ALGEBRAIC METHODS FOR COMPUTING SMALLEST ENCLOSING
AND CIRCUMSCRIBING CYLINDERS OF SIMPLICES

RENE BRANDENBERG AND THORSTEN THEOBALD

ABSTRACT. We provide an algebraic framework to compute smallest enclosing and small-
est circumscribing cylinders of simplices in Euclidean space E®. Explicitly, the compu-
tation of a smallest enclosing cylinder in E? is reduced to the computation of a smallest
circumscribing cylinder. We improve existing polynomial formulations to compute the
locally extreme circumscribing cylinders in E? and exhibit subclasses of simplices where
the algebraic degrees can be further reduced. Moreover, we generalize these efficient for-
mulations to the n-dimensional case and provide bounds on the number of local extrema.
Using elementary invariant theory, we prove structural results on the direction vectors
of any locally extreme circumscribing cylinder for regular simplices.

1. INTRODUCTION

Radii (of various types) belong to the most important functionals of polytopes and
general convex bodies in Euclidean space E" [3, 16, 18], and they are related to applications
in computer vision, robotics, computational biology, functional analysis, and statistics (see
[17]). Following the notation in [3], the outer j-radius R;(C) of a convex body C C E”
is the radius of the smallest enclosing j-dimensional sphere in an optimal orthogonal
projection of C onto a j-dimensional linear subspace. Studying these radii, mainly for
regular simplices and regular polytopes, is a classical topic of convex geometry (see [2, 4,
12, 16]).

From the computational point of view, most of the existing algorithms for computing
these radii focus on approximation [6, 19]. A major reason is that exact computations
lead to algebraic problems of high degree, even for computing, say, the outer (n—1)-radius
in E" (already if n = 3). However, since some approaches for computing radii of general
polytopes consider the computation of a smallest enclosing or smallest circumscribing
cylinder of a simplex as a black box within a larger computation [1, 24], these core problems
on simplices are of fundamental importance.

Recently, the authors of [10] demonstrated that using their state-of-the-art numeri-
cal polynomial solvers, various problems related to cylinders in E? can be solved rather
efficiently. In particular, the authors give a polynomial formulation for the smallest cir-
cumscribing cylinder of a simplex in E?, whose Bézout number — the product of the degrees
of the polynomial equations — is 60. However, these equations contain certain undesired
solutions with multiplicity 4, and as a result of these multiplicities the computation times
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(using state-of-the-art numerical techniques) are about a factor 100 larger than those of
similar problems in which all solutions occur with multiplicity 1.

Here, we provide a general algebraic framework for computing smallest enclosing and
circumscribing cylinders of simplices in E”. First we reduce the computation of a smallest
enclosing cylinder in ? to the computation of a smallest circumscribing cylinder, thus
combining these two problems. Then we investigate smallest circumscribing cylinders of
simplices in E*. We improve the results of [10] by providing a polynomial formulation
for the locally extreme cylinders, whose Bézout bound is 36 and whose solutions gener-
ically have multiplicity one. Our formulations use techniques from the paper [22] which
studies the lines simultaneously tangent to four unit spheres. These techniques also facil-
itate to present classes of simplices for which the algebraic degrees in computing smallest
circumscribing cylinders can be considerably reduced.

Section 4 contains a generalization of our approach to smallest circumscribing cylinders
of simplices in E”. The Bézout number of this formulation yields a bound on the number
of locally extreme cylinders. Since that bound is not tight, we provide better bounds for
small dimensions, which are are based on mixed volume computations and Bernstein’s
Theorem. Moreover, we study in detail the locally extreme circumscribing cylinders of a
regular simplex in E”. To exploit many symmetries in the analysis, a formulation based on
symmetric polynomials is provided. Using elementary invariant theory we show that the
direction vector of every locally extreme circumscribing cylinder has at most three distinct
values in its components. This structural result is then related to the combinatorial results
on the number of solutions for general simplices.

As a byproduct of our computational studies, we discovered a subtle but severe mistake
in the paper [32] on the explicit determination of the outer (n—1)-radius for a regular
simplex in E” (n even), thus completely invalidating the proof given there. The appendix
contains a description of that flaw, including some computer-algebraic calculations illus-
trating it. We remark that after the present paper had been finished, we found a new way
for determining R,_; of a regular simplex in even dimension (see [5]).

2. PRELIMINARIES AND BACKGROUND

2.1. j-radii and cylinders. Throughout the paper we work in Euclidean space E”, i.e.,
R" with the usual scalar product = -y = Y1, 2;4; and norm ||z|| = (z - 2)"/2. We write
22 for z - x.

A j-flat is an affine subspace of dimension j. For a convex polytope P C E" (or a finite
point set P C E") and a j-flat F, we consider

RD(P, E) := maxdist(p, E),
pEP

where dist(p, E) denotes the Euclidean distance from p to E. The outer j-radius of P is
R; = i RD(P,FE).
i(P) = il g PP B)
The choice of the indexing in the j-radius stems from the fact that it measures the
radius of the smallest enclosing j-dimensional sphere in an optimal orthogonal projection
of P onto a j-dimensional linear subspace (cf. [3, 16]).
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One of the most natural representatives of this class is the one with 7 =2, n = 3, i.e.,
the smallest enclosing (circular) cylinder of a polytope. In E", we define a cylinder to be
a set of the form

bd(¢ + pB"),
where / is a line in E", B” denotes the unit ball, p > 0, the addition denotes the Minkowski
sum, and bd(-) denotes the boundary of a set. We say that P can be enclosed in a cylinder
C if P is contained in the convex hull of C. Thus the outer (n—1)-radius gives the radius
of a smallest enclosing cylinder of a polytope.

A simplex in E" is the convex hull of n 4 1 affinely independent points. An enclosing
cylinder C of a simplex P is called a circumscribing cylinder of P if all the vertices of P
are contained in (the hypersurface) C.

2.2. Smallest circumscribing cylinders and smallest enclosing cylinders. The fol-
lowing statement connects the computation of a smallest enclosing cylinder of a polytope
with the computation of a smallest circumscribing cylinder of a simplex.!

Theorem 1. Let P = {p1,...,pm} be a set of m > 4 points in B2, not all collinear. If P
can be enclosed in a circular cylinder C of radius r, then there exists a circular cylinder
C' of radius r enclosing all elements of P such that the surface C' passes through

(i) at least four non-collinear points of P, or
(ii) three non-collinear points of P, and the azis { of C' is contained in
(a) the cylinder naturally defined by spheres of radius r centered at two of these
points;
(b) the double cone naturally defined by spheres of radius r centered at two of
these points (and these spheres are disjoint);
(c) or the set of lines which are tangent to the two spheres of radius r centered
at two of these points and which are contained in the plane equidistant from
these points (and the spheres are non-disjoint).

Moreover, C can be transformed into C' by a continuous motion.

Figures 1 and 2 visualize the three geometric properties in the second possibility.

Since case (ii) in Theorem 1 characterizes the possible special cases, this lemma in
particular reduces the computation of a smallest enclosing cylinder of a simplex in E? to
the computation of a smallest circumscribing cylinder of a simplex. Namely, it suffices
to compute the smallest circumscribing cylinder (corresponding to case (i)) as well as the
smallest enclosing cylinders whose axes satisfies one of the conditions in (ii); the latter
case gives a constant number of problems of smaller algebraic degree (since the positions
of the axes are very restricted).

Remark 2. Before we start with the proof, we remark that Theorem 1 and its differ-
ent cases show a quite similar behavior as the well known statement that the (unique)
circumsphere of a simplex touches all its vertices, or one of its great (n—1)-circles is the
circumsphere of one of the (n—1)-faces of the simplex (see [2, p. 54]).

IWe remark that a similar statement has already been used in [24], but the manuscript referenced
there does not contain a complete proof.
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(a) Cylinder (b) Double cone with apex (a/2,0,0)"

FIGURE 1. Extreme situations of the set of hyperboloids for disjoint spheres

(a) Hyperboloid for 0 < z;, < 2r?/a (b) Degenerated hyperboloid for z;, = a/2

FIGURE 2. The left figure shows a general situation for disjoint spheres;
the right figure shows an extreme situation for non-disjoint spheres

In the proof we will apply the following geometric equivalence. A point z € E? is
enclosed in a cylinder with axis £ if and only if 7 is a transversal of the sphere with radius
r centered at x (i.e., £ is a line intersecting the sphere).

Proof of Theorem 1. Let C be a cylinder with axis ¢ and radius r enclosing P. Then,
denoting by S; := S(p;, ) the sphere with radius r centered at p;, £ is a common transversal
to Sy, ..., Sn,. By continuously translating and rotating ¢, we can assume that /¢ is tangent
to two of the spheres, say S; and S5. Further, by changing coordinates, we can assume
that S; and S, have the form S; = S((0,0,0)T,r), Sy = S((a,0,0)T,r) for some a > 0.

The set of lines tangent to two spheres of radius r constitutes a set of hyperboloids
(see, e.g., [9, 20]). Moreover, any of these hyperboloids touches the sphere S; on a circle
lying in a hyperplane parallel to the yz-plane. Hence, the set of hyperboloids can be
parametrized by the z-coordinate of this hyperplane which we denote by x,.

If S, NSy = ( then the boundary values are z;, = 0 and z, = 2r?/a. These two
extreme situations yield a cylinder and a double cone with apex (a/2,0,0)”, respectively
(see Figure 1). For 0 < zj, < 2r?/a we obtain a hyperboloid of one sheet (see Figure 2(a)).
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If S;NSs # () then the boundary values are z;, = 0 and z, = a/2. Here, for 0 < x), < a/2
we obtain hyperboloids of one sheet, too. For x;, = a/2 the hyperboloid degenerates to
a set of tangents which are tangents to the circle with radius r. = V/4r2 —a? in the
hyperplane z = a/2 (see Figure 2(b)).

Let xj, o be the parameter value of the hyperboloid containing the line /. By decreasing
the parameter x;, starting from xy, o the hyperboloid changes its shape towards the cylinder
around S; and Sy. Let ,; be the infimum of all 0 < x), < x;,9 such that the hyperboloid
does not contain a generating line tangent to some other sphere S(p;,r) for some 3 < i <
m. If ¢, ; = 0, then by choosing any point of P not collinear to p; and p, we are in case
(i) (n)-

If 2,1, > 0 then let p3 be the corresponding point. Let T'(S, Sz, S3) denote the set
of lines simultaneously tangent to Si, S, and S5. Now let zj, 2 be the infimum of all
0 <z, < xpp such that there exists a continuous function ¢ : (2, 241) — T(S1, S2, S3)
with £(z) lying on the hyperboloid with parameter xj. Since the spheres are compact,
the infimum is a minimum. If 25,5 > 0 then one of three hyperboloids involved by the
three pairs of spheres must be one of the extreme hyperboloids in that situation and we
are in cases (ii) (a), (b), or (c). If x5 = 0 then we distinguish between two possibilities.
Either during this process we also reached a tangent to some other sphere S(p;,r) for
some 4 < ¢ < m; in this case we are in case (i). Or during the transformation all the
points py, ..., pm are enclosed in the cylinder with axis ¢ and radius r, but none of them
is contained in it. Then we arrive at situation (ii) (a). O

3. COMPUTING THE SMALLEST CIRCUMSCRIBING CYLINDERS OF A SIMPLEX IN E?

So far, we have seen how to reduce the computation of a smallest enclosing cylinder of a
simplex in E* to the computation of a smallest circumscribing cylinder. In order to apply
algebraic methods to compute a smallest circumscribing cylinder, there are many different
ways to formulate the problem in terms of polynomial equations. It is well-known that the
computational costs of solving a system of polynomial equations are mainly dominated
by the Bézout number (= product of the degrees) and the mixed volume of the Newton
polytopes (the latter one is discussed in Section 4). See [7, 8, 27] for comprehensive
introductions and the state-of-the-art. Hence, it is an essential task to find the right
formulations. Moreover, we are interested in simplex classes for which the degrees can be
further reduced.

3.1. General simplices in E*. In the proof of [10, Theorem 6], a polynomial formulation
is given to compute the smallest enclosing cylinders of a simplex in E*. This formulation
describes the problem by three equations in the direction vector v = (vy,ve,v3)” of the
line, one of them normalizing the direction vector v by

(3.1) v +vs +v; = 1,

The equations are of degree 10, 3, and 2, respectively, thus giving a Bézout number of
60. However, as pointed out in that paper, some of the solutions to that system are
artificially introduced by the formulation and occur with higher multiplicity, and there
are only 18 really different solutions. Even more severely, in the experiments in that paper
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(using SYNAPS, a state-of-the-art software for numerical polynomial computations), the
numerical treatment of these multiple solutions needs much time, roughly a factor 100
compared to similar systems without multiple solutions.

Here, we present an approach, which reflects the true algebraic bound of 18. Namely, we
give a polynomial formulation with Bézout bound 36 in which every solution generically
has multiplicity one. The additional factor 2 just results from the fact that due to the
normalization condition (3.1) every solution v also implies that —v is a solution as well.

Our framework is based on [22] in which the lines simultaneously tangent to four unit
spheres are studied. A line in E? is represented by a point u € E? lying on the line and a
direction vector v € E* with v? = 1. We can make u unique by requiring that u - v = 0.
A line ¢ = (u,v) has Euclidean distance r from a point p € E? if and only if the quadratic
equation (u + tv — p)? = r? has a solution of multiplicity two. This gives the condition

(v- (u—p)°

2 —(u—p)*> +r° = 0.

Expanding this equation yields
(3.2) v?u? — 20%u - p +v*p® — (v-p)? —r?v? = 0.

Rather than using v? = 1 to further simplify this equation, we prefer to keep the homo-
geneous form, in which all terms are of degree 4.

Now let pq,...,ps be the affinely independent vertices of the given simplex. Without
loss of generality we can choose p; to be located in the origin. Then the remaining points
span E3. Subtracting the equation for the point in the origin from the equations for
p1, P2, p3 gives the following program to compute the square of the radius of a minimal
circumscribing cylinder.

min u?
s.t. u-v = 0,
(3.3) 2%u-p; = v¥pl— (v-p)?, 1<i<3,
v? = 1.

We remark that the set of admissible solutions is nonempty; a proof of that statement
(for general dimension) is contained in Section 4.

Since the points pq, ps, p3 are linearly independent, the matrix M := (p1,p2, p3
invertible, and we can solve the equations in the penultimate line of (3.3) for u:

)T s

L vng — (v -pl)z
(3.4) u = 2—?)2M_ v'py — (v - p2)
vPpi — (v - ps)°

Now substitute this expression for u into the objective function and into the first constraint
of the system (3.3). After setting v> = 1 in the denominator of the first constraint, this
gives a homogeneous cubic equation which we denote by g;(vy,vs,v3) = 0. Hence, we
arrive at the following polynomial optimization formulation in terms of the variables vy,
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vy, and wvs.
2
v*pi — (v-pr)?
min %M*I Ung — (v 'p2)z
(3.5) v?ps — (v ps)
S.t. 91(0170271)3) = 07
go(vi,v9,v3) :=0> —1 = 0.

Note that the objective function is a homogeneous polynomial of degree 4. We denote
this polynomial by f.
Using Lagrange multipliers A\; and \,, a necessary local optimality condition is

(3.6) grad f = Ajgrad g; + \ograd gs.

By thinking of an additional factor A\ before grad f and considering (3.6) as a system of
linear equations in g, Ai, Ay, we see that if (3.6) is satisfied for some vector v then the
determinant

_9f 991 092

ovy ov ovy

_9f 991 Og2

(3.7) det Sos  Bos Do
of 991 992

vy  Ovg Ovs

vanishes. Thus the following lemma characterizes those circumscribing cylinders, within
the space of all circumscribing cylinders, whose radius is locally extreme.

Lemma 3. (a) For any normalized direction vector (vi,ve,v3)T € E® of the axis of a
locally extreme circumscribing cylinder, the determinant (3.7) vanishes. If there are only
finitely many locally extreme, normalized direction vectors than that number is bounded
by 36.

(b) For a generic simplex the number of solutions is indeed finite, and all solutions have
multiplicity one.

Proof. Let v be the direction vector of an axis of a locally extreme circumscribing cylinder.
Then v satisfies the first constraint of (3.5), and the determinant (3.7) vanishes. Since
these are homogeneous equations of degree 3 and 6, respectively, Bézout’s Theorem implies
that in connection with v? = 1 we obtain at most 36 isolated solutions.

For the second statement it suffices to check that for one specific simplex there are only
finitely many (complex) solutions and that all solutions are pairwise distinct. E.g., choose
the vertices (2,3,5)T, (7,11, -13)T, (17, -19, —23)T, (0,0, 0)T. O

3.2. Special simplex classes in E3. In this section, we investigate conditions under
which the degree of the resulting equations is reduced. Moreover, we show that for equifa-
cial simplices, the minimal circumscribing radius can be computed quite easily.

We use the following classification from [22, 23].

Proposition 4. Let T be a simplex in B> with vertices p, ..., ps. The polynomial g, in the
cubic equation factors into a linear polynomial and an irreducible quadratic polynomial if
and only if the four faces of T can be partitioned into two pairs of faces {Fy, Fy}, {F3, Fy}
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with area(Fy) = area(Fy) # area(F3) = area(Fy). Moreover, g, factors into three linear
terms if and only if the areas of all four faces of T are equal.

First let us consider the case where g; decomposes into a linear polynomial and an irre-
ducible quadratic polynomial. By optimizing separately over the linear and the quadratic
constraint, the degrees of our equations are smaller than for the general case. Namely,
analogously to the derivation in Section 3.1, for the quadratic constraint we obtain a
Bézout bound of

B+1+4+1)-2-2=20,
and for the linear constraint we obtain

B3+0+1)-1-2=38.
Thus, we can conclude:

Lemma 5. If the four faces of the simplex can be partitioned into two pairs of faces
{Fy, F5}, {F3, Fy} with area(Fy) = area(Fy) # area(F3) = area(Fy) then there are at most
28 isolated local extrema for the minimal circumscribing cylinder. They can be computed
from two polynomial systems with Bézout numbers 20 and 8, respectively.

Equifacial simplices. A simplex in F? is called equifacial if all four faces have the same
area. By Proposition 4, for an equifacial simplex the cubic polynomial ¢g; factors into three
linear terms. Hence, we obtain at most 3 - 8 = 24 local extrema. Somewhat surprisingly,
using a characterization from [29], it is even possible to compute smallest circumscribing
cylinder of an equifacial simplex essentially without any algebraic computation.

Namely, it is well-known that the vertices of an equifacial simplex T' can be regarded
as four pairwise non-adjacent vertices of a rectangular box (see, e.g., [21]). Hence, there
exists a representation p; = (wy, we, w3)T, py = (w1, —wy, —ws3)T, p3 = (—wy, wo, —w3)7,
Py = (—wi, —wo, w3)T with wy, wy, ws > 0.

Assuming v? = 1 as before, (3.2) gives

3
(3.8) (v-pi)2+2u-pi:2w3+u2—r2, 1<i<4.
j=1

Subtracting these equations pairwise gives
4(waug + wauz) = —4(wiwsv1v3 + Wiwyv V)
(for indices 1, 2) and analogous equations, so that
W1U1 = —wWa2W3v2V3, Wolly = —wW1W3V1V3, W3z = —wW1WaV1Vy.

Since u - v = 0, this yields v;v9v3 = 0. Without loss of generality we can assume v; = 0.

In this case,
T
WoWs3
U= (— v2v3,0,0> .
wn
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So we can express (3.8) in terms of the direction vector v,

3 2
W
2,2 2,2 _ 2 2W3 2
wyvy + W3vy = E wy; + (— ” UQU3> -,
: 1
J=1

which, by using v3 + v2 = 1, gives
2,2 2,2
wiw waw
(3.9) r? = ——2 3 — (wh —w; — =252 ) v +wi +ws.
wy wy

Thus, by computing the derivative of this expression r> = r?(v,) and taking into account
the three cases v; = 0, we can reduce the computation of the minimal circumscribing
cylinders to solving three univariate equations of degree 3. However, we can still do
better. Substitute z; := v2, and let p be the expression for r? in terms of 2o,

2,2 2,2
p(z) = _w21203z§ _ <w§ —wj — w2_1§3> 2z +wi + wi.
wy wy

Since the second derivative of that quadratic function is negative, p(zs) is a concave
function. Hence, within the interval z, € [0, 1], the minimum is attained at one of the
boundary values z, € {0,1}. Consequently, two of the components of (v, vy, v3)” must
be zero and therefore v is perpendicular to two opposite edges. Since the latter geometric
characterization is independent of our specific choice of coordinates, we can conclude:

Lemma 6. If all four faces of the simplex T have the same area then the axis of a
mainimum circumscribing cylinder is perpendicular to two opposite edges.

Hence, for an equifacial simplex it suffices to investigate the cross products of the three
pairs of opposite edges (equipped with an orientation), and we do not need to solve a
system of polynomial equations at all.

In order to illustrate how these three solutions relate to the 18 solutions of the general
approach above, we consider the regular simplex in E*. In the general approach, as already
pointed out in [10], the six edge directions p;p; (1 < i < j < 4) all have multiplicity 1,
and each of the three directions in Lemma 6, pips X p3ps, pP1P3 X Papa, P1P4 X PaP3, have
multiplicity 4.

4. SMALLEST CIRCUMSCRIBING CYLINDERS IN HIGHER DIMENSIONS

In Section 3 we have given polynomial formulations with small Bézout numbers for
computing smallest circumscribing cylinders of a simplex in E*. Using the characteriza-
tion in [26] of lines simultaneously tangent to 2n—2 spheres in E", we generalize these
formulations to smallest circumscribing cylinders of a simplex in E*, n > 2. Analogous
to the three-dimensional case let pq,...,p,1 be the affinely independent vertices of a
simplex in E", and let p,; be located in the origin.

First note that (3.3) also holds in general dimension n if we replace the index 3 by the in-
dex n. Since the points py, ..., p, are linearly independent, the matrix M := (p,...,p,)"



10 R. BRANDENBERG AND T. THEOBALD

is invertible, and we can solve for wu:
vipt— (v p1)?
(4.1) w = —M" :
v'p, — (v pn)’

Hence, by generalizing the formulation for the three-dimensional case, we obtain the
program

vipt — (v-p1)?
min %M*I :
(4.2) v?p? — (v-pp)?
s.t. gi(v1,...,v,) = 0,
Ga(vi, .. vp) =02 =1 = 0

where g; denotes the cubic equation as before. In order to show that the set of admissible
solutions for our optimization problem is nonempty, we record the following result.

n+1

Lemma 7. For any simplex in E" the ( )

vectors of circumscribing cylinders.

) edge directions of the simplex are direction

Proof. Since the edge directions p; — p; have a simple description in the basis pi, ..., pn,
we express the cubic equation g;(v) = 0 in that basis. Let v be an arbitrary direction
vector, and let the representation of v in the basis pq,...,p, be

n
= Z tip; -
i=1

Further, let p},...,p, be a dual basis to pi,...,p,; i.e., let pi,...,p, be defined by
p, - pj = 6;;, where ¢;; denotes Kronecker’s delta function. By elementary linear algebra,
we have t; = p, -
When expressing u in this dual basis, u = > up;, the second constraint of (3.3) gives
1
U’; - 20 P (U pz (Up2)2) :

Substituting this representation of u into the equation g;(v) = 0 gives

0 = o) = ) = o (oot o = 1Yt
i=1
where the last step uses the duality of the bases. Hence, we obtain the cubic equation
Z vPp? — (v-p)*)t = 0.

Expressing v in terms of the t—varlables yields

Z agtiti+ > Butitity = 0,

1<'L7é]<n 1<i<j<k<n
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where

ai; = (vola(pi,pj))® = det<pi'pi Pi - Pj ))

Pbj-Pi DjDj
Bije = det [ PiiPi PitPR) | qeq (Pt PR PitD
Pk -Pj Pk Pk Pj P DPjDj
tdet | P7Pk DPitPi
Di-Pk Pi-Pi )’

and voly(p;, p;) denotes the oriented area of the parallelogram spanned by p; and p;. In
terms of the ¢-coordinates, the (";’1) edges of the simplex are t = ¢;, 1 < i < n, and
t=-¢e —e;, 1 <i<j<n, where e; denotes the i-th standard unit vector. For all these
edges, the cubic equation is satisfied. O

Considering Lagrange multipliers A; and )y yields the following necessary optimality
condition.

grad f = M\grad g; + Aggrad g5,
(4.3) g1(v1,...,v,) = 0,
g2(v1,...,v,) = 0.
Since the Bézout bound of this system is 3" - 3-2 = 2- 3!, we have:

Lemma 8. Forn > 2, the number of isolated local extrema for the minimal circumscribing
cylinder is bounded by 2 - 3"+,

This bound is not tight. Trying to reduce this upper bound of isolated solutions like
in the three-dimensional case, we can eliminate the linear occurrences of the Lagrange
variables A\; and \y. Generalizing (3.7), we have to consider the vanishing of all 3 x 3-
subdeterminants of the matrix

of 091 992
ovy ovy ovy
of g1 9g2

(44) Ovo Ova Ovo
of 0g1  Og2
Ovp, Ovn Ovp,
Thus, for n > 4 we arrive at a non-complete intersection of equations where we have more
equations than variables. Hence, we cannot apply our Bézout bound on these systems.
However, for small dimensions we can improve Lemma 8 by directly working on the
formulation (4.3). In order to provide better bounds, we use well-known characterizations
of the number of zeroes of a polynomial equation by the mixed volume of a Minkowski

sum of polytopes (for an easily accessible introduction into this topic we refer to [8]).
Here, let C* := C\ {0}.

Lemma 9. For 2 < n < 7, the number of isolated solutions of the system (4.3) in
(U1, U, A1, Ag) € (C*)"2 is bounded by

n+1
6
St
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where {Z} denotes the Stirling number of the second kind (see, e.g., [14, 25]).

The sequence 6{";1} starts as follows.

n 3] 4]5] 6 ] 7|
6{""'} || 636|150 | 540 | 1806 5796‘

Proof. For a polynomial h = ZaeNg cax® € Clzy,. .., 7y, let
NP(h) := conv{a € Nj : ¢, # 0}

denote the Newton polytope of h (see, e.g., [8, §7.1]). Let hy, ..., h, be the polynomials
of the gradient equation in (4.3). Further let P, ..., P,, @1, Q2 be the Newton polytopes
of hy, ..., hn, g1, gs for generic instances of these equations.

Recall that the mixed volume MV (Py, ..., P,,Q1,Q2) is the coefficient of the monomial
A1-Ag -+ - Ay-pig- g in the (n+2)-dimensional volume Vol,, 12 (A1 Pi+. . .4\, P+ Q1+ 112Q2)
(which is a polynomial expression in Ay, ..., Ay, i1, p2). By Bernstein’s Theorem, the
number of isolated common zeroes in (C*)**2 of the set of polynomials Ay, ..., A, g1, g2
is bounded from above by

MV(Pla"'a-PnanaQQ)

(see [8, Chapter 8, Theorem 5.4]). For every given n this volume can be computed using
software for computing mixed volumes (see, e.g, [13, 30]). O

We conjecture that for any n > 2, the number of isolated solutions in (C*)"™2 is

bounded by 6{”;“1}. With regard to the different values in Lemmas 8 and 9, note that
Jim (2.3 /(6{"3)) = 2.

4.1. The regular simplex in E”. Here, we analyze the local extrema of circumscribing
cylinders for the regular simplex. Our aim is both to illustrate the algebraic formulations
given before and to relate our investigations to classical investigations on the regular
simplex in convex geometry. In order to achieve many symmetries in the algebraic for-
mulation, we use a slightly modified coordinate system that is particularly suited for the
regular simplex; these coordinates have also been used in [4, 31].

The equation x; + ... 4+ 2,41 = 1 defines an n-dimensional affine subspace in E"+!.
Now let the regular simplex in this n-dimensional subspace be given by the n + 1 vertices
p; = e;, where e; denotes the i-th standard unit vector, 1 < i < n + 1. We consider the
tangency equation (3.2) for the point p, 1,

v2u? — 202Uy + 07 — 7)721+1 —r2? = 0.

Subtracting this equation from the equation for p;, 1 < i < n, yields

20% (Ui — Upy1) = —(vF—v2,), 1<i<n.

Moreover, the embedding into the hyperplane Z;:’ll x; = 1 implies 27.’+11 u; = 1. In order

1=

to solve these n + 1 equations for u, let M be the (n+ 1) x (n+ 1)-matrix whose i-th row
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contains the vector el — el | and whose n-th row is (1,1,...,1). Since M is invertible,
we obtain

—(vf —vniy)
(4.5) w=—M :

2v? —(vn = Vo)
202

As before, substituting this expression into u-v = 0 and setting v = 1 in the denominator
gives a cubic equation g;(v) = 0. Hence, we obtain the following optimization problem.
Here, the objective function f stems from the condition for the vertex p,.i, and the
condition Z?jll v; = 0 comes from the embedding.

min u? — 2u,41 + 1 — 02,

st. g1(v1,. .., 0n41) = 0,

(46) n41
v; = 0,
v? = 1.

First we record that the functions f and ¢g; are symmetric polynomials in the variables
U1,...,Uns1. In order to show this, let oy, ..., 0,11 be the elementary symmetric functions
in vy,..., 0541,

o1 = U1—|—...—|—Un+1,

O = § 'Uil'Ui2 e vik )

1<ih <. <ip<n+1

Op+1 = U1U2** *Uptq

(see, e.g., [7, 28]). By providing explicit expressions for f and g; as polynomials in the
elementary symmetric polynomials o4, ..., 0,1, the symmetry of f and g; follows. More
precisely, we obtain:

Lemma 10. The quartic polynomial f(vi,...,vny1) and the cubic polynomial gy (vy, ...,
Unt1) are symmetric polynomials in the variables vy, ..., v,11. In terms of the elementary
symmetric functions, f results in
1
f= m (nai1 — 4nojoy +2(n — 1)05 — 4o + 80y + 4n) + 0103 — 04,

and the homogeneous polynomial g, results in

1

ggrﬁ(%n—mﬁ+3m—1wmg—§@.

g1 =
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Since o7 = 0 and Z;”ll v;2 = 0% — 204, we can also deduce the following formulation of
our optimization problem:

Corollary 11. Finding the critical values of the minimization problem (4.6) is equivalent

to finding the critical values (vy,...,v,11)" of the mazimization problem
max oy
s.t. o = 0,
1
(47) O9 = —5 ,
O3 = 0,
where o; are the elementary symmetric functions in vy, ..., Up1q.
Theorem 12. The direction vector (vy,...,vn41)T of any locally extreme circumscribing
cylinder satisfies |{vi,...,voa1}| < 3, i.e., for each solution vector the components take

at most three distinct values.

Proof. For n < 2, the statement is trivial, so we can assume n > 3. Let v be the direction
vector of a locally extreme circumscribing cylinder with v? = 1. Using Corollary 11, let

f(v) == —04(v), g1(v) := 03(v), g2(v) := 02(v) + 1/2, and g3(v) := oy(v). As a necessary
condition for a local extremum, for any pairwise different indices a,b,¢,d € {1,...,n+1}
the determinant

of 991 992 9g3
Ovg Ovg Ovg Ovg

_O0f 991 992 dgs

v ov ov ov

(4.8) det of dg1 092 0gs
Ove Ove Ove Ove
of g1 Og2 g3
dvg  Ovg Ovg  Ouy

vanishes. Since f, g, g2, and g3 are symmetric functions in the variables vy,..., v,41,
we can assume without loss of generality a =1, b= 2, ¢ =3, and d = 4. Setting
a,, = Z"+51 v; and 3, = Z;H% v?, we can write

dg3 _ 1
avi ,
dg !
2
= Vj 4 Oy
dvi Z !
i#i
dg ! 1
81 = Z vjvk+an2vj+§(ai—ﬁn)
Ui 1<j<k<4 j=1
Jik#i J#i

(1 < i < 4). Moreover, since o3(v) = 0, we can consider o3 + a af_. This
allows to express the resulting expression easily in terms of «a;, and ﬂn More premsely, we
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obtain

G, ! 1
0'3+—f:?)i Z UjUk—FCYnZUj—Fi(ai—ﬂn)

ov;
v 1<j<k<4 j=1
J ki i

Thus we can consider the determinant (4.8) as a polynomial in vy, vy, v3, V4, (i, B,. Evaluat-
ing this 4 x 4-determinant A shows that it is independent of «,, £, and that it factors
as

A = (v1 — va)(vy — v3)(v1 — vyg) (Ve — v3) (V2 — vy) (V5 — vy) .

Hence, |[{v1, v9,v3,v4}| < 3, and this holds true for any quadruple (a, b, ¢, d) of indices. [

Using this result, we illustrate the occurrence of the Stirling numbers in Lemma 9 for the

case of a regular simplex. There are {";’1} ways to partition the set V := {vy,..., 041}
into three nonempty subsets V7, V5, V3. We assume that v; € V;, 1 < < 3, and that all
variables within the same set take the same value. Setting & := |V}]| and [ := |V}], the

formulation in Corollary 11 yields the system of equations

kvi +lve+(n+1—k—10vs = 0,

(4.9) kP +12+(n+1—k—10w? = 1,
k [ 1—k—=1\ ; . .
Z <><><n+ ‘ )vilv?vgs _—
0<i1 <ip<ig<3 gl L2 3
i1 Fin+ig=3

If one of the indices k, [, or n +1 — k — [ is zero then this system consists of three
equations in two variables, so we do not expect any solutions. For every choice of k, [
corresponding to a partition into nonempty subsets, we obtain a system of equations with
Bézout number 6. Thus, whenever the values of vy, vp, and vz in the solutions to (4.9)
are distinct, then this reflects the bound in Lemma 9.

In particular, in the case n = 4 we obtain the following 150 solutions.

k =1, 1 = 1: The six solutions for (v, vy, v3)" of the system (4.9) are

11\ 1 \/ , 1 \/ , 1 g
(ﬁ’ _ﬁ’0> , <2—0 110 — 30iV/15, 5 V110 + 30iv/15, —1—0\/ﬁ> :
and the solutions obtained by permuting the first two components of the first
solution and by changing the signs and/or permuting the first two components in
the second solution.

For the program (4.7) in the variables (vy, ..., vs)7, this gives (3) (?) = 20 critical
positions of the form (i.e., up to variable permutations)

1 1 4
y 707070 )
<\/§ V2 )

20 complex solutions of the form

1 1 1 1 1 r
——/110 — 30iV/15, ——1\/ 11 V15, —\/15, —v/15, —/1
( o5 V110 = 30iv/15, =51/ 110 + 30iv/15, 5 V15, 7-V15, — 5) :
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and 20 complex solutions of the form

1 1 1 1 1 r
— /110 — 30iV/15, — /11 V15, ——+/15. ——V/15, ——+/1 .
<20 0= 30iV/15, 55/ 110 + 30115, —- V15, — V15, -7 5)

k =1, [ = 2: Here, we obtain 30 solutions of the form

011 1 1\7

72727 27 2 b)
30 solutions of the form
Lo tva- Lo tva- Luiotva- Lvis—Lva- Luig)
5774 20 4 20° " 4 207 4 20 ’
and 30 solutions of the form
Lo e Lo tvee Lt Lvee Lyt —tvae Lvis)
5774 20" 4 20" 4 20 4 20 ‘

11 1 —l)T, and the objective

The global minimum is attained for the vector (0, 2 5% %
value of the global optimum is 49/80. Hence, the radius of the smallest circumscribing

cylinder for a regular simplex in E* with edge length /2 is \/49/80 = 7+/5/20 ~ 0.7826.

APPENDIX: AN ERROR IN THE RESULTS OF WEISSBACH

In the course of our investigations, we discovered a subtle but severe mistake in the
paper [32] on the explicit determination of the outer (n—1)-radius of a regular simplex in
E". Since this error completely invalidates the proof given there?, we give a description
of that flaw, including some computer-algebraic calculations illustrating it.

In that paper, the computation of the outer (n—1)-radius of a regular simplex (with
edge length v/2) is reduced to the analysis of the following optimization problem.

n+1
min Y u}
i=1

n+1
(4.10) .t Su =1,
i=1

n_+1

i=1

2In a personal communication this has been confirmed by B. Weibach.
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For any local optimum (uy, ..., u,.1)7 there exist Lagrange multipliers A;, Ay € R such
that
4uf +2Mu; + Xy = 0, 1<i<n+1,
n+1
(4.11) doul =1,
i=1
n+1

1=1

Erroneously, in [32] it is argued that symmetry arguments imply that Ay = 0 in any
solution. The following calculation in the computer algebra system SINGULAR [15] shows
that for n = 3 this system has 26 solutions (counting multiplicity) over C.

ring R = 0, (ul,u2,u3,u4,lal,la2), (dp);

ideal I =
4xul1~3 + 2%lal*ul + la2,
4xu2°3 + 2+lal*u2 + la2,
4%u3"3 + 2xlal*u3 + la2,
4xu4~3 + 2*xlal*ud + la2,

ul™2 + u272 + u372 + ué~2 - 1,
ul + u2 + u3 + u4;

degree (std(I));

This program first defines a polynomial ring in the variables uq, ..., u4, A1, Ao over a
field of characteristic zero. We then use the degree command to compute the dimension
and the degree of the ideal defined by our equations. The output of that command is

// codimension = 6
// dimension =0
// degree = 26

Hence, there are finitely many solutions (since the dimension of the ideal is zero), and the
degree of the ideal (the sum of the multiplicities of the solutions) is 26.

18 of these solutions refer to the case Ay = 0 (and those were the ones computed in
[32]). Namely, if Ay = 0 then the first row of (4.11) simplifies to

u;(2ui +\) = 0, 1<i<n+1.

If we are only interested in the real solutions to this system, then setting \; = —2A? for
some A > 0 gives

u;(u? — \*) = 0, 1<i<n+1.

2
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Since the vector (ui,...,ups1)T = (0,...,0)T does not satisfy the second row in (4.11),
the solutions with Ay = 0 are

u; = )\7 ie{ila-"aih}a

Uy = _)‘7 (AS {Z.h—l—la"'aiQh}a

U; = 0, 26{1,,n+1}\{zl,,22h}
for some h > 1, some set {iy,...,iy,} of pairwise different indices, and A = (2h)~"/2. In

the case n = 3, there are 12 possibilities to choose the indices and the signs for |h| = 1 and
6 possibilities to choose the indices and the signs for |h| = 2, giving 18 solutions to (4.11).

However, there are 8 additional solutions, which in fact are also real! Namely, these
solutions are

1 7 1
(ul""7u4)T = 2\/5(17_37171)T7 )\1:_67 )\2:%,

1 7 1
(ula"'7u4)T = (_1,3,—1,—1)T, )\1:—— )\2:_

2V3

as well as the six distinct solutions obtained from these two by permuting the variables
uy,...,us. The additional solutions invalidate the subsequent arguments in [32].

The omissions get even worse in the higher-dimensional case. E.g., for n = 4, besides
the (3)(2) + () () = 20 + 30 = 50 solutions described in [32], we obtain the following

2/ \1 4
solutions:

(uy,...,us5)7 = \/%(—2,—2,—2,3,3)T, )\1:—%, A2:—7—25\/%,
(ug, ... us)" = \/%(2,2,2,—3,—3)% )\1:—%, AQ:%\/%,
(uy, ... us)" = %(1,—4,1,1,1?, )\1:—1—3, AQ:%\/E,

(up, ... us)" = %(—1,4,—1,—1,—1?, )\1:—1—3, AQ:—%\/B,

as well as those solutions obtained by permuting the variables. Altogether, we have
10 + 10 + 5 + 5 = 30 solutions with Ay # 0, and thus a total number of 80 solutions.

Finally, we remark that the paper [31], which computes the outer (n—1)-radius of a
regular simplex in odd dimension n, is correct (cf. also [4]).
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