae. From this point of view, Corollary 10 implies that the squares of

four homogeneous linear forms (in general position) on a one-dimensional projetive

spae satisfy a linear and a quadrati relation.

In order to investigate these algebrai relations for higher dimensions, we an apply

omputer algebra systems, suh asMaaulay 2 [12℄ (see, e.g., [8, p. 19℄ for a related

treatment of the twisted ubi urve). In this omputer experiment, we work over

the �nite �eld F := Z

32749

, taking into aount the experiene that for these kind of

omputations, we obtain the same qualititative results we would get in harateristi 0.

The Maaulay 2 program shown below hooses n+1 random homogeneous linear

forms L

0

(z

0

; : : : ; z

d

); : : : ; L

n

(z

0

; : : : ; z

d

) in d+ 1 homogeneous variables,

P

d

F

! P

n

F

;

(z

0

; : : : ; z

d

) 7! (L

0

(z

0

; : : : ; z

d

); : : : ; L

n

(z

0

; : : : ; z

d

)) :

Assuming that the linear forms are generi, the image of this map de�nes a d-

dimensional subspae of an n-dimensional projetive spae. The kernel of the map

de�nes an ideal I � Z

32749

[y

0

; : : : ; y

n

℄ whih onsists of the algebrai relations among

the elements in the image (for the algorithmi tehniques underlying the omputation

of this ideal see [3℄).

d = 1

n = 3

R = ZZ/32749[z_0..z_d℄

S = ZZ/32749[y_0..y_n℄

I = kernel( map( R, S, apply(toList(0..n), i -> (random(1,R))^2 )));

d, n, dim I, degree I, apply(first entries mingens I, f -> degree f)

Besides the values of d, n, the dimension of I, and the degree of I, the last line prints

the degrees of a minimal set of generators of I. The output is

(1, 3, 2, 2, {{1}, {2}})

The degrees f1; 2g of a minimal set of generators orrespond to the linear and the

quadrati relation of Corollary 10. For amoebas of planes in 4-spae we have to

onsider d = 2 and n = 4. The orresponding Maaulay 2 omputation shows that

the homogeneous ideal of algebrai relations for the squares of the �ve linear forms is

generated by seven ubis:

(2, 4, 3, 4, {{3}, {3}, {3}, {3}, {3}, {3}, {3}})

So these omputations give some indiation how the quadrati amoeba images of the

real points in the linear variety an be haraterized. However, we do not know in

how far these tehniques an be exploited to �nd good haraterizations also of the

images of the omplex points.
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4. Amoebas of nonlinear varieties

In this setion, we explain the omputation of an amoeba when the de�ning

equations of the variety have a simpler expression in terms of algebraially inde-

pendent monomials. Let �

1

; : : : ; �

d

be d Laurent monomials in n variables, say,

�

i

= z

a

i

= z

a

i1

1

z

a

i2

2

� � � z

a

in

n

, where a

i

= (a

i1

; : : : ; a

in

) 2 Z

n

. They de�ne a homo-

morphism � of algebrai groups from (C

�

)

n

to (C

�

)

d

. Let V be any subvariety of

(C

�

)

d

. Then its inverse image �

�1

(V ) is a subvariety of (C

�

)

n

. Our objetive is to

ompute the amoeba of �

�1

(V ) in terms of the amoeba of V .

Lemma 13. The following three onditions are equivalent:

(i) The map � is onto.

(ii) The monomials �

1

; : : : ; �

d

are algebraially independent.

(iii) The vetors a

1

; : : : ; a

d

are linearly independent.

Proof. Equivalene of (ii) and (iii) is stated e.g. in the proof of [20, Lemma 4.2℄: every

Z-linear relation among a

1

; : : : ; a

n

translates into an algebrai relation of the form

�

d

1

i

1

� � ��

d

r

i

r

� �

e

1

j

1

� � ��

e

s

j

s

= 0 with d

1

; : : : ; d

r

; e

1

; : : : ; e

s

2 N . The ideal of all algebrai

relations among our monomials is generated by suh binomials.

In order to show that (iii) implies (i), for a given y 2 (C

�

)

d

hoose x 2 C

d

with

e

x

i

= y

i

, 1 � i � d. If a

1

; : : : ; a

d

are linearly independent then there exists z 2 C

n

with a

i1

z

1

+ : : :+ a

in

z

n

= x

i

for 1 � i � d; hene �(e

z

1

; : : : ; e

z

n

) = y.

Finally, in order to show that (i) implies (iii), it suÆes to show that the integer

vetors a

1

; : : : ; a

d

are linearly independent over R. For a given x 2 R

d

let z be the

preimage of (e

x

1

; : : : ; e

x

d

) under �. We an assume z 2 (0;1)

n

, beause otherwise

we an pass over to (jz

1

j; : : : ; jz

n

j). Sine a

i1

z

1

+ : : : + a

in

z

n

= x

i

, 1 � i � d, we an

onlude the linear independene. �

Let �

0

denote the restrition of � to the multipliative subgroup (0;1)

n

. Consider

the following ommutative diagram of multipliative abelian groups:

(C

�

)

n

�

�! (C

�

)

d

# #

(0;1)

n

�

0

�! (0;1)

d

The vertial maps are taking oordinate-wise absolute value. For vetors p =

(p

1

; : : : ; p

n

) in (C

�

)

n

we write jpj = (jp

1

j; : : : ; jp

n

j) 2 (0;1)

n

, and similarly for vetors

of length d. Further, for V � (C

�

)

n

let jV j := fjpj : p 2 V g.

Lemma 14. Suppose that the three equivalent onditions in Lemma 13 hold. Then

j�

�1

(V )j = �

0�1

(jV j).

Proof. It is straightforward to hek, without any assumptions on �, that �

0

maps

j�

�1

(V )j into jV j. In other words, j�

�1

(V )j is always a subset of �

0�1

(jV j). What we

must prove is �

0�1

(jV j) � j�

�1

(V )j. Let u 2 �

0�1

(jV j). Then �

0

(u) 2 jV j. Fix any

point � in the subvariety V of (C

�

)

d

suh that j�j = �

0

(u). Now use the assumption

that � is surjetive: we hoose any preimage � of � under �. Thus � is a point in the

subvariety �

�1

(V ) of (C

�

)

n

. Consider now the point � � u � (j�j)

�1

in the algebrai

group (C

�

)

n

. We have

�

�

� � u � (j�j)

�1

�

= �(�) � �(u) � j�(�)j

�1

= � � �

0

(u) � j�j

�1

= � 2 V :
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Thus � � u � (j�j)

�1

lies in �

�1

(V ). Its image under the absolute value map equals

�

�

� � u � (j�j)

�1

�

�

= j�j � juj � (j�j)

�1

= juj ;

and we onlude that u lies in j�

�1

(V )j, as desired. �

Lemma 14 applies to the logarithmi amoeba, the ompati�ed amoeba, and the

quadrati amoeba of �

�1

(V ), sine all of these amoebas are images of j�

�1

(V )j.

Corollary 15. Let f =

P

d

i=1



i

�z

a

i1

1

� � � z

a

in

n

be a Laurent polynomial with algebraially

independent terms. Then the ompati�ed (respetively quadrati) amoeba of V(f) is

the inverse image under �

0

of the ompati�ed (respetively quadrati) amoeba of the

hyperplane

P

d

i=1



i

y

i

= 0. The logarithmi amoeba Log V(f) is the inverse image of

the logarithmi hyperplane amoeba under the linear map de�ned by the matrix (a

ij

).

Example 16. The Grassmann variety G

1;3

of lines in 3-spae is the variety in P

5

C

de�ned by

p

01

p

23

� p

02

p

13

+ p

03

p

12

= 0 :

Here, we onsider G

1;3

as a subvariety of (C

�

)

6

. The three terms in this quadrati

equation involve distint variables and are hene algebraially independent. Note that

G

1;3

equals �

�1

(V ) where

� : (C

�

)

6

! (C

�

)

3

; (p

01

; p

02

; p

03

; p

12

; p

13

; p

23

) 7! (p

01

p

23

; p

02

p

13

; p

03

p

12

)

and V denotes the plane in 3-spae de�ned by the linear equation

x � y + z = 0 :

As we saw earlier in Corollary 11, the quadrati amoeba of V is de�ned by the

inequality

X

2

+ Y

2

+ Z

2

� 2XY + 2XZ + 2Y Z :

Corollary 15 implies that the quadrati amoeba of G

1;3

is de�ned by

P

2

01

P

2

23

+ P

2

02

P

2

13

+ P

2

03

P

2

12

� 2P

01

P

02

P

13

P

23

+ 2P

01

P

03

P

12

P

23

+ 2P

02

P

03

P

12

P

13

:

5. Drawing two-dimensional amoebas

After having investigated spei� lasses of varieties, we now want to \ompute"

the geometry of an arbitrary two-dimensional amoeba in the sense of drawing it. As

already seen in Setion 2, the main task is to understand the boundary struture and

topology of the amoeba. In [15℄, the logarithmi Gauss map was used to investigate

the border of two-dimensional amoebas from a topologial point of view. Here, we

will use these ideas to establish a homotopy-based numerial algorithm for drawing an

amoeba. For general referenes on homotopy-based numerial tehniques in solving

systems of polynomial equations we refer to [6, 23℄.

Let f 2 C [z

1

; z

2

℄, and assume z 2 (C

�

)

2

is a non-singular point in V(f). We

�x a small neighborhood U around z and one branh of the holomorphi logarithm

funtion for this neighborhood. The image of this loal logarithm funtion log applied

to U \ V(f) de�nes a one-dimensional omplex manifold in C

2

. In partiular, the

normal diretion of this manifold at w = log z is given by the logarithmi Gauss map
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Figure 7. Critial points of the amoeba of a ubi funtion

 : U \ V(f)! P

1

C

,

(z) =

d(f Æ e

w

)

dw

�

�

�

w=log z

=

�

�f

�z

1

(e

w

);

�f

�z

2

(e

w

)

�

� diag(e

w

1

; e

w

2

)

�

�

�

w=log z

=

�

z

1

�f

�z

1

(z

1

; z

2

) ; z

2

�f

�z

2

(z

1

; z

2

)

�

:

Let rit

Log

(f) denote the ritial points of the amoeba mapping, i.e., the points z

where the di�erential mapping of the amoeba mapping is not surjetive. In order to

exhibit the geometri relationships, let us review the following theorem from [15℄.

Theorem 17. Let f 2 C [z

1

; z

2

℄ be a polynomial with real oeÆients, and V(f) be

nowhere singular. Further let  : V(f)! P

1

C

be its logarithmi Gauss map. Then the

set of ritial points of the amoeba mapping is given by rit

Log

(f) = 

�1

(P

1

R

).

Proof. A point z is a ritial point of the amoeba mapping if and only if the hypersur-

fae de�ned by f ontains a tangent diretion (t

1

; t

2

) 2 C

2

n f0g suh that t

k

= i

k

z

k

for some real onstants 

k

, k 2 f1; 2g. Combining this with the tangent ondition,

t

1

�f

�z

1

(z) + t

2

�f

�z

2

(z) = 0 ;

we obtain the ondition



1



1

(z) + 

2



2

(z) = 0 :

This equation has a nonzero real solution for (

1

; 

2

) if and only if (z) 2 P

1

R

� P

1

C

. �

Every boundary point of the amoeba is a ritial point of the amoeba mapping.

Quite interestingly, we an also have a look at what happens in the situations when

there are less holes than the maximum possible number given by the number of lattie

points in the Newton polygon. Figure 7 shows an amoeba and its ritial points for

a ubi polynomial whose amoeba does not have a hole. We observe that the ritial

points bound a non-onvex region.

However, Figure 7 also shows that besides the boundary points and the ritial

points bounding a non-onvex region there are even more ritial points. In order

to extrat useful boundary information from the ritial points we propose to use a
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Figure 8. The ritial points of the amoeba map for the funtion

z

2

� z

2

1

+ 2z

1

� 5

homotopy-based method to trae the di�erent branhes within the set of all ritial

points separately. To illustrate this idea, onsider the parabola V(f) in C

2

de�ned by

f(z

1

; z

2

) = z

2

� z

2

1

+ 2z

1

� 5.

Figure 8 shows the ritial points of this funtion. By Theorem 17, they an be

omputed as follows. For all real s 2 R, we want to solve

f(z

1

; z

2

) = 0 ;(13)

g(z

1

; z

2

; s) := z

1

�f

�z

1

(z

1

; z

2

)� sz

2

�f

�z

2

(z

1

; z

2

) = 0(14)

for z

1

and z

2

. In order to avoid solving many systems of polynomial equations from

srath, we an apply the following numerial homotopy tehnique. If we know a so-

lution z to the system of equations for a given starting parameter s, then we an trae

the orresponding one-dimensional branh of solutions by suessively perturbing s

and numerially omputing the new preimage z

new

.

For the parabola, we obtain the two traes depited in Figure 9. Note that these

two traes oinide in the lower right part. The two points in whih the two traes

split are singular points for these urves; these points are also depited in Figure 8.

Sine there does not exist a unique tangent diretion in these two points, they satisfy

(13), (14) as well as the equation

det

 

�f

�z

1

(z

1

; z

2

)

�f

�z

2

(z

1

; z

2

)

�g

�z

1

(z

1

; z

2

; s)

�g

�z

2

(z

1

; z

2

; s)

!

= 0 :

Namely, in ase of a nonzero determinant the Impliit Funtion Theorem would guar-

antee a unique tangent diretion. Altogether, this gives a system of three polynomial

equations in the variables x, y, s for omputing the andidates of the splitting points.

Sine the set of ritial points is a superset of the amoeba boundary, they deom-

pose the amoeba into smaller regions. The next task is to deide algorithmially

whih of the regions in the whole plane belong to the amoeba and whih of them

are the omplement omponents. Numerially, we an proeed as follows. For every

ritial point z whih we ompute during the homotopy method, we sample the neigh-

borhood of z on the omplex variety V(f) by numerially omputing several points

z

(1)

; : : : ; z

(r)

2 V(f) lose to z. For any of these points z

(i)

, we ompute and draw the

image Log z

(i)

. Figure 10 shows the images of the sampling points in grey olor. By
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Figure 9. The two traes of the set of ritial points

Figure 10. Numerially drawing the boundary

de�nition, these additional points lie inside the amoeba. Hene, every region whih

ontains at least one image of a sampling point belongs to the amoeba.

Note that in Figure 10, sampling the neighborhood of those ritial points whose

images are ontained in the interior of the amoeba only give image points towards

the lower-right side. Hene, they do not give a erti�ate that the upper-left region is

part of the amoeba. However, this erti�ate is established by the ritial points on

the upper-left boundary. For related topologial investigations ompare [15℄. (E.g.,

the non-singular ritial points whih are ontained in both urves of Figure 9 stem

from non-real preimages. The non-singular ritial points whih appear in only one

urve stem from a real preimage.)

Now, assuming an underlying grid on the whole plane R

2

, tehniques from omputer

graphis like �lling algorithms an be applied to �ll all the regions in whih a non-

ritial point exists.

We remark that for the distintion of amoeba regions from the omplement regions,

it would also be helpful to have good algorithmi haraterizations of the tentale

diretions. Those haraterizations in terms of universal Gr�obner bases are urrently

investigated by Bernd Sturmfels [21℄.
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