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Abstra
t. We provide an algebrai
 framework to 
ompute smallest en
losing and small-

est 
ir
ums
ribing 
ylinders of simpli
es in Eu
lidean spa
e E

n

. Expli
itly, the 
ompu-

tation of a smallest en
losing 
ylinder in E

3

is redu
ed to the 
omputation of a smallest


ir
ums
ribing 
ylinder. We improve existing polynomial formulations to 
ompute the

lo
ally extreme 
ir
ums
ribing 
ylinders in E

3

and exhibit sub
lasses of simpli
es where

the algebrai
 degrees 
an be further redu
ed. Moreover, we generalize these eÆ
ient for-

mulations to the n-dimensional 
ase and provide bounds on the number of lo
al extrema.

Using elementary invariant theory, we prove stru
tural results on the dire
tion ve
tors

of any lo
ally extreme 
ir
ums
ribing 
ylinder for regular simpli
es.

1. Introdu
tion

Radii (of various types) belong to the most important fun
tionals of polytopes and

general 
onvex bodies in Eu
lidean spa
e E

n

[3, 16, 18℄, and they are related to appli
ations

in 
omputer vision, roboti
s, 
omputational biology, fun
tional analysis, and statisti
s (see

[17℄). Following the notation in [3℄, the outer j-radius R

j

(C) of a 
onvex body C � E

n

is the radius of the smallest en
losing j-dimensional sphere in an optimal orthogonal

proje
tion of C onto a j-dimensional linear subspa
e. Studying these radii, mainly for

regular simpli
es and regular polytopes, is a 
lassi
al topi
 of 
onvex geometry (see [2, 4,

12, 16℄).

From the 
omputational point of view, most of the existing algorithms for 
omputing

these radii fo
us on approximation [6, 19℄. A major reason is that exa
t 
omputations

lead to algebrai
 problems of high degree, even for 
omputing, say, the outer (n�1)-radius

in E

n

(already if n = 3). However, sin
e some approa
hes for 
omputing radii of general

polytopes 
onsider the 
omputation of a smallest en
losing or smallest 
ir
ums
ribing


ylinder of a simplex as a bla
k box within a larger 
omputation [1, 24℄, these 
ore problems

on simpli
es are of fundamental importan
e.

Re
ently, the authors of [10℄ demonstrated that using their state-of-the-art numeri-


al polynomial solvers, various problems related to 
ylinders in E

3


an be solved rather

eÆ
iently. In parti
ular, the authors give a polynomial formulation for the smallest 
ir-


ums
ribing 
ylinder of a simplex in E

3

, whose B�ezout number { the produ
t of the degrees

of the polynomial equations { is 60. However, these equations 
ontain 
ertain undesired

solutions with multipli
ity 4, and as a result of these multipli
ities the 
omputation times
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(using state-of-the-art numeri
al te
hniques) are about a fa
tor 100 larger than those of

similar problems in whi
h all solutions o

ur with multipli
ity 1.

Here, we provide a general algebrai
 framework for 
omputing smallest en
losing and


ir
ums
ribing 
ylinders of simpli
es in E

n

. First we redu
e the 
omputation of a smallest

en
losing 
ylinder in E

3

to the 
omputation of a smallest 
ir
ums
ribing 
ylinder, thus


ombining these two problems. Then we investigate smallest 
ir
ums
ribing 
ylinders of

simpli
es in E

3

. We improve the results of [10℄ by providing a polynomial formulation

for the lo
ally extreme 
ylinders, whose B�ezout bound is 36 and whose solutions gener-

i
ally have multipli
ity one. Our formulations use te
hniques from the paper [22℄ whi
h

studies the lines simultaneously tangent to four unit spheres. These te
hniques also fa
il-

itate to present 
lasses of simpli
es for whi
h the algebrai
 degrees in 
omputing smallest


ir
ums
ribing 
ylinders 
an be 
onsiderably redu
ed.

Se
tion 4 
ontains a generalization of our approa
h to smallest 
ir
ums
ribing 
ylinders

of simpli
es in E

n

. The B�ezout number of this formulation yields a bound on the number

of lo
ally extreme 
ylinders. Sin
e that bound is not tight, we provide better bounds for

small dimensions, whi
h are are based on mixed volume 
omputations and Bernstein's

Theorem. Moreover, we study in detail the lo
ally extreme 
ir
ums
ribing 
ylinders of a

regular simplex in E

n

. To exploit many symmetries in the analysis, a formulation based on

symmetri
 polynomials is provided. Using elementary invariant theory we show that the

dire
tion ve
tor of every lo
ally extreme 
ir
ums
ribing 
ylinder has at most three distin
t

values in its 
omponents. This stru
tural result is then related to the 
ombinatorial results

on the number of solutions for general simpli
es.

As a byprodu
t of our 
omputational studies, we dis
overed a subtle but severe mistake

in the paper [32℄ on the expli
it determination of the outer (n�1)-radius for a regular

simplex in E

n

(n even), thus 
ompletely invalidating the proof given there. The appendix


ontains a des
ription of that 
aw, in
luding some 
omputer-algebrai
 
al
ulations illus-

trating it. We remark that after the present paper had been �nished, we found a new way

for determining R

n�1

of a regular simplex in even dimension (see [5℄).

2. Preliminaries and ba
kground

2.1. j-radii and 
ylinders. Throughout the paper we work in Eu
lidean spa
e E

n

, i.e.,

R

n

with the usual s
alar produ
t x � y =

P

n

i=1

x

i

y

i

and norm jjxjj = (x � x)

1=2

. We write

x

2

for x � x.

A j-
at is an aÆne subspa
e of dimension j. For a 
onvex polytope P � E

n

(or a �nite

point set P � E

n

) and a j-
at E, we 
onsider

RD(P; E) := max

p2P

dist(p; E);

where dist(p; E) denotes the Eu
lidean distan
e from p to E. The outer j-radius of P is

R

j

(P) := min

E is an (n�j)-
at

RD(P; E) :

The 
hoi
e of the indexing in the j-radius stems from the fa
t that it measures the

radius of the smallest en
losing j-dimensional sphere in an optimal orthogonal proje
tion

of P onto a j-dimensional linear subspa
e (
f. [3, 16℄).
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One of the most natural representatives of this 
lass is the one with j = 2, n = 3, i.e.,

the smallest en
losing (
ir
ular) 
ylinder of a polytope. In E

n

, we de�ne a 
ylinder to be

a set of the form

bd(`+ �B

n

);

where ` is a line in E

n

, B

n

denotes the unit ball, � > 0, the addition denotes the Minkowski

sum, and bd(�) denotes the boundary of a set. We say that P 
an be en
losed in a 
ylinder

C if P is 
ontained in the 
onvex hull of C. Thus the outer (n�1)-radius gives the radius

of a smallest en
losing 
ylinder of a polytope.

A simplex in E

n

is the 
onvex hull of n + 1 aÆnely independent points. An en
losing


ylinder C of a simplex P is 
alled a 
ir
ums
ribing 
ylinder of P if all the verti
es of P

are 
ontained in (the hypersurfa
e) C.

2.2. Smallest 
ir
ums
ribing 
ylinders and smallest en
losing 
ylinders. The fol-

lowing statement 
onne
ts the 
omputation of a smallest en
losing 
ylinder of a polytope

with the 
omputation of a smallest 
ir
ums
ribing 
ylinder of a simplex.

1

Theorem 1. Let P = fp

1

; : : : ; p

m

g be a set of m � 4 points in E

3

, not all 
ollinear. If P


an be en
losed in a 
ir
ular 
ylinder C of radius r, then there exists a 
ir
ular 
ylinder

C

0

of radius r en
losing all elements of P su
h that the surfa
e C

0

passes through

(i) at least four non-
ollinear points of P, or

(ii) three non-
ollinear points of P, and the axis ` of C

0

is 
ontained in

(a) the 
ylinder naturally de�ned by spheres of radius r 
entered at two of these

points;

(b) the double 
one naturally de�ned by spheres of radius r 
entered at two of

these points (and these spheres are disjoint);

(
) or the set of lines whi
h are tangent to the two spheres of radius r 
entered

at two of these points and whi
h are 
ontained in the plane equidistant from

these points (and the spheres are non-disjoint).

Moreover, C 
an be transformed into C

0

by a 
ontinuous motion.

Figures 1 and 2 visualize the three geometri
 properties in the se
ond possibility.

Sin
e 
ase (ii) in Theorem 1 
hara
terizes the possible spe
ial 
ases, this lemma in

parti
ular redu
es the 
omputation of a smallest en
losing 
ylinder of a simplex in E

3

to

the 
omputation of a smallest 
ir
ums
ribing 
ylinder of a simplex. Namely, it suÆ
es

to 
ompute the smallest 
ir
ums
ribing 
ylinder (
orresponding to 
ase (i)) as well as the

smallest en
losing 
ylinders whose axes satis�es one of the 
onditions in (ii); the latter


ase gives a 
onstant number of problems of smaller algebrai
 degree (sin
e the positions

of the axes are very restri
ted).

Remark 2. Before we start with the proof, we remark that Theorem 1 and its di�er-

ent 
ases show a quite similar behavior as the well known statement that the (unique)


ir
umsphere of a simplex tou
hes all its verti
es, or one of its great (n�1)-
ir
les is the


ir
umsphere of one of the (n�1)-fa
es of the simplex (see [2, p. 54℄).

1

We remark that a similar statement has already been used in [24℄, but the manus
ript referen
ed

there does not 
ontain a 
omplete proof.
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(a) Cylinder (b) Double 
one with apex (a=2; 0; 0)

T

Figure 1. Extreme situations of the set of hyperboloids for disjoint spheres

(a) Hyperboloid for 0 < x

h

< 2r

2

=a (b) Degenerated hyperboloid for x

h

= a=2

Figure 2. The left �gure shows a general situation for disjoint spheres;

the right �gure shows an extreme situation for non-disjoint spheres

In the proof we will apply the following geometri
 equivalen
e. A point x 2 E

3

is

en
losed in a 
ylinder with axis ` if and only if ` is a transversal of the sphere with radius

r 
entered at x (i.e., ` is a line interse
ting the sphere).

Proof of Theorem 1. Let C be a 
ylinder with axis ` and radius r en
losing P. Then,

denoting by S

i

:= S(p

i

; r) the sphere with radius r 
entered at p

i

, ` is a 
ommon transversal

to S

1

; : : : ; S

m

. By 
ontinuously translating and rotating `, we 
an assume that ` is tangent

to two of the spheres, say S

1

and S

2

. Further, by 
hanging 
oordinates, we 
an assume

that S

1

and S

2

have the form S

1

= S((0; 0; 0)

T

; r), S

2

= S((a; 0; 0)

T

; r) for some a > 0.

The set of lines tangent to two spheres of radius r 
onstitutes a set of hyperboloids

(see, e.g., [9, 20℄). Moreover, any of these hyperboloids tou
hes the sphere S

1

on a 
ir
le

lying in a hyperplane parallel to the yz-plane. Hen
e, the set of hyperboloids 
an be

parametrized by the x-
oordinate of this hyperplane whi
h we denote by x

h

.

If S

1

\ S

2

= ; then the boundary values are x

h

= 0 and x

h

= 2r

2

=a. These two

extreme situations yield a 
ylinder and a double 
one with apex (a=2; 0; 0)

T

, respe
tively

(see Figure 1). For 0 < x

h

< 2r

2

=a we obtain a hyperboloid of one sheet (see Figure 2(a)).
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If S

1

\S

2

6= ; then the boundary values are x

h

= 0 and x

h

= a=2. Here, for 0 < x

h

< a=2

we obtain hyperboloids of one sheet, too. For x

h

= a=2 the hyperboloid degenerates to

a set of tangents whi
h are tangents to the 
ir
le with radius r




=

p

4r

2

� a

2

in the

hyperplane x = a=2 (see Figure 2(b)).

Let x

h;0

be the parameter value of the hyperboloid 
ontaining the line `. By de
reasing

the parameter x

h

starting from x

h;0

the hyperboloid 
hanges its shape towards the 
ylinder

around S

1

and S

2

. Let x

h;1

be the in�mum of all 0 � x

h

< x

h;0

su
h that the hyperboloid

does not 
ontain a generating line tangent to some other sphere S(p

i

; r) for some 3 � i �

m. If x

h;1

= 0, then by 
hoosing any point of P not 
ollinear to p

1

and p

2

we are in 
ase

(ii) (a).

If x

h;1

> 0 then let p

3

be the 
orresponding point. Let T (S

1

; S

2

; S

3

) denote the set

of lines simultaneously tangent to S

1

, S

2

, and S

3

. Now let x

h;2

be the in�mum of all

0 � x

h

< x

h;0

su
h that there exists a 
ontinuous fun
tion ` : (x

h;2

; x

h;1

) ! T (S

1

; S

2

; S

3

)

with `(x

h

) lying on the hyperboloid with parameter x

h

. Sin
e the spheres are 
ompa
t,

the in�mum is a minimum. If x

h;2

> 0 then one of three hyperboloids involved by the

three pairs of spheres must be one of the extreme hyperboloids in that situation and we

are in 
ases (ii) (a), (b), or (
). If x

h;2

= 0 then we distinguish between two possibilities.

Either during this pro
ess we also rea
hed a tangent to some other sphere S(p

i

; r) for

some 4 � i � m; in this 
ase we are in 
ase (i). Or during the transformation all the

points p

4

; : : : ; p

m

are en
losed in the 
ylinder with axis ` and radius r, but none of them

is 
ontained in it. Then we arrive at situation (ii) (a). �

3. Computing the smallest 
ir
ums
ribing 
ylinders of a simplex in E

3

So far, we have seen how to redu
e the 
omputation of a smallest en
losing 
ylinder of a

simplex in E

3

to the 
omputation of a smallest 
ir
ums
ribing 
ylinder. In order to apply

algebrai
 methods to 
ompute a smallest 
ir
ums
ribing 
ylinder, there are many di�erent

ways to formulate the problem in terms of polynomial equations. It is well-known that the


omputational 
osts of solving a system of polynomial equations are mainly dominated

by the B�ezout number (= produ
t of the degrees) and the mixed volume of the Newton

polytopes (the latter one is dis
ussed in Se
tion 4). See [7, 8, 27℄ for 
omprehensive

introdu
tions and the state-of-the-art. Hen
e, it is an essential task to �nd the right

formulations. Moreover, we are interested in simplex 
lasses for whi
h the degrees 
an be

further redu
ed.

3.1. General simpli
es in E

3

. In the proof of [10, Theorem 6℄, a polynomial formulation

is given to 
ompute the smallest en
losing 
ylinders of a simplex in E

3

. This formulation

des
ribes the problem by three equations in the dire
tion ve
tor v = (v

1

; v

2

; v

3

)

T

of the

line, one of them normalizing the dire
tion ve
tor v by

(3.1) v

2

1

+ v

2

2

+ v

2

3

= 1 :

The equations are of degree 10, 3, and 2, respe
tively, thus giving a B�ezout number of

60. However, as pointed out in that paper, some of the solutions to that system are

arti�
ially introdu
ed by the formulation and o

ur with higher multipli
ity, and there

are only 18 really di�erent solutions. Even more severely, in the experiments in that paper
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(using Synaps, a state-of-the-art software for numeri
al polynomial 
omputations), the

numeri
al treatment of these multiple solutions needs mu
h time, roughly a fa
tor 100


ompared to similar systems without multiple solutions.

Here, we present an approa
h, whi
h re
e
ts the true algebrai
 bound of 18. Namely, we

give a polynomial formulation with B�ezout bound 36 in whi
h every solution generi
ally

has multipli
ity one. The additional fa
tor 2 just results from the fa
t that due to the

normalization 
ondition (3.1) every solution v also implies that �v is a solution as well.

Our framework is based on [22℄ in whi
h the lines simultaneously tangent to four unit

spheres are studied. A line in E

3

is represented by a point u 2 E

3

lying on the line and a

dire
tion ve
tor v 2 E

3

with v

2

= 1. We 
an make u unique by requiring that u � v = 0.

A line ` = (u; v) has Eu
lidean distan
e r from a point p 2 E

3

if and only if the quadrati


equation (u+ tv � p)

2

= r

2

has a solution of multipli
ity two. This gives the 
ondition

(v � (u� p))

2

v

2

� (u� p)

2

+ r

2

= 0 :

Expanding this equation yields

(3.2) v

2

u

2

� 2v

2

u � p+ v

2

p

2

� (v � p)

2

� r

2

v

2

= 0 :

Rather than using v

2

= 1 to further simplify this equation, we prefer to keep the homo-

geneous form, in whi
h all terms are of degree 4.

Now let p

1

; : : : ; p

4

be the aÆnely independent verti
es of the given simplex. Without

loss of generality we 
an 
hoose p

4

to be lo
ated in the origin. Then the remaining points

span E

3

. Subtra
ting the equation for the point in the origin from the equations for

p

1

, p

2

, p

3

gives the following program to 
ompute the square of the radius of a minimal


ir
ums
ribing 
ylinder.

(3.3)

minu

2

s.t. u � v = 0 ;

2v

2

u � p

i

= v

2

p

2

i

� (v � p

i

)

2

; 1 � i � 3 ;

v

2

= 1 :

We remark that the set of admissible solutions is nonempty; a proof of that statement

(for general dimension) is 
ontained in Se
tion 4.

Sin
e the points p

1

; p

2

; p

3

are linearly independent, the matrix M := (p

1

; p

2

; p

3

)

T

is

invertible, and we 
an solve the equations in the penultimate line of (3.3) for u:

(3.4) u =

1

2v

2

M

�1

0

�

v

2

p

2

1

� (v � p

1

)

2

v

2

p

2

2

� (v � p

2

)

2

v

2

p

2

3

� (v � p

3

)

2

1

A

:

Now substitute this expression for u into the obje
tive fun
tion and into the �rst 
onstraint

of the system (3.3). After setting v

2

= 1 in the denominator of the �rst 
onstraint, this

gives a homogeneous 
ubi
 equation whi
h we denote by g

1

(v

1

; v

2

; v

3

) = 0. Hen
e, we

arrive at the following polynomial optimization formulation in terms of the variables v

1

,
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v

2

, and v

3

.

(3.5)

min

0

�

1

2

M

�1

0

�

v

2

p

2

1

� (v � p

1

)

2

v

2

p

2

2

� (v � p

2

)

2

v

2

p

2

3

� (v � p

3

)

2

1

A

1

A

2

s.t. g

1

(v

1

; v

2

; v

3

) = 0 ;

g

2

(v

1

; v

2

; v

3

) := v

2

� 1 = 0 :

Note that the obje
tive fun
tion is a homogeneous polynomial of degree 4. We denote

this polynomial by f .

Using Lagrange multipliers �

1

and �

2

, a ne
essary lo
al optimality 
ondition is

(3.6) grad f = �

1

grad g

1

+ �

2

grad g

2

:

By thinking of an additional fa
tor �

0

before grad f and 
onsidering (3.6) as a system of

linear equations in �

0

, �

1

, �

2

, we see that if (3.6) is satis�ed for some ve
tor v then the

determinant

(3.7) det

0

B

�

�

�f

�v

1

�g

1

�v

1

�g

2

�v

1

�

�f

�v

2

�g

1

�v

2

�g

2

�v

2

�

�f

�v

3

�g

1

�v

3

�g

2

�v

3

1

C

A

vanishes. Thus the following lemma 
hara
terizes those 
ir
ums
ribing 
ylinders, within

the spa
e of all 
ir
ums
ribing 
ylinders, whose radius is lo
ally extreme.

Lemma 3. (a) For any normalized dire
tion ve
tor (v

1

; v

2

; v

3

)

T

2 E

3

of the axis of a

lo
ally extreme 
ir
ums
ribing 
ylinder, the determinant (3.7) vanishes. If there are only

�nitely many lo
ally extreme, normalized dire
tion ve
tors than that number is bounded

by 36.

(b) For a generi
 simplex the number of solutions is indeed �nite, and all solutions have

multipli
ity one.

Proof. Let v be the dire
tion ve
tor of an axis of a lo
ally extreme 
ir
ums
ribing 
ylinder.

Then v satis�es the �rst 
onstraint of (3.5), and the determinant (3.7) vanishes. Sin
e

these are homogeneous equations of degree 3 and 6, respe
tively, B�ezout's Theorem implies

that in 
onne
tion with v

2

= 1 we obtain at most 36 isolated solutions.

For the se
ond statement it suÆ
es to 
he
k that for one spe
i�
 simplex there are only

�nitely many (
omplex) solutions and that all solutions are pairwise distin
t. E.g., 
hoose

the verti
es (2; 3; 5)

T

, (7; 11;�13)

T

, (17;�19;�23)

T

, (0; 0; 0)

T

. �

3.2. Spe
ial simplex 
lasses in E

3

. In this se
tion, we investigate 
onditions under

whi
h the degree of the resulting equations is redu
ed. Moreover, we show that for equifa-


ial simpli
es, the minimal 
ir
ums
ribing radius 
an be 
omputed quite easily.

We use the following 
lassi�
ation from [22, 23℄.

Proposition 4. Let T be a simplex in E

3

with verti
es p

1

; : : : ; p

4

. The polynomial g

1

in the


ubi
 equation fa
tors into a linear polynomial and an irredu
ible quadrati
 polynomial if

and only if the four fa
es of T 
an be partitioned into two pairs of fa
es fF

1

; F

2

g, fF

3

; F

4

g
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with area(F

1

) = area(F

2

) 6= area(F

3

) = area(F

4

). Moreover, g

1

fa
tors into three linear

terms if and only if the areas of all four fa
es of T are equal.

First let us 
onsider the 
ase where g

1

de
omposes into a linear polynomial and an irre-

du
ible quadrati
 polynomial. By optimizing separately over the linear and the quadrati



onstraint, the degrees of our equations are smaller than for the general 
ase. Namely,

analogously to the derivation in Se
tion 3.1, for the quadrati
 
onstraint we obtain a

B�ezout bound of

(3 + 1 + 1) � 2 � 2 = 20 ;

and for the linear 
onstraint we obtain

(3 + 0 + 1) � 1 � 2 = 8 :

Thus, we 
an 
on
lude:

Lemma 5. If the four fa
es of the simplex 
an be partitioned into two pairs of fa
es

fF

1

; F

2

g, fF

3

; F

4

g with area(F

1

) = area(F

2

) 6= area(F

3

) = area(F

4

) then there are at most

28 isolated lo
al extrema for the minimal 
ir
ums
ribing 
ylinder. They 
an be 
omputed

from two polynomial systems with B�ezout numbers 20 and 8, respe
tively.

Equifa
ial simpli
es. A simplex in E

3

is 
alled equifa
ial if all four fa
es have the same

area. By Proposition 4, for an equifa
ial simplex the 
ubi
 polynomial g

1

fa
tors into three

linear terms. Hen
e, we obtain at most 3 � 8 = 24 lo
al extrema. Somewhat surprisingly,

using a 
hara
terization from [29℄, it is even possible to 
ompute smallest 
ir
ums
ribing


ylinder of an equifa
ial simplex essentially without any algebrai
 
omputation.

Namely, it is well-known that the verti
es of an equifa
ial simplex T 
an be regarded

as four pairwise non-adja
ent verti
es of a re
tangular box (see, e.g., [21℄). Hen
e, there

exists a representation p

1

= (w

1

; w

2

; w

3

)

T

, p

2

= (w

1

;�w

2

;�w

3

)

T

, p

3

= (�w

1

; w

2

;�w

3

)

T

,

p

4

= (�w

1

;�w

2

; w

3

)

T

with w

1

; w

2

; w

3

> 0.

Assuming v

2

= 1 as before, (3.2) gives

(3.8) (v � p

i

)

2

+ 2u � p

i

=

3

X

j=1

w

2

j

+ u

2

� r

2

; 1 � i � 4 :

Subtra
ting these equations pairwise gives

4(w

2

u

2

+ w

3

u

3

) = �4(w

1

w

3

v

1

v

3

+ w

1

w

2

v

1

v

2

)

(for indi
es 1, 2) and analogous equations, so that

w

1

u

1

= �w

2

w

3

v

2

v

3

; w

2

u

2

= �w

1

w

3

v

1

v

3

; w

3

u

3

= �w

1

w

2

v

1

v

2

:

Sin
e u � v = 0, this yields v

1

v

2

v

3

= 0. Without loss of generality we 
an assume v

1

= 0.

In this 
ase,

u =

�

�

w

2

w

3

w

1

v

2

v

3

; 0; 0

�

T

:
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So we 
an express (3.8) in terms of the dire
tion ve
tor v,

w

2

2

v

2

2

+ w

2

3

v

2

3

=

3

X

j=1

w

2

j

+

�

�

w

2

w

3

w

1

v

2

v

3

�

2

� r

2

;

whi
h, by using v

2

2

+ v

2

3

= 1, gives

(3.9) r

2

= �

w

2

2

w

2

3

w

2

1

v

4

2

�

�

w

2

2

� w

2

3

�

w

2

2

w

2

3

w

2

1

�

v

2

2

+ w

2

1

+ w

2

2

:

Thus, by 
omputing the derivative of this expression r

2

= r

2

(v

2

) and taking into a

ount

the three 
ases v

i

= 0, we 
an redu
e the 
omputation of the minimal 
ir
ums
ribing


ylinders to solving three univariate equations of degree 3. However, we 
an still do

better. Substitute z

2

:= v

2

2

, and let � be the expression for r

2

in terms of z

2

,

�(z

2

) = �

w

2

2

w

2

3

w

2

1

z

2

2

�

�

w

2

2

� w

2

3

�

w

2

2

w

2

3

w

2

1

�

z

2

+ w

2

1

+ w

2

2

:

Sin
e the se
ond derivative of that quadrati
 fun
tion is negative, �(z

2

) is a 
on
ave

fun
tion. Hen
e, within the interval z

2

2 [0; 1℄, the minimum is attained at one of the

boundary values z

2

2 f0; 1g. Consequently, two of the 
omponents of (v

1

; v

2

; v

3

)

T

must

be zero and therefore v is perpendi
ular to two opposite edges. Sin
e the latter geometri



hara
terization is independent of our spe
i�
 
hoi
e of 
oordinates, we 
an 
on
lude:

Lemma 6. If all four fa
es of the simplex T have the same area then the axis of a

minimum 
ir
ums
ribing 
ylinder is perpendi
ular to two opposite edges.

Hen
e, for an equifa
ial simplex it suÆ
es to investigate the 
ross produ
ts of the three

pairs of opposite edges (equipped with an orientation), and we do not need to solve a

system of polynomial equations at all.

In order to illustrate how these three solutions relate to the 18 solutions of the general

approa
h above, we 
onsider the regular simplex in E

3

. In the general approa
h, as already

pointed out in [10℄, the six edge dire
tions p

i

p

j

(1 � i < j � 4) all have multipli
ity 1,

and ea
h of the three dire
tions in Lemma 6, p

1

p

2

� p

3

p

4

, p

1

p

3

� p

2

p

4

, p

1

p

4

� p

2

p

3

, have

multipli
ity 4.

4. Smallest 
ir
ums
ribing 
ylinders in higher dimensions

In Se
tion 3 we have given polynomial formulations with small B�ezout numbers for


omputing smallest 
ir
ums
ribing 
ylinders of a simplex in E

3

. Using the 
hara
teriza-

tion in [26℄ of lines simultaneously tangent to 2n�2 spheres in E

n

, we generalize these

formulations to smallest 
ir
ums
ribing 
ylinders of a simplex in E

n

, n � 2. Analogous

to the three-dimensional 
ase let p

1

; : : : ; p

n+1

be the aÆnely independent verti
es of a

simplex in E

n

, and let p

n+1

be lo
ated in the origin.

First note that (3.3) also holds in general dimension n if we repla
e the index 3 by the in-

dex n. Sin
e the points p

1

; : : : ; p

n

are linearly independent, the matrixM := (p

1

; : : : ; p

n

)

T
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is invertible, and we 
an solve for u:

(4.1) u =

1

2v

2

M

�1

0

�

v

2

p

2

1

� (v � p

1

)

2

.

.

.

v

2

p

2

n

� (v � p

n

)

2

1

A

:

Hen
e, by generalizing the formulation for the three-dimensional 
ase, we obtain the

program

(4.2)

min

0

�

1

2

M

�1

0

�

v

2

p

2

1

� (v � p

1

)

2

.

.

.

v

2

p

2

n

� (v � p

n

)

2

1

A

1

A

2

s.t. g

1

(v

1

; : : : ; v

n

) = 0 ;

g

2

(v

1

; : : : ; v

n

) := v

2

� 1 = 0 ;

where g

1

denotes the 
ubi
 equation as before. In order to show that the set of admissible

solutions for our optimization problem is nonempty, we re
ord the following result.

Lemma 7. For any simplex in E

n

the

�

n+1

2

�

edge dire
tions of the simplex are dire
tion

ve
tors of 
ir
ums
ribing 
ylinders.

Proof. Sin
e the edge dire
tions p

i

� p

j

have a simple des
ription in the basis p

1

; : : : ; p

n

,

we express the 
ubi
 equation g

1

(v) = 0 in that basis. Let v be an arbitrary dire
tion

ve
tor, and let the representation of v in the basis p

1

; : : : ; p

n

be

v =

n

X

i=1

t

i

p

i

:

Further, let p

0

1

; : : : ; p

0

n

be a dual basis to p

1

; : : : ; p

n

; i.e., let p

0

1

; : : : ; p

0

n

be de�ned by

p

0

i

� p

j

= Æ

ij

, where Æ

ij

denotes Krone
ker's delta fun
tion. By elementary linear algebra,

we have t

i

= p

0

i

� v.

When expressing u in this dual basis, u =

P

u

0

i

p

0

i

, the se
ond 
onstraint of (3.3) gives

u

0

i

=

1

2v

2

�

v

2

p

2

i

� (v � p

i

)

2

�

:

Substituting this representation of u into the equation g

1

(v) = 0 gives

0 = g

1

(v) = v

2

(u � v) = v

2

 

n

X

i=1

u

0

i

p

0

i

!

� v = v

2

n

X

i=1

u

0

i

t

i

;

where the last step uses the duality of the bases. Hen
e, we obtain the 
ubi
 equation

1

2

n

X

i=1

(v

2

p

2

i

� (v � p

i

)

2

)t

i

= 0 :

Expressing v in terms of the t-variables yields

1

2

X

1�i 6=j�n

�

ij

t

2

i

t

j

+

X

1�i<j<k�n

�

ijk

t

i

t

j

t

k

= 0 ;
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where

�

ij

= (vol

2

(p

i

; p

j

))

2

= det

�

p

i

� p

i

p

i

� p

j

p

j

� p

i

p

j

� p

j

�

;

�

ijk

= det

�

p

i

� p

j

p

i

� p

k

p

k

� p

j

p

k

� p

k

�

+ det

�

p

i

� p

k

p

i

� p

j

p

j

� p

k

p

j

� p

j

�

+det

�

p

j

� p

k

p

j

� p

i

p

i

� p

k

p

i

� p

i

�

;

and vol

2

(p

i

; p

j

) denotes the oriented area of the parallelogram spanned by p

i

and p

j

. In

terms of the t-
oordinates, the

�

n+1

2

�

edges of the simplex are t = e

i

, 1 � i � n, and

t = e

i

� e

j

, 1 � i < j � n, where e

i

denotes the i-th standard unit ve
tor. For all these

edges, the 
ubi
 equation is satis�ed. �

Considering Lagrange multipliers �

1

and �

2

yields the following ne
essary optimality


ondition.

grad f = �

1

grad g

1

+ �

2

grad g

2

;

g

1

(v

1

; : : : ; v

n

) = 0 ;(4.3)

g

2

(v

1

; : : : ; v

n

) = 0 :

Sin
e the B�ezout bound of this system is 3

n

� 3 � 2 = 2 � 3

n+1

, we have:

Lemma 8. For n � 2, the number of isolated lo
al extrema for the minimal 
ir
ums
ribing


ylinder is bounded by 2 � 3

n+1

.

This bound is not tight. Trying to redu
e this upper bound of isolated solutions like

in the three-dimensional 
ase, we 
an eliminate the linear o

urren
es of the Lagrange

variables �

1

and �

2

. Generalizing (3.7), we have to 
onsider the vanishing of all 3 � 3-

subdeterminants of the matrix

(4.4)

0

B

B

B

�

�

�f

�v

1

�g

1

�v

1

�g

2

�v

1

�

�f

�v

2

�g

1

�v

2

�g

2

�v

2

.

.

.

.

.

.

.

.

.

�

�f

�v

n

�g

1

�v

n

�g

2

�v

n

1

C

C

C

A

:

Thus, for n � 4 we arrive at a non-
omplete interse
tion of equations where we have more

equations than variables. Hen
e, we 
annot apply our B�ezout bound on these systems.

However, for small dimensions we 
an improve Lemma 8 by dire
tly working on the

formulation (4.3). In order to provide better bounds, we use well-known 
hara
terizations

of the number of zeroes of a polynomial equation by the mixed volume of a Minkowski

sum of polytopes (for an easily a

essible introdu
tion into this topi
 we refer to [8℄).

Here, let C

�

:= C n f0g.

Lemma 9. For 2 � n � 7, the number of isolated solutions of the system (4.3) in

(v

1

; : : : ; v

n

; �

1

; �

2

) 2 (C

�

)

n+2

is bounded by

6

�

n+ 1

3

�

;
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where

�

n

k

	

denotes the Stirling number of the se
ond kind (see, e.g., [14, 25℄).

The sequen
e 6

�

n+1

3

	

starts as follows.

n 2 3 4 5 6 7

6

�

n+1

3

	

6 36 150 540 1806 5796

Proof. For a polynomial h =

P

�2N

n

0




�

x

�

2 C [x

1

; : : : ; x

n

℄, let

NP(h) := 
onvf� 2 N

n

0

: 


�

6= 0g

denote the Newton polytope of h (see, e.g., [8, x7.1℄). Let h

1

; : : : ; h

n

be the polynomials

of the gradient equation in (4.3). Further let P

1

; : : : ; P

n

; Q

1

; Q

2

be the Newton polytopes

of h

1

; : : : ; h

n

; g

1

; g

2

for generi
 instan
es of these equations.

Re
all that the mixed volume MV(P

1

; : : : ; P

n

; Q

1

; Q

2

) is the 
oeÆ
ient of the monomial

�

1

��

2

� � ��

n

��

1

��

2

in the (n+2)-dimensional volume Vol

n+2

(�

1

P

1

+: : :+�

n

P

n

+�

1

Q

1

+�

2

Q

2

)

(whi
h is a polynomial expression in �

1

; : : : ; �

n

; �

1

; �

2

). By Bernstein's Theorem, the

number of isolated 
ommon zeroes in (C

�

)

n+2

of the set of polynomials h

1

; : : : ; h

n

; g

1

; g

2

is bounded from above by

MV(P

1

; : : : ; P

n

; Q

1

; Q

2

)

(see [8, Chapter 8, Theorem 5.4℄). For every given n this volume 
an be 
omputed using

software for 
omputing mixed volumes (see, e.g, [13, 30℄). �

We 
onje
ture that for any n � 2, the number of isolated solutions in (C

�

)

n+2

is

bounded by 6

�

n+1

3

	

. With regard to the di�erent values in Lemmas 8 and 9, note that

lim

n!1

(2 � 3

n+1

)=(6

�

n+1

3

	

) = 2 :

4.1. The regular simplex in E

n

. Here, we analyze the lo
al extrema of 
ir
ums
ribing


ylinders for the regular simplex. Our aim is both to illustrate the algebrai
 formulations

given before and to relate our investigations to 
lassi
al investigations on the regular

simplex in 
onvex geometry. In order to a
hieve many symmetries in the algebrai
 for-

mulation, we use a slightly modi�ed 
oordinate system that is parti
ularly suited for the

regular simplex; these 
oordinates have also been used in [4, 31℄.

The equation x

1

+ : : : + x

n+1

= 1 de�nes an n-dimensional aÆne subspa
e in E

n+1

.

Now let the regular simplex in this n-dimensional subspa
e be given by the n+1 verti
es

p

i

= e

i

, where e

i

denotes the i-th standard unit ve
tor, 1 � i � n + 1. We 
onsider the

tangen
y equation (3.2) for the point p

n+1

,

v

2

u

2

� 2v

2

u

n+1

+ v

2

� v

2

n+1

� r

2

v

2

= 0 :

Subtra
ting this equation from the equation for p

i

, 1 � i � n, yields

2v

2

(u

i

� u

n+1

) = �(v

2

i

� v

2

n+1

) ; 1 � i � n :

Moreover, the embedding into the hyperplane

P

n+1

i=1

x

i

= 1 implies

P

n+1

i=1

u

i

= 1. In order

to solve these n+1 equations for u, let M be the (n+1)� (n+1)-matrix whose i-th row
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ontains the ve
tor e

T

i

� e

T

n+1

and whose n-th row is (1; 1; : : : ; 1). Sin
e M is invertible,

we obtain

(4.5) u =

1

2v

2

M

�1

0

B

B

�

�(v

2

1

� v

2

n+1

)

.

.

.

�(v

2

n

� v

2

n+1

)

2v

2

1

C

C

A

:

As before, substituting this expression into u �v = 0 and setting v

2

= 1 in the denominator

gives a 
ubi
 equation g

1

(v) = 0. Hen
e, we obtain the following optimization problem.

Here, the obje
tive fun
tion f stems from the 
ondition for the vertex p

n+1

, and the


ondition

P

n+1

i=1

v

i

= 0 
omes from the embedding.

(4.6)

minu

2

� 2u

n+1

+ 1� v

2

n+1

s.t. g

1

(v

1

; : : : ; v

n+1

) = 0 ;

n+1

P

i=1

v

i

= 0 ;

v

2

= 1 :

First we re
ord that the fun
tions f and g

1

are symmetri
 polynomials in the variables

v

1

; : : : ; v

n+1

. In order to show this, let �

1

; : : : ; �

n+1

be the elementary symmetri
 fun
tions

in v

1

; : : : ; v

n+1

,

�

1

= v

1

+ : : :+ v

n+1

;

.

.

.

�

k

=

X

1�i

1

<:::<i

k

�n+1

v

i

1

v

i

2

� � � v

i

k

;

.

.

.

�

n+1

= v

1

v

2

� � � v

n+1

(see, e.g., [7, 28℄). By providing expli
it expressions for f and g

1

as polynomials in the

elementary symmetri
 polynomials �

1

; : : : ; �

n+1

, the symmetry of f and g

1

follows. More

pre
isely, we obtain:

Lemma 10. The quarti
 polynomial f(v

1

; : : : ; v

n+1

) and the 
ubi
 polynomial g

1

(v

1

; : : : ;

v

n+1

) are symmetri
 polynomials in the variables v

1

; : : : ; v

n+1

. In terms of the elementary

symmetri
 fun
tions, f results in

f =

1

4(n+ 1)

�

n�

4

1

� 4n�

2

1

�

2

+ 2(n� 1)�

2

2

� 4�

2

1

+ 8�

2

+ 4n

�

+ �

1

�

3

� �

4

;

and the homogeneous polynomial g

1

results in

g

1

=

1

2(n+ 1)

�

�(n� 2)�

3

1

+ 3(n� 1)�

1

�

2

�

�

3

2

�

3

:
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Sin
e �

1

= 0 and

P

n+1

i=1

v

i

2

= �

2

1

� 2�

2

, we 
an also dedu
e the following formulation of

our optimization problem:

Corollary 11. Finding the 
riti
al values of the minimization problem (4.6) is equivalent

to �nding the 
riti
al values (v

1

; : : : ; v

n+1

)

T

of the maximization problem

max �

4

s.t. �

1

= 0 ;

�

2

= �

1

2

;(4.7)

�

3

= 0 ;

where �

i

are the elementary symmetri
 fun
tions in v

1

; : : : ; v

n+1

.

Theorem 12. The dire
tion ve
tor (v

1

; : : : ; v

n+1

)

T

of any lo
ally extreme 
ir
ums
ribing


ylinder satis�es jfv

1

; : : : ; v

n+1

gj � 3, i.e., for ea
h solution ve
tor the 
omponents take

at most three distin
t values.

Proof. For n � 2, the statement is trivial, so we 
an assume n � 3. Let v be the dire
tion

ve
tor of a lo
ally extreme 
ir
ums
ribing 
ylinder with v

2

= 1. Using Corollary 11, let

f(v) := ��

4

(v), g

1

(v) := �

3

(v), g

2

(v) := �

2

(v) + 1=2, and g

3

(v) := �

1

(v). As a ne
essary


ondition for a lo
al extremum, for any pairwise di�erent indi
es a; b; 
; d 2 f1; : : : ; n+1g

the determinant

(4.8) det

0

B

B

B

�

�

�f

�v

a

�g

1

�v

a

�g

2

�v

a

�g

3

�v

a

�

�f

�v

b

�g

1

�v

b

�g

2

�v

b

�g

3

�v

b

�

�f

�v




�g

1

�v




�g

2

�v




�g

3

�v




�

�f

�v

d

�g

1

�v

d

�g

2

�v

d

�g

3

�v

d

1

C

C

C

A

vanishes. Sin
e f , g

1

, g

2

, and g

3

are symmetri
 fun
tions in the variables v

1

; : : : ; v

n+1

,

we 
an assume without loss of generality a = 1, b = 2, 
 = 3, and d = 4. Setting

�

n

:=

P

n+1

i=5

v

i

and �

n

=

P

n+1

i=5

v

2

i

, we 
an write

�g

3

�v

i

= 1 ;

�g

2

�v

i

=

4

X

j=1

j 6=i

v

j

+ �

n

;

�g

1

�v

i

=

X

1�j<k�4

j;k 6=i

v

j

v

k

+ �

n

4

X

j=1

j 6=i

v

j

+

1

2

�

�

2

n

� �

n

�

(1 � i � 4). Moreover, sin
e �

3

(v) = 0, we 
an 
onsider �

3

+

�f

�v

i

instead of

�f

�v

i

. This

allows to express the resulting expression easily in terms of �

n

and �

n

. More pre
isely, we
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obtain

�

3

+

�f

�v

i

= v

i

0

B

�

X

1�j<k�4

j;k 6=i

v

j

v

k

+ �

n

4

X

j=1

j 6=i

v

j

+

1

2

(�

2

n

� �

n

)

1

C

A

:

Thus we 
an 
onsider the determinant (4.8) as a polynomial in v

1

; v

2

; v

3

; v

4

; �

n

; �

n

. Evaluat-

ing this 4 � 4-determinant � shows that it is independent of �

n

, �

n

and that it fa
tors

as

� = (v

1

� v

2

)(v

1

� v

3

)(v

1

� v

4

)(v

2

� v

3

)(v

2

� v

4

)(v

3

� v

4

) :

Hen
e, jfv

1

; v

2

; v

3

; v

4

gj � 3, and this holds true for any quadruple (a; b; 
; d) of indi
es. �

Using this result, we illustrate the o

urren
e of the Stirling numbers in Lemma 9 for the


ase of a regular simplex. There are

�

n+1

3

	

ways to partition the set V := fv

1

; : : : ; v

n+1

g

into three nonempty subsets V

1

, V

2

, V

3

. We assume that v

i

2 V

i

, 1 � i � 3, and that all

variables within the same set take the same value. Setting k := jV

1

j and l := jV

2

j, the

formulation in Corollary 11 yields the system of equations

kv

1

+ lv

2

+ (n+ 1� k � l)v

3

= 0 ;

kv

2

1

+ lv

2

2

+ (n+ 1� k � l)v

2

3

= 1 ;(4.9)

X

0�i

1

<i

2

<i

3

�3

i

1

+i

2

+i

3

=3

�

k

i

1

��

l

i

2

��

n + 1� k � l

i

3

�

v

i

1

1

v

i

2

2

v

i

3

3

= 0 :

If one of the indi
es k, l, or n + 1 � k � l is zero then this system 
onsists of three

equations in two variables, so we do not expe
t any solutions. For every 
hoi
e of k, l


orresponding to a partition into nonempty subsets, we obtain a system of equations with

B�ezout number 6. Thus, whenever the values of v

1

, v

2

, and v

3

in the solutions to (4.9)

are distin
t, then this re
e
ts the bound in Lemma 9.

In parti
ular, in the 
ase n = 4 we obtain the following 150 solutions.

k = 1, l = 1: The six solutions for (v

1

; v

2

; v

3

)

T

of the system (4.9) are

�

1

p

2

;�

1

p

2

; 0

�

T

;

�

1

20

q

110� 30i

p

15;

1

20

q

110 + 30i

p

15;�

1

10

p

15

�

T

;

and the solutions obtained by permuting the �rst two 
omponents of the �rst

solution and by 
hanging the signs and/or permuting the �rst two 
omponents in

the se
ond solution.

For the program (4.7) in the variables (v

1

; : : : ; v

5

)

T

, this gives

�

5

2

��

2

1

�

= 20 
riti
al

positions of the form (i.e., up to variable permutations)

�

1

p

2

;�

1

p

2

; 0; 0; 0

�

T

;

20 
omplex solutions of the form

�

�

1

20

q

110� 30i

p

15;�

1

20

q

110 + 30i

p

15;

1

10

p

15;

1

10

p

15;

1

10

p

15

�

T

;
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and 20 
omplex solutions of the form

�

1

20

q

110� 30i

p

15;

1

20

q

110 + 30i

p

15;�

1

10

p

15;�

1

10

p

15;�

1

10

p

15

�

T

:

k = 1, l = 2: Here, we obtain 30 solutions of the form

�

0;

1

2

;

1

2

;�

1

2

;�

1

2

�

T

;

30 solutions of the form

�

1

5

p

10;

1

4

p

2�

1

20

p

10;

1

4

p

2�

1

20

p

10;�

1

4

p

2�

1

20

p

10;�

1

4

p

2�

1

20

p

10

�

T

;

and 30 solutions of the form

�

�

1

5

p

10;

1

4

p

2 +

1

20

p

10;

1

4

p

2 +

1

20

p

10;�

1

4

p

2 +

1

20

p

10;�

1

4

p

2 +

1

20

p

10

�

T

:

The global minimum is attained for the ve
tor

�

0;

1

2

;

1

2

;�

1

2

;�

1

2

�

T

, and the obje
tive

value of the global optimum is 49/80. Hen
e, the radius of the smallest 
ir
ums
ribing


ylinder for a regular simplex in E

4

with edge length

p

2 is

p

49=80 = 7

p

5=20 � 0:7826 .

Appendix: An error in the results of Wei�ba
h

In the 
ourse of our investigations, we dis
overed a subtle but severe mistake in the

paper [32℄ on the expli
it determination of the outer (n�1)-radius of a regular simplex in

E

n

. Sin
e this error 
ompletely invalidates the proof given there

2

, we give a des
ription

of that 
aw, in
luding some 
omputer-algebrai
 
al
ulations illustrating it.

In that paper, the 
omputation of the outer (n�1)-radius of a regular simplex (with

edge length

p

2) is redu
ed to the analysis of the following optimization problem.

(4.10)

min

n+1

P

i=1

u

4

i

s.t.

n+1

P

i=1

u

2

i

= 1 ;

n+1

P

i=1

u

i

= 0 :

2

In a personal 
ommuni
ation this has been 
on�rmed by B. Wei�ba
h.
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For any lo
al optimum (u

1

; : : : ; u

n+1

)

T

there exist Lagrange multipliers �

1

, �

2

2 R su
h

that

4u

3

i

+ 2�

1

u

i

+ �

2

= 0 ; 1 � i � n+ 1 ;

n+1

X

i=1

u

2

i

= 1 ;(4.11)

n+1

X

i=1

u

i

= 0 :

Erroneously, in [32℄ it is argued that symmetry arguments imply that �

2

= 0 in any

solution. The following 
al
ulation in the 
omputer algebra system Singular [15℄ shows

that for n = 3 this system has 26 solutions (
ounting multipli
ity) over C .

ring R = 0, (u1,u2,u3,u4,la1,la2), (dp);

ideal I =

4*u1^3 + 2*la1*u1 + la2,

4*u2^3 + 2*la1*u2 + la2,

4*u3^3 + 2*la1*u3 + la2,

4*u4^3 + 2*la1*u4 + la2,

u1^2 + u2^2 + u3^2 + u4^2 - 1,

u1 + u2 + u3 + u4;

degree(std(I));

This program �rst de�nes a polynomial ring in the variables u

1

; : : : ; u

4

; �

1

; �

2

over a

�eld of 
hara
teristi
 zero. We then use the degree 
ommand to 
ompute the dimension

and the degree of the ideal de�ned by our equations. The output of that 
ommand is

// 
odimension = 6

// dimension = 0

// degree = 26

Hen
e, there are �nitely many solutions (sin
e the dimension of the ideal is zero), and the

degree of the ideal (the sum of the multipli
ities of the solutions) is 26.

18 of these solutions refer to the 
ase �

2

= 0 (and those were the ones 
omputed in

[32℄). Namely, if �

2

= 0 then the �rst row of (4.11) simpli�es to

u

i

(2u

2

i

+ �

1

) = 0 ; 1 � i � n + 1 :

If we are only interested in the real solutions to this system, then setting �

1

= �2�

2

for

some � � 0 gives

u

i

(u

2

i

� �

2

) = 0 ; 1 � i � n+ 1 :
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Sin
e the ve
tor (u

1

; : : : ; u

n+1

)

T

= (0; : : : ; 0)

T

does not satisfy the se
ond row in (4.11),

the solutions with �

2

= 0 are

u

i

= �; i 2 fi

1

; : : : ; i

h

g ;

u

i

= ��; i 2 fi

h+1

; : : : ; i

2h

g ;

u

i

= 0 ; i 2 f1; : : : ; n+ 1g n fi

1

; : : : ; i

2h

g

for some h � 1, some set fi

1

; : : : ; i

2h

g of pairwise di�erent indi
es, and � = (2h)

�1=2

. In

the 
ase n = 3, there are 12 possibilities to 
hoose the indi
es and the signs for jhj = 1 and

6 possibilities to 
hoose the indi
es and the signs for jhj = 2, giving 18 solutions to (4.11).

However, there are 8 additional solutions, whi
h in fa
t are also real! Namely, these

solutions are

(u

1

; : : : ; u

4

)

T

=

1

2

p

3

(1;�3; 1; 1)

T

; �

1

= �

7

6

; �

2

=

1

p

3

;

(u

1

; : : : ; u

4

)

T

=

1

2

p

3

(�1; 3;�1;�1)

T

; �

1

= �

7

6

; �

2

= �

1

p

3

;

as well as the six distin
t solutions obtained from these two by permuting the variables

u

1

; : : : ; u

4

. The additional solutions invalidate the subsequent arguments in [32℄.

The omissions get even worse in the higher-dimensional 
ase. E.g., for n = 4, besides

the

�

5

2

��

2

1

�

+

�

5

4

��

4

2

�

= 20 + 30 = 50 solutions des
ribed in [32℄, we obtain the following

solutions:

(u

1

; : : : ; u

5

)

T

=

1

p

30

(�2;�2;�2; 3; 3)

T

; �

1

= �

7

15

; �

2

= �

2

75

p

30 ;

(u

1

; : : : ; u

5

)

T

=

1

p

30

(2; 2; 2;�3;�3)

T

; �

1

= �

7

15

; �

2

=

2

75

p

30 ;

(u

1

; : : : ; u

5

)

T

=

1

2

p

5

(1;�4; 1; 1; 1)

T

; �

1

= �

13

10

; �

2

=

6

25

p

5 ;

(u

1

; : : : ; u

5

)

T

=

1

2

p

5

(�1; 4;�1;�1;�1)

T

; �

1

= �

13

10

; �

2

= �

6

25

p

5 ;

as well as those solutions obtained by permuting the variables. Altogether, we have

10 + 10 + 5 + 5 = 30 solutions with �

2

6= 0, and thus a total number of 80 solutions.

Finally, we remark that the paper [31℄, whi
h 
omputes the outer (n�1)-radius of a

regular simplex in odd dimension n, is 
orre
t (
f. also [4℄).
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