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Abstrat. We provide an algebrai framework to ompute smallest enlosing and small-

est irumsribing ylinders of simplies in Eulidean spae E

n

. Expliitly, the ompu-

tation of a smallest enlosing ylinder in E

3

is redued to the omputation of a smallest

irumsribing ylinder. We improve existing polynomial formulations to ompute the

loally extreme irumsribing ylinders in E

3

and exhibit sublasses of simplies where

the algebrai degrees an be further redued. Moreover, we generalize these eÆient for-

mulations to the n-dimensional ase and provide bounds on the number of loal extrema.

Using elementary invariant theory, we prove strutural results on the diretion vetors

of any loally extreme irumsribing ylinder for regular simplies.

1. Introdution

Radii (of various types) belong to the most important funtionals of polytopes and

general onvex bodies in Eulidean spae E

n

[3, 16, 18℄, and they are related to appliations

in omputer vision, robotis, omputational biology, funtional analysis, and statistis (see

[17℄). Following the notation in [3℄, the outer j-radius R

j

(C) of a onvex body C � E

n

is the radius of the smallest enlosing j-dimensional sphere in an optimal orthogonal

projetion of C onto a j-dimensional linear subspae. Studying these radii, mainly for

regular simplies and regular polytopes, is a lassial topi of onvex geometry (see [2, 4,

12, 16℄).

From the omputational point of view, most of the existing algorithms for omputing

these radii fous on approximation [6, 19℄. A major reason is that exat omputations

lead to algebrai problems of high degree, even for omputing, say, the outer (n�1)-radius

in E

n

(already if n = 3). However, sine some approahes for omputing radii of general

polytopes onsider the omputation of a smallest enlosing or smallest irumsribing

ylinder of a simplex as a blak box within a larger omputation [1, 24℄, these ore problems

on simplies are of fundamental importane.

Reently, the authors of [10℄ demonstrated that using their state-of-the-art numeri-

al polynomial solvers, various problems related to ylinders in E

3

an be solved rather

eÆiently. In partiular, the authors give a polynomial formulation for the smallest ir-

umsribing ylinder of a simplex in E

3

, whose B�ezout number { the produt of the degrees

of the polynomial equations { is 60. However, these equations ontain ertain undesired

solutions with multipliity 4, and as a result of these multipliities the omputation times
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(using state-of-the-art numerial tehniques) are about a fator 100 larger than those of

similar problems in whih all solutions our with multipliity 1.

Here, we provide a general algebrai framework for omputing smallest enlosing and

irumsribing ylinders of simplies in E

n

. First we redue the omputation of a smallest

enlosing ylinder in E

3

to the omputation of a smallest irumsribing ylinder, thus

ombining these two problems. Then we investigate smallest irumsribing ylinders of

simplies in E

3

. We improve the results of [10℄ by providing a polynomial formulation

for the loally extreme ylinders, whose B�ezout bound is 36 and whose solutions gener-

ially have multipliity one. Our formulations use tehniques from the paper [22℄ whih

studies the lines simultaneously tangent to four unit spheres. These tehniques also fail-

itate to present lasses of simplies for whih the algebrai degrees in omputing smallest

irumsribing ylinders an be onsiderably redued.

Setion 4 ontains a generalization of our approah to smallest irumsribing ylinders

of simplies in E

n

. The B�ezout number of this formulation yields a bound on the number

of loally extreme ylinders. Sine that bound is not tight, we provide better bounds for

small dimensions, whih are are based on mixed volume omputations and Bernstein's

Theorem. Moreover, we study in detail the loally extreme irumsribing ylinders of a

regular simplex in E

n

. To exploit many symmetries in the analysis, a formulation based on

symmetri polynomials is provided. Using elementary invariant theory we show that the

diretion vetor of every loally extreme irumsribing ylinder has at most three distint

values in its omponents. This strutural result is then related to the ombinatorial results

on the number of solutions for general simplies.

As a byprodut of our omputational studies, we disovered a subtle but severe mistake

in the paper [32℄ on the expliit determination of the outer (n�1)-radius for a regular

simplex in E

n

(n even), thus ompletely invalidating the proof given there. The appendix

ontains a desription of that aw, inluding some omputer-algebrai alulations illus-

trating it. We remark that after the present paper had been �nished, we found a new way

for determining R

n�1

of a regular simplex in even dimension (see [5℄).

2. Preliminaries and bakground

2.1. j-radii and ylinders. Throughout the paper we work in Eulidean spae E

n

, i.e.,

R

n

with the usual salar produt x � y =

P

n

i=1

x

i

y

i

and norm jjxjj = (x � x)

1=2

. We write

x

2

for x � x.

A j-at is an aÆne subspae of dimension j. For a onvex polytope P � E

n

(or a �nite

point set P � E

n

) and a j-at E, we onsider

RD(P; E) := max

p2P

dist(p; E);

where dist(p; E) denotes the Eulidean distane from p to E. The outer j-radius of P is

R

j

(P) := min

E is an (n�j)-at

RD(P; E) :

The hoie of the indexing in the j-radius stems from the fat that it measures the

radius of the smallest enlosing j-dimensional sphere in an optimal orthogonal projetion

of P onto a j-dimensional linear subspae (f. [3, 16℄).
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One of the most natural representatives of this lass is the one with j = 2, n = 3, i.e.,

the smallest enlosing (irular) ylinder of a polytope. In E

n

, we de�ne a ylinder to be

a set of the form

bd(`+ �B

n

);

where ` is a line in E

n

, B

n

denotes the unit ball, � > 0, the addition denotes the Minkowski

sum, and bd(�) denotes the boundary of a set. We say that P an be enlosed in a ylinder

C if P is ontained in the onvex hull of C. Thus the outer (n�1)-radius gives the radius

of a smallest enlosing ylinder of a polytope.

A simplex in E

n

is the onvex hull of n + 1 aÆnely independent points. An enlosing

ylinder C of a simplex P is alled a irumsribing ylinder of P if all the verties of P

are ontained in (the hypersurfae) C.

2.2. Smallest irumsribing ylinders and smallest enlosing ylinders. The fol-

lowing statement onnets the omputation of a smallest enlosing ylinder of a polytope

with the omputation of a smallest irumsribing ylinder of a simplex.

1

Theorem 1. Let P = fp

1

; : : : ; p

m

g be a set of m � 4 points in E

3

, not all ollinear. If P

an be enlosed in a irular ylinder C of radius r, then there exists a irular ylinder

C

0

of radius r enlosing all elements of P suh that the surfae C

0

passes through

(i) at least four non-ollinear points of P, or

(ii) three non-ollinear points of P, and the axis ` of C

0

is ontained in

(a) the ylinder naturally de�ned by spheres of radius r entered at two of these

points;

(b) the double one naturally de�ned by spheres of radius r entered at two of

these points (and these spheres are disjoint);

() or the set of lines whih are tangent to the two spheres of radius r entered

at two of these points and whih are ontained in the plane equidistant from

these points (and the spheres are non-disjoint).

Moreover, C an be transformed into C

0

by a ontinuous motion.

Figures 1 and 2 visualize the three geometri properties in the seond possibility.

Sine ase (ii) in Theorem 1 haraterizes the possible speial ases, this lemma in

partiular redues the omputation of a smallest enlosing ylinder of a simplex in E

3

to

the omputation of a smallest irumsribing ylinder of a simplex. Namely, it suÆes

to ompute the smallest irumsribing ylinder (orresponding to ase (i)) as well as the

smallest enlosing ylinders whose axes satis�es one of the onditions in (ii); the latter

ase gives a onstant number of problems of smaller algebrai degree (sine the positions

of the axes are very restrited).

Remark 2. Before we start with the proof, we remark that Theorem 1 and its di�er-

ent ases show a quite similar behavior as the well known statement that the (unique)

irumsphere of a simplex touhes all its verties, or one of its great (n�1)-irles is the

irumsphere of one of the (n�1)-faes of the simplex (see [2, p. 54℄).

1

We remark that a similar statement has already been used in [24℄, but the manusript referened

there does not ontain a omplete proof.
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(a) Cylinder (b) Double one with apex (a=2; 0; 0)

T

Figure 1. Extreme situations of the set of hyperboloids for disjoint spheres

(a) Hyperboloid for 0 < x

h

< 2r

2

=a (b) Degenerated hyperboloid for x

h

= a=2

Figure 2. The left �gure shows a general situation for disjoint spheres;

the right �gure shows an extreme situation for non-disjoint spheres

In the proof we will apply the following geometri equivalene. A point x 2 E

3

is

enlosed in a ylinder with axis ` if and only if ` is a transversal of the sphere with radius

r entered at x (i.e., ` is a line interseting the sphere).

Proof of Theorem 1. Let C be a ylinder with axis ` and radius r enlosing P. Then,

denoting by S

i

:= S(p

i

; r) the sphere with radius r entered at p

i

, ` is a ommon transversal

to S

1

; : : : ; S

m

. By ontinuously translating and rotating `, we an assume that ` is tangent

to two of the spheres, say S

1

and S

2

. Further, by hanging oordinates, we an assume

that S

1

and S

2

have the form S

1

= S((0; 0; 0)

T

; r), S

2

= S((a; 0; 0)

T

; r) for some a > 0.

The set of lines tangent to two spheres of radius r onstitutes a set of hyperboloids

(see, e.g., [9, 20℄). Moreover, any of these hyperboloids touhes the sphere S

1

on a irle

lying in a hyperplane parallel to the yz-plane. Hene, the set of hyperboloids an be

parametrized by the x-oordinate of this hyperplane whih we denote by x

h

.

If S

1

\ S

2

= ; then the boundary values are x

h

= 0 and x

h

= 2r

2

=a. These two

extreme situations yield a ylinder and a double one with apex (a=2; 0; 0)

T

, respetively

(see Figure 1). For 0 < x

h

< 2r

2

=a we obtain a hyperboloid of one sheet (see Figure 2(a)).
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If S

1

\S

2

6= ; then the boundary values are x

h

= 0 and x

h

= a=2. Here, for 0 < x

h

< a=2

we obtain hyperboloids of one sheet, too. For x

h

= a=2 the hyperboloid degenerates to

a set of tangents whih are tangents to the irle with radius r



=

p

4r

2

� a

2

in the

hyperplane x = a=2 (see Figure 2(b)).

Let x

h;0

be the parameter value of the hyperboloid ontaining the line `. By dereasing

the parameter x

h

starting from x

h;0

the hyperboloid hanges its shape towards the ylinder

around S

1

and S

2

. Let x

h;1

be the in�mum of all 0 � x

h

< x

h;0

suh that the hyperboloid

does not ontain a generating line tangent to some other sphere S(p

i

; r) for some 3 � i �

m. If x

h;1

= 0, then by hoosing any point of P not ollinear to p

1

and p

2

we are in ase

(ii) (a).

If x

h;1

> 0 then let p

3

be the orresponding point. Let T (S

1

; S

2

; S

3

) denote the set

of lines simultaneously tangent to S

1

, S

2

, and S

3

. Now let x

h;2

be the in�mum of all

0 � x

h

< x

h;0

suh that there exists a ontinuous funtion ` : (x

h;2

; x

h;1

) ! T (S

1

; S

2

; S

3

)

with `(x

h

) lying on the hyperboloid with parameter x

h

. Sine the spheres are ompat,

the in�mum is a minimum. If x

h;2

> 0 then one of three hyperboloids involved by the

three pairs of spheres must be one of the extreme hyperboloids in that situation and we

are in ases (ii) (a), (b), or (). If x

h;2

= 0 then we distinguish between two possibilities.

Either during this proess we also reahed a tangent to some other sphere S(p

i

; r) for

some 4 � i � m; in this ase we are in ase (i). Or during the transformation all the

points p

4

; : : : ; p

m

are enlosed in the ylinder with axis ` and radius r, but none of them

is ontained in it. Then we arrive at situation (ii) (a). �

3. Computing the smallest irumsribing ylinders of a simplex in E

3

So far, we have seen how to redue the omputation of a smallest enlosing ylinder of a

simplex in E

3

to the omputation of a smallest irumsribing ylinder. In order to apply

algebrai methods to ompute a smallest irumsribing ylinder, there are many di�erent

ways to formulate the problem in terms of polynomial equations. It is well-known that the

omputational osts of solving a system of polynomial equations are mainly dominated

by the B�ezout number (= produt of the degrees) and the mixed volume of the Newton

polytopes (the latter one is disussed in Setion 4). See [7, 8, 27℄ for omprehensive

introdutions and the state-of-the-art. Hene, it is an essential task to �nd the right

formulations. Moreover, we are interested in simplex lasses for whih the degrees an be

further redued.

3.1. General simplies in E

3

. In the proof of [10, Theorem 6℄, a polynomial formulation

is given to ompute the smallest enlosing ylinders of a simplex in E

3

. This formulation

desribes the problem by three equations in the diretion vetor v = (v

1

; v

2

; v

3

)

T

of the

line, one of them normalizing the diretion vetor v by

(3.1) v

2

1

+ v

2

2

+ v

2

3

= 1 :

The equations are of degree 10, 3, and 2, respetively, thus giving a B�ezout number of

60. However, as pointed out in that paper, some of the solutions to that system are

arti�ially introdued by the formulation and our with higher multipliity, and there

are only 18 really di�erent solutions. Even more severely, in the experiments in that paper
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(using Synaps, a state-of-the-art software for numerial polynomial omputations), the

numerial treatment of these multiple solutions needs muh time, roughly a fator 100

ompared to similar systems without multiple solutions.

Here, we present an approah, whih reets the true algebrai bound of 18. Namely, we

give a polynomial formulation with B�ezout bound 36 in whih every solution generially

has multipliity one. The additional fator 2 just results from the fat that due to the

normalization ondition (3.1) every solution v also implies that �v is a solution as well.

Our framework is based on [22℄ in whih the lines simultaneously tangent to four unit

spheres are studied. A line in E

3

is represented by a point u 2 E

3

lying on the line and a

diretion vetor v 2 E

3

with v

2

= 1. We an make u unique by requiring that u � v = 0.

A line ` = (u; v) has Eulidean distane r from a point p 2 E

3

if and only if the quadrati

equation (u+ tv � p)

2

= r

2

has a solution of multipliity two. This gives the ondition

(v � (u� p))

2

v

2

� (u� p)

2

+ r

2

= 0 :

Expanding this equation yields

(3.2) v

2

u

2

� 2v

2

u � p+ v

2

p

2

� (v � p)

2

� r

2

v

2

= 0 :

Rather than using v

2

= 1 to further simplify this equation, we prefer to keep the homo-

geneous form, in whih all terms are of degree 4.

Now let p

1

; : : : ; p

4

be the aÆnely independent verties of the given simplex. Without

loss of generality we an hoose p

4

to be loated in the origin. Then the remaining points

span E

3

. Subtrating the equation for the point in the origin from the equations for

p

1

, p

2

, p

3

gives the following program to ompute the square of the radius of a minimal

irumsribing ylinder.

(3.3)

minu

2

s.t. u � v = 0 ;

2v

2

u � p

i

= v

2

p

2

i

� (v � p

i

)

2

; 1 � i � 3 ;

v

2

= 1 :

We remark that the set of admissible solutions is nonempty; a proof of that statement

(for general dimension) is ontained in Setion 4.

Sine the points p

1

; p

2

; p

3

are linearly independent, the matrix M := (p

1

; p

2

; p

3

)

T

is

invertible, and we an solve the equations in the penultimate line of (3.3) for u:

(3.4) u =

1

2v

2

M

�1

0

�

v

2

p

2

1

� (v � p

1

)

2

v

2

p

2

2

� (v � p

2

)

2

v

2

p

2

3

� (v � p

3

)

2

1

A

:

Now substitute this expression for u into the objetive funtion and into the �rst onstraint

of the system (3.3). After setting v

2

= 1 in the denominator of the �rst onstraint, this

gives a homogeneous ubi equation whih we denote by g

1

(v

1

; v

2

; v

3

) = 0. Hene, we

arrive at the following polynomial optimization formulation in terms of the variables v

1

,
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v

2

, and v

3

.

(3.5)

min

0

�

1

2

M

�1

0

�

v

2

p

2

1

� (v � p

1

)

2

v

2

p

2

2

� (v � p

2

)

2

v

2

p

2

3

� (v � p

3

)

2

1

A

1

A

2

s.t. g

1

(v

1

; v

2

; v

3

) = 0 ;

g

2

(v

1

; v

2

; v

3

) := v

2

� 1 = 0 :

Note that the objetive funtion is a homogeneous polynomial of degree 4. We denote

this polynomial by f .

Using Lagrange multipliers �

1

and �

2

, a neessary loal optimality ondition is

(3.6) grad f = �

1

grad g

1

+ �

2

grad g

2

:

By thinking of an additional fator �

0

before grad f and onsidering (3.6) as a system of

linear equations in �

0

, �

1

, �

2

, we see that if (3.6) is satis�ed for some vetor v then the

determinant

(3.7) det

0

B

�

�

�f

�v

1

�g

1

�v

1

�g

2

�v

1

�

�f

�v

2

�g

1

�v

2

�g

2

�v

2

�

�f

�v

3

�g

1

�v

3

�g

2

�v

3

1

C

A

vanishes. Thus the following lemma haraterizes those irumsribing ylinders, within

the spae of all irumsribing ylinders, whose radius is loally extreme.

Lemma 3. (a) For any normalized diretion vetor (v

1

; v

2

; v

3

)

T

2 E

3

of the axis of a

loally extreme irumsribing ylinder, the determinant (3.7) vanishes. If there are only

�nitely many loally extreme, normalized diretion vetors than that number is bounded

by 36.

(b) For a generi simplex the number of solutions is indeed �nite, and all solutions have

multipliity one.

Proof. Let v be the diretion vetor of an axis of a loally extreme irumsribing ylinder.

Then v satis�es the �rst onstraint of (3.5), and the determinant (3.7) vanishes. Sine

these are homogeneous equations of degree 3 and 6, respetively, B�ezout's Theorem implies

that in onnetion with v

2

= 1 we obtain at most 36 isolated solutions.

For the seond statement it suÆes to hek that for one spei� simplex there are only

�nitely many (omplex) solutions and that all solutions are pairwise distint. E.g., hoose

the verties (2; 3; 5)

T

, (7; 11;�13)

T

, (17;�19;�23)

T

, (0; 0; 0)

T

. �

3.2. Speial simplex lasses in E

3

. In this setion, we investigate onditions under

whih the degree of the resulting equations is redued. Moreover, we show that for equifa-

ial simplies, the minimal irumsribing radius an be omputed quite easily.

We use the following lassi�ation from [22, 23℄.

Proposition 4. Let T be a simplex in E

3

with verties p

1

; : : : ; p

4

. The polynomial g

1

in the

ubi equation fators into a linear polynomial and an irreduible quadrati polynomial if

and only if the four faes of T an be partitioned into two pairs of faes fF

1

; F

2

g, fF

3

; F

4

g
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with area(F

1

) = area(F

2

) 6= area(F

3

) = area(F

4

). Moreover, g

1

fators into three linear

terms if and only if the areas of all four faes of T are equal.

First let us onsider the ase where g

1

deomposes into a linear polynomial and an irre-

duible quadrati polynomial. By optimizing separately over the linear and the quadrati

onstraint, the degrees of our equations are smaller than for the general ase. Namely,

analogously to the derivation in Setion 3.1, for the quadrati onstraint we obtain a

B�ezout bound of

(3 + 1 + 1) � 2 � 2 = 20 ;

and for the linear onstraint we obtain

(3 + 0 + 1) � 1 � 2 = 8 :

Thus, we an onlude:

Lemma 5. If the four faes of the simplex an be partitioned into two pairs of faes

fF

1

; F

2

g, fF

3

; F

4

g with area(F

1

) = area(F

2

) 6= area(F

3

) = area(F

4

) then there are at most

28 isolated loal extrema for the minimal irumsribing ylinder. They an be omputed

from two polynomial systems with B�ezout numbers 20 and 8, respetively.

Equifaial simplies. A simplex in E

3

is alled equifaial if all four faes have the same

area. By Proposition 4, for an equifaial simplex the ubi polynomial g

1

fators into three

linear terms. Hene, we obtain at most 3 � 8 = 24 loal extrema. Somewhat surprisingly,

using a haraterization from [29℄, it is even possible to ompute smallest irumsribing

ylinder of an equifaial simplex essentially without any algebrai omputation.

Namely, it is well-known that the verties of an equifaial simplex T an be regarded

as four pairwise non-adjaent verties of a retangular box (see, e.g., [21℄). Hene, there

exists a representation p

1

= (w

1

; w

2

; w

3

)

T

, p

2

= (w

1

;�w

2

;�w

3

)

T

, p

3

= (�w

1

; w

2

;�w

3

)

T

,

p

4

= (�w

1

;�w

2

; w

3

)

T

with w

1

; w

2

; w

3

> 0.

Assuming v

2

= 1 as before, (3.2) gives

(3.8) (v � p

i

)

2

+ 2u � p

i

=

3

X

j=1

w

2

j

+ u

2

� r

2

; 1 � i � 4 :

Subtrating these equations pairwise gives

4(w

2

u

2

+ w

3

u

3

) = �4(w

1

w

3

v

1

v

3

+ w

1

w

2

v

1

v

2

)

(for indies 1, 2) and analogous equations, so that

w

1

u

1

= �w

2

w

3

v

2

v

3

; w

2

u

2

= �w

1

w

3

v

1

v

3

; w

3

u

3

= �w

1

w

2

v

1

v

2

:

Sine u � v = 0, this yields v

1

v

2

v

3

= 0. Without loss of generality we an assume v

1

= 0.

In this ase,

u =

�

�

w

2

w

3

w

1

v

2

v

3

; 0; 0

�

T

:



SMALLEST ENCLOSING AND CIRCUMSCRIBING CYLINDERS 9

So we an express (3.8) in terms of the diretion vetor v,

w

2

2

v

2

2

+ w

2

3

v

2

3

=

3

X

j=1

w

2

j

+

�

�

w

2

w

3

w

1

v

2

v

3

�

2

� r

2

;

whih, by using v

2

2

+ v

2

3

= 1, gives

(3.9) r

2

= �

w

2

2

w

2

3

w

2

1

v

4

2

�

�

w

2

2

� w

2

3

�

w

2

2

w

2

3

w

2

1

�

v

2

2

+ w

2

1

+ w

2

2

:

Thus, by omputing the derivative of this expression r

2

= r

2

(v

2

) and taking into aount

the three ases v

i

= 0, we an redue the omputation of the minimal irumsribing

ylinders to solving three univariate equations of degree 3. However, we an still do

better. Substitute z

2

:= v

2

2

, and let � be the expression for r

2

in terms of z

2

,

�(z

2

) = �

w

2

2

w

2

3

w

2

1

z

2

2

�

�

w

2

2

� w

2

3

�

w

2

2

w

2

3

w

2

1

�

z

2

+ w

2

1

+ w

2

2

:

Sine the seond derivative of that quadrati funtion is negative, �(z

2

) is a onave

funtion. Hene, within the interval z

2

2 [0; 1℄, the minimum is attained at one of the

boundary values z

2

2 f0; 1g. Consequently, two of the omponents of (v

1

; v

2

; v

3

)

T

must

be zero and therefore v is perpendiular to two opposite edges. Sine the latter geometri

haraterization is independent of our spei� hoie of oordinates, we an onlude:

Lemma 6. If all four faes of the simplex T have the same area then the axis of a

minimum irumsribing ylinder is perpendiular to two opposite edges.

Hene, for an equifaial simplex it suÆes to investigate the ross produts of the three

pairs of opposite edges (equipped with an orientation), and we do not need to solve a

system of polynomial equations at all.

In order to illustrate how these three solutions relate to the 18 solutions of the general

approah above, we onsider the regular simplex in E

3

. In the general approah, as already

pointed out in [10℄, the six edge diretions p

i

p

j

(1 � i < j � 4) all have multipliity 1,

and eah of the three diretions in Lemma 6, p

1

p

2

� p

3

p

4

, p

1

p

3

� p

2

p

4

, p

1

p

4

� p

2

p

3

, have

multipliity 4.

4. Smallest irumsribing ylinders in higher dimensions

In Setion 3 we have given polynomial formulations with small B�ezout numbers for

omputing smallest irumsribing ylinders of a simplex in E

3

. Using the harateriza-

tion in [26℄ of lines simultaneously tangent to 2n�2 spheres in E

n

, we generalize these

formulations to smallest irumsribing ylinders of a simplex in E

n

, n � 2. Analogous

to the three-dimensional ase let p

1

; : : : ; p

n+1

be the aÆnely independent verties of a

simplex in E

n

, and let p

n+1

be loated in the origin.

First note that (3.3) also holds in general dimension n if we replae the index 3 by the in-

dex n. Sine the points p

1

; : : : ; p

n

are linearly independent, the matrixM := (p

1

; : : : ; p

n

)

T
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is invertible, and we an solve for u:

(4.1) u =

1

2v

2

M

�1

0

�

v

2

p

2

1

� (v � p

1

)

2

.

.

.

v

2

p

2

n

� (v � p

n

)

2

1

A

:

Hene, by generalizing the formulation for the three-dimensional ase, we obtain the

program

(4.2)

min

0

�

1

2

M

�1

0

�

v

2

p

2

1

� (v � p

1

)

2

.

.

.

v

2

p

2

n

� (v � p

n

)

2

1

A

1

A

2

s.t. g

1

(v

1

; : : : ; v

n

) = 0 ;

g

2

(v

1

; : : : ; v

n

) := v

2

� 1 = 0 ;

where g

1

denotes the ubi equation as before. In order to show that the set of admissible

solutions for our optimization problem is nonempty, we reord the following result.

Lemma 7. For any simplex in E

n

the

�

n+1

2

�

edge diretions of the simplex are diretion

vetors of irumsribing ylinders.

Proof. Sine the edge diretions p

i

� p

j

have a simple desription in the basis p

1

; : : : ; p

n

,

we express the ubi equation g

1

(v) = 0 in that basis. Let v be an arbitrary diretion

vetor, and let the representation of v in the basis p

1

; : : : ; p

n

be

v =

n

X

i=1

t

i

p

i

:

Further, let p

0

1

; : : : ; p

0

n

be a dual basis to p

1

; : : : ; p

n

; i.e., let p

0

1

; : : : ; p

0

n

be de�ned by

p

0

i

� p

j

= Æ

ij

, where Æ

ij

denotes Kroneker's delta funtion. By elementary linear algebra,

we have t

i

= p

0

i

� v.

When expressing u in this dual basis, u =

P

u

0

i

p

0

i

, the seond onstraint of (3.3) gives

u

0

i

=

1

2v

2

�

v

2

p

2

i

� (v � p

i

)

2

�

:

Substituting this representation of u into the equation g

1

(v) = 0 gives

0 = g

1

(v) = v

2

(u � v) = v

2

 

n

X

i=1

u

0

i

p

0

i

!

� v = v

2

n

X

i=1

u

0

i

t

i

;

where the last step uses the duality of the bases. Hene, we obtain the ubi equation

1

2

n

X

i=1

(v

2

p

2

i

� (v � p

i

)

2

)t

i

= 0 :

Expressing v in terms of the t-variables yields

1

2

X

1�i 6=j�n

�

ij

t

2

i

t

j

+

X

1�i<j<k�n

�

ijk

t

i

t

j

t

k

= 0 ;
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where

�

ij

= (vol

2

(p

i

; p

j

))

2

= det

�

p

i

� p

i

p

i

� p

j

p

j

� p

i

p

j

� p

j

�

;

�

ijk

= det

�

p

i

� p

j

p

i

� p

k

p

k

� p

j

p

k

� p

k

�

+ det

�

p

i

� p

k

p

i

� p

j

p

j

� p

k

p

j

� p

j

�

+det

�

p

j

� p

k

p

j

� p

i

p

i

� p

k

p

i

� p

i

�

;

and vol

2

(p

i

; p

j

) denotes the oriented area of the parallelogram spanned by p

i

and p

j

. In

terms of the t-oordinates, the

�

n+1

2

�

edges of the simplex are t = e

i

, 1 � i � n, and

t = e

i

� e

j

, 1 � i < j � n, where e

i

denotes the i-th standard unit vetor. For all these

edges, the ubi equation is satis�ed. �

Considering Lagrange multipliers �

1

and �

2

yields the following neessary optimality

ondition.

grad f = �

1

grad g

1

+ �

2

grad g

2

;

g

1

(v

1

; : : : ; v

n

) = 0 ;(4.3)

g

2

(v

1

; : : : ; v

n

) = 0 :

Sine the B�ezout bound of this system is 3

n

� 3 � 2 = 2 � 3

n+1

, we have:

Lemma 8. For n � 2, the number of isolated loal extrema for the minimal irumsribing

ylinder is bounded by 2 � 3

n+1

.

This bound is not tight. Trying to redue this upper bound of isolated solutions like

in the three-dimensional ase, we an eliminate the linear ourrenes of the Lagrange

variables �

1

and �

2

. Generalizing (3.7), we have to onsider the vanishing of all 3 � 3-

subdeterminants of the matrix

(4.4)

0

B

B

B

�

�

�f

�v

1

�g

1

�v

1

�g

2

�v

1

�

�f

�v

2

�g

1

�v

2

�g

2

�v

2

.

.

.

.

.

.

.

.

.

�

�f

�v

n

�g

1

�v

n

�g

2

�v

n

1

C

C

C

A

:

Thus, for n � 4 we arrive at a non-omplete intersetion of equations where we have more

equations than variables. Hene, we annot apply our B�ezout bound on these systems.

However, for small dimensions we an improve Lemma 8 by diretly working on the

formulation (4.3). In order to provide better bounds, we use well-known haraterizations

of the number of zeroes of a polynomial equation by the mixed volume of a Minkowski

sum of polytopes (for an easily aessible introdution into this topi we refer to [8℄).

Here, let C

�

:= C n f0g.

Lemma 9. For 2 � n � 7, the number of isolated solutions of the system (4.3) in

(v

1

; : : : ; v

n

; �

1

; �

2

) 2 (C

�

)

n+2

is bounded by

6

�

n+ 1

3

�

;
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where

�

n

k

	

denotes the Stirling number of the seond kind (see, e.g., [14, 25℄).

The sequene 6

�

n+1

3

	

starts as follows.

n 2 3 4 5 6 7

6

�

n+1

3

	

6 36 150 540 1806 5796

Proof. For a polynomial h =

P

�2N

n

0



�

x

�

2 C [x

1

; : : : ; x

n

℄, let

NP(h) := onvf� 2 N

n

0

: 

�

6= 0g

denote the Newton polytope of h (see, e.g., [8, x7.1℄). Let h

1

; : : : ; h

n

be the polynomials

of the gradient equation in (4.3). Further let P

1

; : : : ; P

n

; Q

1

; Q

2

be the Newton polytopes

of h

1

; : : : ; h

n

; g

1

; g

2

for generi instanes of these equations.

Reall that the mixed volume MV(P

1

; : : : ; P

n

; Q

1

; Q

2

) is the oeÆient of the monomial

�

1

��

2

� � ��

n

��

1

��

2

in the (n+2)-dimensional volume Vol

n+2

(�

1

P

1

+: : :+�

n

P

n

+�

1

Q

1

+�

2

Q

2

)

(whih is a polynomial expression in �

1

; : : : ; �

n

; �

1

; �

2

). By Bernstein's Theorem, the

number of isolated ommon zeroes in (C

�

)

n+2

of the set of polynomials h

1

; : : : ; h

n

; g

1

; g

2

is bounded from above by

MV(P

1

; : : : ; P

n

; Q

1

; Q

2

)

(see [8, Chapter 8, Theorem 5.4℄). For every given n this volume an be omputed using

software for omputing mixed volumes (see, e.g, [13, 30℄). �

We onjeture that for any n � 2, the number of isolated solutions in (C

�

)

n+2

is

bounded by 6

�

n+1

3

	

. With regard to the di�erent values in Lemmas 8 and 9, note that

lim

n!1

(2 � 3

n+1

)=(6

�

n+1

3

	

) = 2 :

4.1. The regular simplex in E

n

. Here, we analyze the loal extrema of irumsribing

ylinders for the regular simplex. Our aim is both to illustrate the algebrai formulations

given before and to relate our investigations to lassial investigations on the regular

simplex in onvex geometry. In order to ahieve many symmetries in the algebrai for-

mulation, we use a slightly modi�ed oordinate system that is partiularly suited for the

regular simplex; these oordinates have also been used in [4, 31℄.

The equation x

1

+ : : : + x

n+1

= 1 de�nes an n-dimensional aÆne subspae in E

n+1

.

Now let the regular simplex in this n-dimensional subspae be given by the n+1 verties

p

i

= e

i

, where e

i

denotes the i-th standard unit vetor, 1 � i � n + 1. We onsider the

tangeny equation (3.2) for the point p

n+1

,

v

2

u

2

� 2v

2

u

n+1

+ v

2

� v

2

n+1

� r

2

v

2

= 0 :

Subtrating this equation from the equation for p

i

, 1 � i � n, yields

2v

2

(u

i

� u

n+1

) = �(v

2

i

� v

2

n+1

) ; 1 � i � n :

Moreover, the embedding into the hyperplane

P

n+1

i=1

x

i

= 1 implies

P

n+1

i=1

u

i

= 1. In order

to solve these n+1 equations for u, let M be the (n+1)� (n+1)-matrix whose i-th row
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ontains the vetor e

T

i

� e

T

n+1

and whose n-th row is (1; 1; : : : ; 1). Sine M is invertible,

we obtain

(4.5) u =

1

2v

2

M

�1

0

B

B

�

�(v

2

1

� v

2

n+1

)

.

.

.

�(v

2

n

� v

2

n+1

)

2v

2

1

C

C

A

:

As before, substituting this expression into u �v = 0 and setting v

2

= 1 in the denominator

gives a ubi equation g

1

(v) = 0. Hene, we obtain the following optimization problem.

Here, the objetive funtion f stems from the ondition for the vertex p

n+1

, and the

ondition

P

n+1

i=1

v

i

= 0 omes from the embedding.

(4.6)

minu

2

� 2u

n+1

+ 1� v

2

n+1

s.t. g

1

(v

1

; : : : ; v

n+1

) = 0 ;

n+1

P

i=1

v

i

= 0 ;

v

2

= 1 :

First we reord that the funtions f and g

1

are symmetri polynomials in the variables

v

1

; : : : ; v

n+1

. In order to show this, let �

1

; : : : ; �

n+1

be the elementary symmetri funtions

in v

1

; : : : ; v

n+1

,

�

1

= v

1

+ : : :+ v

n+1

;

.

.

.

�

k

=

X

1�i

1

<:::<i

k

�n+1

v

i

1

v

i

2

� � � v

i

k

;

.

.

.

�

n+1

= v

1

v

2

� � � v

n+1

(see, e.g., [7, 28℄). By providing expliit expressions for f and g

1

as polynomials in the

elementary symmetri polynomials �

1

; : : : ; �

n+1

, the symmetry of f and g

1

follows. More

preisely, we obtain:

Lemma 10. The quarti polynomial f(v

1

; : : : ; v

n+1

) and the ubi polynomial g

1

(v

1

; : : : ;

v

n+1

) are symmetri polynomials in the variables v

1

; : : : ; v

n+1

. In terms of the elementary

symmetri funtions, f results in

f =

1

4(n+ 1)

�

n�

4

1

� 4n�

2

1

�

2

+ 2(n� 1)�

2

2

� 4�

2

1

+ 8�

2

+ 4n

�

+ �

1

�

3

� �

4

;

and the homogeneous polynomial g

1

results in

g

1

=

1

2(n+ 1)

�

�(n� 2)�

3

1

+ 3(n� 1)�

1

�

2

�

�

3

2

�

3

:
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Sine �

1

= 0 and

P

n+1

i=1

v

i

2

= �

2

1

� 2�

2

, we an also dedue the following formulation of

our optimization problem:

Corollary 11. Finding the ritial values of the minimization problem (4.6) is equivalent

to �nding the ritial values (v

1

; : : : ; v

n+1

)

T

of the maximization problem

max �

4

s.t. �

1

= 0 ;

�

2

= �

1

2

;(4.7)

�

3

= 0 ;

where �

i

are the elementary symmetri funtions in v

1

; : : : ; v

n+1

.

Theorem 12. The diretion vetor (v

1

; : : : ; v

n+1

)

T

of any loally extreme irumsribing

ylinder satis�es jfv

1

; : : : ; v

n+1

gj � 3, i.e., for eah solution vetor the omponents take

at most three distint values.

Proof. For n � 2, the statement is trivial, so we an assume n � 3. Let v be the diretion

vetor of a loally extreme irumsribing ylinder with v

2

= 1. Using Corollary 11, let

f(v) := ��

4

(v), g

1

(v) := �

3

(v), g

2

(v) := �

2

(v) + 1=2, and g

3

(v) := �

1

(v). As a neessary

ondition for a loal extremum, for any pairwise di�erent indies a; b; ; d 2 f1; : : : ; n+1g

the determinant

(4.8) det

0

B

B

B

�

�

�f

�v

a

�g

1

�v

a

�g

2

�v

a

�g

3

�v

a

�

�f

�v

b

�g

1

�v

b

�g

2

�v

b

�g

3

�v

b

�

�f

�v



�g

1

�v



�g

2

�v



�g

3

�v



�

�f

�v

d

�g

1

�v

d

�g

2

�v

d

�g

3

�v

d

1

C

C

C

A

vanishes. Sine f , g

1

, g

2

, and g

3

are symmetri funtions in the variables v

1

; : : : ; v

n+1

,

we an assume without loss of generality a = 1, b = 2,  = 3, and d = 4. Setting

�

n

:=

P

n+1

i=5

v

i

and �

n

=

P

n+1

i=5

v

2

i

, we an write

�g

3

�v

i

= 1 ;

�g

2

�v

i

=

4

X

j=1

j 6=i

v

j

+ �

n

;

�g

1

�v

i

=

X

1�j<k�4

j;k 6=i

v

j

v

k

+ �

n

4

X

j=1

j 6=i

v

j

+

1

2

�

�

2

n

� �

n

�

(1 � i � 4). Moreover, sine �

3

(v) = 0, we an onsider �

3

+

�f

�v

i

instead of

�f

�v

i

. This

allows to express the resulting expression easily in terms of �

n

and �

n

. More preisely, we
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obtain

�

3

+

�f

�v

i

= v

i

0

B

�

X

1�j<k�4

j;k 6=i

v

j

v

k

+ �

n

4

X

j=1

j 6=i

v

j

+

1

2

(�

2

n

� �

n

)

1

C

A

:

Thus we an onsider the determinant (4.8) as a polynomial in v

1

; v

2

; v

3

; v

4

; �

n

; �

n

. Evaluat-

ing this 4 � 4-determinant � shows that it is independent of �

n

, �

n

and that it fators

as

� = (v

1

� v

2

)(v

1

� v

3

)(v

1

� v

4

)(v

2

� v

3

)(v

2

� v

4

)(v

3

� v

4

) :

Hene, jfv

1

; v

2

; v

3

; v

4

gj � 3, and this holds true for any quadruple (a; b; ; d) of indies. �

Using this result, we illustrate the ourrene of the Stirling numbers in Lemma 9 for the

ase of a regular simplex. There are

�

n+1

3

	

ways to partition the set V := fv

1

; : : : ; v

n+1

g

into three nonempty subsets V

1

, V

2

, V

3

. We assume that v

i

2 V

i

, 1 � i � 3, and that all

variables within the same set take the same value. Setting k := jV

1

j and l := jV

2

j, the

formulation in Corollary 11 yields the system of equations

kv

1

+ lv

2

+ (n+ 1� k � l)v

3

= 0 ;

kv

2

1

+ lv

2

2

+ (n+ 1� k � l)v

2

3

= 1 ;(4.9)

X

0�i

1

<i

2

<i

3

�3

i

1

+i

2

+i

3

=3

�

k

i

1

��

l

i

2

��

n + 1� k � l

i

3

�

v

i

1

1

v

i

2

2

v

i

3

3

= 0 :

If one of the indies k, l, or n + 1 � k � l is zero then this system onsists of three

equations in two variables, so we do not expet any solutions. For every hoie of k, l

orresponding to a partition into nonempty subsets, we obtain a system of equations with

B�ezout number 6. Thus, whenever the values of v

1

, v

2

, and v

3

in the solutions to (4.9)

are distint, then this reets the bound in Lemma 9.

In partiular, in the ase n = 4 we obtain the following 150 solutions.

k = 1, l = 1: The six solutions for (v

1

; v

2

; v

3

)

T

of the system (4.9) are

�

1

p

2

;�

1

p

2

; 0

�

T

;

�

1

20

q

110� 30i

p

15;

1

20

q

110 + 30i

p

15;�

1

10

p

15

�

T

;

and the solutions obtained by permuting the �rst two omponents of the �rst

solution and by hanging the signs and/or permuting the �rst two omponents in

the seond solution.

For the program (4.7) in the variables (v

1

; : : : ; v

5

)

T

, this gives

�

5

2

��

2

1

�

= 20 ritial

positions of the form (i.e., up to variable permutations)

�

1

p

2

;�

1

p

2

; 0; 0; 0

�

T

;

20 omplex solutions of the form

�

�

1

20

q

110� 30i

p

15;�

1

20

q

110 + 30i

p

15;

1

10

p

15;

1

10

p

15;

1

10

p

15

�

T

;
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and 20 omplex solutions of the form

�

1

20

q

110� 30i

p

15;

1

20

q

110 + 30i

p

15;�

1

10

p

15;�

1

10

p

15;�

1

10

p

15

�

T

:

k = 1, l = 2: Here, we obtain 30 solutions of the form

�

0;

1

2

;

1

2

;�

1

2

;�

1

2

�

T

;

30 solutions of the form

�

1

5

p

10;

1

4

p

2�

1

20

p

10;

1

4

p

2�

1

20

p

10;�

1

4

p

2�

1

20

p

10;�

1

4

p

2�

1

20

p

10

�

T

;

and 30 solutions of the form

�

�

1

5

p

10;

1

4

p

2 +

1

20

p

10;

1

4

p

2 +

1

20

p

10;�

1

4

p

2 +

1

20

p

10;�

1

4

p

2 +

1

20

p

10

�

T

:

The global minimum is attained for the vetor

�

0;

1

2

;

1

2

;�

1

2

;�

1

2

�

T

, and the objetive

value of the global optimum is 49/80. Hene, the radius of the smallest irumsribing

ylinder for a regular simplex in E

4

with edge length

p

2 is

p

49=80 = 7

p

5=20 � 0:7826 .

Appendix: An error in the results of Wei�bah

In the ourse of our investigations, we disovered a subtle but severe mistake in the

paper [32℄ on the expliit determination of the outer (n�1)-radius of a regular simplex in

E

n

. Sine this error ompletely invalidates the proof given there

2

, we give a desription

of that aw, inluding some omputer-algebrai alulations illustrating it.

In that paper, the omputation of the outer (n�1)-radius of a regular simplex (with

edge length

p

2) is redued to the analysis of the following optimization problem.

(4.10)

min

n+1

P

i=1

u

4

i

s.t.

n+1

P

i=1

u

2

i

= 1 ;

n+1

P

i=1

u

i

= 0 :

2

In a personal ommuniation this has been on�rmed by B. Wei�bah.
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For any loal optimum (u

1

; : : : ; u

n+1

)

T

there exist Lagrange multipliers �

1

, �

2

2 R suh

that

4u

3

i

+ 2�

1

u

i

+ �

2

= 0 ; 1 � i � n+ 1 ;

n+1

X

i=1

u

2

i

= 1 ;(4.11)

n+1

X

i=1

u

i

= 0 :

Erroneously, in [32℄ it is argued that symmetry arguments imply that �

2

= 0 in any

solution. The following alulation in the omputer algebra system Singular [15℄ shows

that for n = 3 this system has 26 solutions (ounting multipliity) over C .

ring R = 0, (u1,u2,u3,u4,la1,la2), (dp);

ideal I =

4*u1^3 + 2*la1*u1 + la2,

4*u2^3 + 2*la1*u2 + la2,

4*u3^3 + 2*la1*u3 + la2,

4*u4^3 + 2*la1*u4 + la2,

u1^2 + u2^2 + u3^2 + u4^2 - 1,

u1 + u2 + u3 + u4;

degree(std(I));

This program �rst de�nes a polynomial ring in the variables u

1

; : : : ; u

4

; �

1

; �

2

over a

�eld of harateristi zero. We then use the degree ommand to ompute the dimension

and the degree of the ideal de�ned by our equations. The output of that ommand is

// odimension = 6

// dimension = 0

// degree = 26

Hene, there are �nitely many solutions (sine the dimension of the ideal is zero), and the

degree of the ideal (the sum of the multipliities of the solutions) is 26.

18 of these solutions refer to the ase �

2

= 0 (and those were the ones omputed in

[32℄). Namely, if �

2

= 0 then the �rst row of (4.11) simpli�es to

u

i

(2u

2

i

+ �

1

) = 0 ; 1 � i � n + 1 :

If we are only interested in the real solutions to this system, then setting �

1

= �2�

2

for

some � � 0 gives

u

i

(u

2

i

� �

2

) = 0 ; 1 � i � n+ 1 :
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Sine the vetor (u

1

; : : : ; u

n+1

)

T

= (0; : : : ; 0)

T

does not satisfy the seond row in (4.11),

the solutions with �

2

= 0 are

u

i

= �; i 2 fi

1

; : : : ; i

h

g ;

u

i

= ��; i 2 fi

h+1

; : : : ; i

2h

g ;

u

i

= 0 ; i 2 f1; : : : ; n+ 1g n fi

1

; : : : ; i

2h

g

for some h � 1, some set fi

1

; : : : ; i

2h

g of pairwise di�erent indies, and � = (2h)

�1=2

. In

the ase n = 3, there are 12 possibilities to hoose the indies and the signs for jhj = 1 and

6 possibilities to hoose the indies and the signs for jhj = 2, giving 18 solutions to (4.11).

However, there are 8 additional solutions, whih in fat are also real! Namely, these

solutions are

(u

1

; : : : ; u

4

)

T

=

1

2

p

3

(1;�3; 1; 1)

T

; �

1

= �

7

6

; �

2

=

1

p

3

;

(u

1

; : : : ; u

4

)

T

=

1

2

p

3

(�1; 3;�1;�1)

T

; �

1

= �

7

6

; �

2

= �

1

p

3

;

as well as the six distint solutions obtained from these two by permuting the variables

u

1

; : : : ; u

4

. The additional solutions invalidate the subsequent arguments in [32℄.

The omissions get even worse in the higher-dimensional ase. E.g., for n = 4, besides

the

�

5

2

��

2

1

�

+

�

5

4

��

4

2

�

= 20 + 30 = 50 solutions desribed in [32℄, we obtain the following

solutions:

(u

1

; : : : ; u

5

)

T

=

1

p

30

(�2;�2;�2; 3; 3)

T

; �

1

= �

7

15

; �

2

= �

2

75

p

30 ;

(u

1

; : : : ; u

5

)

T

=

1

p

30

(2; 2; 2;�3;�3)

T

; �

1

= �

7

15

; �

2

=

2

75

p

30 ;

(u

1

; : : : ; u

5

)

T

=

1

2

p

5

(1;�4; 1; 1; 1)

T

; �

1

= �

13

10

; �

2

=

6

25

p

5 ;

(u

1

; : : : ; u

5

)

T

=

1

2

p

5

(�1; 4;�1;�1;�1)

T

; �

1

= �

13

10

; �

2

= �

6

25

p

5 ;

as well as those solutions obtained by permuting the variables. Altogether, we have

10 + 10 + 5 + 5 = 30 solutions with �

2

6= 0, and thus a total number of 80 solutions.

Finally, we remark that the paper [31℄, whih omputes the outer (n�1)-radius of a

regular simplex in odd dimension n, is orret (f. also [4℄).
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