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1. INTRODUCTION

In its maturing stage, omputational geometry has foused its

attention mostly on linear objets. The motivation was sound:

Why deal with urved shapes if we do not even understand poly-

hedral objets? In manufaturing, suh a limitation is simply

unaeptable. The time has ome to bridge this gap.

From Appliation hallenges to omputational geometry ([30℄).

The design of geometri algorithms an be seen as a redution of the initial problems

to sequenes of subproblems on geometri, ombinatorial, and algebrai properties of

geometri objets [9, 45℄. In the early ages of omputational geometry, the algebrai

aspets ould often be negleted, sine the degree of the problems under onsideration was

quite small. A famous \lassial" example demonstrating the deep onnetions between

algebrai methods and omputational geometry is the �eld of motion planning (see [22,

119, 120℄). Many urrent world-wide researh e�orts on omputational geometry of non-

linearly bounded bodies indiate that algebrai methods will beome inreasingly important

in omputational geometry.

Algorithmi questions involving lines in R

3

and R

n

belong to the fundamental problems

in omputational geometry [26, 102, 136℄, oming from appliations in omputer graphis

[104℄, robotis [122℄, visualization [106℄, and omputer-aided geometri design (CAGD)

[106℄. These questions are immediately onneted with nonlinear, algebrai problems,

sine the set of lines in real projetive spae P

3

R

is naturally assoiated with a ertain

quadri in P

5

R

, the so-alled Klein quadri.

In the last years, a variety of algorithmi questions involving lines in R

3

and R

n

have

led to a hallenging, both geometrially and algebraially rih lass of algebrai-geometri

ore problems involving the

lines simultaneously tangent to given bodies in R

n

:

As an initial referene example, onsider the problem of determining whih bodies of

a given sene in R

3

annot be seen from any viewpoint outside of the sene. Here, by

\outside of the sene" we mean a viewpoint whih is not ontained in the onvex hull of

the bodies. From the geometri point of view, this leads to the problem of determining

the ommon tangent lines to four given bodies in R

3

(f. Setion 2.2). Besides several
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visibility appliations [21, 36, 41, 42, 43, 146℄, other algorithmi tasks leading to the same

geometri ore problem inlude omputing smallest enlosing ylinders [3, 114℄, omputing

geometri permutations/stabbing lines [3, 103℄, ontrolling a laser beam in manufaturing

[102℄, or plaement problems in geometri modeling [40, 76℄.

However, already for the lass of unit balls in R

3

the questions of �niteness (under what

onditions do there exist only �nitely many real ommon tangents?) and the maximum

number of real solutions show that the tangent problem is muh more involved than

its simple formulation suggests. In fat, the question on the maximum number of real

ommon tangent lines to four unit spheres (in the �nite ase) was �rst formulated by David

Larman [87℄. Independently, this question { in the equivalent formulation of irular unit

ylinders passing through four given points { was expliitly stated in [79℄. For four general

spheres, the question on the maximum number appears as an expliit open question in [30,

Setion 9℄. Hene, it is not surprising that (in onnetion with the appliations in [40℄)

onrete instanes of the problem also served as hard three-dimensional geometri test

problems for numerial polynomial solvers [144℄.

Real enumerative geometry. The tangent problem an be seen as a problem from real

enumerative geometry. This disipline is onerned with questions of the following type:

Given a lass of geometri problems (say, given by a lass of systems of polynomial equa-

tions) with a �nite number of (a priori omplex) solutions, what is the maximum number

of real solutions?

One of the most famous lassial results in enumerative geometry is the enumeration

by Cayley and Salmon of the 27 (a priori omplex) lines on a smooth ubi surfae

(see [71, 72℄). Aording to another famous result, misstated by Steiner [135℄ and orretly

proven �rst by Chasles (f. [117℄), there are 3264 (a priori omplex) onis tangent to �ve

given onis. For some rigorous modern treatises based on modern algebrai geometry see

[56, 55, 81℄.

However, as pointed out in [55, p. 55℄, the question of how many solutions in a given

enumerative setting an be real is still widely open. For an exellent reent survey we refer

to [130℄. The general diÆulty of proving tight bounds of this kind may be seen by the

following two aspets. For the onis tangent to �ve given onis the existene problem

of 3264 real solutions had not been solved until few years ago ([110℄ and [55, x7.2℄).

Furthermore, as pointed out in [127℄, there are nearly no riteria or general tehniques for

proving the maximum number of real solutions.

Degeneray of lasses of polynomial equations. Besides the questions on the maximum

number of (real) solutions whih reet the algebrai diÆulty of a problem, eÆient

algorithmi approahes require to �nd exat haraterizations of the on�gurations with

in�nitely many solutions, i.e., where the disrete and ombinatorial nature of the problem

gets lost. In ontrast to other problems in omputational geometry, haraterizing these

situations annot be negleted (say, by applying perturbation tehniques [46℄), sine the

large algebrai degree involved makes it usually highly nontrivial to guarantee a orret

perturbation.
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1.1 Topis and results of this thesis.

In this thesis, we provide substantial ontributions towards the lari�ation of the funda-

mental problems stated above. In the following, we give an outline of the results, and put

them into appropriate ontexts.

The main hapters are preeded by Chapter 2, whih introdues relevant geometri

onepts and onnets the algorithmi appliations to the geometri problems under in-

vestigation.

1.1.1 Common tangents to four spheres in R

3

For the ommon tangents to four (not neessarily disjoint) spheres we show that in the

ase of �nitely many solutions this number of ommon tangents is bounded by 12. For

the ase of unit spheres we provide a omplete lassi�ation by showing the following

theorem.

Four unit spheres in R

3

whose enters are not ollinear have at

most 12 ommon tangent lines in R

3

. This bound is tight, i.e., there

exists a on�guration of four unit spheres in R

3

with 12 distint real

ommon tangent lines.

The fat that for this algebrai problem of degree 12 the ases with in�nitely many ommon

tangent lines an be haraterized exatly is partiularly remarkable. Moreover, our results

solve the open questions in [30, 79, 87℄ mentioned before.

We omplement this result by investigating the following question raised by David

Cox:

For whih numbers k 2 f0; : : : ; 12g does there exist a on�guration with exatly k

di�erent ommon tangents in real spae R

3

?

Additional motivation for studying this question omes from several quite di�erent

aspets. Firstly, any knowledge on the subset K � f0; : : : ; 12g of realizable numbers

gives important information for the mentioned appliations. When using numerial solvers

of polynomial equations to �nd the numerial values of the tangents, the omputations

may beome instable, espeially for on�gurations of enters whih are lose to singular

on�gurations (f. Setion 3.5). If not all numbers k 2 f0; : : : ; 12g an be established in

real spae this o�ers the possibility of strong and valuable onsisteny heks within a

program. If, however, all numbers an be realized then this proves the non-existene of

suh a ontrol mehanism.

Seondly, the set of realizable numbers gives important insights into the algebrai,

geometri, and ombinatorial struture of the tangent problem. Observe that the tangent

problem to four spheres ould be seen as a purely geometri problem. In ontrast to

this, the proof of the theorem above is of algebrai nature and therefore does not �t well
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together with additional purely geometri onstraints (e.g., disjointness) on the spheres.

Here, the hardness in the geometri onstrution of onrete on�gurations might be seen

as an indiation of the diÆulty to establish a purely geometri proof.

Thirdly, exploring the realizable numbers allows to relate the tangent problem (whih

arose from reent appliations) to some well-studied problems in lassial and enumerative

geometry (whih mainly arose from their natural formulations). Conerning the 27 lines

on a smooth ubi surfae, the question of real solutions has already been studied long

time ago ([113, 121℄, see also [111, p. 188℄). In partiular, for a ubi surfae in P

3

R

only the

numbers 3, 7, 15, and 27 an be established with real lines. Another famous example in

geometry is Apollonius' problem whih asks for the irles tangent to three given irles.

For this problem, there exist on�gurations with k 2 f0; 1; : : : ; 6; 8g real tangent irles

but provably no on�guration with 7 real tangent irles [101℄.

We show that the situation for the tangents to four unit spheres is di�erent from these

situations. Namely, we prove:

For any number k 2 f0; : : : ; 12g there exists a on�guration of four

unit spheres in R

3

whih have exatly k distint ommon tangents

in R

3

.

As an appliation of the results, we study the problem of �nding the smallest irum-

sribing ylinder of a (not neessarily regular) tetrahedron in R

3

. Devillers, Mourrain,

Preparata, and Tr�ebuhet [37℄ demonstrated that using their state-of-the-art numerial

polynomial solvers, various problems related to ylinders in R

3

an be solved rather eÆ-

iently. In partiular, they give a polynomial formulation for the smallest irumsribing

ylinders of a tetrahedron in R

3

, whose B�ezout number { the produt of the degrees of

the polynomial equations { is 60. However, these equations ontain ertain undesired

solutions with multipliity 4, and as a onsequene of these multipliities the omputa-

tion times (using state-of-the-art numerial tehniques) are about a fator 100 larger than

those of similar problems in whih all solutions our with multipliity 1.

In Setion 3.4, we improve the results of [37℄ by providing a polynomial formulation for

the loally extreme ylinders, whose B�ezout bound is 36 and whose solutions generially

have multipliity one. We also present lasses of tetrahedra for whih the algebrai degrees

in omputing a smallest irumsribing ylinder an be onsiderably redued.

We lose Chapter 3 with a short disussion of dynami visualization aspets of the

tangent problem and their onnetion to homotopy-based solvers of polynomial equations.

1.1.2 Common tangents to four quadris in P

3

and R

3

From the algebrai-geometri point of view, the tangent problem is of partiular im-

portane for the following reason. The formulation of the problem in terms of Pl

�

uker

oordinates gives �ve quadrati equations in projetive spae P

5

R

, whose ommon solutions

in (omplex spae) P

5

inlude a one-dimensional omponent at in�nity (aounting for

the \missing" 2

5

� 12 = 20 solutions). Quite remarkably, as observed by P. AluÆ and

W. Fulton [1℄, this exess omponent annot be resolved by a single blow-up.
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In Setion 4.1, we solve the real enumerative question for quadrati surfaes in P

3

(shortly, quadris) by showing that 32 is the true upper bound of tangents to four quadris,

even over the reals. We present and analyze a lass of on�gurations of four quadris in

R

3

suh that any on�guration in this lass leads to 32 distint real ommon tangent lines.

In Setion 4.2 we propose to use omputer-algebrai methods to study intersetion-

theoretial phenomena suh as this double blow-up. For this, we desribe the ideal of

the one-dimensional exess omponent. By extending the polynomial ring and adding

suitable polynomials we simulate the blow-up in the omputer algebra system Singular

and study the resulting ideal as well as the seond blow-up.

1.1.3 Tangent problems to quadris in n-dimensional spae

In Chapter 5, we study the natural (real) enumerative generalizations of the tangent prob-

lem to n-dimensional spae. Given 2n�2 spheres (respetively quadris) in n-dimensional

spae, what is the maximum number of (real) ommon tangent lines in the �nite ase?

The number of 2n�2 quadris guarantees that in the generi ase there is indeed a �nite

number of ommon tangent lines. The problem to �nd the ommon tangents to 2n�2

given spheres in R

n

arises, for example, in the omputation of smallest enlosing ylinders

in n-dimensional spae (whih is a fundamental problem in statistial analysis, see [24℄).

Consider 2n�2 spheres in R

n

whose enters aÆnely span R

n

. We show that if the

spheres have a �nite number of omplex ommon tangent lines, then that number is

bounded by 3 � 2

n�1

. Moreover, we show that there exists a on�guration of unit spheres

suh that all these 3 � 2

n�1

tangents are real. We also disuss the ase of 2n�2 spheres

whose enters have aÆne dimension less than n.

In Setion 5.2, we onsider the tangents to 2n�2 quadris in P

n

. Sine this prob-

lem an be formulated as the omplete intersetion of 2n�2 quadrati equations on the

Grassmannian of lines in P

n

, the expeted number of (omplex) solutions is given by the

produt of the degrees of the equations with the degree of the Grassmannian,

d

n

:= 2

2n�2

�

1

n

�

2n� 2

n� 1

�

:

As our main result of this setion, we show: Given 2n�2 general quadris in P

n

there are

d

n

omplex lines that are simultaneously tangent to all 2n�2 quadris (n � 2), and there

is a hoie of quadris in R

n

for whih all the lines are real and lie in aÆne spae R

n

.

Our proof ombines reent results in the real Shubert alulus with lassial perturba-

tion arguments adapted to the real numbers. With regard to the appliation mentioned

above, Table 1.1 exhibits the amazingly large di�erene between the number of (real)

tangent lines for spheres and the number of (real) tangent lines for general quadris.

We also put the tangent problem to spheres into the perspetive of ommon tangents

to general quadris. In partiular, we disuss the problem of ommon tangents to 2n�2

smooth quadris in P

n

, and desribe the exess omponent at in�nity for the problem of

spheres. In this setting, the upper bound on the number of tangents to spheres implies
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n 3 4 5 6 7 8 9

3 � 2

n�1

12 24 48 96 192 384 768

d

n

32 320 3584 43008 540672 7028736 93716480

Tab. 1.1: Maximum number of tangents to 2n�2 spheres in R

n

and to 2n�2 quadris in P

n

that there will be at most 3 �2

n�1

isolated ommon tangents to 2n�2 quadris in P

n

, when

the quadris all ontain the same (smooth) quadri in a given hyperplane. In partiular,

the problem of the spheres an be seen as the ase when the ommon quadri is at in�nity

and ontains no real points.

In Setion 5.3, as an appliation of the haraterization of tangents to spheres, we give

an eÆient polynomial formulation for smallest irumsribing ylinders of a simplex in

R

n

. Using this formulation we give a bound on the number of loally extreme ylinders

based on the B�ezout number. Sine this bound is not tight, we provide better bounds for

small dimensions; these bounds are based on mixed volume omputations and Bernstein's

Theorem. Moreover, we study in detail the loally extreme irumsribing ylinders of

a regular simplex in R

n

. To exploit many symmetries in the analysis, we provide a

formulation based on symmetri polynomials. Using elementary invariant theory, we show

that the diretion vetor of every loally extreme irumsribing ylinder has at most three

distint values in its omponents. With this result we an illustrate our ombinatorial

results on the number of solutions for general simplies.

As a byprodut of our omputational studies, we disovered a subtle but severe mistake

in the paper [148℄ on the expliit determination of the smallest enlosing ylinder for a

regular simplex in R

n

, thus ompletely invalidating the proof given there. In an appendix

to Setion 5.3, we give a desription of that aw, inluding some omputer-algebrai

alulations illustrating it.

1.1.4 Common transversals and tangents

In Chapter 6, we onsider the lines whih are simultaneously tangent to k spheres and

4�k lines in R

3

, k 2 f0; : : : ; 4g. From the algorithmi point of view, these problems

immediately arise in the mentioned appliations when the lass of admissible bodies in

the sene onsists of both balls and polytopes (see Setion 2.2.5). The ase k = 0 asks

for the ommon transversals to four given lines in R

3

. This geometri problem has been

well-known for many years (see, e.g., [70, 75, 117℄). In partiular, if a on�guration has

only �nitely many ommon transversals, then this number is bounded by 2; and it is well-

known how to haraterize the on�gurations with in�nitely many ommon transversals.

We ompute tight upper bounds for the number of real ommon tangents to k spheres

and 4�k lines in the �nite ase, k 2 f0; : : : ; 4g. Table 1.2 summarizes our results. It

shows the tight upper bounds for the maximum number of real solutions. The last olumn

shows that in some ases, we are able to expliitly haraterize the on�gurations with an
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tight upper bound haraterization of

# solutions degenerate instanes

4 lines 2 (well-known) yes (well-known)

3 lines, 1 sphere 4 yes

2 lines, 2 spheres 8 yes

1 line, 3 spheres 12 {

4 unit spheres 12 (see Chapter 3) yes (see Chapter 3)

4 spheres 12 (see Chapter 3) {

Tab. 1.2: Lines tangent to k given spheres and transversal to 4�k given lines in R

3

in�nite number of real ommon tangents. In the entries with a \{" we do not know suh

a haraterization.

The proofs of these results are of di�erent avors. For k 2 f1; 2g, the upper bounds

immediately follow from B�ezout's Theorem. Whereas for k = 1 it is easy to give a onstru-

tion mathing this bound, for k = 2 we use a omputation of intersetion multipliities

based on standard bases in loal rings to prove orretness of the onstrution. For k = 3,

the B�ezout bound in the Pl

�

uker formulation will be 16 instead of 12. In order to �nd

a better bound for the number of solutions in R

3

, we prove that there are two solutions

with multipliity at least two in the plane at in�nity.

The haraterization of the degenerated situations in the ase of three lines and one

sphere is based on lassial methods of geometry.

For the ase of two lines and two spheres, we have to investigate the degenerated

situations of an algebrai problem of degree 8. In order to establish this haraterization,

we develop a variety of symboli methods and ombine them with lassial methods of

lassi�ation of algebrai urves. First we deal with the more general problem where we

replae the spheres in R

3

by general quadris in P

3

. In order to study the geometry of

this problem, we �x two lines and a quadri in general position, and desribe the set of

(seond) quadris for whih there are in�nitely many ommon transversals/tangents in

terms of an algebrai urve. It turns out that this set is an algebrai urve of degree 24

in the spae P

9

of quadris. Fatoring the ideal of this urve shows that it is remarkably

reduible. Namely, the urve onsists of 12 plane onis.

In the proof of this statement, we �rst investigate the ideal de�ning the algebrai

urve of the set of (seond) quadris. Based on this, we prove the theorem with the

aid of a omputer alulation in the omputer algebra system Singular [62℄. As will

be explained in Setion 6.2.3, the suess of that omputation depends ruially on the

preeding analysis of the urve. Quite interestingly, there are real lines `

1

and `

2

and

real quadris Q suh that all 12 omponents of the urve of seond quadris are real. In

general, given real lines `

1

, `

2

, and a real quadri Q, not all of the 12 omponents are

de�ned over the real numbers.
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1.1.5 Algorithmi omplexity of visibility omputations with moving viewpoints

In Chapter 7, we hange our viewpoint towards the following guiding question: In how

far is the algebrai diÆulty of visibility omputations with moving viewpoints reeted

by omplexity-theoretial hardness results in the Turing mahine model.

We analyze the binary Turing mahine omplexity of visibility omputations in spaes

of variable dimension. Here, an additional motivation of dealing with visibility ompu-

tations in spaes of variable dimension omes from high-dimensional data visualization

[139℄. The lasses of geometri bodies under onsideration are that of balls, that of poly-

topes represented as the onvex hull of �nitely many points (\V-polytopes"), and that

of polytopes represented by an intersetion of �nitely many halfspaes (\H-polytopes").

Roughly speaking, we show the following results that haraterize the borderline between

tratable and hard problems. If the dimension of the spae is part of the input, then

heking visibility of a given body B in the sene is NP-hard for all three lasses. In the

ase where the given body B degenerates to a single point, we an prove also membership

in NP for the two lasses of polytopes. If however, the dimension is �xed then the visibility

problem beomes solvable in polynomial time for all three lasses. (For preise statements

of the results see Theorems 7.2 and 7.3.)

Moreover, we establish a link between these hardness results and the view obstrution

or lonely runner onjeture from diophantine approximation [12, 34, 150℄. For x 2 R let

jjxjj

I

denote the distane of x to a nearest integer. Then, for eah positive integer n, let

�(n) = inf

v

1

;::: ;v

n

2N

sup

�2[0;1℄

min

1�i�n

jj�v

i

jj

I

;

a measure for simultaneous homogeneous diophantine approximation. Wills [150℄ and later

Cusik [34℄ onjetured that �(n) =

1

n+1

. Although this onjeture has been investigated

in a series of papers in the last 30 years (see the list of referenes in [27℄), the exat value of

�(n) is known only for n � 5. Our hardness results an be seen as a omplexity-theoretial

indiation why the number-theoretial view obstrution problem is hard.

1.2 Publiations in advane and viewpoint of this thesis.

Most of the results in this thesis have been published beforehand, partly in onnetion

with various oauthors: see [19, 85, 90, 96, 131, 132, 140, 141, 142℄. Rather than keeping

the results of these papers separated, the material has been restrutured in this thesis.

The aim is to provide a omprehensive treatment of the results on that researh. However,

in order to allow a self-ontained aess to the three-dimensional problems (whih are the

most relevant ones for algorithmi purposes), the three-dimensional problems on spheres

and quadris are treated before the general n-dimensional problems.

The following list enumerates for eah of the hapters of this thesis whih papers are

the essential soures of the results:

Chapter 2: [142℄.
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Chapter 3: [19, 85, 90, 141℄.
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mann.

1.3 Aknowledgments

Many persons have supported my work during the last years. I am grateful to all of them!

Spei�ally, I would like to thank Peter Gritzmann for o�ering me a position in his

group, for supporting me in many aspets, and for having the ability to see many things

in mathematis and siene from an advaned viewpoint.

Thanks to all the persons with whom I had the pleasure to write a joint paper during

the work on this thesis: Ren�e Brandenberg, I.G. Madonald, G�abor Megyesi, J�anos Pah,

and Frank Sottile. In partiular, additional thanks to Frank Sottile for introduing me to

many tehniques of omputational algebrai geometry.

Thanks to Daniel Kotzor for his implementation of numerial methods within the

sope of his Diplom thesis.

Thanks to David Cox and Hellmuth Stahel, who pointed out valuable referenes to

me in an early stage of my work.

Thanks to Bernd Sturmfels for valuable disussions and for hosting a great and fruitful

stay in Berkeley in the beginning of 2001.

Thanks to all the members of Peter Gritzmann's researh group, not only for many

kinds of individual support, but also for forming a very pleasant group: Andreas Alpers,

Oliver Bastert, Franziska Berger, Ren�e Brandenberg, David Bremner, Andreas Brieden,

Abhi Dattasharma, Ahill Sh

�

urmann, Sven de Vries, as well as our system administrator

Raymund Augustine and our seretary Klaudia Bahmeier.

Finally, thanks to Birgit.



10 1. Introdution



2. BACKGROUND AND PRELIMINARIES

In order to keep this thesis self-ontained within the di�erent researh ommunities in-

volved, we present our geometri notions in Setion 2.1. In Setion 2.2, we introdue the

algorithmi problems and the algorithmi framework relevant to our work. Finally, in

Setion 2.3, we review the well-known Pl

�

uker oordinates from line geometry and state

some tangent onditions. These oordinates will be extensively used in Chapters 4 to 6.

2.1 Geometri preliminaries

2.1.1 Basi geometri notions

Dot produt, salar produt, and norm. For x; y 2 C

n

, let x � y :=

P

n

i=1

x

i

y

i

denote

their usual dot produt. We write x

2

for x � x. Within real spae R

n

, the bilinear form

R

n

� R

n

! R, (x; y) 7! x � y is the Eulidean salar produt, and jj � jj : R

n

! R,

jjxjj := (x � x)

1=2

is the Eulidean norm.

Projetive spaes. For n � 1, let P

n

denote n-dimensional omplex projetive spae, and

let P

n

R

denote n-dimensional real projetive spae.

Quadris and spheres. Let n � 1, and let Q 2 C

n+1;n+1

n f0g, where C

k;m

denotes the

set of k � m-matries with omplex entries. Then the set fx 2 P

n

: x

T

Qx = 0g is

a quadrati hypersurfae in P

n

, shortly, a quadri in P

n

; without loss of generality we

an assume that Q is symmetri. Throughout the presentation, we will often identify a

quadri in P

n

with the symmetri representation matrixQ. Quadris whih an be de�ned

by representation matries with real entries are alled real quadris.

A quadri de�ned by a representation matrix Q is smooth (i.e., the gradient of x

T

Qx

is non-zero for any (x

0

; : : : ; x

n

)

T

2 P

n

) if its representation matrix has rank n+1.

For  2 R

n

and r > 0, the sphere in R

n

with enter  and radius r is denoted by S(; r).

In P

n

, it is desribed by (x

1

� 

1

x

0

)

2

+ : : :+ (x

n

� 

n

x

0

)

2

= r

2

x

2

0

, and it is identi�ed with

the matrix

0

B

B

B

B

B

�

P

n

i=1



2

i

� r

2

�

1

�

2

� � � �

n

�

1

1 0 : : : 0

�

2

0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

�

n

0 � � � 0 1

1

C

C

C

C

C

A

: (2.1)
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Convexity. Let n 2 N . For a set A � R

n

, onv(A) denotes the onvex hull of A. A onvex

body (or simply body) is a bounded, losed, and onvex set whih ontains interior points.

A polytope in R

n

is the onvex hull of �nitely many points v

1

; : : : ; v

k

2 R

n

. A simplex in

R

n

is the onvex hull of n+ 1 aÆnely independent points. In R

3

, a simplex is also alled

a tetrahedron. Let e

i

denote the i-th standard unit vetor in R

n

. Then for  2 R

n

and

�

1

; : : : ; �

n

> 0, onv(f� �

i

e

i

: 1 � i � ng) is alled a ross polytope in R

n

. A box is a

polytope of the form fx 2 R

n

: �

i

� x

i

� �

i

g with given �

i

< �

i

, 1 � i � n.

Segments and rays in R

n

. Let x 6= y 2 R

n

, and let w 2 R

n

n f0g. Then onvfx; yg is the

segment onneting x and y. A ray issuing from x is a set of the form x + [0;1)w.

2.1.2 Polynomial equations

Nonlinear geometri problems are naturally desribed in terms of polynomial equations.

Throughout the text, we apply a number of tehniques from omputational algebrai

geometry. For easily aessible, omprehensive treatments and the state of the art see [31,

32, 137℄. In partiular, let us reall the following version of B�ezout's Theorem [32, p. 91℄,

whih will be used many times.

Theorem 2.1. (B�ezout) Let n � 2, and let f

1

; : : : ; f

n

be homogeneous polynomials in

x

0

; : : : ; x

n

of degrees d

1

; : : : ; d

n

> 0. If f

1

; : : : ; f

n

have a �nite number of ommon zeroes

in omplex projetive n-spae P

n

then the number of zeroes (ounted with multipliity) is

d

1

�d

2

� � �d

n

.

The theorem does not only give a theoretial bound on the number of solutions. From

the pratial point of view, the omputational osts of solving a system of polynomial

equations are mainly dominated by the B�ezout number (= produt of the degrees) and

the mixed volume (the latter one is disussed in Setion 5.3.1).

2.2 Motivation and algorithmi bakground

As mentioned in the introdution, a variety of algorithmi appliations has led to the

algebrai ore problems studied in the next hapters. Exemplarily, we desribe three of

these appliations. The �rst one omes from ray-traing with moving viewpoints and

will also be our main visibility problem for the omplexity-theoretial investigations in

Chapter 7. Namely, we want to ompute information on the viewpoint positions where

the visibility topology of the sene hanges. This inludes takling the problem of partial

visibility, whih will be introdued in Setion 2.2.1. In Setion 2.2.2 we introdue the

problem of omputing smallest enlosing ylinders. Then, in Setion 2.2.3, we introdue

the onept of envelopes in the design of omputational-geometri data strutures.

For all these problems and related problem lasses, in dimension 2 the resulting geo-

metri questions remain rather elementary (f. [99, 105℄), and the primary fous on these

problems is on eÆient algorithms and data strutures. Therefore, exemplarily for the
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treatment of two-dimensional problems of this kind, we present a sweep algorithm for the

partial visibility problem in Setion 2.2.4.

In Setion 2.2.5, we show how the three-dimensional versions of these problems lead to

the tangent problems to ommon bodies. In partiular, for the smallest enlosing ylinder

of a point set in R

3

, we study this redution in full detail.

2.2.1 Partial visibility

We onsider a sene in R

n

onsisting of m + 1 (not neessarily disjoint) onvex bodies

B

0

; B

1

; : : : ; B

m

from a lass X in R

n

(X might be the set of all balls or the set of all

full-dimensional polytopes).

Let v 2 R

n

be the viewpoint of the sene. We allB

0

partially visible from the viewpoint

v (with respet to B

1

; : : : ; B

m

) if there exists an x 2 B

0

satisfying

onvfx; vg \ relint(B

i

) = ; for all 1 � i � m ;

where relint(B

i

) denotes the relative interior of the body B

i

.

Conerning the variety of possible viewpoint areas, we will partiularly onentrate on

the most natural one: all viewpoints \outside of the sene" are possible. More preisely,

if the body B

0

is partially visible from some viewpoint v 2 R

n

n onv(

S

m

i=0

B

i

) then it is

alled partially visible; otherwise it is alled invisible. A visibility ray b for B

0

is a ray

issuing from some point x 2 B

0

with b \ relint(B

i

) = ; for all 1 � i � m. Hene, B

0

is

partially visible if and only if there exists a visibility ray for B

0

.

The main problem PARTIAL VISIBILITY with respet to a given body lass X is

de�ned as follows.

Problem PARTIAL VISIBILITY

X

:

Instane: m, n, bodies B

0

; B

1

; : : : ; B

m

� R

n

from the lass X .

Question: Deide whether B

0

is partially visible with respet to B

1

; : : : ; B

m

.

Bodies whih are not partially visible an be immediately removed from the sene,

whih redues the omplexity of the visualization proess. In ase of dense rystals whose

atoms are visualized as suÆiently large balls in R

3

, the redution in omplexity may be

quite substantial.

Remark 2.2. The problem of partial visibility an be seen as one of the easiest visibility

problem with moving viewpoints. Conerning the algebrai aspets treated in the next

hapters, all the related visibility problems in [36, 41, 42, 43, 146℄ lead to the same algebrai

questions.
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2.2.2 Smallest enlosing ylinders

Let n 2 N . Given points p

1

; : : : ; p

m

2 R

n

, let P := fp

1

; : : : ; p

m

g. For our purposes, we

de�ne a ylinder in R

n

to be a set of the form

bd(`+ �B

n

) ;

where ` is a line in R

n

, B

n

denotes the unit ball, � > 0, the addition denotes the Minkowski

sum, and bd(�) denotes the boundary of a set. We say that P an be enlosed in a ylinder

C if P is ontained in the onvex hull of C. Equivalently, we an speak of an enlosing

ylinder of the polytope onvfp

1

; : : : ; p

m

g. An enlosing ylinder of P of minimal radius

is alled a smallest enlosing ylinder of P. One of the most natural examples of this

lass is the one for dimension 3, i.e., the smallest enlosing (irular) ylinder of a point

set in R

3

.

In the notation of [17, 63℄, the radius � of a smallest enlosing ylinder of a polytope

P is alled the outer (n�1)-radius of P . This notion omes from the fat that it is the

radius of an enlosing (n�1)-dimensional sphere in the optimal orthogonal projetion of

P onto an (n�1)-dimensional linear subspae.

The deision variant of the smallest enlosing ylinder problem asks whether there

exists an enlosing ylinder of a given polytope P whose radius is not larger than a given

value r > 0.

An enlosing ylinder C of a simplex P is alled a irumsribing ylinder of P if all

the verties of P are ontained in (the hypersurfae) C.

2.2.3 Envelopes

Let B be a olletion of m onvex bodies in R

3

. A line ` is alled a line transversal of B if

it intersets every member of B. The set of line transversals of B an be represented as the

region enlosed between an upper and a lower envelope as follows (see [2, 3, 26℄). These

representations are important in the design of data strutures supporting ray shooting

queries (i.e., seeking the �rst body, if any, met by a query ray) [2℄.

If we exlude lines parallel to the yz-plane, a line ` in R

3

an be uniquely represented

by its projetions on the xy- and xz-planes: y = �

1

x + �

2

, z = �

3

x + �

4

. Hene, a line

an be represented by the quadruple (�

1

; �

2

; �

3

; �

4

) 2 R

4

.

Let B be a onvex body in R

3

. For �xed �

1

; �

2

; �

3

, the set of lines (�

1

; �

2

; �

3

; �

4

) that

interset B is obtained by translating a line in the z-diretion between two extreme values

(�

1

; �

2

; �

3

; �

�

B

(�

1

; �

2

; �

3

)) and (�

1

; �

2

; �

3

; �

+

B

(�

1

; �

2

; �

3

)), whih represent lines tangent to

B from below and from above, respetively. Hene, the set of line transversals to B an

be represented as

�

(�

1

; �

2

; �

3

; �

4

) : max

B2B

�

�

B

(�

1

; �

2

; �

3

) � �

4

� min

B2B

�

+

B

(�

1

; �

2

; �

3

)

�

;
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whih is a region enlosed between a lower envelope and an upper envelope in R

4

. If the

elements of B are balls or polytopes, then the set of line transversals de�nes a semialgebrai

set in R

4

(see [3℄). Assuming general position, the verties (= zero-dimensional faes) of

the boundary of this region orrespond to lines whih are tangent to four of the bodies in

B (f. Setion 2.2.5).

2.2.4 A sweep algorithm for the two-dimensional ase

We present an eÆient algorithm for solving the partial visibility problem for arbitrary

onvex bodies in R

2

. Here, we are not only interested in heking partial visibility of one

of the bodies but also in omputing all bodies whih are not partially visible. In order to

avoid several speial ases we assume that the bodies are pairwise disjoint.

Let B := fB

0

; : : : ; B

m

g be a set of disjoint bodies in the plane. In the two-dimensional

ase, heking partial visibility of a body B 2 B an be redued to a �nite number of

geometri problems as follows (f. the treatment of stabbing lines in [47℄). Without loss

of generality let jBj � 2 and assume B = B

0

. If there exists a visibility ray for B then we

an ontinuously transform (i.e., rotate and translate) the visibility ray until we reah a

situation where the underlying line is tangent to at least two of the bodies (one of them

might be B

0

itself). Hene, it suÆes to ompute the set of all ommon tangent lines to

all pairs of bodies in B and hek whether one of these lines ontains a visibility ray. For

any pair of disjoint bodies, the number of ommon tangent lines is exatly 4 (whih an be

seen as a very speial ase of the results in [23, 89℄ on the number of ommon supporting

hyperplanes in general dimension).

In order to handle any lass of bodies in the plane algorithmially, we have to assume

that we an perform the following operations on this lass.

1. Compute the four ommon tangent lines to two bodies B

i

; B

j

.

2. Compute the at most two intersetions of a ray or a line with a body B

i

.

In the following, we assume that we have aess to two orales performing these op-

erations. Obviously, for the lass of diss, the lass of polygons, and the lass ombining

diss and polygons these orales an be realized quite easily. In partiular, if the maxi-

mum number of verties of any polygon is bounded by a onstant then both orales an

be implemented in onstant time.

De�nition 2.3. A line is alled ritial if it is tangent to at least two bodies B

i

, B

j

with

0 � i 6= j � m. A ray is alled ritial if it is ontained in a ritial line.

Hene, the body B

0

is partially visible if and only if there exists a ritial visibility ray

for B

0

. Consequently, it suÆes to ompute the set of ritial lines and to hek whether

a ritial line ontains a visibility ray for B

0

. Obviously, heking whether a given line

ontains a visibility ray for B

0

an be ahieved with O(m) alls to orale 2.
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r-tangent ray

l-tangent ray

r-tangent ray

l-tangent ray

B

i

B

j

Fig. 2.1: r- and l-tangent rays from B

i

to B

j

Theorem 2.4. In dimension 2, the set of all partially visible bodies an be omputed

with O(m

3

) arithmeti steps, O(m

2

) alls to the �rst orale and O(m

3

) alls to the seond

orale.

Proof. There are 4 �

�

m

2

�

(not neessarily di�erent) ritial lines. For eah ritial line ` it

an be omputed with O(m) arithmeti steps and O(m) alls to the seond orale whih

bodies interset with ` and whih bodies are visible with regard to the line `.

The algorithm of Theorem 2.4 omputes the set of all partially visible bodies in ubi

time. However, the straightforward idea to modify it to a quadrati time algorithm for

heking partial visibility of one spei� body does not work. The reason is that it is a

priori not lear whih of the O(m

2

) ritial lines an be omitted. If we are only interested in

partial visibility of one spei� body, say B

0

, we an do better by using the following plane

sweep algorithm requiring O(m

2

logm) time and O(m) spae. (For extensive material on

sweep tehniques we refer to [9℄.)

We interpret the four ommon tangent lines of two bodies B

i

and B

j

as rays starting

in some boundary point of B

i

. As a onsequene of the results in [23, 89℄, there are two

tangent rays suh that B

i

is on the left side of these tangent rays (\r-tangent rays of

B

i

"); and there are two tangent rays suh that B

i

is on the right side of the tangent rays

(\l-tangent rays of B

i

"), see Figure 2.1.

For heking visibility of B

0

we �rst investigate the 2(m�1) (not neessarily di�erent)

r-tangent rays touhing B

0

and some other body B

i

, 1 � i � m. For eah r-tangent

ray we onsider the outer normal u 2 S

1

where S

1

denotes the unit sphere in R

2

; with

eah of these normals u 2 S

1

we assoiate the orresponding angle 0 � � < 2� measured

from the positive x-axis. As desribed in the following algorithm, we sweep the r-tangents

aording to inreasing angles.

Sub-algorithm for sweeping the r-tangents of B

1

and B

i

, 1 � i � m :

1. Compute the set of r-tangents of B

0

and B

i

, 1 � i � m, and sort them by inreasing

angles.
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t

1

t

2

B

0

B

j

B

k

Fig. 2.2: Update step during the sweep

2. Compute the number of intersetions of the �rst r-tangent with bodies B

i

, i � 1.

3. Consider the r-tangents suessively in the order of inreasing angles. In eah of

these steps do:

(a) Update the number of intersetions with bodies B

i

, i � 1.

(b) If the number of intersetions is 0, then B

0

is partially visible; STOP.

For the update step we use the following lemma.

Lemma 2.5. Let t

1

and t

2

be r-tangent rays of B

0

with angles 0 � �

1

< �

2

< 2�, and

let C be some body with t

1

\C 6= ;, t

2

\C = ;. Then there exists an r-tangent ray to B

0

with angle �

0

2 [�

1

; �

2

) whih is tangent to C.

Proof. For any � 2 [0; 2�) there exists some oriented tangent to B

0

with angle � (see,

e.g., [14℄) and therefore some r-tangent ray to B

0

with angle �. Let �

0

be the supremum

of � 2 [�

1

; �

2

) suh that the tangent with angle � intersets with C. Sine C is ompat

the tangent with angle �

0

is tangent to B

0

and C, i.e., the supremum is a maximum.

In eah step of the sweep we update the number of intersetions of the sweep ray with

bodies B

i

, i � 1, in the following way. Let us �rst onsider the ase where the new angle

�

2

is stritly larger than the urrent angle �

1

and where the r-tangent rays with angle �

1

and �

2

are eah tangent to exatly two bodies. Let the r-tangent ray with angle �

1

be

tangent to B

0

and B

j

, and let the r-tangent ray with angle �

2

be tangent to B

0

and B

k

,

1 � j 6= k � m. Then we only have to hek whether the ray with angle �

2

intersets

with B

j

(i.e., if the sweep ray is just \entering" B

j

) and if the ray with angle �

1

intersets

with B

k

(i.e., if the sweep ray is just \leaving" B

k

); see Figure 2.2. Due to Lemma 2.5 any

additional hange would imply the existene of some r-tangent with angle �

0

2 (�

1

; �

2

).

Consequently, the update step an be done in onstant time. If there are several r-tangent

rays with the same angle we an ombine these update steps. The amortized osts for

the update step are not larger than in the ase of di�erent angles. If during the sweep we

reah a situation where the number of intersetions is 0 then B

0

is partially visible and
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initial ray

�nal ray

bakward ray

B

i

B

0

B

j

Fig. 2.3: Initial and �nal ray for sweeping the r-tangent rays of B

i

, i � 1

we an stop immediately. After the inspetion of the r-tangent rays of B

0

the l-tangent

rays of B

0

are swept in the same way.

So far, we have inspeted the r- and l-tangent rays of B

0

. However, a visibility ray of

B

0

is not neessarily tangent to B

0

, and we also have to investigate the ommon tangents

of bodies B

i

, B

j

with 1 � i 6= j � m. More preisely, for every �xed i 2 f1; : : : ; mg,

we onsider the ritial rays whih are tangent to B

i

. Here, we start the sweep with that

r-tangent ray from B

i

to B

0

that has B

0

on the left side (see Figure 2.3). For this ray we

ount the number of intersetions between B

i

and B

0

, and separately we ount the number

of intersetions of the bakward ray with other bodies. Now we sweep the r-tangent rays

of B

i

aording to inreasing angles and update the number of intersetions between B

i

and B

0

as well as the number of intersetions of the bakward ray. If we reah a situation

where both numbers of intersetions are simultaneously zero then B

0

is partially visible

and we an stop immediately. In any ase, the algorithm an stop if the r-tangent ray to

B

i

has B

0

on its right side; see the illustration in Figure 2.3. After sweeping the l-tangent

rays of B

i

the r-tangent rays of B

i

are investigated in the same way.

The orretness of the whole algorithm follows from the fat that the sweep inspets

all O(m

2

) ritial visibility lines and that the update step is orret due to Lemma 2.5.

For sweeping the tangent rays of some given body B

i

, 0 � i � m, the time requirements

are dominated by the time to sort the tangent rays aording to inreasing angles. We

an onlude:

Theorem 2.6. Let the dimension be n = 2. Then heking partial visibility of a body B

0

an be done with O(m

2

logm) arithmeti steps, O(m

2

) alls to the �rst orale, and O(m

2

)

alls to the seond orale, as well as O(m) spae.

Similar algorithmi ideas an also be applied to the two-dimensional versions of other

problems involving the interation of lines with bodies.

Using muh more sophistiated data strutures, the logarithmi fator in time an be

removed. Namely, with the onept of visibility omplexes [4, 105℄, the partial visibility

problem an be solved in time O(m

2

) with spae requirements O(m

2

). For other reent

results on visibility omputations in R

2

see also [4℄.
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2.2.5 Algorithmi framework for three-dimensional problems

In the three-dimensional ase we an essentially use the same framework as in the two-

dimensional ase. A line in real projetive spae P

3

R

an be regarded as a point on the

(four-dimensional) Klein quadri in P

5

R

(f. Setion 2.3). Assuming that our bodies are

given by algebrai inequalities (e.g., balls or polytopes), and assuming general position,

the ore problem (orresponding to the �rst orale in Setion 2.2.4) is to ompute the

ommon tangents to four bodies in R

3

(f. [3, 103℄). However, in the three-dimensional

ase, there are also some speial ases where we an transform a visibility ray only to

a situation with less than four bodies, or where a on�guration with four bodies has an

in�nite number of ommon tangents.

Let us onsider the deision problem whether there exists an enlosing ylinder with

radius r of a given point set. The following statement redues that problem to a prob-

lem involving the ommon tangents to four spheres with radius r, inluding an exat

haraterization of all speial ases whih an our.

1

Theorem 2.7. Let P = fp

1

; : : : ; p

m

g be a set of m � 4 points in R

3

, not all ollinear. If

P an be enlosed in a irular ylinder C of radius r, then there exists a irular ylinder

C

0

of radius r enlosing all elements of P suh that the surfae C

0

passes through

(i) at least four non-ollinear points of P, or

(ii) three non-ollinear points of P, and the axis ` of C

0

is ontained in

(a) the ylinder naturally de�ned by spheres of radius r entered at two of these

points;

(b) the double one naturally de�ned by spheres of radius r entered at two of these

points (and these spheres are disjoint);

() or the set of lines whih are tangent to the two spheres of radius r entered at

two these points and whih are ontained in the plane equidistant from these

points (and the spheres are non-disjoint).

Moreover, C an be transformed into C

0

by a ontinuous motion.

Figures 2.4 and 2.5 visualize the three geometri properties in the seond possibility.

Sine the seond possibility in Theorem 2.7 haraterizes the possible speial ases,

this lemma redues our deision problem to the problem of �nding the lines tangent to four

given spheres with radius r in R

3

. Namely, it suÆes to ompute the irular ylinders

of radius r passing through four given points (orresponding to ase (i)) as well as the

irular ylinders whose axes satisfy one of the onditions in (ii); the latter ase gives

a onstant number of problems of smaller algebrai degree (sine the positions of the

axes are very restrited). Similarly, the theorem redues the omputation of a smallest

1

We remark that a similar statement has already been used in [114℄, but the manusript referened

there does not ontain a omplete proof.
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(a) Cylinder (b) Double one with apex (a=2; 0; 0)

T

Fig. 2.4: Extreme situations of the set of hyperboloids for disjoint spheres

(a) Hyperboloid for 0 < x

h

< 2r

2

=a (b) Degenerated hyperboloid for x

h

= a=2

Fig. 2.5: The left �gure shows a general situation for disjoint spheres; the right �gure shows an

extreme situation for non-disjoint spheres

enlosing ylinder of a tetrahedron in R

3

to the omputation of a smallest irumsribing

ylinder of a tetrahedron.

Remark 2.8. Before we start with the proof, we remark that Theorem 2.7 and its di�er-

ent ases show a quite similar behaviour as the well known statement that the (unique)

irumsphere of a simplex in R

n

touhes all its verties, or one of its great (n�1)-irles

is the irumsphere of one of the (n�1)-faes of the simplex (see [14, p. 54℄).

In the proof we will apply the following geometri equivalene. A point x 2 R

3

is

enlosed in a ylinder with axis ` if and only if ` is a transversal of the sphere with radius

r entered at x (i.e., ` is a line interseting the sphere).

Proof of Theorem 2.7. Let C be a ylinder with axis ` and radius r enlosing P. Then,

denoting by S

i

:= S(p

i

; r) the sphere with radius r entered at p

i

, ` is a ommon transversal

to S

1

; : : : ; S

m

. By ontinuously translating and rotating `, we an assume that ` is tangent
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to two of the spheres, say S

1

and S

2

. Further, by hanging oordinates, we an assume

that S

1

and S

2

have the form S

1

= S((0; 0; 0)

T

; r), S

2

= S((a; 0; 0)

T

; r) for some a > 0.

The set of lines tangent to two spheres of radius r onstitutes a set of hyperboloids of

one sheet (see, e.g., [33, 73℄). Moreover, any of these hyperboloids touhes the sphere S

1

on a irle lying in a hyperplane parallel to the yz-plane. Hene, the set of hyperboloids

an be parametrized by the x-oordinate of this hyperplane whih we denote by x

h

.

If S

1

\S

2

= ; then the boundary values are x

h

= 0 and x

h

= 2r

2

=a. These two extreme

situations yield a ylinder and a double one with apex (a=2; 0; 0)

T

, respetively (see

Figure 2.4). For 0 < x

h

< 2r

2

=a we obtain a hyperboloid of one sheet (see Figure 2.5(a)).

If S

1

\ S

2

6= ; then the boundary values are x

h

= 0 and x

h

= a=2. Here, for 0 < x

h

<

a=2 we obtain hyperboloids of one sheet, too. For x

h

= a=2 the hyperboloid degenerates

to a set of tangents whih are tangents to the irle with radius r



=

p

4r

2

� a

2

in the

hyperplane x = a=2 (see Figure 2.5(b)).

Let x

h;0

be the parameter value of the hyperboloid ontaining the line `. The tangent to

S

1

and S

2

is ontained in the hyperboloid with some parameter value x

h;0

. By dereasing

the parameter x

h

starting from x

h;0

the hyperboloid hanges its shape towards the ylinder

around S

1

and S

2

. Let x

h;1

be the in�mum of all 0 � x

h

< x

h;0

suh that the hyperboloid

does not ontain a generating line tangent to some other sphere S(p

i

; r) for some 3 � i �

m. If x

h;1

= 0, then by hoosing any point of P not ollinear to p

1

and p

2

we are in ase

(ii) (a).

If x

h;1

> 0 then let p

3

be the orresponding point. Let T (S

1

; S

2

; S

3

) denote the

set of lines simultaneously tangent to S

1

, S

2

, and S

3

. Now let x

h;2

be the in�mum of all

0 � x

h

< x

h;0

suh that there exists a ontinuous funtion ` : (x

h;2

; x

h;1

)! T (fS

1

; S

2

; S

3

g)

with `(x

h

) lying on the hyperboloid with parameter x

h

. Sine the spheres are ompat,

the in�mum is a minimum. If x

h;2

> 0 then one of three hyperboloids involved by the

three pairs of spheres must be one of the extreme hyperboloids in that situation and we

are in ases (ii) (a), (b), or (). If x

h;2

= 0 then we distinguish between two possibilities.

Either during this proess we also reahed a tangent to some other sphere S(p

i

; r) for

some 4 � i � m; in this ase we are in ase (i). Or during the transformation all the

points p

4

; : : : ; p

m

are enlosed in the ylinder with axis ` and radius r, but none of them

is ontained in it. Then we arrive at situation (ii) (a).

The ruial point in the algorithmi realization is that the main subproblem desribed

in ase (i) has �nitely many solutions; to show this is the ontent of Setion 3.2. Moreover,

the speial ases desribed in ase (ii) an also be handled in a �nite way.

Similar redutions an be done, e.g., in the ase of the partial visibility problem if

the lass of admissible objets onsists of unit balls. Hene, by our results of the later

Setion 3.2, we an solve this problem rigorously. If n denotes the number of unit balls,

a �rst upper bound on the number of alls of the algebrai orale is O(n

5

). Here, the

algebrai orale has to solve the orresponding polynomial equations of degree at most 12.

Using the implementation tehniques from [3, 103, 114℄ the exponent 5 an be dereased

to a value below 4.
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If the bodies are polytopes, then the ommon tangent lines to the bodies are ommon

transversals to four given lines (stemming from the edges of the polytopes) in R

3

(see

[103℄). Charaterizing and omputing the ommon transversals to four given lines in R

3

is a lassial problem in geometry (see, e.g., [75, xXIV.7℄). For on�gurations of four lines

with only �nitely many ommon transversals, there are at most two solutions (whih an

be found by solving a quadrati equation); and it is well-known how to haraterize the

degenerate on�gurations with in�nitely many ommon transversals.

However, in ase the lass of admissible objets onsists of balls of general radii or

of ombinations of balls and polytopes, then we arrive soon at the situations where the

geometry of the tangent problems is still open (see the disussions in Setion 3.2.5 and

in Chapter 6). Hene, we do not know how to do similar rigorous redutions of the

algorithmi problems to a �nite number of algebrai-geometri ore problems, all having

�nitely many solutions. However, for a theoretial possibility to solve also these problems

(based on real quanti�er elimination) see Setion 7.5.

2.3 Pl

�

uker oordinates

We review the well-known Pl

�

uker oordinates of lines in omplex projetive spae P

n

. For

a general referene, see [31, 74, 106℄. Let x = (x

0

; x

1

; : : : ; x

n

)

T

and y = (y

0

; y

1

; : : : ; y

n

)

T

2

P

n

be two distint points on a line `. Then ` an be represented (not uniquely) by the

(n+1) � 2-matrix L whose two olumns are x and y. Let N :=

�

n+1

2

�

� 1. The Pl

�

uker

vetor p = (p

ij

)

1�i<j�n

2 P

N

of the line ` is the vetor of the determinants of the 2� 2-

submatries of L, that is, p

ij

:= x

i

y

j

� x

j

y

i

. The set of all lines in P

n

is alled the

Grassmannian of lines in P

n

and is denoted by G

1;n

. The set of vetors in P

N

satisfying

the Pl

�

uker relations

p

ij

p

kl

� p

ik

p

jl

+ p

il

p

jk

= 0 for 0 � i < j < k < l � n (2.2)

is in 1-1-orrespondene with G

1;n

. See, for example, [74, xVII.6℄, [54, x1.2.5℄, or (for

dimension 3) [31, Theorem 11 in x8.6℄.

Remark 2.9. If n = 3 then (2.2) gives a single equation. In this ase, the quadri in P

5

de�ned by (2.2) is alled Klein quadri.

Similarly, we desribe (n�2)-planes in terms of dual Pl

�

uker oordinates. If an (n�2)-

plane � is given as the intersetion of the two hyperplanes

P

n

i=0

u

i

x

i

and

P

n

i=0

v

i

x

i

, then

the dual Pl

�

uker oordinates of � are de�ned by q

ij

:= u

i

v

j

� u

j

v

i

.

A line ` intersets an (n�2)-plane � in P

n

if and only if the dot produt of the Pl

�

uker

vetor p of ` and the dual Pl

�

uker vetor q of � vanishes, i.e., if and only if

X

0�i<j�n

p

ij

q

ij

= 0 (2.3)
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(see, e.g., [74, Theorem VII.5.I℄). Sine this is a linear relation in the Pl

�

uker oordinates

of the line `, geometrially the set of lines interseting a given (n�2)-plane is desribed

by a hyperplane setion of the Grassmannian in P

N

.

In dimension 3 this speializes as follows. For any line ` � P

3

, the Pl

�

uker vetor

(p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

oinides with the dual Pl

�

uker vetor (q

23

;�q

13

; q

12

; q

03

;�q

02

;

q

01

)

T

in P

5

[74, Theorem VII.3.I℄. Hene, a line ` intersets a line `

0

in P

3

if and only if

their Pl

�

uker vetors p and p

0

satisfy

p

01

p

0

23

� p

02

p

0

13

+ p

03

p

0

12

+ p

12

p

0

03

� p

13

p

0

02

+ p

23

p

0

01

= 0 : (2.4)

We use Pl

�

uker oordinates to haraterize the lines tangent to a given quadri in

P

n

. Reall the following algebrai haraterization of tangeny: The restrition of the

quadrati form to the line ` is singular, in that either it has a double root, or it vanishes

identially. When the quadri is smooth, this implies that the line is tangent to the

quadri in the usual geometri sense.

Lemma 2.10. Let L be an (n+1) � 2-matrix representing the line ` � P

n

. ` is tangent

to a quadri Q in P

n

if and only if the 2� 2-matrix L

T

QL is singular.

Proof. If we denote the two olumns of L by x and y, then the line ` onsists of all points

�

z = (z

0

; : : : ; z

n

)

T

: z = �x + �y; (�; �)

T

2 C

2

n f(0; 0)

T

g

	

:

By the algebrai de�nition of tangeny, ` is tangent to Q if and only if this line intersets

the quadri exatly one (namely, with multipliity 2), or if it is ontained in the quadri.

The homogeneous quadrati equation

(�x + �y)

T

Q(�x + �y) = 0

an be made aÆne by setting � = 1. Sine the disriminant of this aÆne quadrati

equation in � is

(2x

T

Qy)

2

� 4(x

T

Qx)(y

T

Qy) = �4 det(L

T

QL);

the statement follows immediately.

In order to transfer this ondition to Pl

�

uker oordinates, we use the seond exterior

power of matries

^

2

: C

k;m

! C

(

k

2

)

;

(

m

2

)

(see [106, p. 145℄,[129℄). The row and olumn indies of the resulting matrix are subsets

of ardinality 2 of f1; : : : ; kg and f1; : : : ; mg, respetively. For I � f1; : : : ; kg and J �

f1; : : : ; mg with jIj = jJ j = 2,

(^

2

A)

I;J

:= detA

[I;J℄

;
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where A

[I;J℄

denotes the 2 � 2-submatrix of the given matrix A with row indies I and

olumn indies J . Let ` be a line in P

n

and L be an (n+1) � 2-matrix representing `.

Interpreting the

�

n+1

2

�

� 1-matrix ^

2

L as a vetor in P

N

, we observe ^

2

L = p

`

, where p

`

is the Pl

�

uker vetor of `.

Lemma 2.11. A line ` � P

n

is tangent to a quadri Q if and only if the Pl

�

uker vetor

p

`

of ` lies on the quadrati hypersurfae in P

N

de�ned by ^

2

Q, if and only if

p

T

`

�

^

2

Q

�

p

`

= 0 : (2.5)

Proof. Let L be a (n+1)� 2-matrix whose two olumns ontain distint points of `. The

Cauhy-Binet formula from multilinear algebra (see, e.g., [91℄) implies

det(L

T

QL) = (^

2

L

T

)(^

2

Q)(^

2

L)

= (^

2

L)

T

(^

2

Q)(^

2

L) :

Now the laim follows from Lemma 2.10.

For an alternative dedution of this tangent ondition see [129℄.

Expliitly, for a sphere with enter (

1

; 

2

; 

3

)

T

2 R

3

and radius r the quadrati form

p

T

`

�

^

2

Q

�

p

`

is

0

B

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

C

A

T

0

B

B

B

B

B

B

�



2

2

+ 

2

3

� r

2

�

1



2

�

1



3



2



3

0

�

1



2



2

1

+ 

2

3

� r

2

�

2



3

�

1

0 

3

�

1



3

�

2



3



2

1

+ 

2

2

� r

2

0 �

1

�

2



2

�

1

0 1 0 0



3

0 �

1

0 1 0

0 

3

�

2

0 0 1

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

C

A

: (2.6)



3. COMMON TANGENTS TO FOUR SPHERES IN R

3

We disuss the lines whih are simultaneously tangent to four (not neessarily disjoint)

given spheres in R

3

.

In Setion 3.1, we show that if four spheres in R

3

with aÆnely independent enters

have a �nite number of ommon tangent lines in C

3

, then this number is bounded by

12. For reasons whih will be disussed in detail in Chapter 4, rather than using Pl

�

uker

oordinates we prefer an elementary desription of the lines. Desribing a line ` � C

3

by

its diretion vetor v 2 P

2

and by a point p lying on the line with p � v = 0 the ommon

tangent lines to the four spheres an be haraterized as the intersetion of a ubi and

a quarti urve in the projetive plane orresponding to the three homogeneous variables

v

1

, v

2

, and v

3

.

In Setion 3.2, we show the following result for unit spheres:

Theorem 3.1. Four unit spheres in R

3

whose enters are not ollinear have at most 12

ommon tangent lines in R

3

. This bound is tight, i.e., there exists a on�guration of four

unit spheres in R

3

with 12 distint real ommon tangent lines.

In Setion 3.3, we study realization questions. In partiular, David Cox had raised

the question on the possible numbers of real solutions whih an our in the tangent

problem. We omplement Theorem 3.1 by answering this question as follows:

Theorem 3.2. For any number k 2 f0; : : : ; 12g there exists a on�guration of four unit

spheres in R

3

whih have exatly k distint ommon tangents in R

3

.

In Setion 3.4, we disuss the optimization variant of the tangent problem. Given

four aÆnely independent points 

1

; : : : ; 

4

2 R

3

, �nd the minimum radius r suh that

there exist a real ommon tangent line to the spheres S(

1

; r); : : : ; S(

4

; r). This problem

is equivalent to �nding the minimum irumsribing ylinder of a given (not neessarily

regular) tetrahedron in R

3

.

In Setion 3.5, we disuss some dynami visualization aspets.

Before entering into the tehnial details, let us point out two other results in enumer-

ative geometry, whih are somewhat related to our tangent problem:

1. The number of spheres touhing four given spheres in R

3

is at most 16 in the generi

ase [77, 116℄. (This an be regarded as the 3-dimensional version of Apollonius'

problem).
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3

2. The number of spheres tangent to four given skew lines in R

3

is at most 8 (see [78℄),

and in [133℄ the on�gurations with in�nitely many tangent spheres are harater-

ized.

3.1 A ubi and a quarti equation

We represent a line in C

3

by a point p 2 C

3

lying on the line and a diretion vetor v 2 P

2

of that line. (For notational onveniene we typially work with a representative of the

diretion vetor in C

3

n f0g.) If v

2

6= 0 we an make p unique by requiring that p � v = 0.

By de�nition, a line ` = (p; v) is tangent to the sphere with enter  2 R

3

and radius

r if and only if it is tangent to the quadrati hypersurfae (x� )

2

= r

2

, i.e., if and only if

the quadrati equation (p+ �v� )

2

= r

2

in � has a solution of multipliity two. When `

is real then this is equivalent to the metri property that ` has Eulidean distane r from

 (see Figure 3.1).

The tangent ondition on ` gives the equation

(v � (p� ))

2

v

2

� (p� )

2

+ r

2

= 0 :

For v

2

6= 0 this is equivalent to

v

2

p

2

� 2v

2

p � + v

2



2

� (v � )

2

� r

2

v

2

= 0 ; (3.1)

and, using Lagrange's identity,

v

2

p

2

� 2v

2

p � + (� v)

2

� r

2

v

2

= 0 : (3.2)

Here, the notion � of the vetor produt is also used for omplex vetors.

Let 

1

; : : : ; 

4

2 R

3

be aÆnely independent, let r

1

; : : : ; r

4

> 0, and let T be the

tetrahedron with verties 

1

; : : : ; 

4

. Without loss of generality we an hoose 

4

to be

the origin and set r := r

4

. Then the remaining enters span R

3

. Subtrating the equation

for the sphere entered at the origin from the equations for the spheres 1; 2; 3 gives the



` = fp+ �v : � 2 IRg

r

Fig. 3.1: Distane of the line ` from  in the real ase
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system

p � v = 0 ;

p

2

= r

2

; and

2v

2

p � 

i

= (

i

� v)

2

� v

2

(r

2

i

� r

2

) ; 1 � i � 3 :

(3.3)

Remark 3.3. Note that this system of equations does not have a solution with v

2

= 0.

Namely, if we had v

2

= 0 then v � 

i

= 0 for all i 2 f1; 2; 3g. Sine the enters span R

3

,

this would imply v = 0, ontraditing v 2 P

2

. This validates our assumption that v

2

6= 0

prior to (3.1).

By assumption, 

1

; 

2

; and 

3

are linearly independent. Hene, the matrix M :=

(

1

; 

2

; 

3

)

T

is invertible, and we an solve the equations in the bottom line of (3.3) for p:

p =

1

2v

2

M

�1

0

�

(

1

� v)

2

� v

2

(r

2

1

� r

2

)

(

2

� v)

2

� v

2

(r

2

2

� r

2

)

(

3

� v)

2

� v

2

(r

2

3

� r

2

)

1

A

: (3.4)

Now substitute this expression for p into the the �rst and seond equation of the sys-

tem (3.3) and then lear the denominators. This gives two homogeneous equations in the

oordinate v, namely a ubi and a quarti. By B�ezout's Theorem, this means that if the

system has only �nitely many omplex solutions, then the number of solutions is bounded

by 3 � 4 = 12.

Remark 3.4. In [76℄ the ommon (omplex) tangents to four spheres have been formu-

lated by polynomial equations with B�ezout number 24. Thus our polynomial formulation

improves that result. Moreover, by the results in Setion 3.2.2, our formulation is optimal,

even over the reals.

3.2 An exat haraterization of the �niteness problem for unit spheres

In this setion we onsider unit spheres and prove Theorem 3.1. In detail, in Setion 3.2.1,

we treat the ase of aÆnely independent enters. We start from the haraterization of

the ommon tangents from Setion 3.1 in terms of the a ubi and a quarti urve in P

2

.

If all spheres have the same radius then the ubi urve desribes the lines equidistant to

four given points in R

3

, and it is disussed in [15, 112℄. Thus our main task is to relate

the ubi to the quarti equation. If the ubi urve is irreduible, a detailed geometri

inspetion ensures that the ubi and the quarti annot have a ommon omponent;

hene, the desired result is implied by B�ezout's Theorem. In ase of a reduible ubi,

we use the results from [112℄ to �nd suitable parametrizations of the quadrati or linear

fators. Substituting the parametrization into the radius ondition gives a univariate

polynomial equation whose leading oeÆient an be expliitly analyzed.
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3

In Setion 3.2.2, we show that 12 tangents an indeed be established in real spae,

and we exhibit a whole lass of these on�gurations based on 

1

; : : : ; 

4

onstituting an

equifaial tetrahedron.

Finally, Setion 3.2.3 ontains the proof for the aÆnely dependent ase. In this ase, we

give a diret argument using the ellipses passing through the four enters, whose shorter

half-axis is �xed.

3.2.1 AÆnely independent enters

If all four spheres have the same radius r, then (3.4) simpli�es to

p =

1

2v

2

M

�1

0

�

(

1

� v)

2

(

2

� v)

2

(

3

� v)

2

1

A

: (3.5)

Note that this expression is independent of r. By Cramer's rule,

M

�1

=

1

6V

(

2

� 

3

; 

3

� 

1

; 

1

� 

2

) ; (3.6)

where V := det(

1

; 

2

; 

3

)=6 denotes the oriented volume of T . Introduing the normal

vetors

n

1

:= (

2

� 

3

)=2 ; n

2

:= (

3

� 

1

)=2 ; n

3

:= (

1

� 

2

)=2 ; (3.7)

and substituting (3.5) into p � v = 0, we an eliminate p and obtain a homogeneous ubi

ondition for the diretion vetor v:

3

X

i=1

(

i

� v)

2

n

i

� v = 0 : (3.8)

In order to simplify this equation, we express v in terms of the three enters 

1

; 

2

; 

3

, i.e.,

v =

3

X

j=1

t

j



j

(3.9)

with homogeneous oordinates t

1

; t

2

; t

3

. This yields

n

i

� v = n

i

�

3

X

j=1

t

j



j

= t

i

n

i

� 

i

:

As the salar triple produt n

i

� 

i

is invariant for 1 � i � 3, equation (3.8) simpli�es to

3

X

i=1

t

i

(

i

� v)

2

= 0 : (3.10)
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Let A

i

be the area of the fae of T whih is opposite to 

i

, 1 � i � 4. By using

A

1

= jjn

1

jj, A

2

= jjn

2

jj, A

3

= jjn

3

jj, A

4

= jj(

1

� 

2

) � (

3

� 

2

)jj=2, and setting F :=

(A

2

1

+ A

2

2

+ A

2

3

� A

2

4

)=2 = �(n

1

� n

2

+ n

2

� n

3

+ n

3

� n

1

), the expansion of this sum yields

A

2

1

t

2

t

3

(t

2

+ t

3

) + A

2

2

t

3

t

1

(t

3

+ t

1

) + A

2

3

t

1

t

2

(t

1

+ t

2

) + 2Ft

1

t

2

t

3

= 0 : (3.11)

In Setion 3.2.4 we give an alternative dedution of that ubi urve based on a lassial

onstrut in projetive geometry, the pedal surfae of a tetrahedron.

We onlude that the set of lines tangent to the spheres S(

i

; r) for some radius r an

be haraterized by the homogeneous ubi equation (3.11) in t

1

, t

2

, t

3

. In addition, for a

�xed radius r, equation (3.5) in onjuntion with p

2

= r

2

leads to a homogeneous equation

of degree 4. Hene, unless the ubi urve C and the quarti urve Q in projetive plane

P

2

have a ommon omponent, B�ezout's Theorem implies there are 12 (possibly omplex)

solutions inluding multipliities.

The irreduible ase

Assume �rst that C is irreduible (over C ). Then C and Q have a ommon omponent if

and only if C � Q. Now observe that any solution of (3.11) uniquely de�nes a radius r

via (3.5). Hene, if C � Q then the radius is onstant for all elements in C. Sine we know

six points on C, namely the six edge diretions, it suÆes to prove the following lemma.

Lemma 3.5. If all six edge diretions give the same radius, then C is reduible.

Proof. Consider two diretions, parallel to two skew edges of T , say v := 

1

� 

4

and

v

0

:= 

3

� 

2

. Using (3:5) and (3.6), we an ompute the orresponding radii r

v

and r

v

0

.

We obtain

r

v

=

2A

2

A

3

jjn

1

+ n

2

jj

3V 

2

1

;

r

v

0

=

jj(

1

� (

3

� 

2

))

2

(

2

� 

3

) + 4A

2

1

(

3

� 

1

) + 4A

2

1

(

1

� 

2

)jj

12V (

3

� 

2

)

2

:

Applying the relation A

4

= jj(

1

�

2

)�(

3

�

2

)jj=2, the latter expression an be ompatly

written as

r

v

0

=

2A

1

A

4

jjn

1

+ n

2

jj

3V (

3

� 

2

)

2

:

Now r

v

= r

v

0

implies



2

1

A

1

A

4

= (

3

� 

2

)

2

A

2

A

3

: (3.12)

Let a

ij

= jj

i

� 

j

jj, i 6= j. Further, let R

i

denote the irumradius of the fae opposite

to 

i

, 1 � i � 4. In view of the well-known triangle formula \R = (ab)=4A", we have
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3

R

1

= a

23

a

24

a

34

=4A

1

and three analogous equations for R

2

, R

3

, and R

4

. Hene, (3.12)

beomes

R

1

R

4

= R

2

R

3

: (3.13)

By our assumptions, the radii orresponding to the diretions 

2

� 

4

and 

3

� 

1

as well

as the radii orresponding to the diretions 

3

� 

4

and 

2

� 

1

oinide. Thus, we obtain

R

2

R

4

= R

1

R

3

; R

3

R

4

= R

1

R

2

; (3.14)

and hene R

1

= R

2

= R

3

= R

4

. Therefore, the four faes of the tetrahedron are equidis-

tant from the enter of the sphere through 

1

; : : : ; 

4

. In other words, the in-enter of T

oinides with its irumenter. Hene, the irumenter of a fae is the point at whih

the insribed sphere of T touhes that fae. In partiular, it lies inside the fae, whih

implies that every fae of T has only aute angles.

Let �

ij

denote the angle at 

i

in the fae opposite to 

j

. By the Law of Sines ([33,

p. 13℄), a

23

= 2R

1

sin�

41

= 2R

4

sin�

14

, so that

sin�

ij

= sin�

ji

; 1 � i 6= j � 4 :

Altogether, any pair of faes have a ommon edge, idential aute angles opposite to this

edge, and the same irumradius. Consequently, the two faes are ongruent and have

the same area, i.e., A

1

= A

2

= A

3

= A

4

. However, if all four faes have the same area,

the ubi C is reduible; this will be disussed in detail below.

The reduible ases

Now let C be reduible over C . We distinguish between the ase A

1

= A

2

= A

3

= A

4

and

the ase that not all of A

1

; A

2

; A

3

; A

4

are equal.

The ase of an equifaial tetrahedron

If A

1

= A

2

= A

3

= A

4

then the tetrahedron with verties 

1

; : : : ; 

4

de�nes a (not

neessarily regular) equifaial tetrahedron. The ubi equation (3.11) deomposes into

the union of three lines,

(t

1

+ t

2

)(t

2

+ t

3

)(t

3

+ t

1

) = 0 : (3.15)

We onsider the line t

1

+ t

2

= 0, the other two ases are symmetri. In P

2

, the line

t

1

+ t

2

= 0 an be parametrized by

(t

1

; t

2

; t

3

)

T

= (�;��; �)

T

2 P

2

; [�; �℄ 2 P

1

: (3.16)

For onveniene of notation, we dehomogenize by setting � = 1 and write � =1 for the

point [�; �℄ = [1; 0℄ 2 P

1

. Thus our parametrization is

t

1

= 1; t

2

= �1; t

3

= � ; � 2 C [ f1g : (3.17)
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Substituting these expressions into the square of (3.5) yields a polynomial equation P

4

(�) =

0 of degree at most 4 in �. We show that the polynomial P

4

annot degenerate to zero;

hene, the equation has at most 4 solutions. For a polynomial q in the variable �, let

Coe�

�;k

(q), denote the oeÆient of �

k

in the polynomial q. In the following omputations

no higher power in � than the inspeted one an our. Sine in (3.17) the degree of t

3

is

larger than the degree of t

2

, we obtain

Coe�

�;2

�

(

1

� v)

2

�

= 4A

2

2

; Coe�

�;2

�

(

2

� v)

2

�

= 4A

2

1

; Coe�

�;2

�

(

3

� v)

2

�

= 0 :

Hene, (3.6) implies

Coe�

�;4

�

�

M

�1

((

1

� v)

2

; (

2

� v)

2

; (

3

� v)

2

)

T

�

2

�

=

�

4A

1

A

2

jjn

1

+ n

2

jj

3V

�

2

:

Sine Coe�

�;2

(v

2

) = 

2

3

, the oeÆient of degree 4 in P

4

vanishes if and only if

2A

1

A

2

jjn

1

+ n

2

jj

3V

= r

2

3

: (3.18)

Let r

0

> 0 be the radius de�ned by this equation. For 0 < r 6= r

0

, the leading oeÆient

of P

4

does not vanish, and P

4

has exatly 4 zeroes in C ounted with multipliity.

For r = r

0

, the polynomial P

4

is of degree at most 3. However, it annot degenerate to

the zero polynomial, sine the polynomials for r 6= r

0

have (possibly omplex) zeroes. In

partiular, at any of these zeroes � the polynomial P

4

for r = r

0

does not evaluate to 0.

Hene, for r = r

0

there are at most 3 solutions in C . Additionally, in this ase we have to

onsider the solution � =1. More preisely, r

0

an be interpreted as follows. For � =1

within the parametrization, the resulting radius r

1

is omputed { in the same way as r

0

{ by using the leading oeÆients. This implies r

1

= r

0

.

Altogether, for any given radius r > 0, there are at most 3 � 4 = 12 ommon tangents

in C

3

to the four spheres S(

i

; r).

The remaining reduible ases

Now onsider the ase that not all of the faes have the same area. The homogeneous

ubi equation (3.11) de�nes a ubi urve C in projetive plane P

2

. Based on a disussion

of the real algebrai urve de�ned by (3.11), we will parametrize the omponents of C.

As already mentioned, the diretions of the six tetrahedron edges give points on C. In

partiular, let X

ij

:= 

i

� 

j

, 1 � i < j � 4.

Following [112℄, we haraterize the relationships between those six points on C. Due

to (3.9) the t-oordinates of X

14

, X

24

, X

34

, X

12

, X

13

, X

23

are (1; 0; 0)

T

, (0; 1; 0)

T

, (0; 0; 1)

T

,

(1;�1; 0)

T

, (1; 0;�1)

T

, and (0; 1;�1)

T

, respetively.

For any of the four tetrahedron faes, the set of diretions parallel to that fae de-

�nes a line in P

2

R

. Of ourse, this remains true even after applying the linear variable

transformations.
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3

P

1

P

2

P

3

P

4

P

5

P

6

X

14

X

23

X

24

X

34

X

13

X

12

(a) Complete quadrilateral (b) Con�guration of the points X

ij

Fig. 3.2: A omplete quadrilateral onsists of 4 lines and 6 verties P

1

; : : : ; P

6

; the three diago-

nals are drawn by dashed lines. Figure (b) shows a omplete quadrilateral stemming

from the reduible ase.

In order to haraterize this on�guration of four lines, the following notation will be

useful. A omplete quadrilateral in real projetive plane onsists of four lines in general

position and the six points in whih the lines interset [33℄, see Figure 3.2(a); here, general

position means that no three lines have a ommon point of intersetion.

Sine there does not exist a vetor whih is parallel to more than two faes, the four

lines de�ne a omplete quadrilateral. One line ontains the set of points fX

12

; X

23

; X

34

g,

another one ontains fX

12

; X

24

; X

14

g, the third one ontains fX

13

; X

34

; X

24

g, and the

fourth one ontains fX

23

; X

34

; X

24

g. In partiular, the points X

ij

are the 6 verties of the

omplete quadrilateral. Figure 3.2(b) illustrates this on�guration.

Sine the ubi C is reduible (over C ), it an be deomposed into a line and a (not

neessarily irreduible) oni setion. An irreduible oni setion intersets with any

given line in at most two points; this implies that an irreduible oni setion does not

ontain three ollinear points. Hene, one of the fators of C is a line l that ontains at

least two of the six points X

ij

.

Whenever some diretion vetor v of a real ommon tangent is parallel to a fae of the

tetrahedron, v an only take the diretion of an edge; otherwise, the tangent annot have

the same distane from all three verties of that fae. For this reason, l annot ontain

two points from the same line of the omplete quadrilateral. Hene, l must be one of the

three diagonals of the omplete quadrilateral. Any of these diagonals ontains two points

X

ij

, X

kl

whih do not have any ommon index.

Without loss of generality we an assume that l ontains X

13

and X

24

. First we show

that this implies A

1

= A

3

and A

2

= A

4

. Sine the t-oordinates of X

13

and X

24

are

(1; 0;�1)

T

and (0; 1; 0)

T

, l is given by t

1

+ t

3

= 0. The oeÆient � of t

2

2

in the remain-

ing oni setion must be non-zero, beause the oeÆient of t

1

t

2

2

in (3.11) is non-zero.
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Comparing the oeÆients of t

1

t

2

2

and t

3

t

2

2

in (3.11) with the orresponding oeÆients in

the deomposed representation yields � = A

2

1

= A

2

3

; hene A

1

= A

3

. Furthermore, let �

1

and �

2

denote the oeÆients of t

1

t

2

and t

2

t

3

in the remaining oni setion, respetively.

Comparing the oeÆients of t

2

1

t

2

yields �

1

= A

2

3

= A

2

1

. In the same way, with regard to

t

2

t

2

3

and t

1

t

2

t

3

we obtain �

1

= A

2

1

, and 2F = 2A

2

1

, whene (by de�nition of F ): A

2

= A

4

.

Hene, the remaining oni setion results to

A

2

1

(t

1

t

2

+ t

2

2

+ t

2

t

3

) + A

2

2

t

1

t

3

= 0 : (3.19)

Sine, by assumption, not all of the faes have the same area, we have A

1

6= A

2

. Further-

more, it an be veri�ed that for A

1

6= A

2

the oni setion (3.19) is irreduible.

Parametrizing the line l an be done like in the ase A

1

= A

2

= A

3

= A

4

. In partiular,

the line l gives at most 4 ommon tangents.

In order to parametrize (3.19), we interset the oni with a suitable penil of lines.

First observe that X

14

is a regular point on the oni with tangent A

2

1

t

2

+A

2

2

t

3

= 0. Then

onsider the penil of lines

�A

2

1

t

2

� (A

2

1

t

2

+ A

2

2

t

3

) = 0; � 2 C [ f1g

with apexX

14

. In partiular, solving for t

3

gives t

3

= A

2

1

(��1)t

2

=A

2

2

. The parameter value

� = 0 gives the tangent in X

14

; the parameter value � = 1 yields t

2

= 0, whih is the

line through X

14

and X

34

. Replaing t

3

in (3.19) via the penil equation and eliminating

the linear fator t

2

aused by the apex (1; 0; 0)

T

yields (A

2

1

(� � 1) + A

2

2

)t

2

+ A

2

2

�t

1

= 0.

This gives the parametrization

(t

1

; t

2

; t

3

)

T

= (�A

2

1

(�� 1)� A

2

2

; A

2

2

�;A

2

1

(�� 1)�)

T

; � 2 C [ f1g : (3.20)

Consequently,

Coe�

�

4

((

1

� v)

2

) = 4A

4

1

A

2

2

; Coe�

�

4

((

2

� v)

2

) = 4A

6

1

; Coe�

�

4

((

3

� v)

2

) = 0 :

Here, the radius r

0

where the leading oeÆient vanishes is the same one as in (3.18) and

refers to the situation � =1. Hene, the oni setion gives at most 8 ommon tangents.

Altogether, we obtain at most 4 + 8 = 12 ommon tangents in this reduible ase.

3.2.2 A on�guration with 12 ommon tangents

The easiest example of a onstrution with 12 real tangents stems from a regular tetrahe-

dron on�guration of 

1

; : : : ; 

4

. Sine in Setion 3.2.3 we will relate the aÆnely dependent

on�gurations to the limit ase of aÆnely independent on�gurations, we exhibit a more

general lass of on�gurations with 12 real tangents.

Namely, onsider an equifaial tetrahedron, as in Setion 3.2.1. It is well-known that

the verties of suh a tetrahedron T an be regarded as four pairwise non-adjaent verties

of a retangular box (see, e.g., [86℄). Hene, there exists a representation 

1

= (�

1

; �

2

; �

3

)

T

,



2

= (�

1

;��

2

;��

3

)

T

, 

3

= (��

1

; �

2

;��

3

)

T

, 

4

= (��

1

;��

2

; �

3

)

T

with �

1

; �

2

; �

3

> 0.
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Assuming without loss of generality v

2

= 1, (3.1) gives



i

� v + 2

i

� p =

3

X

j=1

�

2

j

+ p

2

� r

2

; 1 � i � 4 : (3.21)

Subtrating these equations pairwise gives

4(�

2

p

2

+ �

3

p

3

) = �4(�

1

�

3

v

1

v

3

+ �

1

�

2

v

1

v

2

)

(for indies 1, 2) and analogous equations, so that

�

1

p

1

= ��

2

�

3

v

2

v

3

; �

2

p

2

= ��

1

�

3

v

1

v

3

; �

3

p

3

= ��

1

�

2

v

1

v

2

:

Sine p � v = 0, this yields v

1

v

2

v

3

= 0. By assuming without loss of generality v

1

= 0, we

obtain

p =

�

�

�

2

�

3

�

1

v

2

v

3

; 0; 0

�

:

So (3.21) beomes

�

2

2

v

2

2

+ �

2

3

v

2

3

=

3

X

j=1

�

2

j

+

�

�

�

2

�

3

�

1

v

2

v

3

�

2

� r

2

;

whih, by using v

2

2

+ v

2

3

= 1, gives

�

2

2

�

2

3

v

4

2

+ (�

2

1

�

2

2

� �

2

1

�

2

3

� �

2

2

�

2

3

)v

2

2

+ �

2

1

(r

2

� �

2

1

� �

2

2

) = 0 : (3.22)

There are two distint real solutions for v

2

2

if and only if

�

2

1

�

2

2

+ �

2

1

�

2

3

+ �

2

2

�

2

3

> 2�

1

�

2

�

3

r : (3.23)

Sine the volume V of T is 8�

1

�

2

�

3

=3 and the area A of a fae is 2

p

�

2

1

�

2

2

+ �

2

1

�

2

3

+ �

2

2

�

2

3

,

(3.23) beomes A

2

=4 > 3V r=4. In ase of reality, both solutions for v

2

2

are positive if and

only if

r

2

> �

2

1

+ �

2

2

(3.24)

and

�

2

1

�

2

3

+ �

2

2

�

2

3

> �

2

1

�

2

2

: (3.25)

Hene, there will be 12 distint real ommon tangents to S(

1

; r), : : : , S(

4

; r) if and

only if r satis�es (3.23) and the three inequalities suh as (3.24), and if in addition the
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tetrahedron T satis�es the three inequalities suh as (3.25). Sine 2

p

�

2

1

+ �

2

2

is the length

of one of the edges, it follows that we require

e

2

< r <

A

2

3V

;

where e is the length of the longest edge; also, expressing (3.25) by using the area A gives

A

2

> 8�

2

1

�

2

2

:

Applying the formula \A =

1

2

ab sin " on the left side and the Laws of Cosines on the

right side establishes a relation among the angles �, �, and  of the fae triangle:

tan� tan  > 2 :

Sine tan� tan � tan  = tan� + tan � + tan  in a triangle and sine all three angles are

aute, we an onlude:

Lemma 3.6. Let 

1

; : : : ; 

4

onstitute an equifaial tetrahedron, and let r > 0. Then

there are exatly 12 distint real ommon tangents to S(

1

; r); : : : ; S(

4

; r) if and only if

a)

e

2

< r <

A

2

3V

;

where e is the length of the longest edge, A is the area of a fae, and V is the volume

of the tetrahedron; and

b) the angles in one (and hene in all) of the fae triangles satisfy

tan� + tan  > tan� ; (3.26)

where � is the largest of the three angles.

Figure 3.3 depits the on�guration 

1

= (4; 4; 4)

T

, 

2

= (4;�4;�4)

T

, 

3

= (�4; 4;

�4)

T

, 

4

= (�4;�4; 4)

T

and radius

p

33, whih gives 12 tangents by Lemma 3.6.

3.2.3 AÆnely dependent enters

Let 

1

; : : : ; 

4

be non-ollinear points in the xy-plane. As introdued in Setion 2.2.2, a

irular ylinder in R

3

with radius r is a set of the form bd(` + rB

3

). We work in real

spae and look for irular ylinders C with radius r passing through 

1

; : : : ; 

4

. Unless

the axis of C is parallel to the xy-plane, the intersetion of C with the xy-plane is an

ellipse with smaller half-axis r. We an assume that none of the given points is ontained

in the onvex hull of the other points; otherwise, three points are ollinear (giving at most

two distint irular ylinders) or there is no irular ylinder.
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3

Fig. 3.3: Constrution with 12 tangents. Note that the four spheres slightly interset with eah

other.

An axis parallel to the xy-plane is only possible if the quadrangle formed by 

1

; : : : ; 

4

is a trapezoid. Sine suh an axis an be loated above or below the xy-plane, and sine a

parallelogram has two pairs of parallel edges, we obtain at most 4 irular ylinders with

axis parallel to the xy-plane. If 

1

; : : : ; 

4

onstitute a trapezoid but not a parallelogram,

this number redues to 2.

Now any ellipse with smaller half-axis r passing through 

1

; : : : ; 

4

de�nes two irular

ylinders with radius r, whose intersetion with the xy-plane gives the ellipse; in ase of

a irle these two ylinders oinide.

Consider a general ellipse

E : ax

2

+ 2hxy + by

2

+ 2gx+ 2fy + d = 0 ;

in other form

a(x� x

0

)

2

+ 2h(x� x

0

)(y � y

0

) + b(y � y

0

)

2

+ d

0

= 0 : (3.27)

Comparing the oeÆients of the two forms yields

�

a h

h b

��

x

0

y

0

�

=

�

�g

�f

�

:

With the standard invariants of oni setion lassi�ation

I

1

= tr

�

a h

h b

�

= a+ b ;

I

2

= det

�

a h

h b

�

= ab� h

2

;

I

3

= det

0

�

a h g

h b f

g f d

1

A

;
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and the notation F := gh � af , G := fh � bg, we obtain x

0

= G=I

2

, y

0

= F=I

2

. In

partiular, sine E is an ellipse, we have I

3

6= 0, I

2

> 0, and I

1

I

3

< 0. Consequently, the

absolute term d

0

in (3.27) results to

d

0

=

1

I

2

2

�

G F I

2

�

0

�

a h g

h b f

g f d

1

A

0

�

G

F

I

2

1

A

=

1

I

2

(gG+ fF + dI

2

)

=

I

3

I

2

:

E has smaller half-axis r if and only if both eigenvalues of the matrix

�

I

2

I

3

�

a h

h b

�

are positive and the larger one is 1=r

2

, i.e., if the largest solution of the quadrati equation

in �

I

2

3

�

2

+ I

1

I

2

I

3

�+ I

3

2

= 0

is 1=r

2

and both solutions are positive.

It is well-known that the set of ellipses passing through four given points are members

of the penil of onis S

1

+ �S

2

, with S

1

, S

2

equations of two arbitrary onis passing

through the four points (see, e.g., [109℄). Let I

1

(�), I

2

(�), I

3

(�) be the invariants of

S(�) := S

1

+ �S

2

, so that I

i

(�) is a polynomial in � of degree i. Any ellipse S(�) with

smaller half-axis r passing through 

1

; : : : ; 

4

must neessarily satisfy the ondition

I

3

(�)

2

r

4

+

I

1

(�)I

2

(�)I

3

(�)

r

2

+ I

2

(�)

3

= 0 : (3.28)

Equation (3.28) is of order 6 in �. The two ases for r where the oeÆient of degree 6

vanishes stem from our aÆne notation of a penil and refer to the ase � =1.

Altogether, there are at most 12 irular ylinders with smaller half-axis r passing

through 

1

; : : : ; 

4

, whose axis is not parallel to the xy-plane. It remains to show that this

number an be dereased in the ase of parallelograms and trapezoids.

For the parallelogram ase, suppose that the parallelogram is given by the two pairs of

parallel lines y = , y = �, and y = �x+ �, y = �x� � for some onstants �; �;  > 0.

As generators S

1

, S

2

of the penil of onis through the four verties, we an hoose the

two degenerated onis given by the two pairs of lines

S

1

: (y � )(y + ) = 0 ;

S

2

: (y � �x� �)(y � �x+ �) = 0 :
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3

Sine both the enter of S

1

and the enter of S

2

is (x

0

; y

0

) = (0; 0)

T

, eah ellipse in the

penil S

1

+ �S

2

has enter (0; 0)

T

. Hene, any ellipse S(�) in the penil is of the form

ax

2

+ 2hxy + by

2

+ 1 = 0 :

Sine

I

3

(�) = det

0

�

a

1

+ �a

2

h

1

+ �h

2

0

h

1

+ �h

2

b

1

+ �b

2

0

0 0 1 + �

1

A

= I

2

(�)(1 + �) ;

Equation (3.28) beomes

I

2

(�)

2

�

(1 + �)

2

r

4

+ I

1

(�)(1 + �)r

2

+ I

2

(�)

�

= 0 :

Consequently, sine I

2

(�) 6= 0 for any ellipse in the penil, we obtain a quadrati ondition

in �.

For the trapezoid ase, suppose that two verties are loated on the line y = 0 and

that two verties are loated on the line y = 2� with � > 0. Then S

2

an be hosen as

the degenerated oni onsisting of two parallel lines

S

2

: y(y � 2�) = 0 :

The representation matrix of the ellipse S

1

+ �S

2

is of the form

0

�

a

1

h

1

f

1

h

1

b

1

+ � g

1

� ��

f

1

g

1

� �� d

1

1

A

:

Therefore I

2

(�) is only linear in �, and I

3

(�) is only quadrati in �. Hene, equation (3.28)

is only of degree 4 in �. We an onlude:

Corollary 3.7. Let 

1

; : : : ; 

4

be aÆnely dependent, and let r > 0. If 

1

; : : : ; 

4

form a

trapezoid, then there are at most 10 ommon tangents to S(

1

; r); : : : ; S(

4

; r). If 

1

; : : : ; 

4

form a parallelogram, then there are at most 8 ommon tangents to S(

1

; r); : : : ; S(

4

; r).

Conerning onstrutions with many real tangents in the aÆnely dependent ase, we

give a onstrution with 8 real tangents. Let 

1

; : : : ; 

4

onstitute a square with edge

length e. For e=2 < r <

p

2e=2 two neighboring spheres interset with eah other, but

a sphere does not interset with its opposite partner. Hene, the opposite pairs of the

intersetion irles are disjoint, and they lie on the vertial planes biseting opposite edges

of the square. The four ommon tangents to suh a pair of intersetion irles are ommon

tangents to the four spheres whih altogether gives 8 ommon tangents.

We remark that the upper bound of 12 is not tight in the aÆnely dependent ase. In

fat, our proof replaes the ondition \1=r

2

is the largest eigenvalue and both eigenvalues
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are positive" by the weaker ondition \1=r

2

is an eigenvalue". Meanwhile, Megyesi has

shown that the number of real tangents to four unit spheres with oplanar enters is

bounded by 8 ([93℄). Quite interestingly, that proof does not derease the algebrai degree

of the problem. Instead, based on an an expliit analysis it shows that the set of oni

setions under investigation always ontains some hyperbolas.

Finally, we want to explain what happens to some of the tangents when trying to

approah a retangle on�guration (with at most 8 ommon tangents) as a limit ase of

aÆnely independent enters. Let 

1

; : : : ; 

4

onstitute a retangle in the xy-plane. By

lifting two opposite of the four enters appropriately, we an establish a on�guration

with 12 tangents by Lemma 3.6. By reduing the height of the resulting box with base

retangle in the xy-plane, we an interpret the retangle as limit ase of this attening

proess. Now Lemma 3.6 explains where some of the 12 tangents get lost in this limit

proess. Namely, attening of the box implies that the triangular faes of the tetrahedron

tend towards retangular triangles. However, then tan� in (3.26) tends to in�nity, and

(3:26) is violated at some stage of this proess. Intuitively, this means that some of the

tangents get lost even before the limit ase is reahed.

3.2.4 Relations to lassial projetive geometry

In this setion, we provide an alternative haraterization of the ubi equation (3.11)

based on the pedal surfae of a tetrahedron from lassial projetive geometry. Through-

out this setion, we work in real spae.

Note that the numbers in (3.9) an be interpreted as baryentri oordinates of the

diretion vetor v in the projetive spae relative to 

1

, 

2

, 

3

(f. [33℄). If we allow 

4

to

be an arbitrary vetor again, the representation in baryentri oordinates is

v =

4

X

j=1

t

j



j

: (3.29)

Then the equation of �

1

, the plane at in�nity in three-dimensional real projetive spae

P

3

R

, is

t

1

+ t

2

+ t

3

+ t

4

= 0 (3.30)

(f. [33℄). The lous of all points x with the property that the feet of the perpendiulars

from x on the planes supporting the faes of the tetrahedron T lie in a plane, is a ubi

surfae � ([111, Exer. 17 on p. 118℄). At the end of this setion, we provide a proof of

this statement. Namely, � is given by

A

2

1

t

2

t

3

t

4

+ A

2

2

t

1

t

3

t

4

+ A

2

3

t

1

t

2

t

4

+ A

2

4

t

1

t

2

t

3

= 0 ; (3.31)

or, in a nier (but slightly impreise) form

A

2

1

t

1

+

A

2

2

t

2

+

A

2

3

t

3

+

A

2

4

t

4

= 0 : (3.32)
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Obviously, all six lines de�ned by the edges 

i



j

, 1 � i 6= j � 4, belong to �. Consider now

any irular ylinder C irumsribing T and let x(C) denote the point at in�nity of the

axis of C. We laim that x(C) 2 �, i.e., its baryentri oordinates satisfy (3.31). By the

Wallae-Simson Theorem, the feet of the perpendiulars from 

4

on the planes 

1



2

x(C),



1



3

x(C), 

2



3

x(C) are ollinear ([33, Exer. 11 on p. 16℄, [68℄). Consequently, the feet

of the perpendiulars from 

4

on the four planes supporting the faes of the tetrahedron



1



2



3

x(C) lie in a plane. But then x(C) is in the same relation to the tetrahedron 

1



2



3



4

,

i.e., x(C) 2 � (see [6, p. 25℄).

By solving (3.30) for t

4

and substituting this expression into (3.31), we obtain a ubi

equation in t

1

; t

2

; t

3

. It an be easily heked that for 

4

= 0 this equation is equivalent

to (3.11).

The pedal surfae of a tetrahedron. We lose this setion by providing a proof for the

pedal surfae of a tetrahedron. Let 

1

; : : : ; 

4

2 R

3

be the verties of a tetrahedron T , let

N

i

denote the unit outer normal vetor of the fae opposite to 

i

, and let A

i

denote the

area of that fae. An elementary omputation (using (3.7), n

4

:= ((

1

� 

2

)� (

3

� 

2

))=2

and a suitable orientation) shows

A

1

N

1

+ A

2

N

2

+ A

3

N

3

+ A

4

N

4

= 0 : (3.33)

We would like to write up the equation of the so-alled pedal surfae � of the tetrahedron,

i.e., the lous of the points x suh that the feet of the perpendiulars from x to the planes

supporting the faes of the tetrahedron lie in a plane.

Let w

i

2 R

3

be the vetor onneting x to the foot of the perpendiular from x to

the plane supporting the fae opposite to 

i

. The feet of these perpendiulars (i.e., the

endpoints of these vetors) are oplanar if and only if the determinant of the 4� 4-matrix

with i-th row (w

i

; 1) vanishes. The latter ondition is equivalent to

(w

2

w

3

w

4

)� (w

1

w

3

w

4

) + (w

1

w

2

w

4

)� (w

1

w

2

w

3

) = 0 ;

where (a b ) = (a � b) �  is the salar triple produt. If b

i

is de�ned by v

i

= b

i

N

i

, then

the equation beomes

(N

2

N

3

N

4

)

b

1

�

(N

1

N

3

N

4

)

b

2

+

(N

1

N

2

N

4

)

b

3

�

(N

1

N

2

N

3

)

b

4

= 0 : (3.34)

It follows from (3.33) by taking salar produts with N

2

�N

3

that

A

1

(N

1

N

2

N

3

) + A

4

(N

2

N

3

N

4

) = 0 ;

and from the analogous relations we obtain that for some b 2 R,

(N

2

N

3

N

4

) = bA

1

; (N

1

N

3

N

4

) = �bA

2

; (N

1

N

2

N

4

) = bA

3

; (N

1

N

2

N

3

) = �bA

4

:

Comparing this with (3.34) yields

A

1

b

1

+

A

2

b

2

+

A

3

b

3

+

A

4

b

4

= 0 : (3.35)



3.3. Realization questions 41

Let t

1

; : : : ; t

4

denote the projetive baryentri oordinates of x relative to 

1

; : : : ; 

4

.

Notie that t

i

is proportional to 

i

A

i

(f. [33℄). Therefore, x satis�es the required property

if and only if

A

2

1

t

1

+

A

2

2

t

2

+

A

2

3

t

3

+

A

2

4

t

4

= 0 ; (3.36)

as desired.

3.2.5 Open questions

Conerning the geometry of the tangent problem, there are two main open questions.

Firstly, under whih onditions do four spheres of arbitrary radii do have in�nitely many

real ommon tangent lines? There are some obvious situations with in�nitely many real

ommon tangent lines: whenever the four enters are ollinear and the four spheres are

insribed in the same hyperboloid of one sheet. We onjeture that there does not exist

any on�guration with four spheres of arbitrary radii, non-ollinear enters, and in�nitely

many real ommon tangent lines. For the speial ase of aÆnely dependent enters, this

has reently been proven by Megyesi [95℄.

Seondly, in our onstrution with 12 real ommon tangent lines the unit spheres are

interseting eah other. Hene, the natural question arises, whih is still open: What is

the maximum number of real ommon tangent lines to four disjoint unit spheres (f. the

treatment of realization questions in the next setion)?

3.3 Realization questions

In this setion, we prove Theorem 3.2 stated at the beginning of this hapter. For any k 2

f0; : : : ; 12gwe give geometri onstrutions leading to this number of ommon tangents (of

ourse, some values of k are trivial). For some of the onstrutions, the number of di�erent

real tangent lines an be omputed by ombining areful geometri investigations with

symmetry arguments. However, for some onstrutions, a purely geometri orretness

proof seems to be out of reah. In these ases the algebrai framework developed in

Setion 3.1 and 3.2 helps to establish a rigorous proof. This leads to nie and e�etive

interations between the geometry and the algebra of the problem.

Before giving an outline of the paper, we remark that the ases with 0, 1, 2, or 1

tangents are trivial. For the unit spheres entered in 

1

= (0; 0; 0)

T

, 

2

= (2; 0; 0)

T

,



3

= (4; 0; 0)

T

, 

4

= (6; t; 0)

T

, the values t = 0, t = 1, t = 2, and t = 3 lead to1, 2, 1, and

0 distint real tangents, respetively. Construtions of four (non-disjoint) spheres with 12

and 8 tangents have already been given in Setions 3.2.2 and 3.2.3, respetively.

The onstrutions for the remaining numbers are presented in the following order. In

Setion 3.3.1, we analyze onstrutions where the enters are the verties of a regular

tetrahedron. Besides the onstrutions with 12 real tangents known from Setion 3.2.2
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3

this also yields onstrutions with 3 and 6 tangents. Based on this analysis, Setion 3.3.2

deals with onstrutions where three enters form an equilateral triangle; this gives on-

strutions with 3, 6, 9, and 7 tangents. Parallelogram on�gurations of the four enters

are disussed in Setion 3.3.3; in partiular, this yields onstrutions with 4, 5, and 8 tan-

gents. In Setion 3.3.4 gives onstrutions with 10 and 11 tangents. In Setion 3.3.5, we

lose the disussion of realization questions with a short disussion of the relation between

the algebra and the geometry of the tangent problem.

3.3.1 The ase of a regular tetrahedron

In Setion 3.2.2, we have given a spei� on�guration with 12 real tangents, where the

four enters onstitute the verties of a regular tetrahedron. The following omplete

lassi�ation of a regular tetrahedron on�guration will be used within the onstrutions

in the next setions. As before, let 

1

; : : : ; 

4

be the enters of the four spheres in R

3

. By

appropriate saling, the four spheres of radius r an be transformed into unit spheres.

Lemma 3.8. Let 

1

; : : : ; 

4

be the verties of a regular tetrahedron with edge length 1.

(a) For 1=2 < r < 3

p

2=8 there exist exatly 12 distint real ommon tangents to the

spheres S(

1

; r), : : : , S(

4

; r).

(b) For r = 1=2 and r = 3

p

2=8 there exist exatly 3 and 6 distint real ommon

tangents, respetively.

() For r < 1=2 or r > 3

p

2=8 there do not exist any real ommon tangents.

Proof. Let 

4

= (0; 0; 0)

T

, 

1

= (1; 0; 0)

T

, 

2

= (1=2;

p

3=2; 0)

T

, 

3

= (1=2;

p

3=6;

p

6=3)

T

be the verties of a regular tetrahedron with edge length 1. In this situation, the u-

bi (3.11) is reduible and an be deomposed into

(t

1

+ t

2

)(t

2

+ t

3

)(t

3

+ t

1

) = 0 ; (3.37)

where t

1

; t

2

; t

3

are the homogeneous oordinates of the diretion vetor v in the basis



1

; 

2

; 

3

. By symmetry of this equation it suÆes to onsider the fator t

1

+ t

2

= 0.

Over the reals, this linear equation an be parametrized by (t

1

; t

2

; t

3

)

T

= (1;�1; �)

T

,

�1 < � � 1. Here, the ase � = 1 refers to the homogeneous vetor t = (0; 0; 1)

T

.

Using (3.5) and p

2

= r

2

, r

2

(�) an be expressed by

r

2

(�) =

9�

4

+ 14�

2

+ 9�

32(�

2

+ 1)

2

with nominator of degree 4 and stritly positive denominator. The funtion graph of r(�)

is depited in Figure 3.4. Elementary alulus yields

�

r

2

(�)

�

0

=

�(�

2

� 1)

4(�

2

+ 1)
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�

r(�)

1

3

p

2=8

0:5

Fig. 3.4: The funtion r(�) =

�

9�

4

+14�

2

+9

32(�

2

+1)

2

�

1=2

with stritly positive denominator. Hene,

min r(�) = r(1) = r(�1) = 1=2 ;

max r(�) = r(0) = lim

�!�1

r(�) = lim

�!1

r(�) = 3

p

2=8 � 0:5303 :

Note that the di�erene between min r(�) and max r(�) is rather small. The extreme

values and the strit monotony of r

2

(�) between these values show: for 1=2 < r <

3

p

2=8 there are four di�erent real solutions of � and hene four di�erent real tangents.

Considering all three fators of (3.37), there are exatly 12 di�erent tangents altogether.

In ase r = 1=2 these 12 tangents ollapse to 3 tangents. The diretion vetors in

t-oordinates are (1; 1;�1)

T

, (1;�1; 1)

T

, and (�1; 1; 1)

T

, respetively. In ase r = 3

p

2=8

the 12 tangents ollapse to 6 tangents; the diretion vetors are the diretion vetors of

the 6 tetrahedron edges.

Figure 3.5 shows a regular tetrahedron on�guration with edge length 1 and radius

r = 53=100. Sine a tangent to S(

1

; r); : : : ; S(

4

; r) an also be interpreted as axis of

a irular ylinder with radius r irumsribing the tetrahedron with verties 

1

; : : : ; 

4

,

the following statement an be dedued immediately (f. the treatment of optimization

aspets in Setion 3.4).

Corollary 3.9. Let T be a regular tetrahedron with edge length a > 0. Then the smallest

and largest irular ylinder irumsribing T have radius a=2 and 3

p

2a=8, respetively.

Remark 3.10. The lower bound a=2 in Corollary 3.9 an also be dedued from the fat

that a minimal irular ylinder enlosing a regular tetrahedron with edge length a has

radius a=2 [147℄.

3.3.2 Equilateral triangle onstrutions

In this setion, we give on�gurations with 3, 6, 7, and 9 tangents. We start from

a regular tetrahedron on�guration with edge length 1. However, in order to stress

symmetries, we now use the oordinates 

1

= (

p

3=3; 0; 0)

T

, 

2

= (�

p

3=6; 1=2; 0)

T

,
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3

1

2

Fig. 3.5: Constrution of four (non-disjoint) spheres with 12 ommon tangents. Here, if the

oordinates of 

1

; : : : ; 

4

are those of Setion 3.3.2 then there are exatly 6 tangents

whih touh all spheres with positive z-oordinate. These tangents are drawn in grey

olor.



3

= (�

p

3=6;�1=2; 0)

T

, 

4

= (0; 0;

p

6=3)

T

. Further, let 1=2 < r < 3

p

2=8. Figure 3.6(a)

shows the parallel projetion of this on�guration on the xy-plane. Note that 

1

; : : : ; 

3

form an equilateral triangle in the xy-plane with enter in the origin. By Lemma 3.8, the

spheres S(

i

; r), 1 � i � 4, have 12 real ommon tangents.

In this on�guration with 12 real tangents, 6 of the tangents touh all four spheres

with positive z-oordinate, and 6 tangents touh exatly two spheres with negative z-

oordinates (see Figure 3.5). We all these tangents the upper and the lower tangents,

respetively.

Now observe what happens when replaing the z-oordinate in 

4

by inreasing values

t >

p

6=3. The geometry of this proess implies: the z-oordinate v

3

=jjvjj of the unit

diretion vetor inreases, until eventually { for some value t = t

9

{ the tangent touhes

two of the spheres S(

1

; r), S(

2

; r), S(

3

; r) at the same point (see Figure 3.6(a) for an

illustration of the xy-projetion). In the latter situation, the 6 upper tangents ollapse

to 3 tangents. Figure 3.6 depits the setion of this onstellation through the xz-plane.

One of these 3 remaining upper tangents touhes S(

2

; r) and S(

3

; r) in the same point,

namely on the irle where S(

2

; r) and S(

3

; r) interset; this irle of intersetion is

loated in the plane y = 0. By symmetry of the equilateral triangle, the other 4 upper

tangents ollapse to 2 tangents in the same way. Sine for t = t

9

the lower tangents

neither have vanished nor ollapsed (see below), the four spheres have exatly 9 di�erent

ommon tangents.

In order to ompute t

9

, let 

s

= (�

p

3=6; 0; 0)

T

and r

s

=

p

r

2

� 1=4 denote the

enter and the radius of the irle of intersetion. Then, setting b = jj

s

� 

1

jj and

z

9

= ((

p

3=2)

2

� (r � r

s

)

2

)

1=2

, a straightforward geometri omputation yields the two
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x

y



1



2



3



4

t =

p

6=3

t = 0:84

t = 0:87

t = 0:90

x

z



s



1

p

3

q

3

p

9

q

9

t

9

t

3

(a) Projetion on the xy-plane (b) Setion through the xz-plane

Fig. 3.6: Di�erent views of the onstrutions with 3, 6, and 9 tangents. The ommon radius of

the spheres is 0.53.

points on the tangent p

9

, q

9

,

p

9

= (�

p

3=6� r

s

(r � r

s

)=b; 0; r

s

z

9

=b)

T

; q

9

= (

p

3=3� r(r � r

s

)=b; 0; rz

9

=b)

T

:

p

9

is loated on the irle of intersetion, and q

9

is loated on S(

3

; r) (see Figure 3.6(b)).

Now the tangent ondition for the sphere S((0; 0; t

9

)

T

; r) implies a quadrati equation for

t

9

. The larger one of the two solutions gives the desired value of t

9

.

For values t > t

9

there exist at most 6 real tangents. Analogous to the ritial ase with

9 tangents there exists some value t

3

where the 6 lower tangents ollapse to 3 tangents.

The dashed lines in Figure 3.6(b) show the setion of this situation through the xz-plane.

The tangent in the xz-plane is given by the two points

p

3

= (�

p

3=6 + r

s

(r + r

s

)=b; 0;�r

s

z

3

=b)

T

; q

3

= (

p

3=3� r(r + r

s

)=b; 0; rz

3

=b)

T

;

where z

3

= ((

p

3=2)

2

� (r + r

s

)

2

)

1=2

. For values t > t

3

there does not exist any ommon

tangent to the four spheres.

In partiular, for any given r satisfying 1=2 < r < 3

p

2=8 the two values t

3

and t

9

an be omputed exatly. However, sine the resulting expressions are quite long, we only

give some numerial values to illustrate the relationships in size. Table 3.1 ontains some

values of r together with the resulting numerial values of t

3

and t

9

. Figure 3.7 illustrates

the onstrution.

For a onstrution with 7 tangents, we start from the above on�guration with 9

tangents. In this on�guration, the remaining 3 upper tangents are ritial in the sense
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3

r t

9

t

3

0:51 0:8463 0:8478

0:52 0:8760 0:9293

0:53 0:9028 1:0172

Tab. 3.1: Some values of the radius r and the resulting oordinates t

9

and t

3

leading to 9 and 3

distint real ommon tangents, respetively.

1,2

Fig. 3.7: In this onstrution with 9 real tangents, the remaining 3 upper tangents are drawn in

grey olor. The tangent labeled by 1,2 stems from the tangents labeled by 1 and 2 in

Figure 3.5.

that for any additional inrement of the z-value of 

4

these tangents vanish. Now we move

the fourth enter (0; 0; t

9

)

T

along the line (0; 0; t

9

)

T

+�(q

9

�p

9

), � 2 R. For any � > 0, the

line through p

9

and q

9

is still tangent to the four spheres. However, the other two upper

tangents from the situation � = 0 immediately vanish for � > 0. Hene, there exists some

" > 0 suh that any on�guration with 0 < � < " leads to exatly 7 ommon tangents.

As an example, for r = 0:53 we an hoose 0 < � < 1=10.

3.3.3 Parallelogram onstrutions

In order to give onstrutions with 4, 5, and 8 tangents, we start from the following

situation depending on some parameter a 2 R. Let 

1

= (�a � 1;�1; 0)

T

, 

2

= (�a +

1;�1; 0)

T

, 

3

= (a�1; 1; 0

T

), 

4

= (a+1; 1; 0)

T

de�ne a parallelogram in the xy-plane, and

let r = 1. By Corollary 3.7, a parallelogram on�guration gives at most 8 real ommon

tangents.

As illustrated in Figure 3.8(a), the speial ase a = 0 yields a square. Obviously, these

four spheres have two ommon tangents, namely the lines x = z = 0 and y = z = 0.
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x

y

1

1



1



2



3



4

x

y

1

1



1



2



3



4

(a) a = 0 gives 2 real ommon tangents. (b) a = 1 gives 3 real ommon tangents.

Fig. 3.8: Initial on�gurations for onstrutions with 5 and 8 real tangents. In the right �gure

the dotted line shows the two tangents with z-oordinate

p

2 and �

p

2, respetively.

Now observe what happens for parameter values 0 < a < 1. For 0 < a < 1, there

exist exatly 5 tangents. As before, one of the tangents is the line de�ned by y = z = 0.

However, the tangent x = z = 0 from the ase a = 0 splits for a > 0 into four tangents.

More preisely, for 0 < a < 1 there are two tangents parallel to the xy-plane (see the

dotted line in Figure 3.8(b)); these two tangents are symmetri with respet to the xy-

plane.

For 0 < a < 1, there exist two tangents passing through the origin. These two tangents

are symmetri with respet to the xz-plane, too. Here, we have to ompute the lines whih

pass through the origin and whih are tangent to S(

3

; 1) and S(

4

; 1). For 0 < a < 1,

there exist two lines with this property. By symmetry, these lines are also tangent to

S(

1

; 1) and S(

2

; 1). For a = 1, these two lines ollapse to the line y = z = 0. Obviously,

if 0 < a < 1 then multiplying the y-oordinates of all four enters by a fator � slightly

larger than 1 yields a on�guration with 4 instead of 5 distint ommon tangents.

Now we turn towards a onstrution with 8 tangents. For 0 < a � 1=2, we multiply the

y-oordinates of all four enters by some 0 < � � 1 suh that jj

1

� 

3

jj = jj

2

� 

4

jj = 2.

Geometrially, the upper spheres \roll" on top of the lower spheres (see Figure 3.9(a)).

Elementary geometry yields � =

p

1� a

2

=2. Compared to the situation a = 0, for

0 < a < 1=2 the tangent y = z = 0 is split into 4 tangents in the same way as in the

transition from 2 to 5 tangents.

In partiular, sine 5

2

+ 12

2

= 13

2

, the hoie a = 5=13 yields the rational o-

ordinates 

1

= (�18;�12; 0)

T

=13, 

2

= (8;�12; 0)

T

=13, 

3

= (�8;�12; 0)

T

=13, 

4

=

(18;�12; 0)

T

=13. This on�guration is depited in Figure 3.9(b). For a = 1=2 the 4

tangents passing through the origin ollapse to 2 tangents; hene, this yields another

on�guration with 6 real tangents.

Note that in the on�guration with 8 tangents there are 4 points whih belong to more

than one sphere. However, the radius an be slightly dereased without altering the num-
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3

x

y

1

1



1



2



3



4

(a) Parallel projetion on the xz-plane (b) Three-dimensional view

Fig. 3.9: Constrution with 8 tangents. In the right piture, tangents whih are parallel to the

xy-plane are drawn in grey olor.

ber of ommon tangents. After resaling these disjoint spheres we obtain a on�guration

of 4 disjoint unit spheres with 8 ommon tangents.

3.3.4 Construtions with 10 and 11 real tangents

In order to give onstrutions with 10 and 11 distint real tangents, we start from the

initial regular tetrahedron in Setion 3.3.2 (see Figure 3.6(a)). However, for notational

onveniene, we exhange the enters 

3

and 

4

. By Lemma 3.8, the radius r = 3

p

2=8

leads to 6 ommon tangents, whose diretions are the diretions of the six tetrahedron

edges. Figure 3.10 shows the projetion of this situation in the diretion of the edge 

2



4

.

Note that the lower left dis in this �gure refers to the spheres S(

2

; r) and S(

4

; r).

In this situation, we move the spheres S(

2

; r) and S(

4

; r) slightly in opposite di-

retions along the edge onneting their enters. This movement does not hange the

position of the tangent with diretion 

2



4

. However, the movement will give some \free-

dom" to any of the �ve other tangents, and hene any of these edges will split into two

edges. Intuitively, this situation leads to 11 tangents; by inreasing the radius slightly the

tangent with diretion 

2



3

vanishes.

To formalize this idea, we onsider the four enters 

1

= (

p

3=3; 0; 0)

T

, 

2

= (�

p

3=6;

1=2 + a; 0)

T

, 

3

= (0; 0;

p

6=3)

T

, 

4

= (�

p

3=6;�1=2 � a; 0)

T

for some a > 0. In order

to apply the algebrai framework from Setion 3.3.1, we translate all enters by �

4

; this

translation moves 

4

into the origin. Sine the two faes 

1



2



3

and 

1



3



4

have the same

area, and the two faes 

1



2



4

and 

2



3



4

have the same area, we have A

1

= A

3

and

A

2

= A

4

. As already seen in (3.19), the ubi (3.11) speializes to

(A

2

2

t

1

+ A

2

1

t

3

)(A

2

1

(t

1

t

2

+ t

2

2

+ t

2

t

3

) + A

2

2

t

1

t

3

) = 0 :

In partiular, the ubi is reduible. Using (3.20), the set of all real tangents to the four
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x

z



1



2

; 

4



3

Fig. 3.10: Parallel projetion of S(

1

; r); : : : ; S(

4

; r) in the xz-plane with r = 3

p

2=8. This is

the projetion along the edge with diretion 

2



4

. The position of the ommon tangent

in this diretion is marked by the ross.

spheres S(

i

; r) for some radius r > 0 an be parametrized by the line

(t

1

; t

2

; t

3

)

T

= (A

2

1

; A

2

2

�;�A

2

1

)

T

; �1 < � � 1 (3.38)

and the oni setion

(t

1

; t

2

; t

3

)

T

= (�A

2

1

(�� 1)� A

2

2

; A

2

2

�;A

2

1

(�� 1)�)

T

; �1 < � � 1 : (3.39)

For a given radius, the linear funtion gives at most 4 ommon tangents and the oni se-

tion gives at most 8 ommon tangents. Analogous to Setion 3.3.1, for both parametriza-

tions the square of the radius funtion r(�) is a rational funtion in �.

A suitable hoie of a whih will have the desired properties and whih leads to rational

values of A

2

1

, A

2

2

is a = (

p

112=100 � 1)=2. Then A

2

1

= 78=400, A

2

2

= 84=400, and the

parametrization of the linear fator yields

r

2

(�) =

169(1764�

4

+ 2492�

2

+ 1521)

32(175�

2

+ 169)

2

:

The graph of r(�) is shown in Figure 3.11. The derivative of r

2

(�) is

�

r

2

(�)

�

0

=

1183�(11438�

2

� 7943)

8(169�

2

+ 175)

3

with nominator of degree 3 and stritly positive denominator. In partiular, r(0) =

3

p

2=8 � 0:5303 is a loal maximum, and

lim

�!�1

r(�) = lim

�!1

r(�) =

r

169 � 1764

32 � 175

2

> 0:54 :
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�

r(�)

1

0:50

3

p

2=8

0:54

Fig. 3.11: In the parametrization of the linear fator, the square of the radius funtion r(�) is a

rational funtion in �.

�

r(�)

(1=2)

2

1

(3=2)

2

2

2

�(1=2)

2

�1

�(3=2)

2

�2

2

0:50

3

p

2=8

0:54

Fig. 3.12: r(�) for the parametrization of the oni setion. For better illustration of the region

near � = 0 the �-axis is saled quadratially.

Consequently, there exist exatly three di�erent real values of � with r(�) = 3

p

2=8; and

for slightly larger radii r than 3

p

2=8, say r

1

< r � r

2

with r

1

:= 3

p

2=8, r

2

:= 0:54, we

only obtain two suh real values of �.

It remains to show: for a given radius r 2 [r

1

; r

2

℄, the parametrization of the oni

setion ontains exatly 8 real values of � with r(�) = r. Figure 3.12 illustrates the

funtion graph of r(�). By (3.39), the �-values �1, �A

2

2

=A

2

1

+ 1, 0, 1, 1 represent the

t-vetors (0; 0; 1)

T

, (0; 1;�1)

T

, (1; 0; 0)

T

, (1;�1; 0)

T

, and (0; 0; 1)

T

, respetively. For all

these �-values we obtain r(�) = 3

p

1378=206 > 0:54. These 5 values deompose the real

axis into 4 intervals. If any of these intervals ontains some value � with r(�) < 3

p

2=8,

then for a given r 2 [r

1

; r

2

℄, there are at least 8 solutions with r(�) = r. We an hoose,

e.g., the following values of �: �3=10, �5=100, 2=10, and 2. For any of these 4 values we

obtain r(�) < 0:52 whih implies the desired result. Sine there annot be more than 8

solutions, there are exatly 8 real solutions.

Finally, it an be easily heked that for A

2

> A

1

the line (3.38) and the oni se-

tion (3.39) do not have real intersetion points; so the tangents stemming from the line

and the tangents stemming from the oni setion are indeed di�erent. This ompletes

the proof of the onstrutions with 10 and 11 tangents.
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3.3.5 Disussion and open questions

In this setion, we have shown that for any k 2 f0; : : : ; 12g there exists a on�guration

with four unit spheres and exatly k distint real ommon tangents. Although we have

motivated every onstrution by purely geometri arguments, the rigorous proofs of some

onstrutions (in partiular 10, 11 tangents) heavily depend on the algebrai framework

of the problem as developed in Setions 3.1 and 3.2. We interpret this observation as an

indiation why a purely geometri proof of the upper bound of 12 real ommon tangents

(Theorem 3.1) should be quite hard to establish.

Furthermore, observe that all onstrutions with more than 8 tangents are based on

non-disjoint sphere on�gurations. Already in Setion 3.2.5 we have stated the open

question on the maximum number of distint real tangents for disjoint unit spheres. The

diÆulty in treating this question is the same one as above. Namely, it seems to be diÆult

to exploit the ondition of disjointness in the algebrai setting; but we do not know how

to handle these situations from a purely geometri point of view.

Finally, the following open problem plays an important role in the interplay between

the algebra and the geometry of the tangent problem. For some famous problems in

enumerative geometry (exes and bitangents of plane urves, lines on ubi surfaes,

onis tangent to �ve given onis), the resulting Galois groups in the generi ase are

non-solvable [69℄. This situation reets the diÆulty of purely geometri methods to

handle these problems. Using the omputer algebra system Gap [115℄ for the handling

of groups, we have heked for some spei� instanes of tangents to four unit spheres

that the resulting Galois groups are non-solvable. It is an open problem to provide a

non-omputer-algebrai proof of this non-solvability for generi instanes.

3.4 Computing smallest irumsribing ylinders of a tetrahedron in R

3

We study the optimization aspet of the tangent problem. Given aÆnely independent en-

ters 

1

; : : : ; 

4

2 R

3

, �nding the minimal radius r > 0 suh that the spheres S(

1

; r); : : : ;

S(

4

; r) have a real ommon tangent is equivalent to �nding the minimal radius of a iru-

lar ylinder irumsribing the tetrahedron with verties 

1

; : : : ; 

4

. In Setion 2.2.5, we

have seen that this problem is tightly onneted to the omputation of a smallest enlosing

ylinder for general polytopes in R

3

.

As mentioned in Setion 2.1.2, the omputational osts of solving a system of polyno-

mial equations are dominated by the B�ezout number and the mixed volume (the latter

will beome relevant in the n-dimensional ase treated in Setion 5.3). Hene, it is an

essential task to �nd the right algebrai formulations.

In Setion 3.4.1, we apply our framework of Setions 3.1 and 3.2 to provide a for-

mulation for the smallest irumsribing ylinder of a tetrahedron with B�ezout number

36.

Based on this formulation, we an investigate tetrahedron lasses for whih the degrees

an be further redued. This is done in Setion 3.4.2.
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3.4.1 General tetrahedra in R

3

In the proof of [37, Theorem 6℄, a polynomial formulation is given to ompute a smallest

enlosing ylinder of a tetrahedron in R

3

. This formulation desribes the problem by three

equations in the diretion vetor v = (v

1

; v

2

; v

3

)

T

of the line, one of them normalizing the

diretion vetor v by

v

2

1

+ v

2

2

+ v

2

3

= 1 : (3.40)

The equations are of degree 10, 3, and 2, respetively, thus giving a B�ezout number of

60. However, as pointed out in that paper, some of the solutions to that system are

arti�ially introdued by the formulation and our with higher multipliity, and there

are only 18 really di�erent solutions. Even more severely, in the experiments in that paper

(using Synaps, a state-of-the-art software for numerial polynomial omputations), the

numerial treatment of these multiple solutions needs muh time, roughly a fator 100

ompared to similar systems without multiple solutions.

Here, we present an approah, whih reets the true algebrai bound of 18. Namely,

we give a polynomial formulation with B�ezout bound 36 in whih every solution generially

has multipliity one. The additional fator 2 just results from the fat that due to the

normalization ondition (3.40) every solution v also implies that �v is a solution as well.

Our framework is based on Setions 3.1 and 3.2. Here, we are interested in real lines.

As before, a line in R

3

is represented by a diretion vetor v 2 R

3

nf0g and a point p 2 R

3

lying on the line with p � v = 0. Moreover, we assume v

2

= 1.

Let 

1

; : : : ; 

4

be the aÆnely independent verties of the given tetrahedron, and assume



4

= 0. Further let M := (

1

; 

2

; 

3

)

T

. After substituting (3.5) into p � v = 0, we set

v

2

= 1 in the resulting denominator; this gives the homogeneous ubi equation whih we

denote by g

1

(v

1

; v

2

; v

3

) = 0. Hene, we arrive at the following polynomial optimization

formulation in terms of the variables v

1

, v

2

, and v

3

to ompute the square of the radius

of the minimal irumsribing ylinder.

min

0

�

1

2

M

�1

0

�

v

2

p

2

1

� (v � p

1

)

2

v

2

p

2

2

� (v � p

2

)

2

v

2

p

2

3

� (v � p

3

)

2

1

A

1

A

2

s.t. g

1

(v

1

; v

2

; v

3

) = 0 ;

g

2

(v

1

; v

2

; v

3

) := v

2

� 1 = 0 :

(3.41)

Rather than using v

2

= 1 to further simplify the objetive funtion, we prefer to keep the

homogeneous form, so that the objetive funtion is a homogeneous polynomial of degree

4. We denote this polynomial by f .

By the onsiderations in Setion 3.2, the edge diretions of the base tetrahedron are

admissible solutions; thus the set of admissible solutions is nonempty.

Using Lagrange multipliers �

1

and �

2

, a neessary loal optimality ondition is

grad f = �

1

grad g

1

+ �

2

grad g

2

: (3.42)
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By thinking of an additional fator �

0

before grad f and onsidering (3.42) as a system

of linear equations in �

0

, �

1

, �

2

, we see that if (3.42) is satis�ed for some vetor v then

the determinant

det

0

B

�

�

�f

�v

1

�g

1

�v

1

�g

2

�v

1

�

�f

�v

2

�g

1

�v

2

�g

2

�v

2

�

�f

�v

3

�g

1

�v

3

�g

2

�v

3

1

C

A

(3.43)

vanishes.

Lemma 3.11. (a) For any normalized diretion vetor (v

1

; v

2

; v

3

)

T

2 R

3

of the axis of a

loally extreme irumsribing ylinder, the determinant (3.43) vanishes. If there are only

�nitely many loally extreme, normalized diretion vetors then that number is bounded

by 36.

(b) For a generi tetrahedron the number of solutions is indeed �nite, and all solutions

have multipliity one.

Proof. Let v be the diretion vetor of an axis of a loally extreme irumsribing ylinder.

Then v satis�es the �rst onstraint of (3.41), and the determinant (3.43) vanishes. Sine

these are homogeneous equations of degree 3 and 6, respetively, B�ezout's Theorem implies

that in onnetion with v

2

= 1 we obtain at most 36 isolated solutions.

For the seond statement it suÆes to hek that for one spei� tetrahedron there

are only �nitely many solutions and that all solutions are pairwise distint.

3.4.2 Speial tetrahedron lasses in R

3

We investigate onditions under whih the degree of the resulting equations dereases.

Moreover, we show that for the equifaial tetrahedron, the minimal irumsribing radius

an be omputed quite easily.

In Setion 3.2.1, we have seen that the polynomial g

1

in the ubi equation fators

into a linear polynomial and an irreduible quadrati polynomial if and only if the four

faes of the tetrahedron T an be partitioned into two pairs of faes fF

1

; F

2

g, fF

3

; F

4

g

with area(F

1

) = area(F

2

) 6= area(F

3

) = area(F

4

). Moreover, g

1

fators into three linear

terms if and only if the areas of all four faes of T are equal.

First let us onsider the ase where g

1

deomposes into a linear polynomial and an irre-

duible quadrati polynomial. By optimizing separately over the linear and the quadrati

onstraint, the degrees of our equations are smaller than for the general ase. Namely,

analogously to the derivation in Setion 3.4.1, for the quadrati onstraint we obtain a

B�ezout bound of

(3 + 1 + 1) � 2 � 2 = 20 ;

and for the linear onstraint we obtain

(3 + 0 + 1) � 1 � 2 = 8 :

Thus, we an onlude:
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Lemma 3.12. If the four faes of the tetrahedron an be partitioned into two pairs of

faes fF

1

; F

2

g, fF

3

; F

4

g with area(F

1

) = area(F

2

) 6= area(F

3

) = area(F

4

) then there are

at most 28 isolated loal extrema for the minimal irumsribing ylinder. They an be

omputed from two polynomial systems with B�ezout numbers 20 and 8, respetively.

Equifaial simplies. As desribed in Setion 3.2.2, for an equifaial tetrahedron the ubi

polynomial g

1

fators into three linear terms. Hene, we obtain at most 3 � 8 = 24 loal

extrema. Somewhat surprisingly, it is even possible to ompute smallest irumsribing

ylinder of an equifaial tetrahedron essentially without any algebrai omputation. We

follow the notation and reasoning in Setion 3.2.2. Thus we assume that the verties of

an equifaial tetrahedron have the form 

1

= (�

1

; �

2

; �

3

)

T

, 

2

= (�

1

;��

2

;��

3

)

T

, 

3

=

(��

1

; �

2

;��

3

)

T

, 

4

= (��

1

;��

2

; �

3

)

T

with �

1

; �

2

; �

3

> 0. For any radius r > 0, the

diretion vetor of any ommon tangent to the four spheres S(

1

; r); : : : ; S(

4

; r) satis�es

v

1

v

2

v

3

= 0. Considering without loss of generality the ase v

1

= 0, (3.22) yields

r

2

= �

�

2

2

�

2

3

�

2

1

v

4

2

�

�

�

2

2

� �

2

3

�

�

2

2

�

2

3

�

2

1

�

v

2

2

+ �

2

1

+ �

2

2

: (3.44)

Thus, by omputing the derivative of this expression r

2

= r

2

(v

2

) and taking into aount

the three ases v

i

= 0, we an redue the omputation of the minimal irumsribing

ylinder to solving three univariate equations of degree 3. However, we an still do better.

Substitute z

2

:= v

2

2

, and let � be the expression for r

2

in terms of z

2

,

�(z

2

) = �

�

2

2

�

2

3

�

2

1

z

2

2

�

�

�

2

2

� �

2

3

�

�

2

2

�

2

3

�

2

1

�

z

2

+ �

2

1

+ �

2

2

:

Sine the seond derivative of that quadrati funtion is negative, �(z

2

) is a onave

funtion. Hene, within the interval z

2

2 [0; 1℄, the minimum is attained at one of the

boundary values z

2

2 f0; 1g. Consequently, two of the omponents of (v

1

; v

2

; v

3

)

T

must

be zero and therefore v is perpendiular to two opposite edges. Sine the latter geometri

haraterization is independent of our spei� hoie of oordinates, we an onlude:

Theorem 3.13. If all four faes of the tetrahedron T have the same area then the axis

of a minimum irumsribing ylinder is perpendiular to two opposite edges.

Hene, for an equifaial tetrahedron it suÆes to investigate the ross produts of the

three pairs of opposite edges (equipped with an orientation), and we do not need to solve

a system of polynomial equations at all.

In order to illustrate how these three solutions relate to the 18 solutions of the general

approah above, we onsider the regular tetrahedron in R

3

. In the general approah,

as already pointed out in [37℄, the six edge diretions 

i



j

(1 � i < j � 4) all have

multipliity 1, and eah of the three diretions in Theorem 3.13, 

1



2

� 

3



4

, 

1



3

� 

2



4

,



1



4

� 

2



3

, have multipliity 4.
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3.5 Dynami visualization aspets

As illustrated within the onstrutions in Setion 3.3, many properties and onstrutions

of the tangent problem an best be understood in terms of dynami on�gurations. For a

dynami visualization of our algebrai problem of degree 12, we do not only have to solve

a single system, but instead have to solve several systems per seond. In this setion, we

briey desribe a prototype of a homotopy-based visualization tool, whih demonstrates

that visualization of algebrai-geometri problems of this degree in real time is indeed

possible. For a demonstration video of these visualizations see the video review tape of

the Symposium on Computational Geometry 2002 [85℄.

General framework. In the last years, homotopy ontinuation tehniques tehniques have

been very fruitfully applied to build state-of-the-art numerial solvers of polynomial equa-

tions (see [32, 143℄). The goal is to �nd all solutions of a zero-dimensional system of

polynomial equations

f

1

(x

1

; : : : ; x

n

) = : : : = f

n

(x

1

; : : : ; x

n

) = 0 ;

abbreviated f(x) = 0. The idea of the homotopy tehnique is to start from a seond

system g(x) = 0 whose solutions are known a priori. Then we onsider the family of

systems of equations

0 = h(x; �) := (1� �)g(x) + �f(x)

for 0 � � � 1. By suessively inreasing � in small steps from 0 to 1 we an use either

Newton's method to �nd the solutions for the next step, or solvers of ordinary di�erential

equations. The latter approah is based on the equation

J(x(�); �)

dx(�)

d�

= �

�h

��

(x(�); �); J(x; �) :=

�

�h

i

�x

j

(x; �)

�

;

whih is implied by the Impliit Funtion Theorem.

Homotopy methods for the tangents to spheres. If the starting system g(x) = 0 of a

homotopy solver has more solutions than the system f(x) = 0, some paths neessarily

diverge as � ! 1. Therefore a main onern in the design of homotopy solvers is to

�nd an appropriate starting system of polynomials g(x), whih is expeted to have the

same number of zeroes as f(x). By Bernstein's Theorem, this means that the starting

polynomials g(x) should have the same Newton polytope as f(x) (see, e.g., [32, 137℄).

For two reasons, homotopy tehniques seem to be partiularly suitable for visualizing

on�gurations of the tangents to spheres. Firstly, for the given polynomial formulation

the B�ezout number agrees with the number of expeted zeroes. Seondly, as exhibited in

Setion 3.3, geometri understanding of on�gurations suggests also to inspet topologi-

ally neighboring on�gurations. For two-dimensional geometri problems, the latter issue

is treated omprehensively in dynami geometry software suh as Cinderella [108℄.
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Implementation aspets. The homotopy-based visualization of dynami tangent on�gu-

rations has been prototypially implemented in Visual C++. The input to the program

is a desription of the dynami on�gurations. For omputing and visualizing the tan-

gents of the initial on�gurations, the homotopy method starts from a standard starting

system. For the subsequent on�gurations, it starts from the preeding on�guration.

Both Newton's method and numerial methods for solving the di�erential equation are

implemented.

The 3D graphis have been implemented using the Open GL-based Coin 3D graphis

library. This library provides an appliation programming interfae based on the widely

distributed Open Inventor graphis library.

Frontiers of the implementation. Despite an automati adaption of the step size, numerial

problems of ourse arise whenever we reah too lose to a on�guration in whih the

Jaobian matrix J is singular. If this on�guration is only an intermediate on�guration

on a homotopy path, this an be avoided by hoosing a long way round the singularity.

However, if the singular on�guration is our destination, then this strategy obviously does

not work. Experimental data on the numerial behavior an be found in the Diplom thesis

of D. Kotzor [84℄.



4. COMMON TANGENTS TO FOUR QUADRICS IN P

3

AND R

3

In this hapter, we study the problem of ommon tangents to four quadris in P

3

and

relate it to the sphere problem disussed in Chapter 3.

Using Pl

�

uker oordinates, eah of the tangent onditions gives a quadrati equation in

P

5

. In onnetion with the single Pl

�

uker relation (2.2), we obtain �ve quadrati equations

in P

5

. By B�ezout's Theorem, if this system has only �nitely omplex solutions, then this

number is bounded by 32. The disrepany between this upper bound and the number

of 12 for spheres is aused by the fat that for spheres, the ommon zeroes of the Pl

�

uker

formulation in P

5

inlude a one-dimensional exess omponent at in�nity (aounting for

the \missing" 2

5

� 12 = 20 solutions [1℄). This observation an also be seen as the main

argument why we used an elementary desription of lines in Chapter 3.

In Setion 4.1, we solve the real enumerative question for quadris by showing that 32

is the true upper bound for quadris, even over the real numbers.

In Setion 4.2, we propose some omputer-algebrai methods to relate the enumerative

geometry problem for general quadris to the enumerative geometry problem for spheres.

In order to resolve the one-dimensional omponent of solutions at in�nity, the algebrai-

geometri tehnique of blow-ups an be used. In most examples oming from geometry, a

single blow-up suÆes to resolve an exess omponent. However, for the tangent problem

after one blow-up the exess omponent is still not resolved, and a seond blow-up is

neessary. Thus the tangent problem is an outstanding example of a natural geometri

problem whose analysis requires a double blow-up. The aim of this setion is to use

omputer-algebrai methods to show the neessity of a seond blow-up.

4.1 Real lines

Reall from Setion 2.1.1 that we all a quadrati hypersurfae real if it an be desribed

by a quadrati form with real oeÆients. Here, we show the following result.

Theorem 4.1. There exists a on�guration of four real quadris in P

3

with 32 distint

real ommon tangent lines.

Before going into the tehnial details, let us illustrate the geometri idea underlying

our onstrution. We start from the well-known fat that four lines in P

3

have at most two

or in�nitely many ommon transversals (see, e.g., [75, xXIV.7℄). In order to demonstrate

the geometry behind this number of two, onsider a tetrahedron � 2 R

3

, where we �x two

opposite edges e

1

and e

2

. Let `

1

; : : : ; `

4

be the lines underlying the other four edges. These



58 4. Common tangents to four quadris in P

3

and R

3

four lines interset pairwise in the verties of �. Hene, the two ommon transversals are

the lines underlying the two edges e

1

and e

2

. See Figure 4.1.

`

1

`

2

`

3

`

4

e

1

e

2

Fig. 4.1: Tetrahedron on�guration of four lines in R

3

with two real tangents.

Consider the lines `

1

; : : : ; `

4

as (degenerate) in�nite irular ylinders with radius

r = 0. If we inrease the radius slightly, then the ylinders interset pairwise in the regions

(ombinatorially) given by the four verties of �. Intuitively, after this perturbation

proess, the ommon tangents roughly have the diretion of e

1

and e

2

. However, due to the

intersetion of the ylinders every of these intersetion points de�nes four ombinatorial

types. Therefore, there are 4 � 4 tangents lose to the diretion of e

1

and 4 � 4 tangents

lose to the diretion of e

2

. Figure 4.2 illustrates this situation for the ase of a regular

tetrahedron.

While this demonstration of Theorem 4.1 is visually appealing and is easily veri�ed

numerially, its proof requires more work. Namely, perturbing the given lines into ylinders

transforms a problem of degree 2 into one of degree 32. In order to make this idea preise,

we desribe a family of projetive on�gurations eah of whih is equivalent to that of

Figure 4.1. Exploiting symmetries, we are able to determine on�gurations in the family

having all ommon transversals real. This provides a onstrutive proof of Theorem 4.1.

We realize the tetrahedral on�guration of Figure 4.1 in projetive 3-spae, using the

oordinates (x

0

; x

1

; x

2

; x

3

)

T

for P

3

. For the lines `

1

; : : : ; `

4

, we we give a desription in

terms of equations, as well as a parametrization using the oordinates [s; t℄ for P

1

.

`

1

: x

0

= x

3

= 0 ; i:e:; (0; s; t; 0)

T

;

`

2

: x

1

= x

0

= 0 ; i:e:; (0; 0; s; t)

T

;

`

3

: x

1

= x

2

= 0 ; i:e:; (t; 0; 0; s)

T

;

`

4

: x

2

= x

3

= 0 ; i:e:; (s; t; 0; 0)

T

:

(4.1)

Then the lines underlying e

1

and e

2

are (s; 0; t; 0)

T

and (0; s; t; 0)

T

, respetively.
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Fig. 4.2: Con�guration of 4 quadris with 32 real tangents.

Now, for some parameters �; � 2 R, onsider the four quadris

Q

1

: x

2

1

+ x

2

2

� �(x

2

3

+ x

2

0

) = 0 ;

Q

2

: x

2

2

+ x

2

3

� �(x

2

0

+ x

2

1

) = 0 ;

Q

3

: x

2

3

+ x

2

0

� �(x

2

1

+ x

2

2

) = 0 ;

Q

4

: x

2

0

+ x

2

1

� �(x

2

2

+ x

2

3

) = 0 :

For � = � = 0, these quadris beome the orresponding lines, and for small �; � >

0, these quadris are deformations of the lines. Reall that the signature of a quadri

denotes the number of positive eigenvalues of its representation matrix minus the number

of negative eigenvalues. Sine for �; � > 0 eah quadri Q

i

has rank 4 and signature 0,

we see that all four quadris are ruled surfaes.

Theorem 4.2. Let (�; �) 2 R

2

satisfy

��(1� ��)(1 + �)(1 + �)

�

(1� �)

2

(1� �)

2

� 16��

�

6= 0 :

Then there are 32 distint (possibly omplex) ommon tangent lines to Q

1

; : : : ; Q

4

. More-

over, if 0 < �; � < 3� 2

p

2, then all these 32 distint tangent lines are real.

Proof. We work in the Pl

�

uker oordinates for the spae of lines in P

3

. Sine the quadris

only ontain monomials of the form x

2

i

, the four tangent equations (2.5) of Q

1

; : : : ; Q

4



60 4. Common tangents to four quadris in P

3

and R

3

only ontain monomials of the form p

2

ij

. More preisely, the four tangent equations give

the following system of linear equations in p

2

01

; : : : ; p

2

23

:

0

B

B

�

�� �� �

2

1 �� ��

�

2

�� �� �� �� 1

�� �� 1 �

2

�� ��

1 �� �� �� �� �

2

1

C

C

A

0

B

B

B

B

B

B

�

p

2

01

p

2

02

p

2

03

p

2

12

p

2

13

p

2

23

1

C

C

C

C

C

C

A

= 0 :

We permute the variables into the order (p

02

; p

13

; p

03

; p

12

; p

01

; p

23

). Then, for �; � satisfying

��(1� ��)(1 + �)(1 + �) 6= 0 ; (4.2)

Gaussian elimination yields the following system:

0

B

B

�

�� �� (1� �)(1� �) 0 0 0

0 0 � �� 0 0

0 0 0 �� � 0

0 0 0 0 � ��

1

C

C

A

0

B

B

B

B

B

B

�

p

2

02

p

2

13

p

2

03

p

2

12

p

2

01

p

2

23

1

C

C

C

C

C

C

A

= 0 :

Hene, in onnetion with the single Pl

�

uker equation (2.2), we have the following system

of equations:

��p

2

02

� �p

2

13

+ (1� �)(1� �)p

2

03

= 0 ; (4.3)

p

01

p

23

� p

02

p

13

+ p

03

p

12

= 0 ; (4.4)

�p

2

01

= �p

2

03

= �p

2

12

= �p

2

23

: (4.5)

We analyze this system for �; � satisfying (4.2) by onsidering the following three disjoint

ases.

Case 1: p

02

= 0.

Sine p

13

= 0 would imply that all omponents are zero and hene ontradit (p

01

; : : : ; p

23

)

T

2 P

5

, we an assume p

13

= 1. Then (4.3) and (4.5) imply

�p

2

01

= �p

2

03

= �p

2

12

= �p

2

23

=

��

(1� �)(1� �)

6= 0 :

Sine (4.4) implies sgn(p

01

p

23

) = �sgn(p

03

p

12

), only 8 of the 2

4

= 16 sign ombinations

for p

01

; p

03

; p

12

; p

23

are possible. More preisely, the 8 (possibly omplex) solutions for

p

01

; p

03

; p

12

; p

23

are

(p

01

; p

03

; p

12

; p

23

)

T

=

1

p

(1� �)(1� �)

(

01

�; 

03

�; 

12

�;�sgn(

01



03



12

)�)

T

(4.6)
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with 

01

; 

03

; 

12

2 f�1; 1g. Hene, for �; � 2 R

2

satisfying (4.2), this ase gives 8 distint

ommon tangents.

Case 2: p

13

= 0.

This ase is symmetri to ase 1. Setting p

13

= 1, the resulting 8 solutions for the variables

p

01

; p

03

; p

12

; p

23

are the same ones as in (4.6).

Case 3: p

02

p

13

6= 0.

Without loss of generality, we an assume p

02

= 1. Solving (4.4) for p

13

and substituting

this expression into (4:3) yields

�� � �p

2

01

p

2

23

� �p

2

03

p

2

12

� 2�p

01

p

03

p

12

p

23

+ (1� �)(1� �)p

2

03

= 0 :

We next use (4.5) to write this in terms of p

01

. This is straightforward for the squared

terms, but for the other terms, we observe that, by (4.5), p

01

p

23

= �p

03

p

12

and sine

p

02

p

13

6= 0, the Pl

�

uker equation (4.4) implies these have the same sign. This gives the

quarti equation in p

01

�� + (1� �)(1� �)p

2

01

� 4�p

4

01

= 0 :

Considering this equation as a quadrati equation in p

2

01

, the disriminant is

(1� �)

2

(1� �)

2

� 16�� : (4.7)

Hene, for �; � 2 R

2

satisfying (4.2), and for whih this disriminant does not vanish,

there are two di�erent solutions for p

2

01

. For eah of these two solutions for p

2

01

, there are

8 distint solutions for p

01

; p

03

; p

12

; p

23

, namely

(p

01

; p

03

; p

12

; p

23

)

T

=

q

p

2

01

(

01

; 

03

; 

12

; sgn(

01



03



12

))

T

(4.8)

with 

01

; 

03

; 

12

2 f�1; 1g. Sine p

13

is uniquely determined by p

01

, p

02

, p

03

, p

12

, ase 3

gives 16 distint ommon tangents.

With this solution, we an easily determine when all solutions are real. First, suppose

that � = �. Then the disriminant (4.7) beomes (�

2

� 6�+ 1)(�+ 1)

2

, and its smallest

positive root is �

0

:= 3� 2

p

2 � 0:17157. In partiular, for 0 < � < �

0

, the disriminant

in ase 3 is positive and both solutions for p

2

01

are positive. Thus, for 0 < � = � < �

0

,

the solutions of all three ases are distint and real. Next, �x 0 < � < �

0

and suppose

that 0 < � < �. Then the disriminant (4.7) is positive. To see this, note that for �xed

0 < � < �

0

, the disriminant (4.7) is dereasing in � for 0 < � < � and positive when

� = �. This onludes the proof of Theorem 4.2.

Figure 4.3 illustrates the onstrution and the 32 tangents for � = 1=10 and � = 1=20.
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Fig. 4.3: The on�guration of quadris from Theorem 4.2.

4.2 Computer-algebrai aspets

Let four spheres in R

3

be given by enters 

1

; : : : ; 

4

2 R

3

and radii r

1

; : : : ; r

4

> 0.

By (2.6), eah of the tangent onditions gives a quadrati equation in Pl

�

uker oordinates,

and additionally we have to onsider the single Pl

�

uker equation (2.2). So we obtain a

system with B�ezout number 2

5

= 32 in the projetive spae P

5

of Pl

�

uker oordinates p

ij

,

0 � i < j � 3.

Besides the isolated solutions there is an exess omponent of tangents loated in the

plane at in�nity. Namely, any vetor p 2 P

5

whih satis�es

p

01

= p

02

= p

03

= p

2

12

+ p

2

13

+ p

2

23

= 0 (4.9)

both ful�ls the algebrai tangent ondition given by (2.6) and the Pl

�

uker ondition (2.2).

Due to the onditions p

01

= p

02

= p

03

= 0, the geometri lines desribed by the Pl

�

uker

vetors in this variety are loated in the plane at in�nity.

A fundamental tehnique in algebrai geometry is to resolve singularities of a variety

by means of a blow-up. Here, we use this tehnique to remove the exess omponent of

our variety of tangents. Intuitively, we an think of lifting our variety into a spae of

larger dimension, there having the freedom to add further information whih then allows

to distinguish the points we do not want to ount.
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–2

–1

0

1

2

y

–2 –1 1 2
x

y
x

(a) Plane urve (b) After the blow-up

Fig. 4.4: The nodal ubi.

In most examples oming from geometry, a single blow-up suÆes to resolve an exess

omponent. However, for the tangent problem to spheres it has originally been observed

by P. AluÆ and W. Fulton [1℄ that after one blow-up the exess omponent is still not

resolved and that a seond blow-up is neessary.

4.2.1 Algebrai-geometri bakground

Before providing the omputer-algebrai details, let us shortly review the geometri idea

of the blow-up tehnique (see [55, 71℄). For an illustration, onsider the nodal ubi urve

in R

2

de�ned by y

2

= x

2

(x + 1) (see Figure 4.4(a)). The origin is a singular point of the

urve. In order to determine the exat multipliity of the origin, we resolve the singularity

by means of a blow-up. Namely, we embed the two-dimensional urve C appropriately

into R

2

� P

1

R

. For eah point (x; y) 2 R

2

we enode its tangent diretion x=y in the third

omponent. Formally, we onsider the urve in R

2

� P

1

R

de�ned by the two equations in

the variables (x; y; [t

0

; t

1

℄),

y

2

= x

2

(x + 1); t

0

x = t

1

y: (4.10)

The latter equation expresses that the tangent diretion x=y oinides with t

1

=t

0

. The

illustration in Figure 4.4(b) shows that this urve onsists of two branhes: on the one

hand we have the branh E := (0; 0) � P

1

R

, alled the exeptional divisor, and on the

other hand we have the \strethed" urve

~

C whih we wanted to ahieve. Figure 4.4(b)

illustrates that

~

C does not ontain a singular point anymore.

The onept an be generalized to resolve not only single singular points but also

ommon omponents (see [55, 71℄). Our exess omponent E is given by (4.9) in P

5

. The
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underlying theory requires to start from an aÆne spae. Therefore we set p

23

= 1 (sine

we want to analyze the exess omponent, we hoose a variable here whih does not a�et

the existene of our exess omponent itself).

The ideal I

E

generated by the polynomials in (4.9) is a radial ideal, i.e., whenever

I

E

ontains some positive power of a polynomial f then it also ontains f itself. For that

reason we an blow up R

n

along the subvariety E (see [125, p. 111℄). (In ase I

E

is not

radial, this leads to the more general notion of a blow-up along the subsheme de�ned

by an ideal I

E

.)

4.2.2 Simulating the double blow-up

Using the omputer-algebra system Singular [62℄, we an simulate the blow-up as fol-

lows. First we de�ne a polynomial ring R in the variables p

01

; p

02

; p

03

; p

12

; p

13

over a �eld

with harateristi zero (i.e., the base �eld is Q). Moreover, we hoose a degree reverse

lexiographial ordering (dp). The option redSB fores Singular to work with redued

Gr

�

obner (standard) bases.

option(redSB);

ring R = 0, (p01,p02,p03,p12,p13), (dp);

The following proedure omputes the tangent equation of a sphere. Sine the Singular

implementation of the wedge funtion works in a di�erent basis (namely, with regard to

our notation ^

2

Q 2 R

(

n

2

)

;

(

n

2

)

, Singular omputes (�1)

i+j

(^

2

Q)

ij

, 1 � i; j �

�

n

2

�

), we

ompensate these di�erenes in signs by using a modi�ed Pl

�

uker vetor.

pro tangenteq(int 1, int 2, int 3, int rr)

{

matrix sphereeq[4℄[4℄ = 1^2+2^2+3^2-rr^2, -1, -2, -3,

-1, 1, 0, 0,

-2, 0, 1, 0,

-3, 0, 0, 1;

matrix pluekermod[6℄[1℄ = p01, -p02, p03, -p12, p13, -1;

return(transpose(pluekermod) * wedge(sphereeq,2) * pluekermod);

}

We onsider the four spheres with enters (0; 0; 0)

T

, (1;�2; 3)

T

, (1; 0; 1)

T

, and (0;�1; 0)

T

and ommon radius 1. For these spheres, we de�ne our ideal of ommon tangent lines, with

p

23

set to 1. We ompute a Gr

�

obner (standard) basis of I and ompute the dimension and

degree (multipliity) of I. Adapting the onvention in [49℄, we use omment lines starting

with // to display the output of a Singular omputation.

ideal I1 = tangenteq(0,0,0,1);

ideal I2 = tangenteq(1,-2,3,1);

ideal I3 = tangenteq(1,0,1,1);
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ideal I4 = tangenteq(0,-1,0,1);

ideal IPlu = p01*1 - p02*p13 + p03*p12; // Plueker relation

ideal I = std(I1 + I2 + I3 + I4 + IPlu);

dim(I), mult(I);

// 1 4

The variety V(I) ontains a one-dimensional exess omponent, whose radial ideal is

generated by the polynomials in (4.9).

// exeptional divisor of I

ideal IE = p01, p02, p03, p12^2 + p13^2 + 1;

Let f

1

; : : : ; f

4

denote these polynomials. Sine f

1

; : : : ; f

4

form a regular sequene, the

blow-up ideal is generated by the polynomials

v

i

f

j

� v

j

f

i

; 1 � i < j � 4 ; (4.11)

where v

1

; : : : ; v

4

denote new variables (see [55, p. 12℄; for the non-regular ase see [124℄).

This onstrution naturally generalizes the blow-up with respet to a single point in

Setion 4.2.1. The following proedure omputes the blow-up for any regular sequene

f

1

; : : : ; f

k

of polynomials. In this proedure, the parameter I denotes the list of poly-

nomials of the exess omponent, and NewVars denotes the orresponding list of new

variables.

pro omputeblowup(ideal I, ideal NewVars)

{

int i, j;

ideal A, B;

for (i = 1; i <= size(I); i++) {

for (j = 1; j <= size(NewVars); j++) {

if (i != j) {

B = I[i℄ * NewVars[j℄ - I[j℄ * NewVars[i℄;

A = A + B;

}

}

}

return(A);

}

We extend the polynomial ring R by adjoining new variables t

01

, t

02

, t

03

, q to the ring R.

Sine we will work in the oordinate path where t

03

6= 0, we an set t

03

= 1. We ompute

the blow-up ideal whih has dimension 5 and degree 6.
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ring S = 0, (p01,p02,p03,p12,p13,t01,t02,q), (dp);

ideal NewVars1 = t01, t02, 1, q;

ideal BlowUp1 = omputeblowup(imap(R,IE), NewVars1);

// 5 6

Taking the union of the generators of the blow-up ideal and the generators of I

k

, we

obtain an ideal whose variety orresponds to the one illustrated in Figure 4.4(b). In

order to remove the exeptional divisor, we ompute the ideal quotient of the ideal in the

larger spae divided by the exeptional divisor. The resulting ideal J

k

is alled the proper

transform of I

k

. Here, the proper transform is an ideal in C [p

01

; p

02

; p

03

; p

12

; p

13

; t

01

; t

02

; q℄.

We ompute the ideal of the proper transforms and see that there is still a one-dimensional

exess omponent of degree 4.

// ompute equations after the blow-up

ideal J1 = std(quotient(BlowUp1 + imap(R,I1), imap(R,IE)));

ideal J2 = std(quotient(BlowUp1 + imap(R,I2), imap(R,IE)));

ideal J3 = std(quotient(BlowUp1 + imap(R,I3), imap(R,IE)));

ideal J4 = std(quotient(BlowUp1 + imap(R,I4), imap(R,IE)));

ideal JPlu = std(quotient(BlowUp1 + imap(R,IPlu), imap(R,IE)));

ideal J = std(J1 + J2 + J3 + J4 + JPlu);

dim(J), mult(J);

// 1 4

In order to explain this observation, we analyze the blow-up by hand. In the oordinate

path t

03

6= 0, we an set t

03

= 1. Hene, the blow-up equations (4.11) yield p

01

= p

03

t

01

,

p

02

= p

03

t

02

, and p

2

12

+p

2

13

+1 = p

03

q. The tangent equation (2.5) after the blow-up results

in

0 = p

T

^

2

Q p

= p

03

�

2

4

(t

01

; t

02

; 1)

0

�



2

2

+ 

2

3

� r

2

�

1



2

�

1



3

�

1



2



2

1

+ 

2

3

� r

2

�

2



3

�

1



3

�

2



3



2

1

+ 

2

2

� r

2

1

A

0

�

p

01

p

02

p

03

1

A

+ � + q

3

5

with

� := 2 (t

01

; t

02

; 1)

0

�



2



3

0

�

1

0 

3

0 �

1

�

2

1

A

0

�

p

12

p

13

1

1

A

:

The fator p

03

desribes the exeptional divisor, whih we want to remove. Let V

E

denote

the aÆne variety satisfying (4.9) as well as p

23

= 1. For elements in V

E

�R

4

, the tangent

equation after the blow-up simpli�es to

� + q = 0 : (4.12)
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The equation of the Pl

�

uker relation (2.2) after the blow-up results in

p

03

� (t

01

� t

02

p

13

+ p

12

) = 0 :

Hene, the proper transform of the Pl

�

uker equation is given by

t

01

� t

02

p

13

+ p

12

= 0 : (4.13)

Now we an state the exess omponent of the proper transforms.

Lemma 4.3. Let (p

01

; p

02

; p

03

; p

12

; p

13

; 1)

T

2 V

E

and (t

01

; t

02

; 1; q)

T

2 R

4

. If q = 0 and

the matrix

�

p

12

p

13

1

1 �t

02

t

01

�

(4.14)

has rank 1 then for any enter  = (

1

; 

2

; 

3

)

T

and any radius r the equations (4.12)

and (4.13) are satis�ed.

Proof. First we onsider the tangent equation (4.12). Expanding the expression � yields

�

1

(p

12

t

02

+ p

13

) + 

2

(p

12

t

01

� 1) + 

3

(p

13

t

01

+ t

02

) :

Hene, if the matrix (4.14) has rank 1 then all its 2 � 2-subdeterminants vanish, and

onsequently � = 0. In onjuntion with q = 0, we see that (4.12) is satis�ed.

The ideal desribed by the vanishing of the 2 � 2-subdeterminants is generated by

g

1

:= p

12

t

02

+ p

13

and g

2

:= p

12

t

01

� 1. To see this, just observe that g

3

:= p

13

t

01

+ t

02

an

be expressed by g

3

= �t

01

g

1

+ t

02

g

2

.

In order to see that (4.13) is satis�ed, observe that the left-hand side of (4.13) is

ontained in the ideal generated by g

1

, g

2

and q,

t

01

� t

02

p

13

+ p

12

= �p

12

g

2

� p

13

g

3

+ t

01

q :

Hene, if the matrix (4.14) has rank 1 and q = 0 then this expression evaluates to zero.

We implement the seond blow-up. The variety of the following radial ideal J

E

is the

new exeptional divisor.

ideal JE = p01, p02, p03, p12^2 + p13^2 + 1, q, p12*t02 + p13,

p12*t01 - 1;

We de�ne a ring extension, reating new variables u

01

; u

02

; u

03

; u

04

; v; w

1

; w

2

for the poly-

nomials de�ning the exess omponent. One of the new auxiliary variable has to be �xed,

sine we work loally in one path. Thus we set u

03

= 1. Sine the generators of J

E

form a

regular sequene, we an use our proedure to ompute the blow-up ideal. The dimension

of that ideal is 8, and its degree is 26.
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3

and R

3

ring T = 0, (p01,p02,p03,p12,p13,t01,t02,q,u01,u02,u04,v,w1,w2), (dp);

ideal NewVars2 = u01, u02, 1, u04, v, w1, w2;

ideal BlowUp2 = std(omputeblowup(imap(S,JE), NewVars2));

dim(BlowUp2), mult(BlowUp2);

// 8 26

Now we ompute the proper transforms of the seond blow-up.

ideal K1 = std(quotient(BlowUp2 + imap(S,J1), imap(S,JE)));

ideal K2 = std(quotient(BlowUp2 + imap(S,J2), imap(S,JE)));

ideal K3 = std(quotient(BlowUp2 + imap(S,J3), imap(S,JE)));

ideal K4 = std(quotient(BlowUp2 + imap(S,J4), imap(S,JE)));

ideal KPlu = std(quotient(BlowUp2 + imap(S,JPlu), imap(S,JE)));

ideal K = std(quotient(K1 + K2 + K3 + K4 + KPlu, imap(S,JE)));

dim(K), mult(K);

// 0 12

We see that after this seond blow-up the ideal has beome zero-dimensional. The degree

of 12 orresponds to the 12 solutions in Setion 3.1.



5. TANGENT PROBLEMS TO QUADRICS IN N -DIMENSIONAL

SPACE

We onsider the natural (real) enumerative generalization of the tangent problem to

spheres and quadris to n-dimensional spae.

In Setion 5.1, we disuss the ommon tangents to 2n�2 spheres in R

n

. The main

result of this setion an be stated as follows.

Theorem 5.1. Suppose n � 3.

(a) Let 

1

; : : : ; 

2n�2

2 R

n

aÆnely span R

n

, and let r

1

; : : : ; r

2n�2

> 0. If the 2n�2

spheres with enters 

i

and radii r

i

have only a �nite number of ommon tangent

lines in C

3

, then that number is bounded by 3 � 2

n�1

.

(b) There exists a on�guration with 3 �2

n�1

di�erent real ommon tangent lines. More-

over, this on�guration an be ahieved with unit spheres.

We also disuss on�gurations of spheres whose enters have aÆne dimension less than

n. In partiular, we show that there are on�gurations of suh spheres having 3 � 2

n�1

omplex ommon tangents; thus, the upper bound of Theorem 5.1 also holds for spheres

in this speial position.

In Setion 5.2 we prove the following result on the lines tangent to 2n�2 quadris in

P

n

.

Theorem 5.2. Given 2n�2 general quadrati hypersurfaes in P

n

there are

d

n

:= 2

2n�2

�

1

n

�

2n� 2

n� 1

�

omplex lines that are simultaneously tangent to all 2n�2 hypersurfaes (n � 2). Further-

more, there is a hoie of quadrati hypersurfaes in R

n

for whih all the lines are real

and lie in aÆne spae R

n

.

Table 5.1 exhibits the amazingly large di�erene between the number of (real) tangent

lines for spheres and the number of (real) tangent lines for general quadris.

We also disuss the ase of 2n�2 quadris in P

n

when the quadris all ontain the

same (smooth) quadri in a given hyperplane.

In Setion 5.3, we disuss the problem of �nding minimal irumsribing ylinders of

a given simplex with verties 

1

; 

2

; : : : ; 

n+1

in R

n

. This problem is equivalent to �nding
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n 3 4 5 6 7 8 9

3 � 2

n�1

12 24 48 96 192 384 768

d

n

32 320 3584 43008 540672 7028736 93716480

Tab. 5.1: Maximum number of tangents to 2n�2 spheres in R

n

and to 2n�2 quadris in P

n

the smallest radius r suh that the spheres S(

1

; r); : : : ; S(

n+1

; r) have a real ommon

tangent line. Using the framework of Setion 5.1, we provide bounds on the number of

loal extrema. Moreover, for regular simplies we prove strutural results for the diretion

vetors of any loally extreme irumsribing ylinder.

5.1 Common tangents to 2n�2 spheres in R

n

In this setion we prove Theorem 5.1. First, in Setion 5.1.1, we prove part (a) of that

Theorem. Then, in Setion 5.1.2, we prove part (b) by expliitly desribing on�gurations

with 3 � 2

n�1

ommon real tangents.

In Setion 5.1.3, we disuss on�gurations of spheres whose enters do not aÆnely

span R

n

.

5.1.1 Polynomial formulation for enters aÆnely spanning R

n

Analogous to Setion 3.1, we represent a line in C

n

by a point p 2 C

n

and a diretion

vetor v 2 P

n�1

. (For notational onveniene we typially work with a representative

of the diretion vetor in C

n

n f0g.) If v

2

6= 0 we an make p unique by requiring that

p � v = 0.

First note that for v

2

6= 0, the tangent ondition (3.1) of a line (p; v) to a sphere with

enter  and radius r also holds in general dimension n,

v

2

p

2

� 2v

2

p �  + v

2



2

� (v � )

2

� r

2

v

2

= 0 : (5.1)

To prove part (a) of Theorem 5.1, let 

1

; : : : ; 

2n�2

2 R

n

ontain n + 1 aÆnely inde-

pendent points and let r

1

; : : : ; r

2n�2

> 0. We an hoose 

2n�2

to be the origin and set

r := r

2n�2

. Then the remaining enters span R

n

. Subtrating the equation for the sphere

entered at the origin from the equations for the spheres 1; : : : ; 2n�3 gives the system

p � v = 0 ;

p

2

= r

2

; and

2v

2

p � 

i

= v

2



2

i

� (v � 

i

)

2

� v

2

(r

2

i

� r

2

) ; i = 1; 2; : : : ; 2n�3 :

(5.2)

Remark 5.3. In generalization of Remark 3.3 for the three-dimensional ase, this system

of equations does not have a solution with v

2

= 0. Namely, if we had v

2

= 0, then v �

i

= 0
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for all i 2 f1; : : : ; 2n�3g. Sine the enters span R

n

, this would imply v = 0, ontraditing

v 2 P

n�1

. This validates our assumption that v

2

6= 0 prior to (5.1).

Sine n � 3, the bottom line of (5.2) ontains at least n equations. We an assume

that 

1

; : : : ; 

n

are linearly independent. Then the matrixM := (

1

; : : : ; 

n

)

T

is invertible,

and we an solve the equations with indies 1; : : : ; n for p:

p =

1

2v

2

M

�1

0

B

�

v

2



2

1

� (v � 

1

)

2

� v

2

(r

2

1

� r

2

)

.

.

.

v

2



2

n

� (v � 

n

)

2

� v

2

(r

2

n

� r

2

)

1

C

A

: (5.3)

Now substitute this expression for p into the �rst and seond equation of the system (5.2),

as well as into the equations for i = n + 1; : : : ; 2n� 3, and then lear the denominators.

This gives n�1 homogeneous equations in the oordinate v, namely one ubi, one quarti,

and n� 3 quadris. By B�ezout's Theorem, this means that if the system has only �nitely

many solutions, then the number of solutions is bounded by 3 �4 �2

n�3

= 3 �2

n�1

, for n � 3.

For small values of n, these values are shown in Table 5.1. The values for n = 4; 5; 6 were

omputed experimentally in [129℄.

We simplify the ubi equation obtained by substituting (5.3) into the equation p�v = 0

by expressing it in the basis 

1

; : : : ; 

n

. Let the representation of v in the basis 

1

; : : : ; 

n

be

v =

n

X

i=1

t

i



i

with homogeneous oordinates t

1

; : : : ; t

n

. Further, let 

0

1

; : : : ; 

0

n

be a dual basis to



1

; : : : ; 

n

; i.e., let 

0

1

; : : : ; 

0

n

be de�ned by 

0

i

� 

j

= Æ

ij

, where Æ

ij

denotes Kroneker's

delta funtion. By elementary linear algebra, we have t

i

= 

0

i

� v.

When expressing p in this dual basis, p =

P

p

0

i



0

i

, the third equation of (5.2) gives

p

0

i

=

1

v

2

�

v

2



2

i

� (v � 

i

)

2

� v

2

(r

2

i

� r

2

)

�

:

Substituting this representation of p into the equation

0 = 2v

2

(p � v) = 2v

2

 

n

X

i=1

p

0

i



0

i

!

� v = 2v

2

n

X

i=1

p

0

i

t

i

;

we obtain the ubi equation

n

X

i=1

(v

2



2

i

� (v � 

i

)

2

� v

2

(r

2

i

� r

2

))t

i

= 0 :

In the ase that all radii are equal, expressing v in terms of the t-variables yields

X

1�i 6=j�n

�

ij

t

2

i

t

j

+

X

1�i<j<k�n

2�

ijk

t

i

t

j

t

k

= 0 ; (5.4)
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where

�

ij

= (vol

2

(

i

; 

j

))

2

= det

�



i

� 

i



i

� 

j



j

� 

i



j

� 

j

�

;

�

ijk

= det

�



i

� 

j



i

� 

k



k

� 

j



k

� 

k

�

+ det

�



i

� 

k



i

� 

j



j

� 

k



j

� 

j

�

+det

�



j

� 

k



j

� 

i



i

� 

k



i

� 

i

�

;

and vol

2

(

i

; 

j

) denotes the oriented area of the parallelogram spanned by 

i

and 

j

. In

partiular, if 0

1

: : : 

n

onstitutes a regular simplex in R

n

, then we obtain the following

haraterization.

Theorem 5.4. Let n � 3. If 0

1

: : : 

n

is a regular simplex and all spheres have the same

radius, then the ubi equation expressed in the basis 

1

; : : : ; 

n

is equivalent to

X

1�i 6=j�n

t

2

i

t

j

+ 2

X

1�i<j<k�n

t

i

t

j

t

k

= 0 : (5.5)

For n = 3, this ubi equation fators into three linear terms; for n � 4 it is irreduible.

Proof. Let e denote the edge length of the regular simplex. Then the form of the ubi

equation follows from omputing �

ij

= e

2

(1 � 1� 1=2 � 1=2) = 3e

2

=4, �

ijk

= 3e

2

(1=2 � 1�

1=2 � 1=2) = 3e

2

=4.

As disussed in Setion 3.2, for n = 3 the ubi polynomial fators into (t

1

+ t

2

)(t

1

+

t

3

)(t

2

+ t

3

). For n � 4, assume that there exists a fatorization of the form

 

t

1

+

n

X

i=2

�

i

t

i

! 

X

1�i�j�n

�

ij

t

i

t

j

!

with �

12

= 1. Sine (5.5) does not ontain a monomial t

3

i

, we have either �

i

= 0 or �

ii

= 0

for 1 � i � n.

If there were more than one vanishing oeÆient �

i

, say �

i

= �

j

= 0, then the mono-

mials t

2

i

t

j

ould not be generated. So only two ases have to be investigated.

Case 1 : �

i

6= 0 for 2 � i � n. Then �

ii

= 0 for 1 � i � n. Furthermore, �

ij

= 1

for i 6= j and �

i

= 1 for all i. Hene, the oeÆient of the monomial t

1

t

2

t

3

is 3, whih

ontradits (5.5).

Case 2 : There exists exatly one oeÆient �

i

= 0, say, �

4

= 0. Then �

11

= �

22

= �

33

= 0,

�

44

= 1. Further, �

ij

= 1 for 1 � i < j � 3 and �

i

= 1 for 1 � i � 3. Hene, the oeÆient

of the monomial t

1

t

2

t

3

is 3, whih is again a ontradition.
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5.1.2 Real lines

In Setion 5.1.1, we have given the upper bound of 3 � 2

n�1

for the number of omplex

solutions to the tangent problem. Now we omplement this result by providing a lass of

on�gurations leading to 3 � 2

n�1

real ommon tangents. Hene, the upper bound is tight,

and is ahieved by real tangents.

Our onstrution is based on the following geometri idea. For four spheres with

radius r in R

3

entered at the verties (1; 1; 1)

T

, (1;�1;�1)

T

, (�1; 1;�1)

T

, (�1;�1; 1)

T

of a regular tetrahedron, Lemma 3.8 implies that there are

� 3 di�erent real tangents (of multipliity 4) for radius r =

p

2;

� 12 di�erent real tangents for

p

2 < r < 3=2;

� 6 di�erent real tangents (of multipliity 2) for r = 3=2.

Furthermore, from the expliit alulations in Setion 3.2.2, it an be easily seen that the

symmetry group of the tetrahedron ats transitively on the tangents. By this symmetry

argument, all 12 tangents have the same distane d from the origin. In order to onstrut

a on�guration of spheres with many ommon tangents, say, in R

4

, we embed the enters

via

(x

1

; x

2

; x

3

)

T

7�! (x

1

; x

2

; x

3

; 0)

T

into R

4

and plae additional spheres with radius r at (0; 0; 0; a)

T

and (0; 0; 0;�a)

T

for

some appropriate value of a. If a is hosen in suh a way that the enters of the two

additional spheres have distane r from the above tangents, then, intuitively, all ommon

tangents to the six four-dimensional spheres are loated in the hyperplane x

4

= 0 and

have multipliity 2 (beause of the two di�erent possibilities of signs when perturbing the

situation). By perturbing this on�guration slightly, the tangents are no longer loated

in the hyperplane x

4

= 0, and therefore the double tangents are fored to split. The idea

also generalizes to dimension n � 5.

Formally, suppose that the 2n�2 spheres in R

n

all have the same radius, r, and the

�rst four have enters



1

:= ( 1; 1; 1; 0; : : : ; 0)

T

;



2

:= ( 1;�1;�1; 0; : : : ; 0)

T

;



3

:= (�1; 1;�1; 0; : : : ; 0)

T

; and



4

:= (�1;�1; 1; 0; : : : ; 0)

T

at the verties of a regular tetrahedron insribed in the 3-ube (�1;�1;�1; 0; : : : ; 0)

T

.

We plae the subsequent enters at the points �ae

j

for j = 4; 5; : : : ; n, where e

1

; : : : ; e

n

are the standard unit vetors in R

n

.
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Theorem 5.5. Let n � 4, r > 0, a > 0, and  := a

2

(n� 1)=(a

2

+ n� 3). If

(r

2

� 3) (3� ) (a

2

� 2) (r

2

� )

�

(3� )

2

+ 4 � 4r

2

�

6= 0 ; (5.6)

then there are exatly 3 � 2

n�1

di�erent lines tangent to the 2n�2 spheres. If

a

2

> 2;  < 3; and  < r

2

<  +

1

4

(3� )

2

; (5.7)

then all these 3 � 2

n�1

lines are real. Furthermore, this system of inequalities de�nes a

nonempty subset of the (a; r)-plane.

Given values of a and r satisfying (5.7), we may sale the enters and parameters by

1=r to obtain a on�guration with unit spheres, proving Theorem 5.1(b).

Remark 5.6. The set of values of a and r whih give all solutions real is nonempty. To

show this, we alulate

 =

a

2

(n� 1)

a

2

+ n� 3

= (n� 1)

�

1�

n� 3

a

2

+ n� 3

�

; (5.8)

whih implies that  is an inreasing funtion of a

2

. Similarly, set Æ := +(3�)

2

=4, the

upper bound for r

2

. Then

d

d

Æ =

d

d

�

 + (3� )

2

4

�

p = 1 +

 � 3

2

;

and so Æ is an inreasing funtion of  when  > 1. When a

2

= 2, we have  = 2; so Æ is

an inreasing funtion of a in the region a

2

> 2. Sine when a =

p

2, we have Æ =

9

4

> ,

the region de�ned by (5.7) is nonempty.

Moreover, we remark that the region is qualitatively di�erent in the ases n = 4 and

n � 5. For n = 4,  satis�es  < 3 for any a >

p

2. Hene, Æ < 3 and r <

p

3. Thus the

maximum value of 24 real lines may be obtained for arbitrarily large a. In partiular, we

may hoose the two spheres with enters �ae

4

disjoint from the �rst four spheres. Note,

however, that the �rst four spheres do meet, sine we have

p

2 < r <

p

3.

For n � 5, there is an upper bound to a. The upper and lower bounds for r

2

oinide

when  = 3; so we always have r

2

< 3. Solving  = 3 for a

2

, we obtain a

2

< 3(n�3)=(n�4).

When n = 5, Figure 5.1 displays the disriminant lous (de�ned by (5.6)) and shades the

region onsisting of values of a and r for whih all solutions are real.

Proof of Theorem 5.5. We prove Theorem 5.5 by treating a and r as parameters and

expliitly solving the resulting system of polynomials in the oordinates (p; v) 2 C

n

�P

n�1

for lines in C

n

. This shows that there are 3�2

n�1

omplex lines tangent to the given spheres,

for the values of the parameters (a; r) given in Theorem 5.5. The inequalities (5.7) desribe

the parameters for whih all solutions are real.



5.1. Common tangents to 2n�2 spheres in R

n

75

a

r

0

1

1 2 3

r =

p

3

r =

p

Æ

r =

p



a =

p

2

 = 3

(a =

p

6)

all solutions real

Fig. 5.1: Disriminant lous and values of a; r giving all solutions real

First onsider the equations (5.1) for the line to be tangent to the spheres with enters

�ae

j

and radius r:

v

2

p

2

� 2av

2

p

j

+ a

2

v

2

� a

2

v

2

j

� r

2

v

2

= 0 ;

v

2

p

2

+ 2av

2

p

j

+ a

2

v

2

� a

2

v

2

j

� r

2

v

2

= 0 :

Taking their sum and di�erene (and using av

2

6= 0), we obtain

p

j

= 0 ; 4 � j � n ; (5.9)

a

2

v

2

j

= (p

2

+ a

2

� r

2

)v

2

; 4 � j � n : (5.10)

Subtrating the equations (5.1) for the enters 

1

; : : : ; 

4

pairwise gives

4v

2

(p

2

+ p

3

) = �4(v

1

v

3

+ v

1

v

2

)

(for indies 1,2) and analogous equations. Hene,

p

1

= �

v

2

v

3

v

2

; p

2

= �

v

1

v

3

v

2

; p

3

= �

v

1

v

2

v

2

:

Further, p � v = 0 implies v

1

v

2

v

3

= 0. Thus we have three symmetri ases. We treat one,

assuming that v

1

= 0. Then we obtain

p

1

= �

v

2

v

3

v

2

; p

2

= p

3

= 0 :

Hene, the tangent equation (5.1) for the �rst sphere beomes

v

2

p

2

1

� 2v

2

p

1

+ 3v

2

� (v

2

+ v

3

)

2

� r

2

v

2

= 0 :
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Using 0 = v

2

p

1

+ v

2

v

3

, we obtain

v

2

2

+ v

2

3

= v

2

(p

2

1

+ 3� r

2

) : (5.11)

The ase j = 4 of (5.10) gives a

2

v

2

4

= v

2

(p

2

1

+ a

2

� r

2

), sine p

2

= p

3

= 0. Combining

these, we obtain

v

2

2

+ v

2

3

= a

2

v

2

4

+ v

2

(3� a

2

) :

Using v

2

= v

2

2

+ v

2

3

+ (n� 3)v

2

4

yields

(a

2

� 2)(v

2

2

+ v

2

3

) = v

2

4

(3(a

2

+ n� 3)� a

2

(n� 1)) :

We obtain

(a

2

� 2)(v

2

2

+ v

2

3

) = v

2

4

(a

2

+ n� 3)(3� ) ; (5.12)

where  = a

2

(n� 1)=(a

2

+ n� 3).

Note that a

2

+ n � 3 > 0 sine n > 3. If neither 3 �  nor a

2

� 2 are zero, then we

may use this to ompute

(a

2

+ n� 3)(3� )v

2

=

�

(a

2

+ n� 3)(3� ) + (n� 3)(a

2

� 2)

�

(v

2

2

+ v

2

3

)

= (a

2

+ n� 3)(v

2

2

+ v

2

3

) ;

and so

(3� )v

2

= v

2

2

+ v

2

3

: (5.13)

Substituting (5.13) into (5.11) and dividing by v

2

gives

p

2

1

= r

2

�  : (5.14)

Combining this with v

2

p

1

+ v

2

v

3

= 0, we obtain

p

1

(v

2

2

+ v

2

3

) + (3� )v

2

v

3

= 0 : (5.15)

Summarizing, we have n linear equations

v

1

= p

2

= p

3

= p

4

= � � � = p

n

= 0 ;

and n� 4 simple quadrati equations

v

2

4

= v

2

5

= � � � = v

2

n

;

and the three more ompliated quadrati equations, (5.12), (5.14), and (5.15).

We now solve these last three equations. We solve (5.14) for p

1

, obtaining

p

1

= �

p

r

2

�  :
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Then we solve (5.15) for v

2

and use (5.14), obtaining

v

2

= �

3�  �

p

(3� )

2

� 4(r

2

� )

2p

1

v

3

:

Finally, (5.12) gives

v

4

p

a

2

+ n� 3 = �

s

a

2

� 2

3� 

(v

2

2

+ v

2

3

) :

Sine v

3

= 0 would imply v = 0 and hene ontradit v 2 P

n�1

, we see that v

3

6= 0. Thus

we an onlude that when none of the following expressions

r

2

� 3 ; 3�  ; a

2

� 2 ; r

2

�  ; (3� )

2

+ 4 � 4r

2

vanish, there are 8 = 2

3

di�erent solutions to the last 3 equations. For eah of these, the

simple quadrati equations give 2

n�4

solutions; so we see that the ase v

1

= 0 ontributes

2

n�1

di�erent solutions, eah of them satisfying v

2

6= 0, v

3

6= 0. Sine there are three

symmetri ases, we obtain 3 � 2

n�1

solutions in all, as laimed.

We omplete the proof of Theorem 5.5 and determine whih values of the parameters

a and r give all these lines real. We see that

(1) p

1

is real if r

2

�  > 0.

(2) Given that p

1

is real, v

2

=v

3

is real if (3� )

2

+ 4 � 4r

2

> 0.

(3) Given this, v

4

=v

3

is real if (a

2

� 2)=(3� ) > 0.

Suppose the three inequalities above are satis�ed. Then all solutions are real, and (5.13)

implies that 3�  > 0, and so we also have a

2

� 2 > 0. This ompletes the proof of The-

orem 5.5.

5.1.3 The lower-dimensional ase

In our derivation of the B�ezout number 3 � 2

n�1

of ommon tangents for Theorem 5.1, it

was ruial that the enters of the spheres aÆnely spanned R

n

. Also, the onstrution

in Setion 5.1.2 of on�gurations with 3 � 2

n�1

real ommon tangents had enters aÆnely

spanning R

n

. When the enters do not aÆnely span R

n

, we prove the following result.

Theorem 5.7. For n � 4, there are 3 � 2

n�1

omplex ommon tangent lines to 2n�2

spheres whose enters have aÆne dimension less than n, but otherwise general. There

is a hoie of unit spheres whose enters have aÆne dimension less than n and 2

n

real

ommon tangent lines.
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Remark 5.8. Theorem 5.7 extends the results of Setion 3.2.1, whih say that when

n = 3, there are 12 omplex ommon tangents. Megyesi [93℄ has shown that there is a

on�guration of four spheres in R

3

with aÆnely dependent enters and 12 real ommon

tangents, but that the number of tangents is bounded by 8 for the ase of unit spheres.

For n � 4, we are unable either to �nd a on�guration of unit spheres whose enters

do not aÆnely span R

n

having more than 2

n

real ommon tangents, or to show that the

maximum number of real ommon tangents is less than 3 �2

n�1

. Similar to the ase n = 3,

it might be possible that the ase of unit spheres and the ase of spheres with general radii

might give di�erent maximum numbers. Megyesi [94℄ showed that there are 2n�2 spheres

whose enters have aÆne dimension less than n having all 3 � 2

n�1

ommon tangents real.

Furthermore, all but one of the spheres in his onstrution have equal radii.

By Theorem 5.1, 3 � 2

n�1

is the upper bound for the number of omplex ommon

tangents to spheres whose enters do not aÆnely span R

n

. Indeed, if there were a on�g-

uration with more ommon tangents, then|sine the system is a omplete intersetion|

perturbing the enters would give a on�guration whose enters aÆnely span R

n

and more

ommon tangent lines than allowed by Theorem 5.1.

By this disussion, to prove Theorem 5.7 it suÆes to give 2n�2 spheres, whose enters

have aÆne dimension less than n, having 3 �2

n�1

omplex ommon tangents and also suh

a on�guration of 2n�2 unit spheres with 2

n

real ommon tangents. For this, we use

spheres with equal radii whose enters are the verties of a perturbed ross polytope in a

hyperplane. We work with the notation of Setions 5.1.1 and 5.1.2.

Let a 6= �1 and suppose we have spheres with equal radii r and enters at the points

ae

2

; �e

2

; and � e

j

; for 3 � j � n :

Then we have the equations

p � v = 0 ; (5.16)

f := v

2

(p

2

� 2ap

2

+ a

2

� r

2

)� a

2

v

2

2

= 0 ; (5.17)

g := v

2

(p

2

+ 2p

2

+ 1� r

2

)� v

2

2

= 0 ; (5.18)

v

2

(p

2

� 2p

j

+ 1� r

2

)� v

2

j

= 0 ; 3 � j � n : (5.19)

As in Setion 5.1.2, the sum and di�erene of the equations (5.19) for the spheres with

enters �e

j

give

p

j

= 0 ;

v

2

(p

2

+ 1� r

2

) = v

2

j

:

3 � j � n :

Thus we have the equations

p

3

= p

4

= � � � = p

n

= 0 ;

v

2

3

= v

2

4

= � � � = v

2

n

:

(5.20)
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Similarly, we have

f + ag = (1 + a)

�

v

2

(p

2

� r

2

+ a)� av

2

2

�

= 0 ;

f � a

2

g = (1 + a)v

2

�

(1� a)(p

2

� r

2

) + 2ap

2

�

= 0 :

As before, v

2

6= 0: If v

2

= 0, then (5.18) and (5.19) imply that v

2

= � � � = v

n

= 0. With

v

2

= 0, this implies that v

1

= 0 and hene v = 0, ontraditing v 2 P

n�1

. By (5.20), we

have p

2

= p

2

1

+p

2

2

, and so we obtain the system of equations in the variables p

1

; p

2

; v

1

; v

2

; v

3

:

p

1

v

1

+ p

2

v

2

= 0 ;

(1� a)(p

2

1

+ p

2

2

� r

2

) + 2ap

2

= 0 ;

v

2

(p

2

1

+ p

2

2

� r

2

+ a)� av

2

2

= 0 ;

v

2

(p

2

1

+ p

2

2

� r

2

+ 1)� v

2

3

= 0 :

(5.21)

(For notational sanity, we do not yet make the substitution v

2

= v

2

1

+ v

2

2

+ (n� 2)v

2

3

.)

We assume that a 6= 1 and will treat the ase a = 1 at the end of this setion. Using

the seond equation of (5.21) to anel the terms v

2

(p

2

1

+ p

2

2

) from the third equation and

dividing the result by a, we an solve for p

2

:

p

2

=

(1� a)(v

2

� v

2

2

)

2v

2

:

If we substitute this into the �rst equation of (5.21), we may solve for p

1

:

p

1

= �

(1� a)(v

2

� v

2

2

)v

2

2v

2

v

1

:

Substitute these into the seond equation of (5.21), lear the denominator (4v

2

1

v

4

), and

remove the ommon fator (1� a) to obtain the sexti

(1� a)

2

(v

2

1

+ v

2

2

)(v

2

� v

2

2

)

2

� 4r

2

v

2

1

v

4

+ 4av

2

1

v

2

(v

2

� v

2

2

) = 0 : (5.22)

Subtrating the third equation of (5.21) from the fourth equation and realling that v

2

=

v

2

1

+ v

2

2

+ (n� 2)v

2

3

, we obtain the quadrati equation

(1� a)v

2

1

+ v

2

2

+ ((n� 3)� a(n� 2)) v

2

3

= 0 : (5.23)

Consider the system onsisting of the two equations (5.22) and (5.23) in the homogeneous

oordinates v

1

; v

2

; v

3

. Any solution to this system gives a solution to the system (5.21),

and thus gives 2

n�3

solutions to the original system (5.16){(5.19).

These last two equations (5.22) and (5.23) are polynomials in the squares of the vari-

ables v

2

1

; v

2

2

; v

2

3

. If we substitute � = v

2

1

; � = v

2

2

, and  = v

2

3

, then we have a ubi and a

linear equation, and any solution �; �;  to these with non-vanishing oordinates gives 4

solutions to the system (5.22) and (5.23): (v

1

; v

2

; v

3

)

T

:= (�

1=2

;��

1=2

;�

1=2

)

T

, as v

1

; v

2

; v

3

are homogeneous oordinates.
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Solving the linear equation in �; �;  for � and substituting into the ubi equation

gives a homogeneous ubi in � and  whose oeÆients are polynomials in a; n; r. The

disriminant of this ubi is a polynomial with integral oeÆients of degree 16 in the

variables a; n; r having 116 terms. Using a omputer algebra system, it an be veri�ed

that this disriminant is irreduible over the rational numbers. Thus, for any �xed integer

n � 3, the disriminant is a non-zero polynomial in a; r. This implies that the ubi has 3

solutions for general a, r, and any integer n. Sine the oeÆients of this ubi similarly

are non-zero polynomials for any n, the solutions �; �;  will be non-zero for general a, r,

and any n. We onlude:

For any integer n � 3 and general a; r, there will be 3 � 2

n�1

omplex ommon tangents to spheres of radius r with enters

ae

2

; �e

2

; and � e

j

; for 3 � j � n :

We return to the ase when a = 1, i.e., the enters are the verties of the ross polytope

�e

j

for j = 2; : : : ; n. Then our equations (5.20) and (5.21) beome

p

2

= p

3

= � � � = p

n

= 0 ;

v

2

2

= v

2

3

= � � � = v

2

n

;

p

1

v

1

= 0 ;

v

2

(p

2

1

� r

2

+ 1)� v

2

2

= 0 :

(5.24)

As before, v

2

= v

2

1

+ (n� 1)v

2

2

. We solve the last two equations. Any solution they have

(in C

1

� P

1

) gives rise to 2

n�2

solutions, by the seond list of equations v

2

3

= � � � = v

2

n

.

By the penultimate equation p

1

v

1

= 0, one of p

1

or v

1

vanishes. If v

1

= 0, then the last

equation beomes

(n� 1)v

2

2

(p

2

1

� r

2

+ 1) = v

2

2

:

Sine v

2

= 0 implies v

2

= 0, we have v

2

6= 0 and so we may divide by v

2

2

and solve for p

1

to obtain

p

1

= �

r

r

2

� 1 +

1

n� 1

:

If instead p

1

= 0, then we solve the last equation to obtain

v

1

v

2

= �

r

1

1� r

2

+ 1� n :

Thus for general r, there will be 2

n

ommon tangents to the spheres with radius r and

enters �e

j

for j = 2; : : : ; n. We investigate when these are real.

We will have p

1

real when r

2

> 1 � 1=(n � 1). Similarly, v

1

=v

2

will be real when

1=(1� r

2

) > n� 1. In partiular, 1� r

2

> 0 and so 1 > r

2

. Using this we get

1� r

2

<

1

n� 1

so that r

2

> 1�

1

n� 1

;
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whih we previously obtained.

We onlude that there will be 2

n

real ommon tangents to the spheres with enters

�e

j

for j = 2; : : : ; n and radius r when

r

1�

1

n� 1

< r < 1 :

This onludes the proof of Theorem 5.7.

5.2 Common tangents to 2n�2 quadris in P

n

and R

n

In this setion, we study the ommon tangent lines to 2n�2 quadris in P

n

(or R

n

,

respetively). In Setion 5.2.1, we prove Theorem 5.2 stated at the beginning of this

hapter on the maximum number of real lines tangent to 2n�2 quadris in P

n

. Here, we

ombine reent results in the real Shubert alulus with lassial perturbation arguments

adapted to the real numbers.

In Setion 5.2.2, we put the tangent problem to spheres into the perspetive of ommon

tangents to general quadris. We disuss the exess omponent at in�nity for the problem

of spheres. In this setting, Theorem 5.1(a) implies that there will be at most 3 � 2

n�1

isolated ommon tangents to 2n�2 quadris in P

n

, when the quadris all ontain the

same (smooth) quadri in a given hyperplane. In partiular, the problem of the spheres

an be seen as the ase when the ommon quadri is at in�nity and ontains no real points.

5.2.1 Real lines

In Setion 4.1, we have given a onstrution of four real quadris in P

3

with 32 real

ommon tangent lines. The main idea of that onstrution was enapsulated by the

visually appealing transition from Figure 4.1 to Figure 4.2. Here, we generalize this

idea to the n-dimensional ase. However, in ontrast to the symboli onstrution of

Setion 4.1, the proof of the n-dimensional ase is only existential.

Reall that the (n�1)-st Catalan number is C

n�1

:=

1

n

�

2n�2

n�1

�

, whih is the number

of lines in P

n

simultaneously transversal to 2n�2 general (n�2)-planes [81, 118℄. We

begin with a on�guration of 2n�2 real (n�2)-planes in R

n

having C

n�1

ommon real

transversal lines. (Suh on�gurations exist, see below.) We then argue that we an

replae eah of these (n�2)-planes by a real quadrati hypersurfae suh that for eah of

the original transversal lines, there are 2

2n�2

nearby real lines tangent to eah quadri.

Proposition 5.9. There exists a on�guration of 2n�2 real (n�2)-planes in R

n

having

exatly C

n�1

ommon real transversals.

Proof. The orresponding statement for real projetive spae P

n

R

was proven in [127, The-

orem C℄. We dedue the aÆne ounterpart above simply by removing a real hyperplane

that ontains none of the (n�2)-planes or any of the transversal lines.
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Remark 5.10. The purely existential statement in [127℄ was strongly improved by Ere-

menko and Gabrielov [52℄ who gave the following expliit onstrution of suh a olletion

of (n�2)-planes. Let

(s) := (1; s; s

2

; : : : ; s

n�1

)

T

be the moment urve in R

n

. For eah s 2 R, set �(s) to be

�(s) := linear span

�

(s); 

0

(s); : : : ; 

(n�3)

(s)

�

:

Geometrially, �(s) is the kissing, or osulating (n�2)-plane to the moment urve at the

point (s). Eremenko and Gabrielov showed that for any distint numbers s

1

; : : : ; s

2n�2

2

R, the (n�2)-planes �(s

1

);�(s

2

); : : : ;�(s

2n�2

) have exatly C

n�1

ommon real transver-

sals.

De�nition 5.11. Let � � R

n

be an (n�2)-plane and r be a positive real number. Then

we de�ne the (n�2)-ylinder Cy(�; r) to be the set of points having Eulidean distane r

from �. This is a singular quadrati hypersurfae in P

n

, but smooth in R

n

.

A real line ` is tangent to Cy(�; r) if and only if the Eulidean distane d(`;�) between

` and � is r. We use the following notation to haraterize the Eulidean distane between

a line ` and an (n�2)-plane �. For vetors v

1

; : : : ; v

n�1

2 R

n

, let [v

1

; : : : ; v

n�1

℄ 2 R

n

denote their n-dimensional vetor produt (see, e.g., [16, 58℄):

[v

1

; : : : ; v

n�1

℄

j

=

X

i

1

;::: ;i

n�1

"

i

1

;::: ;i

n�1

;j

v

1;i

1

� � � v

n�1;i

n�1

; 1 � j � n;

where "

i

1

;::: ;i

n

is the Levi-Civita symbol, whih is zero unless the indies are distint, and

when they are distint, it is the sign of the resulting permutation:

"

i

1

;::: ;i

n

=

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if at least two of the indies i

1

; : : : ; i

n

are equal,

1 if the indies are pairwise di�erent

and the permutation i

1

; : : : ; i

n

is even,

�1 if the indies are pairwise di�erent

and the permutation i

1

; : : : ; i

n

is odd.

The vetor [v

1

; : : : ; v

n�1

℄ is perpendiular to v

1

; : : : ; v

n�1

and its length is the volume of

the parallelotope spanned by v

1

; : : : ; v

n�1

.

Lemma 5.12. Let ` = fa+ �b : � 2 Rg with a 2 R

n

, b 2 R

n

n f0g and

� = fp+

n�2

X

i=1

�

i

q

i

: �

1

; : : : ; �

n�2

2 Rg

with p 2 R

n

and linearly independent vetors q

1

; : : : ; q

n�2

2 R

n

. If b 62 spanfq

1

; : : : ; q

n�2

g

then the Eulidean distane d(`;�) is

d(`;�) =

j[b; q

1

; : : : ; q

n�2

℄ � (a� p)j

jj[b; q

1

; : : : ; q

n�2

℄jj

:



5.2. Common tangents to 2n�2 quadris in P

n

and R

n

83

Proof. Sine b 62 spanfq

1

; : : : ; q

n�2

g, the vetors b; q

1

; : : : ; q

n�2

; [b; q

1

; : : : ; q

n�2

℄ form a

basis of R

n

. Hene, there exist unique real numbers �; �; 

1

; : : : ; 

n�2

suh that

a� p = �[b; q

1

; : : : ; q

n�2

℄ + �b+

n�2

X

i=1



i

q

i

:

Suppose x and y are points on ` and �, respetively. Then there exist �; �

1

; : : : ; �

n�2

suh that

x� y = (a� p) + �b�

n�2

X

i=1

�

i

q

i

= �[b; q

1

; : : : ; q

n�2

℄ + (� + �)b +

n�2

X

i=1

(

i

� �

i

) q

i

:

Hene, the distane of ` and � is jj�[b; q

1

; : : : ; q

n�2

℄jj. Sine

�jj[b; q

1

; : : : ; q

n�2

℄jj

2

= �[b; q

1

; : : : ; q

n�2

℄ � [b; q

1

; : : : ; q

n�2

℄ = [b; q

1

; : : : ; q

n�2

℄ � (a� p) ;

the lemma follows.

We reord the following useful and basi property of intersetion multipliities [55,

p. 1℄, whih we will use.

Proposition 5.13. Let A be an algebrai urve in omplex projetive spae P

n

, and let x

be a singular point on A. For any hyperplane H � P

n

suh that x is an isolated point in

A \H, the intersetion multipliity of A and H in x is greater than 1.

Theorem 5.14. Let �

1

;�

2

; : : : ;�

2n�2

be (n�2)-planes in R

n

having exatly C

n�1

om-

mon real transversals. For eah k = 0; 1; : : : ; 2n�2, there exist positive real numbers

r

1

; : : : ; r

k

suh that there are exatly 2

k

C

n�1

real lines that are simultaneously tangent to

eah of the (n�2)-ylinders Cy(�

j

; r

j

), j = 1; : : : ; k, and transversal to the (n�2)-planes

�

k+1

; : : : ;�

2n�2

.

The ase of k = 2n�2 implies Theorem 5.2; sine the number of real lines will not

hange under a small perturbation of the ylinders Cy(�

j

; r

j

), we may replae them by

quadrati hypersurfaes whih are even smooth in P

n

, without altering the onlusion of

the theorem.

In the proof of Theorem 5.14, we identify the lines we are looking for with the Pl

�

uker

vetors satisfying the relevant transversal onditions (2.3), tangent onditions (2.5) and

the Pl

�

uker onditions (2.2).

Proof. We indut on k, with the ase of k = 0 being the hypothesis of the theorem.

Suppose that k � 2n�2 and that there exist r

1

; : : : ; r

k�1

> 0 and distint real lines

`

1

; : : : ; `

2

k�1

C

n

that are simultaneously tangent to Cy(�

j

; r

j

), for eah j = 1; : : : ; k � 1,

and transversal to �

k

; : : : ;�

2n�2

.
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Dropping the ondition that the lines meet �

k

, we obtain a one-dimensional family

of lines that are tangent to the ylinders Cy(�

j

; r

j

) for j = 1; : : : ; k�1 and that are also

transversal to the (n�2)-planes �

k+1

; : : : ;�

2n�2

. We onsider this one-dimensional family

of lines as a urve in Pl

�

uker spae G

1;n

� P

N

, denoted by A. In partiular, the urve A

ontains the Pl

�

uker oordinates of all the lines `

1

; : : : ; `

2

k�1

C

n

.

Let ` be one of the lines `

1

; : : : ; `

2

k�1

C

n

, and denote its Pl

�

uker oordinate by p. Then

p is a smooth point on A (the tangent spae of A at p is one-dimensional). Namely, oth-

erwise Proposition 5.13 would imply a ontradition to the number of solutions (ounting

multipliity) in the indution hypothesis. Consequently, by the omplex Impliit Fun-

tion Theorem (see e.g., [80, Theorem 3.5℄), there exist neighborhoods U � C

n

of 0 2 C ,

V � P

N

of p, and a omplex-analyti map ' : U ! G

1;n

� P

N

suh that '(0) = p

and in V the urve A is given by the parametrization '(t), t 2 U . By hoosing V small

enough, we an assume that A \ V does not ontain the Pl

�

uker oordinate of another

line f`

1

; : : : ; `

2

k�1

C

n

gnf`g, and that none of the points in A\V is the Pl

�

uker oordinate

of a line at in�nity.

Now the ruial point is that the restrition '

jR

maps to real lines. Namely, assume

that the image of any real neighborhood U

0

of p (or of any other real point '(t) for

some real t) ontains a non-real point q 2 G

1;n

� P

N

. Sine '(U

0

) also ontains the

omplex-onjugated point q, this would imply that p is singular.

Hene, we an assume that '

jR

is a funtion (�Æ; Æ)! G

1;n

\ P

N

R

for some Æ > 0. For

a parameter value t 2 (�Æ; Æ) let d('(t);�

k

) be the distane of the real line with Pl

�

uker

oordinate '(t) from �

k

. If the diretion vetor of '(t) is not parallel to �

k

then d is

given by Lemma 5.12. Otherwise, the problem redues to a lower-dimensional problem.

However, d('(t);�

k

) is a ontinuous funtion in t; and we have d('(t);�

k

) = 0 if t = 0

and d('(t);�

k

) > 0 if t 2 (�Æ; Æ) n f0g. Let � := minfd('(�Æ=2);�

k

); d('(Æ=2);�

k

)g.

Then there are at least two distint real lines whose Pl

�

uker oordinate is ontained in

A \ V and whose Eulidean distane to �

k

is �.

We an assume that the 2

k�1

C

n�1

loal parts of A obtained in this way are disjoint.

Moreover, let r

k

be the minimum value of � whih has been omputed for all the lines

`

1

; : : : ; `

2

k�1

C

n�1

. Then there are at least 2

k

C

n�1

distint real lines whose Pl

�

uker o-

ordinate is ontained in A and whose Eulidean distane to �

k

is r

k

. Sine 2

k

C

n�1

is

the maximum number of lines with this property, there are exatly distint 2

k

C

n

lines

tangent to Cy(�

j

; r

j

) for j = 1; : : : ; k and that are also transversal to the (n�2)-planes

�

k+1

; : : : ;�

2n�2

.

5.2.2 Quadris versus spheres

In the spirit of Setion 4.2 for the three-dimensional ase, we an also relate the tangent

problem to spheres to the tangent problem to quadris in n-dimensional spae.

Consider a sphere in aÆne n-spae

(x

1

� 

1

)

2

+ (x

2

� 

2

)

2

+ � � �+ (x

n

� 

n

)

2

= r

2

:
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Homogenizing this with respet to the new variable x

0

, we obtain

(x

1

� 

1

x

0

)

2

+ (x

2

� 

2

x

0

)

2

+ � � �+ (x

n

� 

n

x

0

)

2

= r

2

x

2

0

:

If we restrit this sphere to the hyperplane at in�nity, setting x

0

= 0, we obtain

x

2

1

+ x

2

2

+ � � �+ x

2

n

= 0 ; (5.25)

the equation for an imaginary quadri at in�nity. It turns out that every line at in�nity

tangent to this quadri satis�es the algebrai tangent ondition (2.5); we will ome bak

to this in Setion 6.1 (see Lemma 6.6). In generalization of (4.9), the resulting exess

omponent in the n-dimensional ase is de�ned by the following equations.

p

0i

= 0 ; 1 � i � n ;

P

1�i<j�n

p

2

ij

= 0 ;

p

ij

p

kl

� p

ik

p

jl

+ p

il

p

jk

= 0 ; 1 � i < j < k < l � n :

It would be interesting to understand the algebrai-geometri and omputer-algebrai

aspets from Setion 4.2 also for general dimension n > 3. For example, how many blow-

ups are needed to resolve the exess omponent? From the omputer-algebrai point of

view, we have not even been able to simulate the multiple blow-up for n = 4. Here, the

initial exess omponent is of dimension 3 and is generated by the polynomials

p

01

; p

02

; p

03

; p

04

; p

2

12

+ p

2

13

+ p

2

14

+ p

2

23

+ p

2

24

+ p

2

34

; p

14

p

23

� p

13

p

24

+ p

12

p

34

:

After one blow-up there is still an exess omponent of dimension 3. However, sine every

blow-up introdues several new variables, already the omputation of the seond blow-up

exeeds 1 GB of available memory (even when using omputer-algebrai standard triks

suh as performing the omputation over a �nite �eld).

Now let us look at another relationship between tangents to spheres and tangents to

general quadris. Namely, sine all smooth quadris are projetively equivalent, Theo-

rem 5.1 has the following impliation for this problem of ommon tangents to projetive

quadris.

Corollary 5.15. Given 2n�2 quadris in P

n

whose intersetion with a �xed hyperplane

is a given smooth quadri Q, but are otherwise general, there will be at most 3 � 2

n�1

isolated lines in P

n

tangent to eah quadri.

We would like lose this setion by pointing out some reent results on the following

reality question of Corollary 5.15. When all the quadris are real, how many of the

3 �2

n�1

ommon isolated tangents an be real? This question is only partially answered by

Theorem 5.1. The point is that projetive real quadris are lassi�ed up to real projetive

transformations by the absolute value of the signature of the quadrati forms on R

n+1
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de�ning them. Theorem 5.1 implies that all lines an be real when the shared quadri Q

has no real points (signature is �n).

For n = 3, it was shown in [129℄ that eah of the �ve additional ases onerning

nonempty quadris an have all 12 lines real. For general dimension, the question has

largely been answered in [94℄. Namely, for any non-zero real numbers �

3

; : : : ; �

n

, there

are 2n�2 quadris of the form

(x

1

� 

1

)

2

+ (x

2

� 

2

)

2

+

n

X

j=3

�

j

(x

j

� 

j

)

2

= R

having all 3 � 2

n�1

tangents real. These all share the same quadri at in�nity

x

2

1

+ x

2

2

+ �

3

x

2

3

+ � � �+ �

n

x

2

n

= 0 ;

and thus the upper bound of Theorem 5.15 is attained, when the shared quadri is this

quadri.

5.3 Smallest irumsribing ylinders of simplies in general dimension

In Setion 3.4, we have given polynomial formulations with small B�ezout number for

omputing smallest irumsribing ylinders of a tetrahedron in R

3

. Based on the har-

aterization in Setion 5.1, we generalize these formulations to smallest irumsribing

ylinders of a simplex in R

n

, n � 3.

In Setion 5.3.1, we deal with general simplies. Then, in Setion 5.3.2, we study the

regular simplex in detail.

As a byprodut of our omputational studies, we disovered a subtle but severe mistake

in the paper [148℄ on the expliit determination of the outer (n�1)-radius for a regular

simplex in R

n

, thus ompletely invalidating the proof given there. In Setion 5.3.3, serving

as an appendix to the setion, we give a desription of that aw, inluding some omputer-

algebrai alulations illustrating it.

5.3.1 General simplies

Let 

1

; : : : ; 

n+1

be the aÆnely independent verties of the simplex in R

n

, and let 

n+1

be

loated in the origin.

Using (5.3), we an generalize the optimization formulation (3.41) for the three-

dimensional ase and obtain the program

min

0

B

�

1

2

M

�1

0

B

�

v

2



2

1

� (v � 

1

)

2

.

.

.

v

2



2

n

� (v � 

n

)

2

1

C

A

1

C

A

2

s.t. g

1

(v

1

; : : : ; v

n

) = 0 ;

g

2

(v

1

; : : : ; v

n

) := v

2

� 1 = 0 :

(5.26)
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Here, M := (

1

; : : : ; 

n

)

T

, and g

1

denotes the ubi equation whih results from substi-

tuting (5.3) for a ommon radius into p � v and setting v

2

= 1 in the denominator.

In order to show that set of admissible solutions for our optimization problem is

nonempty, we reord the following result.

Lemma 5.16. For any simplex in R

n

the

�

n+1

2

�

edge diretions of the simplex are diretion

vetors of irumsribing ylinders.

Proof. Sine the edge diretions 

i

� 

j

have a simple desription in the basis 

1

; : : : ; 

n

,

we use the representation (5.4) of the ubi equation g

1

(v) = 0 in that basis. In terms of

the t-oordinates, the

�

n+1

2

�

edges of the simplex are t = e

i

, 1 � i � n, and t = e

i

� e

j

,

1 � i < j � n, where e

i

denotes the i-th standard unit vetor. For all these edges, the

ubi equation is satis�ed.

Considering Lagrange multipliers �

1

and �

2

yields the following neessary optimality

ondition.

grad f = �

1

grad g

1

+ �

2

grad g

2

;

g

1

(v

1

; : : : ; v

n

) = 0 ; (5.27)

g

2

(v

1

; : : : ; v

n

) = 0 :

Sine the B�ezout bound of this system is 3

n

� 3 � 2 = 2 � 3

n+1

, we have:

Lemma 5.17. For n � 2, the number of isolated loal extrema for the minimal irum-

sribing ylinder is bounded by 2 � 3

n+1

.

This bound is not tight. Trying to redue this upper bound of isolated solutions like

in the three-dimensional ase, we an eliminate the linear ourrenes of the Lagrange

variables �

1

and �

2

. Generalizing (3.43), we have to onsider the vanishing of all 3 � 3-

subdeterminants of the matrix

0

B

B

B

�

�

�f

�v

1

�g

1

�v

1

�g

2

�v

1

�

�f

�v

2

�g

1

�v

2

�g

2

�v

2

.

.

.

.

.

.

.

.

.

�

�f

�v

n

�g

1

�v

n

�g

2

�v

n

1

C

C

C

A

: (5.28)

Thus, for n � 4 we arrive at a non-omplete intersetion of equations where we have more

equations than variables. Hene, we annot apply our B�ezout bound on these systems.

However, for small dimensions we an improve Lemma 5.17 by diretly working on the

formulation (5.27). In order to provide better bounds, we use well-known haraterizations

of the number of zeroes of a polynomial equation by the mixed volume of a Minkowski

sum of polytopes (for an easily aessible introdution into this topi we refer to [32℄).

Here, let C

�

:= C n f0g.
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Lemma 5.18. For 2 � n � 7, the number of solutions of the system (5.27) in (v

1

; : : : ; v

n

;

�

1

; �

2

) 2 (C

�

)

n+2

is bounded by

6

�

n + 1

3

�

;

where

�

n

k

	

denotes the Stirling number of the seond kind (see, e.g., [60, 134℄).

The sequene 6

�

n+1

3

	

starts as follows.

n 2 3 4 5 6 7

6

�

n+1

3

	

6 36 150 540 1806 5796

Proof. For a polynomial h =

P

�2N

n

0



�

x

�

2 C [x

1

; : : : ; x

n

℄, let

NP(h) := onvf� 2 N

n

0

: 

�

6= 0g

denote the Newton polytope of h (see, e.g., [32, x7.1℄). Let h

1

; : : : ; h

n

be the polynomials

of the gradient equation in (5.27). Further let P

1

; : : : ; P

n

; Q

1

; Q

2

be the Newton polytopes

of h

1

; : : : ; h

n

; g

1

; g

2

for generi instanes of these equations.

Reall that the mixed volumeMV(P

1

; : : : ; P

n

; Q

1

; Q

2

) is the oeÆient of the monomial

�

1

��

2

� � ��

n

��

1

��

2

in the (n+2)-dimensional volume Vol

n+2

(�

1

P

1

+: : :+�

n

P

n

+�

1

Q

1

+�

2

Q

2

)

(whih is a polynomial expression in �

1

; : : : ; �

n

; �

1

; �

2

). By Bernstein's Theorem, the

number of isolated ommon zeroes in (C

�

)

n+2

of the set of polynomials h

1

; : : : ; h

n

; g

1

; g

2

is bounded above by

MV(P

1

; : : : ; P

n

; Q

1

; Q

2

)

(see [32, Theorem 5.4 in Chapter 8℄). For every given n this volume an be omputed

using software for omputing mixed volumes (see, e.g, [51, 143℄).

We onjeture that for any n � 2, the number of isolated solutions in (C

�

)

n+2

is

bounded by 6

�

n+1

3

	

.

5.3.2 The regular simplex in R

n

Here, we analyze the loal extrema of irumsribing ylinders for the regular simplex.

Our aim is both to illustrate the algebrai formulations given before and to relate our

investigations to lassial investigations on the regular simplex in onvex geometry. In

order to ahieve many symmetries in the algebrai formulation, we use a slightly modi�ed

oordinate system that is partiularly suited for the regular simplex; these oordinates

have also been used in [18, 147℄.

The equation x

1

+ : : : + x

n+1

= 1 de�nes an n-dimensional aÆne subspae in R

n+1

.

Now let the regular simplex in this n-dimensional subspae be given by the n+1 verties
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i

= e

i

, where e

i

denotes the i-th standard unit vetor, 1 � i � n + 1. We onsider the

tangeny equation (5.1) for the point 

n+1

,

v

2

p

2

� 2v

2

p

n+1

+ v

2

� v

2

n+1

� r

2

v

2

= 0 :

Subtrating this equation from the equation for 

i

, 1 � i � n, yields

2v

2

(p

i

� p

n+1

) = �(v

2

i

� v

2

n+1

) ; 1 � i � n :

Moreover, the embedding into the hyperplane

P

n+1

i=1

x

i

= 1 implies

P

n+1

i=1

p

i

= 1. In order

to solve these n+1 equations for p, let M be the (n+1)� (n+1)-matrix whose i-th row

ontains the vetor e

T

i

� e

T

n+1

and whose n-th row is (1; 1; : : : ; 1). Sine M is invertible,

we obtain

p =

1

2v

2

M

�1

0

B

B

B

�

�(v

2

1

� v

2

n+1

)

.

.

.

�(v

2

n

� v

2

n+1

)

2v

2

1

C

C

C

A

: (5.29)

As before, substituting this expression into p �v = 0 and setting v

2

= 1 in the denominator

gives a ubi equation g

1

(v) = 0. Hene, we obtain the following optimization problem.

Here, the objetive funtion f stems from the ondition for the vertex 

n+1

, and the

ondition

P

n+1

i=1

v

i

= 0 omes from the embedding.

min p

2

� 2p

n+1

+ 1� v

2

n+1

s.t. g

1

(v

1

; : : : ; v

n+1

) = 0 ;

n+1

P

i=1

v

i

= 0 ;

v

2

= 1 :

(5.30)

First we reord that the funtions f and g

1

are symmetri polynomials in the variables

v

1

; : : : ; v

n+1

. In order to show this, let �

1

; : : : ; �

n+1

be the elementary symmetri funtions

in v

1

; : : : ; v

n+1

,

�

1

= v

1

+ : : :+ v

n+1

;

.

.

.

�

k

=

X

1�i

1

<:::<i

k

�n+1

v

i

1

v

i

2

� � � v

i

k

;

.

.

.

�

n+1

= v

1

v

2

� � � v

n+1

(see, e.g., [31, 138℄). By providing expliit expressions for f and g

1

as polynomials in the

elementary symmetri polynomials �

1

; : : : ; �

n+1

, the symmetry of f and g

1

follows. More

preisely, we obtain:
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Lemma 5.19. The quarti polynomial f(v

1

; : : : ; v

n+1

) and the ubi polynomial g

1

(v

1

;

: : : ; v

n+1

) are symmetri polynomials in the variables v

1

; : : : ; v

n+1

. In terms of the ele-

mentary symmetri funtions, f results in

f =

1

4(n+ 1)

�

n�

4

1

� 4n�

2

1

�

2

+ 2(n� 1)�

2

2

� 4�

2

1

+ 8�

2

+ 4n

�

+ �

1

�

3

� �

4

;

and the homogeneous polynomial g

1

results in

g

1

=

1

2(n+ 1)

�

�(n� 2)�

3

1

+ 3(n� 1)�

1

�

2

�

�

3

2

�

3

:

Sine �

1

= 0 and

P

n+1

i=1

v

i

2

= �

2

1

� 2�

2

, we an also dedue the following formulation

of our optimization problem:

Corollary 5.20. Finding the ritial values of the minimization problem (5.30) is equiv-

alent to �nding the ritial values (v

1

; : : : ; v

n+1

)

T

2 R

n+1

of the maximization problem

max �

4

s.t. �

1

= 0 ;

�

2

= �

1

2

; (5.31)

�

3

= 0 ;

where �

i

are the elementary symmetri funtions in v

1

; : : : ; v

n+1

.

Theorem 5.21. The diretion vetor (v

1

; : : : ; v

n+1

)

T

of any loally extreme irumsrib-

ing ylinder satis�es jfv

1

; : : : ; v

n+1

gj � 3, i.e., for eah solution vetor the omponents

take at most three distint values.

Proof. For n � 2, the statement is trivial, so we an assume n � 3. Let v be the diretion

vetor of a loally extreme irumsribing ylinder with v

2

= 1. Using Corollary 5.20, let

f(v) := ��

4

(v), g

1

(v) := �

3

(v), g

2

(v) := �

2

(v)� 1=2, and g

3

(v) := �

1

(v). As a neessary

ondition for a loal extremum, for any pairwise di�erent indies a; b; ; d 2 f1; : : : ; n+1g

the determinant

det

0

B

B

B

�

�

�f

�v

a

�g

1

�v

a

�g

2

�v

a

�g

3

�v

a

�

�f

�v

b

�g

1

�v

b

�g

2

�v

b

�g

3

�v

b

�

�f

�v



�g

1

�v



�g

2

�v



�g

3

�v



�

�f

�v

d

�g

1

�v

d

�g

2

�v

d

�g

3

�v

d

1

C

C

C

A

(5.32)

vanishes. Sine f , g

1

, g

2

, and g

3

are symmetri funtions in the variables v

1

; : : : ; v

n+1

,

we an assume without loss of generality a = 1, b = 2,  = 3, and d = 4. Setting
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�

n

:=

P

n+1

i=5

v

i

and �

n

=

P

n+1

i=5

v

2

i

, we an write

�g

3

�v

i

= 1 ;

�g

2

�v

i

=

4

X

j=1

j 6=i

v

j

+ �

n

;

�g

1

�v

i

=

X

1�j<k�4

j;k 6=i

v

j

v

k

+ �

n

4

X

j=1

j 6=i

v

j

+

1

2

�

�

2

n

� �

n

�

(1 � i � 4). Moreover, sine �

3

(v) = 0, we an onsider �

3

+

�f

�v

i

instead of

�f

�v

i

. This

allows to express the resulting expression easily in terms of �

n

and �

n

. More preisely, we

obtain

�

3

+

�f

�v

i

= v

i

0

B

�

X

1�j<k�4

j;k 6=i

v

j

v

k

+ �

n

4

X

j=1

j 6=i

v

j

+

1

2

(�

2

n

� �

n

)

1

C

A

:

Thus we an onsider the determinant (5.32) as a polynomial in v

1

; v

2

; v

3

; v

4

; �

n

; �

n

.

Evaluating this 4 � 4-determinant � shows that it is independent of �

n

, �

n

and that

it fators as

� = (v

1

� v

2

)(v

1

� v

3

)(v

1

� v

4

)(v

2

� v

3

)(v

2

� v

4

)(v

3

� v

4

) :

Hene, jfv

1

; v

2

; v

3

; v

4

gj � 3, and this holds true for any quadruple (a; b; ; d) of indies.

Using this result, we illustrate the ourrene of the Stirling numbers in Lemma 5.18

for the ase of a regular simplex. There are

�

n+1

3

	

ways to partition the set V :=

fv

1

; : : : ; v

n+1

g into three nonempty subsets V

1

, V

2

, V

3

. We assume that v

i

2 V

i

, 1 � i � 3,

and that all variables within the same set take the same value. Setting k := jV

1

j and

l := jV

2

j, the formulation in Corollary 5.20 yields the system of equations

kv

1

+ lv

2

+ (n + 1� k � l)v

3

= 0 ;

kv

2

1

+ lv

2

2

+ (n+ 1� k � l)v

2

3

= 1 ; (5.33)

X

0�i

1

<i

2

<i

3

�3

i

1

+i

2

+i

3

=3

�

k

i

1

��

l

i

2

��

n+ 1� k � l

i

3

�

v

i

1

1

v

i

2

2

v

i

3

3

= 0 :

If one of the indies k, l, or n + 1 � k � l is zero then this system onsists of three

equations in two variables, so we do not expet any solutions. For every hoie of k, l

orresponding to a partition into nonempty subsets, we obtain a system of equations with

B�ezout number 6. Thus, whenever the values of v

1

, v

2

, and v

3

in the solutions to (5.33)

are distint, then this reets the bound in Lemma 5.18.

In partiular, in the ase n = 4 we obtain the following 150 solutions.
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k = 1, l = 1: The six solutions for (v

1

; v

2

; v

3

)

T

of the system (5.33) are

�

1

p

2

;�

1

p

2

; 0

�

T

;

�

1

20

q

110� 30i

p

15;

1

20

q

110 + 30i

p

15;�

1

10

p

15

�

T

;

and the solutions obtained by permuting the �rst two omponents of the �rst solution

and by hanging the signs and/or permuting the �rst two omponents in the seond

solution.

For the program (5.31) in the variables (v

1

; : : : ; v

5

)

T

, this gives

�

5

2

��

2

1

�

= 20 ritial

positions of the form (i.e., up to variable permutations)

�

1

p

2

;�

1

p

2

; 0; 0; 0

�

T

;

20 omplex solutions of the form

�

�

1

20

q

110� 30i

p

15;�

1

20

q

110 + 30i

p

15;

1

10

p

15;

1

10

p

15;

1

10

p

15

�

T

;

and 20 omplex solutions of the form

�

1

20

q

110� 30i

p

15;

1

20

q

110 + 30i

p

15;�

1

10

p

15;�

1

10

p

15;�

1

10

p

15

�

T

:

k = 1, l = 2: Here, we obtain 30 solutions of the form

�

0;

1

2

;

1

2

;�

1

2

;�

1

2

�

T

;

30 solutions of the form

�

1

5

p

10;

1

4

p

2�

1

20

p

10;

1

4

p

2�

1

20

p

10;�

1

4

p

2�

1

20

p

10;�

1

4

p

2�

1

20

p

10

�

T

;

and 30 solutions of the form

�

�

1

5

p

10;

1

4

p

2 +

1

20

p

10;

1

4

p

2 +

1

20

p

10;�

1

4

p

2 +

1

20

p

10;�

1

4

p

2 +

1

20

p

10

�

T

:

The global minimum is attained for the vetor

�

0;

1

2

;

1

2

;�

1

2

;�

1

2

�

T

, and the objetive

value of the global optimum is 49/80. Hene, the radius of the smallest irumsribing

ylinder for a regular simplex in R

4

with edge length

p

2 is

p

49=80 = 7

p

5=20 � 0:7826 .
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5.3.3 Appendix: An error in the results of Wei�bah

In the ourse of our investigations, we disovered a subtle but severe mistake in the paper

[148℄ on the expliit determination of the radius of a smallest enlosing ylinder for a

regular simplex S � R

n

. In the notation of Setion 2.2.2, this value is the outer (n� 1)-

radius of S. Sine this error ompletely invalidates the proof given there

1

, we give a

desription of that aw, inluding some omputer-algebrai alulations illustrating it.

In that paper, the omputation of the outer (n�1)-radius of a regular simplex (with

edge length

p

2) is redued to the analysis of the following optimization problem.

min

n+1

P

i=1

u

4

i

s.t.

n+1

P

i=1

u

2

i

= 1 ;

n+1

P

i=1

u

i

= 0 :

(5.34)

For any loal optimum (u

1

; : : : ; u

n+1

)

T

there exist Lagrange multipliers �

1

, �

2

2 R

suh that

4u

3

i

+ 2�

1

u

i

+ �

2

= 0 ; 1 � i � n+ 1 ;

n+1

X

i=1

u

2

i

= 1 ; (5.35)

n+1

X

i=1

u

i

= 0 :

Erroneously, in [148℄ it is argued that symmetry arguments imply that �

2

= 0 in any

solution. The following alulation in the omputer algebra system Singular [62℄ shows

that for n = 3 this system has 26 solutions (ounting multipliity) over C .

ring R = 0, (u1,u2,u3,u4,la1,la2), (dp);

ideal I =

4*u1^3 + 2*la1*u1 + la2,

4*u2^3 + 2*la1*u2 + la2,

4*u3^3 + 2*la1*u3 + la2,

4*u4^3 + 2*la1*u4 + la2,

u1^2 + u2^2 + u3^2 + u4^2 - 1,

u1 + u2 + u3 + u4;

degree(std(I));

1

In a personal ommuniation this has been on�rmed by B. Wei�bah.
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This program �rst de�nes a polynomial ring in the variables u

1

; : : : ; u

4

; �

1

; �

2

over a

�eld of harateristi zero. We then use the degree ommand to ompute the dimension

and the degree of the ideal de�ned by our equations. The output of that ommand is

// odimension = 6

// dimension = 0

// degree = 26

Hene, there are �nitely many solutions (sine the dimension of the ideal is zero), and the

degree of the ideal (the sum of the multipliities of the solutions) is 26.

18 of these solutions refer to the ase �

2

= 0 (and those were the ones omputed in

[148℄). Namely, if �

2

= 0 then the �rst row of (5.35) simpli�es to

u

i

(2u

2

i

+ �

1

) = 0 ; 1 � i � n+ 1 :

If we are only interested in the real solutions to this system, then setting �

1

= �2�

2

for

some � � 0 gives

u

i

(u

2

i

� �

2

) = 0 ; 1 � i � n + 1 :

Sine the vetor (u

1

; : : : ; u

n+1

)

T

= (0; : : : ; 0)

T

does not satisfy the seond row in (5.35),

the solutions with �

2

= 0 are

u

i

= �; i 2 fi

1

; : : : ; i

h

g ;

u

i

= ��; i 2 fi

h+1

; : : : ; i

2h

g ;

u

i

= 0 ; i 2 f1; : : : ; n+ 1g n fi

1

; : : : ; i

2h

g

for some h � 1, some set fi

1

; : : : ; i

2h

g of pairwise di�erent indies, and � = (2h)

�1=2

. In

the ase n = 3, there are 12 possibilities to hoose the indies and the signs for jhj = 1 and

6 possibilities to hoose the indies and the signs for jhj = 2, giving 18 solutions to (5.35).

However, there are 8 additional solutions, whih in fat are also real! Namely, these

are the solutions

(u

1

; : : : ; u

4

)

T

=

1

2

p

3

(1;�3; 1; 1)

T

; �

1

= �

7

6

; �

2

=

1

p

3

;

(u

1

; : : : ; u

4

)

T

=

1

2

p

3

(�1; 3;�1;�1)

T

; �

1

= �

7

6

; �

2

= �

1

p

3

;

as well as the six distint solutions obtained from these two by permuting the variables

u

1

; : : : ; u

4

. These additional solutions invalidate the subsequent arguments in [148℄.

The omissions get even worse in the higher-dimensional ase. E.g., for n = 4, besides

the

�

5

2

��

2

1

�

+

�

5

4

��

4

2

�

= 20 + 30 = 50 solutions desribed in [148℄, we obtain the following
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solutions:

(u

1

; : : : ; u

5

)

T

=

1

p

30

(�2;�2;�2; 3; 3)

T

; �

1

= �

7

15

; �

2

= �

2

75

p

30 ;

(u

1

; : : : ; u

5

)

T

=

1

p

30

(2; 2; 2;�3;�3)

T

; �

1

= �

7

15

; �

2

=

2

75

p

30 ;

(u

1

; : : : ; u

5

)

T

=

1

2

p

5

(1;�4; 1; 1; 1)

T

; �

1

= �

13

10

; �

2

=

6

25

p

5 ;

(u

1

; : : : ; u

5

)

T

=

1

2

p

5

(�1; 4;�1;�1;�1)

T

; �

1

= �

13

10

; �

2

= �

6

25

p

5 ;

as well as those solutions obtained by permuting the variables. Altogether, we have

10 + 10 + 5 + 5 = 30 solutions with �

2

6= 0, and thus a total number of 80 solutions.

Finally, we remark that the paper [147℄, whih omputes the outer (n�1)-radius of a

regular simplex in odd dimension n, is orret.
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6. COMMON TRANSVERSALS AND TANGENTS

We study the lines simultaneously tangent to k given spheres and transversal to 4�k given

lines, k 2 f0; : : : ; 4g. In Setion 6.1, we prove the following result.

Theorem 6.1. Given 4�k lines and k spheres in R

3

, 0 � k � 4. If there exist only

�nitely many lines in R

3

simultaneously tangent to the spheres and transversal to the

lines then the number of these lines is bounded by

8

>

>

>

<

>

>

>

:

2 if k = 0 ;

4 if k = 1 ;

8 if k = 2 ;

12 if k 2 f3; 4g :

These bounds are tight, i.e., for eah k there exists a on�guration where the number of

distint real solutions mathes the stated number. The bounds are tight even if the spheres

are unit spheres.

Table 6.1 summarizes the results. Even if we are primarily interested in the real

solutions, the upper bounds are in fat omplex bounds in C

3

, whih are given in the

�rst main olumn. The seond olumn ontains the mathing numbers of real solutions

in our onstrutions. The last olumn shows that in some ases, we are able to expliitly

haraterize the on�gurations with an in�nite number of real ommon tangents. In

the entries with a \{" we do not know suh a haraterization (f. the disussion in

Setion 3.3.5).

For k 2 f1; 2g, the upper bounds immediately follow from B�ezout's Theorem. Whereas

for k = 1 it is easy to give a onstrution mathing this bound, the onstrution for k = 2 is

quite involved. In partiular, for k = 2 we use a omputation of intersetion multipliities

based on standard bases in loal rings to prove orretness of the onstrution. For k = 3,

the B�ezout bound in the Pl

�

uker formulation is 16 instead of 12. Here, it turns out that

there are two solutions with multipliity at least two in the plane at in�nity.

Besides the tight upper bounds, we haraterize the on�gurations with in�nitely

many ommon tangents for k = 1 and k = 2. For three lines and one sphere, our proof is

based on lassial line-geometri tehniques. In order to haraterize the situations where

two lines and two spheres have in�nitely many real ommon tangent lines, we study the

fasinating geometry behind that degree 8 problem in Setion 6.2. A seond purpose of

this setion is to develop a variety of omputer-algebrai tehniques for takling problems
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upper bound # real solutions of haraterization of

# solutions our onstrution degenerate instanes

4 lines 2 (well-known) 2 (well-known) yes (well-known)

3 lines, 1 sphere 4 4 yes

2 lines, 2 spheres 8 8 yes

1 line, 3 spheres 12 12 {

4 unit spheres 12 (see Chapter 3) 12 (see Chapter 3) yes (see Chapter 3)

4 spheres 12 (see Chapter 3) 12 (see Chapter 3) {

Tab. 6.1: Summary of results

of this kind. For that reason, we �rst deal with the more general problem where we

replae the spheres in R

3

by general quadris in P

3

. In order to study the geometry of

this problem, we �x two lines and a quadri in general position, and desribe the set of

(seond) quadris for whih there are in�nitely many ommon transversals/tangents in

terms of an algebrai urve. It turns out that this set is an algebrai urve of degree 24

in the spae P

9

of quadris. Fatoring the ideal of this urve shows that it is remarkably

reduible:

Theorem 6.2. Fix two skew lines `

1

and `

2

and a general quadri Q in P

3

. The losure of

the set of quadris Q

0

for whih there are in�nitely many lines simultaneously transversal

to `

1

and `

2

and tangent to both Q and to Q

0

is a urve of degree 24 in the P

9

of quadris.

This urve onsists of 12 plane onis.

We prove this theorem by investigating the ideal de�ning the algebrai urve desrib-

ing the set of (seond) quadris. Based on this, we prove the theorem with the aid of a

omputer alulation in the omputer algebra system Singular. As explained in Se-

tion 6.2.3, the suess of that omputation depends ruially on the preeding analysis of

the urve. Quite interestingly, there are real lines `

1

and `

2

and real quadris Q suh that

all 12 omponents of the urve of seond quadris are real. In general, given real lines `

1

,

`

2

, and a real quadri Q, not all of the 12 omponents are de�ned over the real numbers.

Based on the disussion of lines and general quadris, we give a omplete harateriza-

tion of on�gurations of two lines and two spheres having in�nitely many lines transversal

to the lines and tangent to the spheres.

6.1 Enumerative results

We show Theorem 6.1. For brevity, we denote the maximum numbers of lines in R

3

simul-

taneously tangent to 4�k lines and k spheres (in the �nite ase) by N

k

, k 2 f0; : : : ; 4g.



6.1. Enumerative results 99

0

l1

l2

l3

Fig. 6.1: The �gure shows a on�guration with three lines `

1

, `

2

, `

3

, and one sphere of radius

11/10, leading to 4 ommon tangent lines. The two tangent lines in the x

1

x

2

-plane are

drawn in light grey, whereas the two tangent lines in the x

2

x

3

-plane are drawn in dark

grey.

6.1.1 Proofs and onstrutions

Note that the upper bounds N

0

� 2, N

1

� 4, N

2

� 8 immediately follow from B�ezout's

Theorem. Namely, sine the ommon tangent lines to three lines and one sphere an be

formulated by three linear equations of the form (2.4), one equation of the form (2.5) as

well as the Pl

�

uker relation (2.2) in the six homogeneous variables p

01

; : : : ; p

23

, we obtain

N

1

� 4. Analogously, we obtain N

0

� 2, N

2

� 8.

As mentioned earlier, the ommon transversals to four given lines in 3-dimensional

spae are a well-studied problem in enumerative geometry, and it is well-known that the

upper bound of 2 an be atually ahieved in real spae R

3

(see, e.g., [75, xXIV.7℄); hene

N

0

= 2. The number of ommon transversals is �nite if and only if the Pl

�

uker vetors of

the four given lines are linearly independent.

Lemma 6.3. N

1

= 4 :

Proof. Sine N

1

� 4, it suÆes to give a onstrution with 3 lines and 1 sphere, leading

to 4 ommon tangents. Denoting the three oordinate axes in R

3

by x

1

, x

2

, and x

3

, let

`

1

be the x

1

-axis, `

2

be the x

2

-axis, and `

3

be parallel to the x

3

-axis and passing through

(0; 2; 0)

T

(see Figure 6.1); hene `

1

\ `

2

= f(0; 0; 0)

T

g and `

2

\ `

3

= f(0; 2; 0)

T

g.

Eah line interseting the three lines `

1

, `

2

, and `

3

is loated in the x

1

x

2

-plane (in

whih ase it passes through (0; 2; 0)

T

) or is loated in the x

2

x

3

-plane (in whih ase it

passes through the origin). For 1 < r <

p

2 the sphere S((1; 1; 1)

T

; r) intersets both

the x

1

x

2

-plane and the x

2

x

3

-plane, but does not interset with any of the lines `

1

, `

2

, `

3

.

Hene, sine there are two tangents to the sphere passing through the origin and lying in
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the x

1

x

2

-plane, and sine there are two tangents to the sphere passing through (0; 2; 0)

T

and lying in the x

1

x

3

-plane, there are 4 ommon tangents altogether. Figure 6.1 shows

a on�guration with 1 < r = 11=10 <

p

2. We remark that by appropriate saling, the

sphere an be transformed into a unit sphere. Furthermore, by slightly perturbing the

on�guration, the lines an be made pairwise skew.

To omplete the entries for 3 lines and 1 sphere in Table 6.1, it remains to haraterize

the on�gurations with in�nitely many real solutions. If the three lines are not pairwise

skew, then all real ommon transversals lie in the same plane or pass through a point of

intersetion. Sine the resulting haraterization an be easily established, we an assume

that the three lines are pairwise skew.

It is well-known that the ommon transversals of three pairwise skew lines de�ne a

hyperboloid of one sheet (see, e.g., [11℄). By applying a translation and a rotation, the

hyperboloid an be transformed into

x

2

1

�

2

+

x

2

2

�

2

�

x

2

3



2

= 1 with �; �;  > 0 : (6.1)

This transformation hanges the enter of the sphere into some new enter  = (

1

; 

2

; 

3

)

T

2 R

3

. Now the haraterization of in�nitely many solutions is given by the following

statement.

Theorem 6.4. Let `

1

; `

2

; `

3

be three pairwise skew lines whose ommon transversals gen-

erate a hyperboloid of the form (6.1), and let S

4

be a sphere with enter  2 R

3

and

radius r > 0. Then there exist in�nitely many lines simultaneously transversal to `

1

; `

2

; `

3

and tangent to S

4

if and only if 

1

= 

2

= 0, � = �, and in the x

1

x

3

-plane the irle

x

2

1

+(x

3

�

3

)

2

= r

2

is a tangent irle to both branhes of the hyperbola x

2

1

=�

2

�x

2

3

=

2

= 1 :

Proof. The hyperboloid (6.1) an be parametrized by one of the two sets of generating

lines. In partiular, this hyperboloid is generated by the set of lines

(

(x

1

; x

2

; 0)

T

+ �

�

�

�

�

x

2

;

�

�

x

1

; 1

�

T

: � 2 R

)

; where

x

2

1

�

2

+

x

2

2

�

2

= 1 (6.2)

(see, e.g., [82℄). By the upper bound of 4 in Lemma 6.3, we see that either this parametriza-

tion ontains at most 4 tangents to the sphere or all lines in the parametrization are

tangent to the sphere.

First assume that there are in�nitely many lines transversal to the three lines and

tangent to the sphere; thus all lines in the parametrization are tangents. Spei�ally, we
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onsider the following lines in the parametrization:

g

1

=

(

�

�; �

�



; �

�

T

: � 2 R

)

(i:e:; (x

1

; x

2

) = (�; 0)) ;

g

2

=

(

�

��;��

�



; �

�

T

: � 2 R

)

(i:e:; (x

1

; x

2

) = (��; 0)) ;

g

3

=

(

�

��

�



; �; �

�

T

: � 2 R

)

(i:e:; (x

1

; x

2

) = (0; �)) ;

g

4

=

(

�

�

�



;��; �

�

T

: � 2 R

)

(i:e:; (x

1

; x

2

) = (0;��)) :

The ondition that the enter  must have the same distane from g

1

and g

2

gives the

equation

�(�

2

+ 

2

)

1

+ �

2



3

= 0 ;

and the equality of distanes from g

3

and g

4

gives the distanes

�(�

2

+ 

2

)

2

� �

1



3

= 0 :

Sine �; �;  > 0, the ommon solutions of these equations have 

1

= 

2

= 0. Using this

information, the equality of the distanes from the �rst and third lines gives � = �, or



3

= �

p

(�

2

+ 

2

)(�

2

+ 

2

)=. To eliminate this seond possibility, onsider two more

lines in the ruling of the hyperboloid

g

5

=

(

�

�

p

2

�

1�

�



�

;

�

p

2

�

1 +

�



�

; �

�

T

: � 2 R

)

�

i:e:; (x

1

; x

2

) =

�

�

p

2

;

�

p

2

��

;

g

6

=

(

�

�

p

2

�

1 +

�



�

;

�

p

2

�

�1 +

�



�

; �

�

T

: � 2 R

)

�

i:e:; (x

1

; x

2

) =

�

�

p

2

;

��

p

2

��

:

The equality of distanes from these two lines together with 

1

= 

2

= 0 gives � = � or



3

= 0. Therefore the only ase when  an be at the same distane from all lines in the

ruling (6.2) is when � = �. Hene, sine 

1

= 

2

= 0 and � = �, both the hyperboloid and

the sphere are rotational symmetri with respet to the x

3

-axis, and it suÆes to onsider

the setion through the x

1

x

3

-plane. In this setion, the irle x

2

1

+ (x

3

� 

3

)

2

= r

2

must

be a tangent irle to both branhes of the hyperbola x

2

1

=�

2

� x

2

3

=

2

= 1 :

If, onversely, 

1

= 

2

= 0, � = �, and in the x

1

x

3

-plane, the irle x

2

1

+(x

3

� 

3

)

2

= r

2

is a tangent irle to the hyperbola x

2

1

=�

2

� x

2

3

=

2

= 1, then the rotational symmetry

implies that every line in the hyperboloid x

2

1

=�

2

+ x

2

2

=�

2

� x

2

3

=

2

= 1 is tangent to the

sphere S

4

. Hene, there are in�nitely many ommon tangents.
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x
 1

l
 1

l
 2

Fig. 6.2: The �gure shows a onstrution with 2 lines and 2 spheres, leading to 6 distint solu-

tions. The two tangents lying in the plane x

2

= � and passing through (0; �; 0)

T

are

drawn in light grey. The other four tangents are drawn in dark grey.

Lemma 6.5. N

2

= 8 :

Proof. SineN

2

� 8, it suÆes to give a onstrution with 2 lines and 2 spheres of the same

radius, leading to 8 solutions. We start from the following on�guration with 6 distint

solutions. The two spheres are symmetrially loated on the x

1

-axis: 

3

= (; 0; 0)

T

,



4

= (�; 0; 0)

T

; the radius r will be spei�ed below. The lines `

1

and `

2

are hosen in

a plane x

2

= � for some � > 0 suh that the lines interset in (0; �; 0)

T

. Hene, every

ommon transversal of the two lines either lies in the plane x

2

= � or passes through the

point (0; �; 0)

T

. If the two spheres interset with eah other, and � < r, and (0; �; 0)

T

is not ontained in the union of the spheres S(

3

; r), S(

4

; r), then there are exatly 6

distint lines whih are tangents to the spheres and transversal to the given lines and

tangent to the given spheres (see Figure 6.2): two tangents pass through (0; �; 0)

T

and lie

in the plane x

1

= 0; two tangents lie in the plane x

2

= � and are parallel to the x

1

-axis;

and two tangents lie in the plane x

2

= � and pass through (0; �; 0)

T

. For the following

onsiderations it is quite useful to have a suint desription of the last two tangents

and also to work with integer oeÆients for �, , and r. In partiular, we will fore

the two tangents in the plane x

2

= � and passing through (0; �; 0)

T

to be of the form

(0; �; 0)

T

+ �(1; 0;�1)

T

. In order to obtain these tangents, �,  and r have to satisfy

�

2

+ 

2

=2 = r

2

and r > . An appropriate hoie is � = 7,  = 8, and r = 9, so that the

tangents of the last type are

t

1

:=

�

(0; 7; 0)

T

+ �(1; 0; 1)

T

: � 2 R

	

and t

2

:=

�

(0; 7; 0)

T

+ �(1; 0;�1)

T

: � 2 R

	

:

Now the key observation is that these two tangents have multipliity 2. In order to

prove this we onsider the system of equations in Pl

�

uker oordinates stemming from (2.4)
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and (2.6). Independent of the spei� hoie of lines `

1

, `

2

with the above properties, the

ommon transversals of `

1

and `

2

are given by the ommon zeroes of the two linear,

homogeneous polynomials

f

1

= �7p

03

+ p

23

;

f

2

= 7p

01

+ p

12

:

The quadrati equations resulting from the spheres S(

3

; r) and S(

4

; r) are

f

3

= �81p

2

01

� 17p

2

02

� 17p

2

03

� 16p

02

p

12

+ p

2

12

� 16p

03

p

13

+ p

2

13

+ p

2

23

;

f

4

= �81p

2

01

� 17p

2

02

� 17p

2

03

+ 16p

02

p

12

+ p

2

12

+ 16p

03

p

13

+ p

2

13

+ p

2

23

:

Furthermore let f

5

= p

01

p

23

�p

02

p

13

+p

03

p

12

be the polynomial of the Pl

�

uker relation (2.2).

The tangent t

1

has Pl

�

uker oordinate (1; 0; 1;�7; 0; 7)

T

. In order to ompute the

multipliity of this solution, we follow the method and the notation in [32, x4.4℄. First

we pass to an aÆne version of the polynomials by adding the polynomial f

6

= p

01

� 1;

this fores p

01

= 1 in any ommon zero of the system. Then we move the point t

1

to the

origin by applying the linear variable transformation

(p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

= (q

01

; q

02

; q

03

; q

12

; q

13

; q

23

)

T

+ (1; 0; 1;�7; 0; 7)

T

:

The loal intersetion multipliity � an be omputed as the vetor spae dimension of

the quotient ring

� = dimR

l

=I

l

;

where R

l

:= C [q

01

; : : : ; q

23

℄

hq

01

;::: ;q

23

i

is the loal ring whose elements are the rational

funtions in q

01

; : : : ; q

23

with non-vanishing denominator at 0. I

l

is the ideal de�ned by

f

1

; : : : ; f

6

in the loal ring R

l

.

In order to ompute �, we use the fat that in ase of �nite dimension

dimR

l

=I

l

= dimR

l

=hLT(I

l

)i;

where hLT(I

l

)i denotes the ideal generated by the leading terms of I

l

(see, e.g., [32,

Corollary 4.5 in Chapter 4℄). This dimension an be easily extrated from a standard

basis of I

l

(For the onveniene of the reader, a short review of standard bases an be

found in Setion 6.1.2). Sine by our hoie of �, , and r, all oeÆients are integers, we

an apply a omputer algebra pakage (suh as Singular [62℄), to ompute a standard

basis fh

1

; : : : ; h

6

g of the ideal I

l

with respet to anti-graded reverse lexiographial order:

h

1

= q

01

;

h

2

= 112q

02

+ 34q

03

+ 14q

12

� 16q

13

;

h

3

= 14q

03

+ q

12

;

h

4

= q

12

;

h

5

= 64q

23

;

h

6

= 112q

2

13

:
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x
 1

Fig. 6.3: Constrution with 2 lines and 2 spheres, leading to 8 distint solutions

Hene, the leading monomials of h

1

; : : : ; h

6

with respet to anti-graded reverse lexio-

graphial order are q

01

, q

02

, q

03

, q

12

, q

23

, q

2

13

. The desired multipliity � is the ardinality

of the set of osets f1 + I

l

; q

13

+ I

l

g, whih implies � = 2. By symmetry, the tangent t

2

has multipliity 2 as well.

Now we hoose one partiular on�guration of the presented lass, namely the one

with `

1

:= t

1

and `

2

:= t

2

. By perturbing this on�guration, the two double solutions

will split into four distint solutions: �rst, we slightly inrease the x

2

-oordinate of the

line `

2

, so that the resulting line `

0

2

beomes (0; �

0

; 0)

T

+ �(1; 0;�1)

T

for some �

0

> �. In

this proess, the double tangent t

1

splits into two tangents t

a

1

and t

b

1

interseting `

1

and

`

0

2

in di�erent orders; i.e., one of the tangents t

a

1

, t

b

1

touhes `

1

, `

2

, S

3

, and S

4

in the order

(S

3

; `

1

; `

2

; S

4

), and one of them in the order (S

3

; `

2

; `

1

; S

4

). However, the tangent t

2

is still

a double zero of the system of polynomials, sine the parallel lines t

2

and `

0

2

interset in

the plane at in�nity of P

3

R

.

Similarly, we an make the double tangent t

2

split into two tangents by slightly de-

reasing the x

2

-oordinate of the line `

1

; denote the resulting line by `

0

1

. Figure 6.3 shows

the on�guration for `

0

1

passing through the points (0; 6:5; 0)

T

, (2; 6:5; 2)

T

, and `

0

2

passing

through the points (0; 7:5; 0)

T

, (2; 7:5;�2)

T

.

For N

3

the situation is more involved. The B�ezout bound gives 16, but in fat, the

number of solutions in C

3

is bounded by 12. As in the disussion of the ommon tangents

to four spheres in Setion 4.2, the remaining solutions are loated in the plane at in�nity.

Spei�ally, we will show that there are always two solutions at in�nity with multipliity

at least 2.

Let us reall the framework from Setion 4.2. The sphere with enter (

1

; 

2

; 

3

)

T

2 R

3

and radius r has the homogeneous equation in P

3

:

(x

1

� 

1

x

0

)

2

+ (x

2

� 

2

x

0

)

2

+ (x

3

� 

3

x

0

)

2

= r

2

x

2

0

:



6.1. Enumerative results 105

In the plane at in�nity x

0

= 0, this gives the equation

x

2

1

+ x

2

2

+ x

2

3

= 0;

whih is independent of the enter and the radius. Let ! denote this oni setion in the

plane at in�nity. Later in the proof, we will work in the spae of lines in P

3

. In that

situation, we will have to onsider those tangents through any point z 2 ! in the plane

at in�nity rather than z itself. For this reason, we provide a haraterization of these

tangents:

Lemma 6.6. Let z = (0; z

1

; z

2

; z

3

)

T

2 !. The tangent to the oni ! at z whih lies in

the plane at in�nity has Pl

�

uker oordinate

(p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

= (0; 0; 0; z

3

;�z

2

; z

1

)

T

:

In partiular, the tangent ontains the points (0;�z

2

; z

1

; 0)

T

, (0; z

3

; 0;�z

1

)

T

, and (0; 0;

�z

3

; z

2

)

T

.

Proof. Sine z

0

= 0 we an ompute in projetive plane P

2

; so let z = (z

1

; z

2

; z

3

)

T

. The

oni setion

x

T

Ax = 0 with A =

0

�

1 0 0

0 1 0

0 0 1

1

A

is regular in z with tangent fy = (y

1

; y

2

; y

3

)

T

2 P

2

: z

T

Ay = 0g. In partiular,

(�z

2

; z

1

; 0)

T

, (z

3

; 0;�z

1

)

T

, (0;�z

3

; z

2

)

T

, and z itself lie on this tangent. Now any two

of these points an be used to ompute the Pl

�

uker oordinate of the tangent line.

Consider a on�guration with a line `

1

and three spheres in R

3

. Sine we onsider

the spheres as quadris, we denote them by Q

2

, Q

3

, and Q

4

. The idea to prove the

double solutions at in�nity is to transfer the geometry of ! to the spae of lines in P

3

.

More preisely, let t be a tangent to ! at z in the plane at in�nity. Sine the quadris

^

2

Q

2

;^

2

Q

3

;^

2

Q

4

2 P

5

haraterize the tangents to Q

2

; Q

3

; Q

4

, the Pl

�

uker vetor p

t

of

t is ontained in ^

2

Q

2

, ^

2

Q

3

, and ^

2

Q

4

. Let 
 denote the quadri in P

5

de�ned by the

Pl

�

uker equation (2.2). Sine t is a line in P

3

, t is also ontained in 
. We will show that

the tangent hyperplanes to the quadris ^

2

Q

2

, ^

2

Q

3

, ^

2

Q

4

, 
 at p

t

ontain a ommon

subspae of dimension 2. In onnetion with the linear form de�ned by the transversals

of the line `

1

, this will prove the multipliity of at least 2.

Let us investigate the spheres Q

2

, Q

3

, Q

4

�rst. For i 2 f2; 3; 4g, we are looking for

lines whose Pl

�

uker vetors lie in the tangent hyperplane of ^

2

Q

i

at p

t

. The geometri

onept behind this relation is polarity. Reall that the polar plane of a point a 2 P

n

with

respet to an arbitrary quadri Q is de�ned by

fy 2 P

n

: a

T

Qy = 0g :
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If a 2 Q then the polar hyperplane is a tangent hyperplane. The polar line of a line ` 2 P

3

is de�ned by

fy 2 P

3

: a

T

Qy = 0 for all a 2 `g :

The following lemma establishes a onnetion between the tangent hyperplanes to ^

2

Q

and the onept of polarity for a quadri Q.

Lemma 6.7. Let t be a tangent line to a quadri Q � P

3

, and let the point a 2 P

3

be

ontained in the polar line of t. Then, for any line ` ontaining a, the Pl

�

uker vetor p

`

of ` is ontained in the tangent hyperplane to ^

2

Q at p

t

, i.e., p

T

t

(^

2

Q)p

`

= 0.

Proof. Let T be a representation of t by a 4 � 2-matrix as desribed in the Setion 2.3.

Further let b be a point on ` with b 6= a, and let L = (a; b) be a representation of ` by a

4� 2-matrix. Sine a is ontained in the polar line of t, we have T

T

Qa = (0; 0)

T

. Hene,

by reasoning as in Lemma 2.11, we an onlude

p

T

t

(^

2

Q)p

`

= det(T

T

QL) = 0 :

In partiular, the following version of a well-known relationship (see, e.g., [100℄) shows

that the preondition of Lemma 6.7 is satis�ed if a = t \Q :

Lemma 6.8. If t is tangent to a quadri Q at some point a, then a is ontained in the

polar line of t.

Proof. Let y 6= a be a point on t. Sine t lies on the polar plane (namely, the tangent

plane) of a with respet to Q, we have a

T

Qy = 0. Sine also a

T

Qa = 0, a lies on the polar

line of t with respet to Q.

Finally, we are ready to prove the upper bound for N

3

.

Lemma 6.9. N

3

� 12 :

Proof. Let L

1

be the hyperplane (2.4) in P

5

haraterizing the transversals of the line `

1

,

that is, any point on L

1

whih satis�es the Pl

�

uker relation is the Pl

�

uker oordinate of a

transversal to `

1

. Let ^

2

Q

2

;^

2

Q

3

;^

2

Q

4

be the quadris (2.6) haraterizing the tangents

to the three spheres. Further let z = (0; z

1

; z

2

; z

3

)

T

2 !, and let � � 
 � P

5

be the set of

Pl

�

uker vetors whose orresponding lines in P

3

pass through z. � an be written as the

image of the projetive mapping h : P

3

! 
 � P

5

,

h(y

0

; y

1

; y

2

; y

3

) = ^

2

0

B

B

�

0 y

0

z

1

y

1

z

2

y

2

z

3

y

3

1

C

C

A

:
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Sine h is linear, it follows that � is a two-dimensional plane in P

5

with � � 
.

Let t be the tangent to ! at z in the plane at in�nity. By Lemmas 6.8 and 6.7, � is

ontained in the tangent hyperplane to ^

2

Q

i

at p

t

, 2 � i � 4.

In order to show that � is also ontained in the tangent hyperplane to 
 at p

t

, let y

be a point di�erent from z, and let ` be a line through z and y. Then, by Lemma 6.6, the

Pl

�

uker vetors p

t

and p

`

satisfy

p

T

t


p

`

= (0; 0; 0; z

3

;�z

2

; z

1

) �

1

2

0

B

B

B

B

B

B

�

0 0 0 0 0 1

0 0 0 0 �1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 �1 0 0 0 0

1 0 0 0 0 0

1

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

�

�z

1

y

0

�z

2

y

0

�z

3

y

0

z

1

y

2

� z

2

y

1

z

1

y

3

� z

3

y

1

z

2

y

3

� z

3

y

2

1

C

C

C

C

C

C

A

= �

1

2

y

0

(z

2

1

+ z

2

2

+ z

2

3

)

= 0 :

Hene, the four tangent hyperplanes of ^

2

Q

2

, ^

2

Q

3

, ^

2

Q

4

, 
 at p

t

ontain a ommon

subspae of dimension at least 2. By Lemma 6.6, the tangents to the oni ! lie on a

oni !, namely on

p

2

12

+ p

2

13

+ p

2

23

= 0 ;

in the two-dimensional subspae of P

5

given by p

01

= p

02

= p

03

= 0. The restrition of the

hyperplane L

1

to the subspae p

01

= p

02

= p

03

= 0 de�nes a one-dimensional subspae

L

1

. Sine L

1

is one-dimensional, it intersets with ! at two points b

1

; b

2

2 P

5

in the plane

p

01

= p

02

= p

03

= 0. Further, sine b

1

and b

2

satisfy the Pl

�

uker relation, they are Pl

�

uker

vetors of some tangents t

1

and t

2

to !. Altogether, the �ve tangent hyperplanes of ^

2

Q

2

,

^

2

Q

3

, ^

2

Q

4

, 
, L

1

at b

1

and b

2

ontain a ommon subspae of dimension at least 1.

Hene, the tangent hyperplanes are not independent, whih implies that the multipliity

of intersetion in b

1

and b

2

is at least 2 (see, e.g., [97, p. 115℄).

In order to show that N

3

= 12 it remains to give a onstrution with one line `

1

and

three spheres S

2

, S

3

, S

4

of the same radius r, leading to 12 real solutions. Let `

1

be

the x

3

-axis, and let the enters 

2

, 

3

, 

4

of the spheres onstitute an equilateral triangle

with edge length 1 in the x

1

x

2

-plane, say 

2

= (

p

3=3; 0; 0)

T

, 

3

= (�

p

3=6; 1=2; 0)

T

,



4

= (�

p

3=6;�1=2; 0)

T

(see Figure 6.4). For 1=2 < r <

p

3=3, the spheres are non-

disjoint, and none of them ontains the origin.

Let t be a line whih intersets `

1

, and let H be the plane ontaining t and `

1

. The

three uts H \ onv(S

1

), H \ onv(S

2

), and H \ onv(S

3

) are diss (maybe degenerated

to single points or empty sets). Unless H is equidistant to two of the enters, one of these

diss is stritly ontained in one of the other two. Hene, any line transversal to the line

and tangent to the spheres lies in one of the three planes whih ontain the x

3

-axis and

whih are equidistant to two of the enters.
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l1

Fig. 6.4: Constrution with one line and 3 spheres, leading to 12 solutions

For example, one of these planes is the x

1

x

3

-plane, whih is equidistant to 

2

and 

3

.

The setion through this plane ontains two disjoint diss: one representing the (idential)

intersetions of the plane with onv(S

2

) and onv(S

3

), and the seond one beause of

onv(B

1

). These two diss are separated by the line `

1

. Hene, in this plane there are

4 ommon tangents. Altogether, sine there are three planes of this kind, we have 12

ommon tangents.

6.1.2 Appendix: Standard bases

In Setion 6.1.1, we have applied standard bases in loal rings. In this appendix to that

setion, we review the de�nitions of a standard basis, starting from Gr

�

obner basis theory

(see [32℄). The theory of Gr

�

obner bases provides omputational methods to �nd \nie"

generators for an ideal I in a polynomial ring C [x

1

; : : : ; x

n

℄. The theory of standard bases

extends this theory for ideals in loal rings. More preisely, let R

l

:= C [x

1

; : : : ; x

n

℄

hx

1

;::: ;x

n

i

be the set of rational funtions f=g in x

1

; : : : ; x

n

with g(0; : : : ; 0) 6= 0. R

l

de�nes a loal

ring, i.e., it ontains exatly one maximal ideal. Sine the algebrai-geometri de�nitions

of intersetion multipliities are related to the onept of loal rings, standard bases

provide a powerful tool to e�etively ompute intersetion multipliities.

From the various possible term orders, we restrit ourselves to onsider the anti-graded

reverse lexiographial order (arevlex). For �; � 2 N

n

0

, We have x

�

>

arevlex

x

�

if and only

if

n

X

i=1

�

i

<

n

X

i=1

�

i

;
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or

n

X

i=1

�

i

=

n

X

i=1

�

i

and x

�

>

revlex

x

�

;

where >

revlex

denotes the reverse lexiographial order of Gr

�

obner basis theory. For any

polynomial f , the leading term of f , denoted LT(f), is the maximal term of f with regard

to the arevlex-order.

For an ideal I in R

l

, the set of leading terms of I, abbreviated LT(I), is the set of

leading terms of elements of I.

A standard basis of I is a set fg

1

; : : : ; g

t

g � I suh that hLT(I)i = hLT(g

1

); : : : ;

LT(g

t

)i. Given a set of polynomial generators of I, a standard basis of I an be e�etively

omputed by variants of the Buhberger algorithm.

6.2 Two lines and two quadris

Here, we prove Theorem 6.2 and provide the haraterization of two lines and two spheres

with in�nitely many real ommon tangent lines.

The setion is strutured as follows. In Setion 6.2.1, we haraterize the set of lines

transversal to two skew lines and tangent to a quadri in terms of algebrai urves; we

study and lassify these so-alled (2; 2)-urves. In Setion 6.2.2, we disuss a normal

form for the sublass of generi urves, whih we all asymmetri smooth (2; 2)-urves.

Then, in Setion 6.2.3, we study the set of quadris whih (for presribed lines `

1

and

`

2

) lead to most (2; 2)-urves. This inludes omputer-algebrai alulations, based on

whih we establish the proof of Theorem 6.2. In Setion 6.2.4, we give some detailed

examples illustrating the geometry desribed by Theorem 6.2, and omplete its proof.

Finally, in Setion 6.2.5, we solve the original question of spheres and give the omplete

haraterization of on�gurations of two lines and two spheres having in�nitely many

lines transversal to the lines and tangent to the spheres. For a preise statement of that

haraterization see Theorems 6.21 and 6.25. Setion 6.2.6 serves an appendix to the

urrent setion and ontains annotated omputer ode used in the proof of Theorem 6.2.

6.2.1 Lines in P

3

meeting 2 lines and tangent to a quadri

We work here over the ground �eld C . First suppose that `

1

and `

2

are lines in P

3

that

meet at a point p and thus span a plane �. Then the ommon transversals to `

1

and `

2

either ontain p or they lie in the plane �. This redues any problem involving ommon

transversals to `

1

and `

2

to a planar problem in P

2

(or R

2

), and so we shall always assume

that `

1

and `

2

are skew. Suh lines have the form

`

1

= fwa+ xb : [w; x℄ 2 P

1

g ;

`

2

= fy+ zd : [y; z℄ 2 P

1

g

(6.3)
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where the points a; b; ; d 2 P

3

are aÆnely independent. We desribe the set of lines

meeting `

1

and `

2

that are also tangent to a smooth quadri Q. We will refer to this set

as the envelope of ommon transversals and tangents, or (when `

1

and `

2

are understood)

simply as the envelope of Q.

The parametrization of (6.3) allows us to identify eah of `

1

and `

2

with P

1

; the point

wa+ xb 2 `

1

is identi�ed with the parameter value [w; x℄ 2 P

1

, and the same for `

2

. We

will use these identi�ations throughout this setion. In this way, any line meeting `

1

and

`

2

an be identi�ed with the pair ([w; x℄; [y; z℄) 2 P

1

�P

1

orresponding to its intersetions

with `

1

and `

2

. By (2.4), the Pl

�

uker oordinates p

`

= p

`

(w; x; y; z) of the transversal `

passing through the points wa+xb and y+zd are separately homogeneous of degree 1 in

eah set of variables fw; xg and fy; zg, alled bihomogeneous of bidegree (1,1) (see, e.g.,

[31, x8.5℄).

By Lemma 2.11, the envelope of ommon transversals to `

1

and `

2

that are also tangent

to Q is given by the ommon transversals ` of `

1

and `

2

whose Pl

�

uker oordinates p

`

additionally satisfy p

`

�

^

2

Q

�

p

`

= 0. This yields a homogeneous equation

F (w; x; y; z) := p

`

(w; x; y; z)

T

�

^

2

Q

�

p

`

(w; x; y; z) = 0 (6.4)

of degree four in the variables w; x; y; z. More preisely, F has the form

F (w; x; y; z) =

2

X

i;j=0



ij

w

i

x

2�i

y

j

z

2�j

(6.5)

with oeÆients 

ij

, that is F is bihomogeneous with bidegree (2; 2). The zero set of a (non-

zero) bihomogeneous polynomial de�nes an algebrai urve in P

1

� P

1

(see the treatment

of projetive elimination theory in [31, x8.5℄). In orrespondene with its bidegree, the

urve de�ned by F is alled a (2; 2)-urve. The nine oeÆients of this polynomial identify

the set of (2; 2)-urves with P

8

.

It is well-known that the Cartesian produt P

1

�P

1

is isomorphi to a smooth quadri

surfae in P

3

[31, Proposition 10 in x 8.6℄. Thus the set of lines meeting `

1

and `

2

and

tangent to the quadri Q is desribed as the intersetion of two quadris in a projetive 3-

spae. When it is smooth, this set is a genus 1 urve [71, Exer. I.7.2(d) and Exer. II.8.4(g)℄.

This set of lines annot be parametrized by polynomials|only genus 0 urves (also alled

rational urves) admit suh parametrizations (see, e.g., [123, Corollary 2 on p.268℄). This

observation is the starting point for our study of ommon transversals and tangents.

Let C be a (2; 2)-urve in P

1

� P

1

de�ned by a bihomogeneous polynomial F of bide-

gree 2. The omponents of C orrespond to the irreduible fators of F , whih are

bihomogeneous of bidegree at most (2; 2). Thus any fators of F must have bidegree

one of (2; 2), (2; 1), (1; 1), (1; 0), or (0; 1). (Sine we are working over C , a homogeneous

quadrati of bidegree (2; 0) fators into two linear fators of bidegree (1; 0).) Reall (for

example, [31℄) a point ([w

0

; x

0

℄; [y

0

; z

0

℄) 2 C � P

1

� P

1

is singular if the gradient rF

vanishes at that point, rF ([w

0

; x

0

℄; [y

0

; z

0

℄) = 0. The urve C is smooth if it does not

ontain a singular point; otherwise C is singular. We lassify (2; 2)-urves, up to hange
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of oordinates on `

1

� `

2

, and interhange of `

1

and `

2

. Note that an (a; b)-urve and a

(; d)-urve meet if either ad 6= 0 or b 6= 0, and the intersetion points are singular on

the union of the two urves.

Lemma 6.10. Let C be a (2; 2)-urve on P

1

� P

1

. Then, up to interhanging the fators

of P

1

� P

1

, C is either

1. smooth and irreduible,

2. singular and irreduible,

3. the union of a (1; 0)-urve and an irreduible (1; 2)-urve,

4. the union of two distint irreduible (1; 1)-urves,

5. a single irreduible (1; 1)-urve, of multipliity two,

6. the union of one irreduible (1; 1)-urve, one (1; 0)-urve, and one (0; 1)-urve,

7. the union of two distint (1; 0)-urves, and two distint (0; 1)-urves,

8. the union of two distint (1; 0)-urves, and one (0; 1)-urve of multipliity two,

9. the union of one (1; 0)-urve, and one (0; 1)-urve, both of multipliity two.

In partiular, when C is smooth it is also irreduible.

When the polynomial F has repeated fators, we are in ases (5), (8), or (9). We study

the form F when the quadri is reduible, that is either when Q has rank 1, so that it

de�nes a double plane, or when Q has rank 2 so that it de�nes the union of two planes.

Lemma 6.11. Suppose Q is a reduible quadri.

(1) If Q has rank 1, then ^

2

Q = 0, and so the form F in (6.4) is identially zero.

(2) Suppose Q has rank 2, so that it de�nes the union of two planes meeting in a line

`. If ` is one of `

1

or `

2

, then the form F in (6.4) is identially zero. Otherwise

the form F is the square of a (1; 1)-form, and hene we are in ases (5) or (9) of

Lemma 6.10.

Proof. The �rst statement is immediate. For the seond, let `

0

be a line in P

3

with

Pl

�

uker oordinates p

`

0

. From the algebrai haraterization of tangeny of Lemma 2.11,

p

T

`

0

�

^

2

Q

�

p

`

0

= 0 implies that the restrition of the quadrati form to `

0

either has a zero

of multipliity two, or it vanishes identially. In either ase, this implies that `

0

meets the

line ` ommon to the two planes. Conversely, if `

0

meets the line `, then p

T

`

0

�

^

2

Q

�

p

`

0

= 0.

Thus if ` equals one of `

1

or `

2

, then p

T

`

0

�

^

2

Q

�

p

`

0

= 0 for every ommon transversal `

0

to `

1

and `

2

, and so the form F is identially zero. Suppose that ` is distint from both

`

1

and `

2

. We observed earlier that the set of lines transversal to `

1

and `

2

that also meet

` is de�ned by a (1; 1)-form G. Sine the (2; 2)-form F de�nes the same set as does the

(1; 1)-form G, we must have that F = G

2

, up to a onstant fator.
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As above, let C be de�ned by the polynomial F . For a �xed point [w; x℄, the restrition

of the polynomial F to [w; x℄� P

1

is a homogeneous quadrati polynomial in y; z. A line

passing through [w; x℄ 2 `

1

and the point of `

2

orresponding to any zero of this restrition

is tangent to Q. This onstrution gives all lines tangent to Q that ontain the point [w; x℄.

We all the zeroes of this restrition the �ber over [w; x℄ of the projetion of C to `

1

.

We investigate these �bers. Consider the polynomial F as a polynomial in the variables

y; z with oeÆients polynomials in w; x. The resulting quadrati polynomial in y; z has

disriminant

 

2

X

i=0



i1

w

i

x

2�i

!

2

� 4

 

2

X

i=0



i0

w

i

x

2�i

! 

2

X

i=0



i2

w

i

x

2�i

!

: (6.6)

Lemma 6.12. If this disriminant vanishes identially, then the polynomial F has a re-

peated fator.

Proof. Let �; �;  be the oeÆients of y

2

; yz; z

2

in the polynomial F , respetively. Then

we have �

2

= 4�, as the disriminant vanishes. Sine the ring of polynomials in w; x is

a unique fatorization domain, either � di�ers from  by a onstant fator, or else both

� and  are squares. If � and  di�er by a onstant fator, then so do � and �. Writing

� = 2d� for some d 2 C , we have

F = �y

2

+ 2d�yz + d

2

�z

2

= �(y + dz)

2

:

If we have � = Æ

2

and  = �

2

for some linear polynomials Æ and �, then

F = Æ

2

y � 2Æ�yz + �

2

z

2

= (Æy � �z)

2

:

When F does not have repeated fators, the disriminant does not vanish identially.

Then the �ber of C over the point [w; x℄ of `

1

onsists of two distint points exatly when

the disriminant does not vanish at [w; x℄. Sine the disriminant has degree 4, there are

at most four �bers of C onsisting of a double point rather than two distint points. We

all the points [w; x℄ of `

1

whose �bers onsist of suh double points rami�ation points

of the projetion from C to `

1

.

This disussion shows how we may parametrize the urve C, at least loally. Suppose

that we have a point [w; x℄ 2 P

1

where the disriminant (6.6) does not vanish. Then we

may solve for [y; z℄ in the polynomial F in terms of [w; x℄. The di�erent branhes of the

square root funtion give loal parametrizations of the urve C.

6.2.2 A normal form for asymmetri smooth (2; 2)-urves

Reall that for any distint points a

1

; a

2

; a

3

2 P

1

and any distint points b

1

; b

2

; b

3

2 P

1

,

there exists a projetive linear transformation (given by a regular 2 � 2-matrix) whih

maps a

i

to b

i

, 1 � i � 3 [31, 106℄.
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Lemma 6.13. If the (2; 2)-urve is smooth then the projetion of C to `

1

has four di�erent

rami�ation points.

Proof. Changing oordinates on `

1

and `

2

by a projetive linear transformation if nees-

sary, we may assume that this projetion to `

1

is rami�ed over [w; x℄ = [1; 0℄, and the

double root of the �ber is at [y; z℄ = [1; 0℄. Restriting the polynomial F (6.5) to the �ber

over [w; x℄ = [1; 0℄ gives the equation



22

y

2

+ 

21

yz + 

20

z

2

= 0 :

Sine we assumed that this has a double root at [y; z℄ = [1; 0℄, we have 

21

= 

22

= 0.

Suppose now that the projetion from C to `

1

is rami�ed at fewer than four points. We

may assume that [w; x℄ = [1; 0℄ is a double root of the disriminant (6.6), whih implies

that the oeÆients of w

4

and w

3

x in (6.6) vanish. The previously derived ondition



21

= 

22

= 0 implies that the oeÆient of w

4

vanishes and the oeÆient of w

3

x beomes

�4

20



12

. If 

20

= 0, then every non-vanishing term of (6.5) depends on x; hene, x divides

F , and so C is reduible, and hene not smooth. If 

12

= 0 then the gradient rF vanishes

at the point ([1; 0℄; [1; 0℄), and so C is not smooth.

Suppose that C is a smooth (2; 2)-urve. Then its projetion to `

1

is rami�ed at four

di�erent points. We further assume that the double points in the rami�ed �bers projet

to at least 3 distint points in `

2

. We all suh a smooth (2; 2)-urve asymmetri. The

hoie of this terminology will beome lear in Setion 6.2.4. We will give a normal form

for suh asymmetri smooth urves.

Hene, we may assume that three of the rami�ation points are [w; x℄ = [0; 1℄, [1; 0℄,

and [1; 1℄, and the double points in these rami�ation �bers our at [y; z℄ = [0; 1℄, [1; 0℄,

and [1; 1℄, respetively. As in the proof of Lemma 6.13, the double point at [y; z℄ = [1; 0℄

in the �ber over [w; x℄ = [1; 0℄ implies that 

21

= 

22

= 0. Similarly, the double point

at [y; z℄ = [0; 1℄ in the �ber over [w; x℄ = [0; 1℄ implies that 

00

= 

01

= 0. Thus the

polynomial F (6.5) beomes



20

w

2

z

2

+ 

10

wxz

2

+ 

11

wxyz + 

12

wxy

2

+ 

02

x

2

y

2

Restriting F to the �ber of [w; x℄ = [1; 1℄ gives



10

z

2

+ 

20

z

2

+ 

11

yz + 

02

y

2

+ 

12

y

2

:

Sine this has a double root at [y; z℄ = [1; 1℄, we must have

�

1

2



11

= 

10

+ 

20

= 

02

+ 

12

:

Dehomogenizing (setting 

11

= �2) and letting 

20

:= s and 

02

:= t for some s; t 2 C , we

obtain the following theorem.
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Theorem 6.14. After projetive linear transformations in `

1

and `

2

, an asymmetri

smooth (2; 2)-urve is the zero set of a polynomial

sw

2

z

2

+ (1�s)wxz

2

� 2wxyz + (1�t)wxy

2

+ tx

2

y

2

; (6.7)

for some (s; t) 2 C

2

satisfying

st(s�1)(t�1)(s�t) 6= 0 : (6.8)

We omplete the proof of Theorem 6.14. The disriminant (6.6) of the polynomial (6.7)

is

4wx(w�x) (s(t�1)w � t(s�1)x) ;

whih has roots at [w; x℄ = [0; 1℄; [1; 0℄; [1; 1℄, and � = [t(s�1); s(t�1)℄. Sine we assumed

that these are distint, the fourth point � must di�er from the �rst three, whih implies

that (s; t) satis�es (6.8). The double point in the �ber over � ours at [y; z℄ = [s�1; t�1℄.

This equals a double point in another rami�ation �ber only for values of the parameters

not allowed by (6.8).

Remark 6.15. These alulations show that smooth (2; 2)-urves exhibit the following

dihotomy. Either the double points in the rami�ation �bers projet to four distint

points in `

2

or to two distint points. They must projet to at least two points, as there

are at most two points in eah �ber of the projetion to `

2

. We showed that if they projet

to at least three, then they projet to four.

We ompute the parameters s and t from the intrinsi geometry of the urve C. Reall

the following de�nition of the ross ratio (see, for example [106, x1.1.4℄).

De�nition 6.16. For four points a

1

; : : : ; a

4

2 P

1

with a

i

= [�

i

; �

i

℄, the ross ratio of

a

1

; : : : ; a

4

is the point of P

1

de�ned by

2

6

6

4

det

�

�

1

�

4

�

1

�

4

�

det

�

�

1

�

3

�

1

�

3

�

;

det

�

�

2

�

4

�

2

�

4

�

det

�

�

2

�

3

�

2

�

3

�

3

7

7

5

:

If the points are of the form a

i

= [1; �

i

℄, this simpli�es to

�

�

4

� �

1

�

3

� �

1

;

�

4

� �

2

�

3

� �

2

�

:

The ross ratio of four points a

1

; a

2

; a

3

; a

4

2 P

1

remains invariant under any projetive

linear transformation.
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The projetion of C to `

1

is rami�ed over the points [w; x℄ = [0; 1℄; [1; 0℄; [1; 1℄ and

� = [t(s � 1); s(t � 1)℄. The ross ratio of these four (ordered) rami�ation points is

[t(s�1); s(t�1)℄. Similarly, the ross ratio of the four (ordered) double points in the

rami�ation �bers is [s�1; t�1℄.

This omputation of ross ratios allows us to ompute the normal form of an asymmet-

ri smooth (2; 2)-urve. Namely, let a

1

; a

2

; a

3

, and a

4

be the four rami�ation points of the

projetion of C to `

1

and b

1

; b

2

; b

3

, and b

4

be the images in `

2

of the orresponding double

points. Let 

1

be the ross ratio of the four points a

1

; a

2

; a

3

, and a

4

(this is well-de�ned,

as ross ratios are invariant under projetive linear transformation). Similarly, let 

2

be

the ross ratio of the points b

1

; b

2

; b

3

, and b

4

. For four distint points, the ross ratio is

an element of C n f0; 1g, so we express 

1

; 

2

as omplex numbers. The invariane of the

ross ratios yields the onditions on s and t

s(t�1)

t(s�1)

= 

1

and

t�1

s�1

= 

2

:

Again, sine 

1

; 

2

2 C n f0; 1g, these two equations have the unique solution

s =



1

(

2

� 1)



2

(

1

� 1)

and t =



2

� 1



1

� 1

:

6.2.3 Proof of the 12 families of onis

We haraterize the quadris Q whih generate the same envelope of tangents as a given

quadri. A symmetri 4� 4 matrix has 10 independent entries whih identi�es the spae

of quadris with P

9

. Central to our analysis is a map ' de�ned for almost all quadris

Q. For a quadri Q (onsidered as a point in P

9

) whose assoiated (2; 2)-form (6.4) is not

identially zero, we let '(Q) be this (2; 2)-form, onsidered as a point in P

8

. With this

de�nition, we see that the Theorem 6.2 is onerned with the �ber '

�1

(C), where C is

the (2; 2)-urve assoiated to a general quadri Q. Sine the domain of ' is 9-dimensional

while its range is 8-dimensional, we expet eah �ber to be 1-dimensional.

We will show that every smooth (2; 2) urve arises as '(Q) for some quadri Q. It is

these quadris that we meant by general quadris in the statement of Theorem 6.2. This

implies that Theorem 6.2 is a onsequene of the following theorem.

Theorem 6.17. Let C 2 P

8

be a smooth (2; 2)-urve. Then the losure '

�1

(C) in P

9

of

the �ber of ' is a urve of degree 24 that is the union of 12 plane onis.

We prove Theorem 6.17 by omputing the ideal J of the �ber '

�1

(C). Then we fator

J into several ideals, whih orresponds to deomposing the urve of degree 24 into the

union of several urves. Finally, we analyze the output of these omputations by hand to

prove the desired result.

Our initial formulation of the problem gives an ideal I that not only de�nes the �ber

of ', but also the subset of P

9

where ' is not de�ned. We identify and remove this subset
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from I in several ostly auxiliary omputations that are performed in the omputer algebra

system Singular [62℄. It is only after removing the exess omponents that we obtain

the ideal J of the �ber '

�1

(C).

Sine we want to analyze this deomposition for every smooth (2; 2)-urve, we must

treat the representation of C as symboli parameters. This leads to additional diÆulties,

whih we irumvent. It is quite remarkable that the omputer-algebrai alulation

sueeds and that it is still possible to analyze its result.

In the following, we denote the oordinates in R

3

and C

3

(� P

3

) by x; y; z and assume

that `

1

is the x-axis. Furthermore, we may apply a projetive linear transformation and

assume without loss of generality that `

2

is the yz-line at in�nity. Thus we have

`

1

= f(w; x; 0; 0)

T

2 P

3

: [w; x℄ 2 P

1

g ;

`

2

= f(0; 0; y; z)

T

2 P

3

: [y; z℄ 2 P

1

g :

Hene, in Pl

�

uker oordinates, the lines interseting `

1

and `

2

are given by

f(0; wy; wz; xy; xz; 0)

T

2 P

5

: [w; x℄; [y; z℄ 2 P

1

g : (6.9)

By Lemma 2.11, the envelope of ommon transversals to `

1

and `

2

that are also tangent

to Q is given by those lines in (6.9) whih additionally satisfy

(0; wy; wz; xy; xz; 0)

�

^

2

Q

�

(0; wy; wz; xy; xz; 0)

T

= 0 : (6.10)

A quadri Q in P

3

is given by the quadrati form assoiated to a symmetri 4� 4-matrix

Q :=

0

B

B

�

a b  d

b e f g

 f h k

d g k l

1

C

C

A

: (6.11)

In a straightforward approah the ideal I of quadris giving a general (2; 2)-urve C is

obtained by �rst expanding the left hand side of (6.10) into

(el�g

2

)x

2

z

2

+ 2(bl�dg)wxz

2

+ (al�d

2

)w

2

z

2

+ 2(ek�gf)x

2

yz + 2(2bk�g�df)wxyz + 2(ak�d)w

2

yz

+ (eh�f

2

)x

2

y

2

+ 2(bh�f)wxy

2

+ (ah�

2

)w

2

y

2

:

(6.12)

We equate this (2; 2)-form with the general (2; 2)-form (6.5), as points in P

8

. This is

aomplished by requiring that they are proportional, or rather that the 2� 9 matrix of

their oeÆients

�



00



10



20



01



11

: : : 

22

el � g

2

2(bl � dg) al � d

2

2(ek � gf) 2(2bk � g � df) : : : ah� 

2

�

has rank 1. Thus the ideal I is generated by the

�

9

2

�

minors of this oeÆient matrix.
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With this formulation, the ideal I will de�ne the �ber '

�1

(C) as well as additional,

exess omponents that we wish to exlude. For example, the variety in P

9

de�ned by the

vanishing of the entries in the seond row of this matrix will lie in the variety I, but these

points are not those that we seek. Geometrially, these exess omponents are preisely

where the map ' is not de�ned. By Lemma 6.11, we an identify three of these exess

omponents, those points of P

9

orresponding to rank 1 quadris, and those orresponding

to rank 2 quadris onsisting of the union of two planes meeting in either `

1

or in `

2

. The

rank one quadris have ideal E

1

generated by the entries of the matrix ^

2

Q, the rank 2

quadris whose planes meet in `

1

have ideal E

2

generated by a; b; ; d; e; f; g, and those

whose plane meets in `

2

have ideal E

3

generated by ; d; f; g; h; k; l.

We remove these exess omponents from our ideal I to obtain an ideal J whose set

of zeroes ontain the �ber '

�1

(C). After fatoring J into its irreduible omponents, we

will observe that ' does not vanish identially on any omponent of J , ompleting the

proof that J is the ideal of '

�1

(C), and also the proof of Theorem 6.17.

Sine 

00

; 

10

; : : : ; 

22

have to be treated as parameters, the omputation should be

arried out over the funtion �eld Q(

00

; 

10

; : : : ; 

22

). That omputation is infeasible.

Even the initial omputation of a Gr

�

obner basis for the ideal I (a neessary prerequisite)

did not terminate in two days. In ontrast, the omputation we �nally desribe termi-

nates in 7 minutes on the same omputer. This is beause the original omputation in

Q(

00

; 

10

; : : : ; 

22

)[a; b; : : : ; l℄ involved too many parameters.

We instead use the 2-parameter normal form (6.7) for asymmetri smooth (2; 2)-urves.

This will prove Theorem 6.17 in the ase when C is an asymmetri smooth (2; 2)-urve. We

treat the remaining ases of symmetri smooth (2; 2)-urves in Setion 6.2.4. As desribed

in Setion 6.2.2, by hanging the oordinates on `

1

and `

2

, every asymmetri smooth (2; 2)-

urve an be transformed into one de�ned by a polynomial in the family (6.7). Equating

the (2; 2)-form (6.12) with the form (6.7) gives the ideal I generated by the following

polynomials:

el � g

2

; ek � gf ; ak � d ; ah� 

2

; (6.13)

and the ten 2� 2 minors of the oeÆient matrix:

M :=

�

s 1� s �2 1� t t

al � d

2

2(bl � dg) 2(2bk � g � df) 2(bh� f) eh� f

2

�

: (6.14)

This ideal I de�nes the same three exess omponents as before, and we must remove

them to obtain the desired ideal J . Although the ideal I should be treated in the ring

S := Q (s; t)[a; b; ; d; e; f; g; h; k; l℄, the neessary alulations are infeasible even in this

ring, and we instead work in subring R := Q [a; b; ; d; e; f; g; h; k; l℄[s; t℄. In the ring R,

the ideal I is homogeneous in the set of variables a; b; : : : ; l, thus de�ning a subvariety

of P

9

� C

2

. The ideals E

1

, E

2

, and E

3

desribing the exess omponents satisfy E

j

� I,

1 � j � 3.
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A Singular omputation shows that I is a �ve-dimensional subvariety of P

9

� C

2

(see Setion 6.2.6 for details). Moreover, the dimensions of the three exess omponents

are 5, 4, and 4, respetively. In fat, it is quite easy to see that dim E

2

= dim E

3

= 4 as

both ideals are de�ned by 7 independent linear equations.

We are faed with a geometri situation of the following form. We have an ideal I

whose variety ontains an exess omponent de�ned by an ideal E and we want to ompute

the ideal of the di�erene

V(I)� V(E) ;

here, V(K) is the variety of an ideal K. Computational algebrai geometry gives us an

e�etive method to aomplish this, namely saturation. The elementary notion is that of

the ideal quotient (I : E), whih is de�ned by

(I : E) := ff 2 R j fg 2 I for all g 2 Eg :

Then the saturation of I with respet to E is

(I : E

1

) :=

1

[

n=1

(I : E

n

) :

The least number n suh that (I : E

1

) = (I : E

n

) is alled the saturation exponent.

Proposition 6.18. ([31, x4.4℄ or [48, x15.10℄ or the referene manual for Singular).

Over an algebraially losed �eld,

V(I : E

1

) = V(I)� V(E) :

A Singular omputation shows that the saturation exponent of the �rst exess ideal

E

1

in I is 1, and so the ideal quotient suÆes to remove the exess omponent V(E

1

) from

V(I). Set I

0

:= (I : E

1

), an ideal of dimension 4. The exess ideals E

2

and E

3

eah have

saturation exponent 4 in I

1

, and so we saturate I

0

with respet to eah to obtain an ideal

J := ( (I

0

: E

1

2

) : E

1

3

), whih has dimension 3 in P

9

� C

2

.

To study the omponents of V(J), we �rst apply the fatorization Gr

�

obner basis al-

gorithm to J , as implemented in the Singular ommand fastd (see [98℄ or the refer-

ene manual of Singular). This algorithm takes two arguments, an ideal I and a list

L = f

1

; : : : ; f

n

of polynomials. It proeeds as in the usual Buhberger algorithm to om-

pute a Gr

�

obner basis for I, exept that whenever it omputes a Gr

�

obner basis element G

that it an fator, it splits the alulation into subalulations, one for eah fator of G

that is not in the list L, adding that fator to the Gr

�

obner basis for the orresponding

subalulation. The output of fastd is a list I

1

; I

2

; : : : ; I

m

of ideals with the property

that

m

[

j=1

V(I

j

) � V(f

1

� � � f

n

) = V(I)� V(f

1

� � � f

n

) :



6.2. Two lines and two quadris 119

Thus, the zero set of I oinides with the union of zero sets of the fators I

j

, in the region

where none of the polynomials in the list L vanish. In terms of saturation, this is

rad(I

1

� � � I

m

: (f

1

f

2

� � � f

n

)

1

) = rad(I : (f

1

f

2

� � � f

n

)

1

) (6.15)

where rad(K) denotes the radial of an ideal K. Some of the ideals I

j

may be spurious

in that V(I

j

) is already ontained in the union of the other V(I

i

).

We run fastd on the ideal J with the list of polynomials s, t, s�1, t�1, and s�t, and

obtain seven omponents J

0

; J

1

; : : : ; J

6

. The omponents J

1

; : : : ; J

6

eah have dimension

3, while the omponent J

0

has dimension 2. Sine V(J

0

) is ontained in the union of the

V(J

1

); : : : ;V(J

6

), it is spurious and so we disregard it.

We now, �nally, hange from the base ring R to the base ring S, and ompute with

the parameters s; t. There, J de�nes an ideal of dimension 1 and degree 24 in the 9-

dimensional projetive spae over the �eld Q (s; t). As we remarked before, we have that

V(J) � '

�1

(C). The fatorization of J into J

1

; : : : ; J

6

remains valid over S. The reason

we did not ompute the fatorization over S is that fastd and the saturations were

infeasible over S, and the arguments from omputational algebrai geometry we have

given show that it suÆes to ompute without parameters, as long as are is taken when

interpreting the output.

Eah of the fators J

i

has dimension 1 and degree 4. Moreover, eah ideal ontains

a homogeneous quadrati polynomial in the variables k; l whih must fator over some

�eld extension of Q(s; t). In fat, these six quadrati polynomials all fator over the �eld

Q(

p

s;

p

t). For example, two of the J

i

ontain the polynomial (s� 1)k

2

� 2kl� l

2

, whih

is the produt

�

(

p

s+1)k + l

� �

(

p

s�1)k � l

�

:

For eah ideal J

i

, the fatorization of the quadrati polynomial indues a fatorization of

J

i

into two ideals J

i1

and J

i2

. Inspeting a Gr

�

obner basis for eah ideal shows that eah

de�nes a plane oni in P

9

. Thus, over the �eld Q (

p

s;

p

t), J de�nes 12 plane onis.

Theorem 6.17 is a onsequene of the following two observations.

(1) The fatorization of J gives 12 distint omponents for all values of the parameters

s; t satisfying (6.8).

(2) The map ' does not vanish identially on any of the omponents V(J

ij

) for values

of the parameters s; t satisfying (6.8).

By (1), no omponent of J is empty for any s; t satisfying (6.8) and thus, for every

asymmetri (2; 2)-urve C, there is a quadri Q with '(Q) = C. Also by (1), J has

exatly 12 omponents with eah a plane oni, for any s; t satisfying (6.8), and by (2),

V(J) = '

�1

(C).
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6.2.4 Symmetri smooth (2; 2)-urves

We investigate smooth urves C whose double points in the rami�ed �bers over `

1

have

only two distint projetions to `

2

. Assume that the rami�ation is at the points [w; x℄ =

[1; 1℄; [1;�1℄; [1; s℄, and at [1;�s℄, for some s 2 C n f0;�1g with the double points in the

�bers at [y; z℄ = [1; 0℄ for the �rst two and at [0; 1℄ for the seond two. Sine the points

[1; 1℄; [1;�1℄; [1; s℄, and [1;�s℄ have ross ratio

�

1 + s

1� s

;

1� s

1 + s

�

=

�

1;

(1� s)

2

(1 + s)

2

�

;

we see that all ross ratios in P

1

nf[1; 0℄; [0; 1℄; [1; 1℄g are obtained for some s 2 C nf0;�1g.

Thus our hoie of rami�ation results in no loss of generality.

As in Setion 6.2.1, these onditions give equations on the oeÆients 

ij

of the general

(2; 2)-urve (6.5):



00

+ 

10

+ 

20

= 0 ; 

01

+ 

11

+ 

21

= 0 ; 

00

� 

10

+ 

20

= 0 ;



01

� 

11

+ 

21

= 0 ; 

02

+ 

12

s + 

22

s

2

= 0 ; 

01

+ 

11

s+ 

21

s

2

= 0 ;



02

� 

12

s+ 

22

s

2

= 0 ; 

01

� 

11

s + 

21

s

2

= 0 :

These equations have the following onsequenes

0 = 

21

= 

01

= 

12

= 

11

= 

10

= 

02

+ 

22

s

2

= 

00

+ 

20

:

Hene after normalizing by setting 

20

= 1, the (2; 2)-form (6.5) beomes

(x

2

� w

2

)y

2

+ 

22

(x

2

� s

2

w

2

)z

2

:

While the hoie of rami�ation points [1; 1℄; [1;�1℄; [1; s℄; [1;�s℄ �xes the parametrization

of `

1

, the double points in the �bers of [1; 0℄ and [0; 1℄ do not �x the parametrization of

`

2

. Thus we are still free to sale the z-oordinate. We normalize this equation setting



22

= �1. We do not simply set 

22

= 1 beause that misses an important real form of

the polynomial. This normalization gives

(x

2

� w

2

)y

2

� (x

2

� s

2

w

2

)z

2

= (y

2

� z

2

)x

2

� (y

2

� s

2

z

2

)w

2

: (6.16)

This shows the equation to be symmetri under the involution [w; x℄ $ [

p

�1z; y℄. This

symmetry is the soure of our terminology for the two lasses of (2; 2)-urves. Also, if

s 62 f�1; 0g, then this is the equation of a smooth (2; 2)-urve. With the hoie of sign

(�), whih we all the urve C(s).

Note that (6.16) is real if s either is real or is purely imaginary (s 2 R

p

�1 ). We

omplete the proof of Theorem 6.2 with the following result for symmetri (2; 2)-urves.
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Theorem 6.19. For eah s 2 C n f�1; 0g, the losure of the �ber '

�1

(C(s)) onsists of

12 distint plane onis. When s 2 R or s 2 R

p

�1 and we use the real form of (6.16)

with the plus sign (+), then exatly 4 of these 12 omponents will be real. If we use the

real form of (6.16) with the minus sign (�), then if s 2 R, all 12 omponents will be real,

but if s 2 R

p

�1, then exatly 4 of these 12 omponents will be real.

Proof. Our proof follows the proof of Theorem 6.17 almost exatly, but with signi�ant

simpli�ations and a ase analysis. The outline is as before, exept that we work over the

ring of parameters Q (s), and �nd no extraneous omponents when we fator the ideal into

omponents. We formulate this as a system of equations, remove the same three exess

omponents, and then fator the resulting ideal. We do this alulation four times, one

for eah hoie of sign (�) in (6.16), and for s 2 R and s 2 R

p

�1. Using Singular

omputations similar to (but substantially simpler than) the one explained in detail in

Setion 6.2.6, we an atually arry out these omputations. Examining the output proves

the result.

We onsider in some detail four ases of the geometry studied in Setion 6.2.1, whih

orrespond to the four real ases of Theorem 6.19. As in Setion 6.2.1, let `

1

be the x-axis

and `

2

be the yz-line at in�nity. Viewed in R

3

, lines transversal to `

1

and `

2

are the set

of lines perpendiular to the x-axis. For a transversal line `, the oordinates [y; z℄ of the

point ` \ `

2

an be interpreted as the slope of ` in the two-dimensional plane orthogonal

to the x-axis.

Consider real quadris given by an equation of the form

x

2

+ (y � y

0

)

2

� z

2

= 1 : (6.17)

The quadris with the plus (+) sign are spheres with enter (0; y

0

; 0)

T

and radius 1,

and those with the minus (�) sign are hyperboloids of one sheet. When jy

0

j > 1 the

quadri does not meet the x-axis. We look at four families of suh quadris: spheres and

hyperboloids that meet and do not meet the x-axis. We remark that quadris whih are

tangent to the x-axis give singular (2; 2)-urves.

First, onsider the resulting (2; 2)-urve

(x

2

� w

2

)y

2

� (x

2

� (1 � y

2

0

)w

2

)z

2

:

Thus we see that these orrespond to the ase s =

p

1� y

2

0

in the parametrization of

symmetri (2; 2)-urves given above (6.16), while in (6.17) and (6.16) the signs (�) or-

respond.

Figures 6.5 and 6.6 display pitures of these four quadris, together with the x-axis,

some tangents perpendiular to the x-axis, and the urve on the quadri where the lines

are tangent.

Remark 6.20. For eah of the spheres, there is another sphere of radius r whih leads

to the same envelope, namely the one with enter (0;�y

0

; 0)

T

.
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(a) (b)

Fig. 6.5: Real quadris not meeting the x-axis.

(a) (b)

Fig. 6.6: Real quadris meeting the x-axis.

The rami�ation of the (2; 2)-urve of tangents perpendiular to the x-axis is evident

from Figures 6.5 and 6.6. When x = �1, there is a single tangent line; this line has slope

[y; z℄ = [1; 0℄, i.e., it is a horizontal line. When x = �

p

1� y

2

0

, there is a single tangent

line, whih is vertial (i.e., whih has slope [y; z℄ = [0; 1℄). Figures 6.5 and 6.6 depit these

lines in ase they are real. In Figure 6.5 we have jy

0

j > 1, and hene the vertial tangent

lines are omplex. All other values of x give two lines perpendiular to the x-axis and

tangent to the quadri, but some have imaginary slope.

The di�erene in the number of real omponents of the �ber '

�1

(C(s)) noted in The-

orem 6.19 is evident in these examples. The spheres and hyperboloid displayed together

are isomorphi under the hange of oordinates z 7!

p

�1 � z, whih interhanges the

transversal tangents of purely imaginary slope for one quadri with the real transversal

tangents of the other and orresponds to the di�erent signs � in (6.17) and (6.16).

For the sphere of Figure 6.5, only 4 of the 12 families are real. One onsists of ellipsoids,

inluding the original sphere, one of hyperboloids of two sheets, and two of hyperboloids of

one sheet. Sine a hyperboloid of two sheets an be seen as an ellipsoid meeting the plane

at in�nity in a oni, we see there are two families of ellipsoids and two of hyperboloids.
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In Figure 6.7, we display one quadri from eah family (exept the family of the sphere),

together with the original sphere, the x-axis, and the urve on the quadri where the lines

perpendiular to the x-axis are tangent to the quadri.

Fig. 6.7: The other three families.

Similarly, the hyperboloid of Figure 6.5 has only 4 of its 12 families real with two

families of ellipsoids and two of hyperboloids. The sphere of Figure 6.6 has only 4 of its

12 families real, and all 4 ontain ellipsoids. In ontrast, the hyperboloid of Figure 6.6

has all 12 of its families real, and they ontain only hyperboloids of one sheet.

6.2.5 Transversals to two lines and tangents to two spheres

We solve the original question of on�gurations of two lines and two spheres for whih

there are in�nitely many real transversals to the two lines that are also tangent to both

spheres. While general quadris are naturally studied in projetive spae P

3

, spheres

naturally live in (the slightly more restrited) aÆne spae R

3

. As noted in Setion 6.2.1,

we treat only skew lines. There are two ases to onsider. Either the two lines are in R

3

or one lies in the plane at in�nity. We work throughout over the real numbers.

Lines in aÆne spae R

3

.

The omplete geometri haraterization of on�gurations where the lines lie in R

3

is

stated in the following theorem and illustrated in Figure 6.8.

Theorem 6.21. Let S

1

and S

2

be two distint spheres and let `

1

and `

2

be two skew lines

in R

3

. There are in�nitely many lines in R

3

that meet `

1

and `

2

and are tangent to S

1

and S

2

in exatly the following ases.

(1) The spheres S

1

and S

2

are tangent to eah other at a point p whih lies on one line,

and the seond line lies in the ommon tangent plane to the spheres at the point

p. The penil of lines through p that also meet the seond line is exatly the set of

ommon transversals to `

1

and `

2

that are also tangent to S

1

and S

2

.
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(2) The lines `

1

and `

2

are eah tangent to both S

1

and S

2

, and they are images of

eah other under a rotation about the line onneting the enters of S

1

and S

2

. If

we rotate `

1

about the line onneting the enters of the spheres, it sweeps out a

hyperboloid of one sheet. One of its rulings ontains `

1

and `

2

, and the lines in the

other ruling are tangent to S

1

and S

2

and meet `

1

and `

2

, exept for those that are

parallel to one of them.

(1) (2)

Fig. 6.8: Examples from Theorem 6.21.

Let `

1

and `

2

be two skew lines. The lass of spheres is not invariant under the set

of projetive linear transformations, but rather under the group generated by rotations,

translations, and saling the oordinates. Thus we an assume that

`

1

=

8

<

:

0

�

0

0

1

1

A

+ x

0

�

1

Æ

0

1

A

: x 2 R

9

=

;

; `

2

=

8

<

:

0

�

0

0

�1

1

A

+ z

0

�

�1

�Æ

0

1

A

: z 2 R

9

=

;

for some Æ 2 R n f0g. As before, there is a one-to-one orrespondene between lines

meeting `

1

and `

2

and pairs (x; z) 2 R

2

. The transversal orresponding to a pair (x; z)

passes through the points (x; Æx; 1)

T

and (z;�Æz;�1)

T

, and has Pl

�

uker oordinates

(z � x;�Æ(x + z);�2;�2Æxz;�(x + z); Æ(z � x))

T

:

Let S

1

have enter (a; b; )

T

and radius r. By Lemma 2.11 and (2.6), the transversals

tangent to S

1

are parametrized by a urve C

1

of degree 4 with equation

0 = 4Æ

2

x

2

z

2

+ 4Æ(b�aÆ)x

2

z +

�

(b�aÆ)

2

+ (1+Æ

2

)((1+)

2

� r

2

)

�

x

2

� 4Æ(b+ aÆ)xz

2

+ 2

�

(r

2

�

2

)(1�Æ

2

) + (1�b

2

) + Æ

2

(a

2

�1)

�

xz (6.18)

� 4(1+)(a+bÆ)x +

�

(b+aÆ)

2

+ (1+Æ

2

)((1�)

2

�r

2

)

�

z

2

+4(�1)(a�bÆ)z + 4(a

2

+ b

2

� r

2

) :

This is a dehomogenized version of the bihomogeneous equation (6.5) of bidegree (2; 2).

Note also that the urve C

1

is de�ned over our ground �eld R. The transversals to `

1

and `

2

tangent to S

2

are parametrized by a similar urve C

2

. There are in�nitely many
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lines whih meet `

1

and `

2

and are tangent to S

1

and S

2

if and only if the urves C

1

and

C

2

have a ommon omponent. That is, if and only if the assoiated polynomials share a

ommon fator. We �rst rule out the ase when the urves are irreduible.

Lemma 6.22. The urve C

1

in (6.18) determines the sphere S

1

uniquely.

Proof. Given the urve (6.18), we an resale the equation suh that the oeÆient of

x

2

z

2

is 4Æ

2

. From the oeÆients of x

2

z and xz

2

we an determine a and b, and then from

the oeÆients of x

2

and z

2

we an determine  and r.

Remark 6.23. By Remark 6.20, Lemma 6.22 does not hold if the lines are allowed to

live in projetive spae P

3

R

. We ome bak to this in Setion 6.2.5.

By Lemma 6.22, there an be in�nitely many ommon transversals to `

1

and `

2

that

are tangent to two spheres only if the urves C

1

and C

2

are reduible. In partiular, this

rules out ases (1) and (2) of Lemma 6.10. Our lassi�ation of fators of (2; 2)-forms in

Lemma 6.10 gives the following possibilities for the ommon irreduible fators (over R) of

C

1

and C

2

, up to interhanging x and z. Either the fator is a ubi (the dehomogenization

of a (2; 1)-form), or it is linear in x and z (the dehomogenization of a (1; 1)-form), or it is

linear in x alone (the dehomogenization of a (1; 0)-form). There is the possibility that the

ommon fator will be an irreduible (over R) quadrati polynomial in x (oming from a

(2; 0)-form), but then this omponent will have no real points, and thus ontributes no

ommon real tangents.

We rule out the possibility of a ommon ubi fator, showing that if C

1

fators

as x � x

0

and a ubi, then the ubi still determines S

1

. The vetor (�Æ;�1; Æx

0

)

T

is perpendiular to the plane through (x

0

; Æx

0

; 1)

T

and `

2

, so the enter of S

1

will be

(x

0

; Æx

0

; 1)

T

+ �(�Æ;�1; Æx

0

)

T

for some non-zero � 2 R. Thus r

2

= �

2

(1 + Æ

2

+ Æ

2

x

2

0

).

Substituting this into (6.18) and dividing by (x�x

0

) we obtain the equation of the ubi:

0 = Æ

2

xz

2

+ Æ(Æ

2

�1)�xz + (1+Æ

2

(1��

2

) + Æ�(1+Æ

2

)x

0

)x

+ Æ(�(1+Æ

2

)� Æx

0

)z

2

+ Æ(Æ

2

�1)�x

0

z + 4Æ�+ (Æ

2

�

2

� Æ

2

� 1)x

0

:

(6.19)

Given only this urve, we an resale its equation so that the oeÆient of xz

2

is Æ

2

, then

if Æ 6= �1, we an uniquely determine �, x

0

and therefore S

1

, too, from the oeÆients of

xz and x.

The uniqueness is still true if Æ = �1. Assume that Æ = 1. Then (6.19) redues to

xz

2

+ (2�� x

0

)z

2

+ (2� �

2

+ 2�x

0

)x + 4�+ (�

2

� 2)x

0

= 0 :

Set � := 2�� x

0

, � := 2� �

2

+ 2�x

0

, and  := 4� + (�

2

� 2)x

0

. We an solve for � and

x

0

in terms of � and �,

� =

��

p

�

2

+ 3� � 6

3

; x

0

=

��� 2

p

�

2

+ 3� � 6

3

:
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(We take the same sign of the square root in both ases). If we substitute these values

into the formula for , we see that the two possible values of  oinide if and only if

�

2

+ 3� � 6 = 0, in whih ase there is only one solution for � and x

0

, so �, �, and 

always determine � and x

0

uniquely and hene S

1

uniquely. The ase Æ = �1 is similar.

We now are left only with the ases when C

1

and C

2

ontain a ommon fator of the

form x � x

0

or xz + sx + tz + u. Suppose the ommon fator is x � x

0

. Then any line

through p := (x

0

; Æx

0

; 1)

T

and a point of `

2

is tangent to S

1

. This is only possible if the

sphere S

1

is tangent to the plane through p and `

2

at the point p. We onlude that if C

1

and C

2

have the ommon fator x � x

0

, then the spheres S

1

and S

2

are tangent to eah

other at the point p = (x

0

; Æx

0

; 1)

T

lying on `

1

and `

2

lies in the ommon tangent plane

to the spheres at the point p. This is ase (1) of Theorem 6.21.

Suppose now that C

1

and C

2

have a ommon irreduible fator xz + sx+ tz + u. We

an solve the equation xz+ sx+ tz +u = 0 uniquely for z in terms of x for general values

of x, or for x in terms of z for general values of z, this gives rise to an isomorphism �

between the projetivizations of `

1

and `

2

. The lines onneting q and �(q) as q runs

through the points of `

1

sweep out a hyperboloid of one sheet. The lines `

1

and `

2

are

ontained in one ruling, and the lines meeting both of them and tangent to S

1

are the

lines in the other ruling.

We need the following geometri statement, whih is an immediate onsequene of

Theorem 6.4.

Corollary 6.24. Let H � R

3

be a hyperboloid of one sheet. If all lines in one of its

rulings are tangent to a sphere S, then H is a hyperboloid of revolution, the enter of the

sphere S is on the axis of rotation and S is tangent to H.

By this orollary, the hyperboloid swept out by the lines meeting `

1

and `

2

and tangent

to S

1

is a hyperboloid of revolution with the enter of S

1

on the axis of rotation. Further-

more, `

1

and `

2

are lines in one the rulings of the hyperboloid, therefore they are images

of eah other under suitable rotation about the axis, the images of `

1

sweep out the whole

hyperboloid, and `

1

, `

2

are both tangent to S

1

. Applying the lemma to S

2

shows that the

enter of S

2

is also on the axis of rotation and `

1

, `

2

are both tangent to S

2

. We annot

have S

1

and S

2

onentri, therefore the axis of rotation is the line through their enters.

This is exatly ase (2) of Theorem 6.21, and we have ompleted its proof.

Lines in projetive spae.

We give the omplete geometri haraterization of on�gurations in real projetive spae

where the line `

2

lies in the plane at in�nity.

Theorem 6.25. Let S

1

and S

2

be two distint spheres and let `

1

lie in R

3

with `

2

a line

at in�nity skew to `

1

. There are in�nitely many lines that meet `

1

and `

2

and are tangent

to S

1

and S

2

in exatly the following ases.
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(1) The spheres S

1

and S

2

are tangent to eah other at a point p whih lies on `

1

, and

`

2

is the line at in�nity in the ommon tangent plane to the spheres at the point p.

The penil of lines through p that lie in this tangent plane are exatly the ommon

transversals to `

1

and `

2

that are also tangent to S

1

and S

2

.

(2) Any line meeting `

1

and `

2

is perpendiular to `

1

and S

1

and S

2

are related to eah

other by multipliation by �1 in the diretions perpendiular to `

1

. Thus we are in

exatly the situation of Remark 6.20 of Setion 6.2.4 as shown in Figures 6.5(a)

and 6.6(a).

Proof. Let � be any plane passing through a point of `

1

and ontaining `

2

. Then ommon

transversals to `

1

and `

2

are lines meeting `

1

that are parallel to �. Choose a Cartesian

oordinate system in R

3

suh that `

1

is the x-axis. Suppose that S

1

has enter (a; b; )

T

and radius r. Let u = (u

1

; u

2

; 0)

T

and v = (v

1

; 0; v

3

)

T

be vetors with u

2

6= 0 and v

3

6= 0

parallel to �. Suh vetors exist as `

1

and `

2

are skew. A ommon transversal to `

1

and `

2

is determined by the intersetion point (x; 0; 0)

T

with `

1

and a diretion vetor

orresponding to the intersetion point with `

2

, whih an be written as u+ zv for some

z 2 R, unless it is parallel to v. Sine S

1

has at most two tangent lines whih meet `

1

that are parallel to v, so by omitting these we are not losing an in�nite family of ommon

transversals/tangents.

The transversals that are tangent to S

1

are parametrized by a urve C

1

in the xz-plane

with equation

0 = v

2

3

x

2

z

2

+ u

2

2

x

2

+ 2v

3

(v

1

� av

3

)xz

2

+ 2(bu

2

v

1

+ u

1

v

3

)xz

+2u

2

(bu

1

�au

2

)x+ ((b

2

+ 

2

�r

2

)v

2

1

�2av

1

v

3

+ (a

2

+ b

2

�r

2

)v

2

3

)z

2

(6.20)

+2((b

2

+ 

2

� r

2

)u

1

v

1

� au

1

v

3

� bu

2

(av

1

+ v

3

))z

+((b

2

+ 

2

� r

2

)u

2

1

� 2abu

1

u

2

+ (a

2

+ 

2

� r

2

)u

2

2

)

The transversals tangent to S

2

are parametrized by a similar urve C

2

. There are in�nitely

many lines that meet `

1

and `

2

and are tangent to S

1

and S

2

if and only if C

1

and C

2

have a ommon nonempty real omponent.

It is easy to see from the oeÆients of xz

2

, xz and x and the onstant term that

if u

1

6= 0 or v

1

6= 0, then C

1

determines a, b,  and r

2

and therefore S

1

uniquely, so if

C

1

is irreduible and u

1

6= 0 or v

1

6= 0, then there annot be in�nitely many ommon

transversals that are tangent to S

1

and S

2

.

Assume now that u

1

= v

1

= 0, this is equivalent to the plane � being perpendiular to

`

1

. From the oeÆient of x we an determine a, and then from the oeÆients of z

2

, z,

and the onstant term we an alulate the quantities � = 

2

�r

2

, � = b, and  = b

2

�r

2

.

The equation (� + r

2

)( + r

2

)� �

2

= 0 is a quadrati equation for r

2

with solutions

r

2

=

1

2

�

���  �

p

(�� )

2

+ 4�

2

�

:

Only the larger root is feasible, even when both are positive, sine both � + r

2

= 

2

and

 + r

2

= b

2

must be non-negative. Hene r

2

, and thus b

2

and 

2

are uniquely determined.
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The values of b

2

, b, and 

2

determine two possible pairs (b; ) whih are negatives of

eah other. This is exatly ase (2) of the theorem. In fat, this ase is illustrated by

Figures 6.5(a) and 6.6(b).

Let us now onsider the ases when C

1

is reduible. As in the proof of Theorem 6.21,

we need only onsider ubis and fators of the form xz + sx+ tz + u, x� x

0

, and z� z

0

.

Assume that C

1

has a omponent with equation xz + sx+ tz + u. As desribed in the

proof of Theorem 6.21, this establishes an isomorphism between the projetivizations of

`

1

and `

2

. The lines onneting the orresponding points of the projetivizations of `

1

and

`

2

sweep out a hyperboli paraboloid. However, the lines in one ruling of the hyperboli

paraboloid annot all be tangent to a sphere, therefore this ase annot our.

Likewise, the fator z�z

0

annot appear, sine it would mean that all the lines through

a point of `

1

parallel to a ertain diretion are tangent to S

1

, whih is learly impossible.

Consider the ase where the equation of C

1

has a fator of x � x

0

. As we saw in the

proof of Theorem 6.21, `

1

meets the sphere S

1

at the point p := (x

0

; 0; 0)

T

, and `

2

lies in

the tangent plane to S

1

at p, and so this tangent plane is parallel to �.

If x � x

0

is a fator of C

2

, too, then C

2

passes through p and its tangent plane there

is also parallel to �, so we have ase (1) of the theorem.

To �nish the proof we investigate what happens if the ommon omponent of C

1

and

C

2

is the ubi obtained from C

1

after removing the line x� x

0

= 0.

The enter of S

1

has oordinates (x

0

+�u

2

v

3

;��u

1

v

3

;��u

2

v

1

)

T

for some � 2 R, sine

S

1

passes through (x

0

; 0; 0)

T

and its tangent plane there is parallel to �, and we have

r

2

= �

2

(u

2

1

v

2

3

+ u

2

2

v

2

1

+ u

2

2

v

2

3

). Substituting this into (6.20) we obtain the equation of the

remaining ubi,

v

2

3

xz

2

+ u

2

2

x� v

3

(x

0

v

3

+ 2�u

2

(v

2

1

+ v

2

3

))z

2

�4�u

1

u

2

v

1

v

3

z � u

2

(x

0

u

2

+ 2�v

3

(u

2

1

+ u

2

2

)) = 0:

If u

1

6= 0 or v

1

6= 0 then from the oeÆients of this urve we an determine x

0

and �,

hene S

1

uniquely, so C

1

and C

2

annot have a ommon ubi omponent. If u

1

= v

1

= 0

then the above equation fatorizes as

(x� (2�u

2

v

3

+ x

0

))(v

2

3

z

2

+ u

2

2

) = 0;

so if C

2

ontains the urve de�ned by this equation, then the line x� (2�u

2

v

3

+x

0

) = 0 is

a ommon omponent of both C

1

and C

2

, whih is a ase we have already dealt with.

6.2.6 Appendix: Calulations from Setion 6.2.3

We desribe the omputation of Setion 6.2.3 in muh more detail, giving a ommen-

tary on the Singular �le that aomplishes the omputation and displaying its output.

In our desription of the Singular omputation, we follow Setion 4.2.2. The library

primde.lib ontains the funtion sat for saturating ideals.



6.2. Two lines and two quadris 129

LIB "primde.lib";

option(redSB);

We initialize our ring.

ring R = 0, (s,t,a,b,,d,e,f,g,h,k,l), (dp(2), dp(10));

The underlying oeÆient �eld has harateristi 0 (so it is Q) and variables s; t; a; : : : ; k; l,

with a produt term order hosen to simplify our analysis of the projetion to C

2

, the

spae of parameters.

We onsider the ideal generated by (6.13)

ideal I = el-g^2, ek-gf, ak-d, ah-^2;

and by the 2� 2 minors of the oeÆient matrix (6.14).

matrix M[2℄[5℄ = s , 1-s , -2 , 1-t , t ,

al-d^2, 2*(bl-dg), 2*(2bk-g-df), 2*(bh-f), eh-f^2;

I = I + minor(M,2);

We hek the dimension and degree of the variety V(I), �rst omputing a Gr

�

obner basis

for I.

I = std(I); dim(I), mult(I);

// 6 8

Singular gives the dimension of V(I) in aÆne spae C

12

. Sine I is homogeneous in the

variables a; b; : : : ; h; k; l, we onsider V(I) to be a subvariety of P

9

� C

2

. Its dimension

is one less than that of the orresponding aÆne variety. Thus V(I) has dimension 5 and

degree 8.

In Setion 6.2.3, we identi�ed three spurious omponents of V(I) whih we remove.

The �rst and largest is the ideal of rank 1 quadris, given by the 2 � 2-minors of the

4� 4-symmetri matrix (6.11).

matrix Q[4℄[4℄ = a , b ,  , d ,

b , e , f , g ,

 , f , h , k ,

d , g , k , l ;

ideal E1 = std(minor(Q,2));

We remove this spurious omponent, omputing the quotient ideal (I : E

1

).

I = std(quotient(I,E1)); dim(I), mult(I);

// 5 20

The other two spurious omponents desribe rank 2 quadris whih are unions of two

planes with intersetion line `

1

or `

2

.
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ideal E2 = g, f, e, d, , b, a; // intersetion line l1

ideal E3 = l, k, h, g, f, d, ; // intersetion line l2

The orresponding omponents are not redued; rather than take ideal quotients, we

saturate the ideal I with respet to these spurious ideals. The Singular ommand sat

for saturation returns a pair whose �rst omponent is a Gr

�

obner basis of the saturation

and the seond is the saturation exponent. Here, both saturations have exponent 4. We

saturate I with respet to E

2

,

I = sat(I,E2)[1℄; dim(I), mult(I);

// 5 10

and then with respet to E

3

.

ideal J = sat(I,E3)[1℄; dim(J), mult(J);

// 4 120

Thus we now have a variety V(J) of dimension 3 in P

9

� C

2

. We hek that it projets

onto the spae C

2

of parameters by eliminating the variables a; b; : : : ; h; k; l from J .

eliminate(J, abdefghkl);

// _[1℄=0

Sine we obtain the zero ideal, the image of V(J) is Zariski dense in C

2

[31, Chapter 4,

x4℄. However, the projetion P

9

� C

2

� C

2

is a losed map, so the image of V(J) is

C

2

. Thus, for every smooth (2; 2)-urve C de�ned by (6.7), there is a quadri whose

transversal tangents are desribed by the urve C.

We now apply the fatorization Gr

�

obner basis algorithm fastd to J . The seond

argument of fastd is the list of non-zero onstraints whih are given by Theorem 6.14.

ideal L = s, t, t-1, s-1, s-t;

list F = fastd(J,L);

Singular omputes seven fators

size(F);

// 7

Sine J and the seven fators L

1

; : : : ; L

7

are radial ideals, this fatorization an be veri�ed

by heking that that the following ideals V

1

and V

2

oinide.

int i;

ideal FF = 1;

for (i = 1; i <= 7; i++) { FF = interset(FF,F[i℄); }

ideal V1, V2;

V1 = std(sat(sat(sat(sat(sat(FF,t)[1℄,s)[1℄,t-1)[1℄,s-1)[1℄,s-t)[1℄);

V2 = std(sat(sat(sat(sat(sat(J ,t)[1℄,s)[1℄,t-1)[1℄,s-1)[1℄,s-t)[1℄);
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Note, in partiular, that for any given expliit values of s; t satisfying the non-zero

onditions, the parametri fatorization (in s; t) produed by fastd an be speialized

to an expliit fatorization.

We examine the ideals in the list F , working over the ring with parameters.

ring S = (0,s,t), (a,b,,d,e,f,g,h,k,l), lp; short = 0;

First, the ideal J has dimension 1 and degree 24 over this ring, as laimed.

ideal JS = std(imap(R,J)); dim(JS), mult(JS);

// 2 24

The �rst ideal in the list L has dimension 0.

setring R; FR = F[1℄; setring S;

FS = std(imap(R,FR)); dim(FS), mult(FS);

// 1 4

This ideal is a spurious omponent from the fatorization. It is ontained in the spurious

ideal E

2

.

FS[5℄, FS[6℄, FS[7℄, FS[8℄, FS[9℄, FS[10℄, FS[11℄;

// g f e d  b a

The other six omponents eah have dimension 1 and degree 4, and eah ontains a

homogeneous quadrati polynomial in the variables x and y.

for (i = 2; i <= 7; i++) {

setring R; FR = F[i℄; setring S;

FS = std(imap(R,FR)); dim(FS), mult(FS);

FS[1℄;

print("--------------------------------");

}

// 2 4

// (-s^2+2*s-1)*k^2+(2*s-2)*k*l+(s*t-1)*l^2

// --------------------------------

// 2 4

// (s-1)*k^2-2*k*l-l^2

// --------------------------------

// 2 4

// (s^2-2*s+1)*k^2+(-2*s+2)*k*l+(-t+1)*l^2

// --------------------------------

// 2 4

// (s^2-2*s+1)*k^2+(-2*s+2)*k*l+(-t+1)*l^2

// --------------------------------
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// 2 4

// (s-1)*k^2-2*k*l-l^2

// --------------------------------

// 2 4

// (-s^2+2*s-1)*k^2+(2*s-2)*k*l+(s*t-1)*l^2

// --------------------------------

The whole omputation takes 7 minutes CPU time on an 800 Mhz Pentium III pro-

essor, and 3 minutes of that time are spent on the fastd operation.

Eah of these homogeneous quadrati polynomials fators over Q(

p

s;

p

t), and indues

a fatorization of the orresponding ideal. We desribe this fatorization|whih is arried

out by hand|in detail for the seond omponent F

2

. We start from the Gr

�

obner basis of

the ideal F

2

omputed in the program above,

(s� 1)k

2

� 2kl � l

2

; (s� 1)h+ (2t� 2)k + (t� 1)l; f l � gk;

el � g

2

; d+ f + g; ; 2b+ e; a;

(s� 1)fk � 2gk � gl; (s� 1)f

2

� 2fg � g

2

; ek � fg :

(6.21)

Over Q (

p

s;

p

t), the �rst polynomial fators into

�

(

p

s + 1)k + l

� �

(

p

s� 1)k � l

�

:

We onsider the �rst fator; the seond one an be treated similarly. Substituting l =

�(

p

s+ 1)k into the generator fl � gk, that one fators into

�k

�

(

p

s+ 1)f + g

�

:

Sine any zero of F

2

with k = 0 would imply a =  = d = f = g = h = k = l = 0 and thus

be ontained in V(E

3

), we an divide by k and obtain a linear polynomial. Altogether,

the �rst two rows of (6.21) beome a set of seven independent linear polynomials and one

quadrati polynomial el� g

2

. For any pair (s; t) satisfying (6.8) they de�ne a plane oni.

It an be veri�ed that the three polynomials in the third row are ontained in the ideal

generated by the �rst two rows.

In order to show that for none of the parameters s, t satisfying (6.8) the map ' vanishes

identially on this oni, onsider the following point p on it:

(0; �(

p

s+ 1)(s� 1); 0; �2

p

s(s� 1); 2(

p

s+ 1)(s� 1); �2(s� 1);

2(

p

s+ 1)(s� 1); 4(t� 1)� 2(t� 1)(

p

s+ 1); �2(s� 1); 2(

p

s+ 1)(s� 1))

2

:

The oeÆient of w

2

z

2

in '(C) is

�4s(

p

s� 1)

2

(

p

s+ 1)

2

;

so '(C) does not not vanish identially.
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In order to show that for all parameters s, t satisfying (6.8) the 12 onis are distint,

onsider the quadrati polynomials in k and l in the Singular output above. In the

fatorization over Q (

p

s;

p

t), the ideal of eah of the 12 onis ontains a generator whih

is linear in k and l and independent of a; : : : ; h. To show the distintness of two onis,

we distinguish two ases.

If these linear homogeneous polynomials are distint (over Q (s; t)), then it an be

heked that for every given pair (s; t) they de�ne subspaes whose restritions to (k; l) 6=

(0; 0) are disjoint.

In ase that the linear homogeneous polynomials oinide then it an be expliitly

heked that both onis are distint. For example, both F

2

and F

5

ontain the fator

(

p

s + 1)k + l in the �rst polynomial. As seen above, the orresponding oni of F

2

is

ontained in the subspae a =  = 0. Similarly, the orresponding oni of F

5

is ontained

in e = g = 0. Assuming that the two onis are equal for some pair (s; t), the equations

of the ideals an be used to show further a = b =  = � � � = h = 0. However, due to the

saturation with the exess omponent E

2

this is not possible, and hene the two onis

are distint.

The same alulations an be arried out for the other omponents.
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7. ALGORITHMIC COMPLEXITY OF VISIBILITY

COMPUTATIONS WITH MOVING VIEWPOINTS

We investigate the omputational omplexity of visibility problems with moving view-

points. The results omplement our results from the previous setions on the underlying

algebrai omplexity of these algorithmi problems.

Before stating our main results preisely, we review the neessary omplexity-theoreti-

al framework in Setion 7.1. After formally introduing the omplexity-theoretial prob-

lems in Setion 7.2, we state our main results in Setion 7.3.

In Setion 7.4, we determine the omputational omplexity of the onsidered visibility

problems for variable dimension. Then, in Setion 7.5, we use the real algebrai-geometri

tehnique of real quanti�er elimination to establish polynomial solvability results for �xed

dimension. In Setion 7.6, we establish onnetions between our omplexity-theoretial

results and the algebrai-geometri results from the earlier setions. Finally, in Setion 7.7,

we disuss the relationship between our hardness results and the number-theoretial view

obstrution problem.

7.1 Geometri objets and the model of omputation

The geometri objets relevant for the omplexity-theoretial investigations are onvex

bodies as introdued in Setion 2.1.1. Whereas in earlier setions, we used well-known

lassial geometri frameworks, for our urrent omplexity-theoretial investigations we

would like to reall the underlying geometri omputation models.

Our model of omputation is the binary Turing mahine: all relevant onvex bodies

an be presented by ertain rational numbers, and the size of the input is de�ned as the

length of the binary enoding of the input data (see, e.g., [57, 65, 67℄).

Spei�ally, a B-presentation of a `rational' ball B is a triple (n; ; �) with n 2 N ,  2

Q

n

, and � 2 (0;1)\Q . B and (n; ; �) are then related via B = fx 2 R

n

: jjx�jj

2

� �g.

Let B

n

2

denote the lass of all B-balls in R

n

, and set B

2

=

S

n2N

B

n

2

.

Remark 7.1. In a more restritive model of balls we might require that the radius itself is

rational. Although we will not disuss that model further, we remark that our omplexity

results hold in that model in the same way.

For rational polytopes we distinguish between H- and V-presentations [65℄. A V-

polytope is a polytope P that is represented by integers n, k, and points v

1

; : : : ; v

k

2 Q

n
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suh that P = onv(fv

1

; : : : ; v

k

g), i.e., P is the onvex hull of v

1

; : : : ; v

k

. An H-polytope

is a polytope P that is represented by integers n, k, a rational k � n-matrix A, and a

vetor b 2 Q

k

suh that P = fx 2 R

n

: Ax � bg.

Let P

n

H

and P

n

V

denote the lasses of H- and V-polytopes in R

n

, respetively, and

set P

H

=

S

n2N

P

n

H

, P

V

=

S

n2N

P

n

V

. For �xed dimension H- and V-presentations of a

polytope an be onverted into eah other in polynomial time. If, however, the dimension

is part of the input then the size of one presentation may be exponential in the size of the

other [92℄.

In some problems under onsideration, we will onsider single points instead of balls

or polytopes. In this ase we speak of a degenerated body.

7.2 Partial visibility and quadrant visibility

We onsider the fundamental visibility problem with moving viewpoints as introdued in

Setion 2.2.1. Here, we onsider a sene in n-dimensional spae onsisting of m+1 onvex

bodies B

0

; B

1

; : : : ; B

m

from a lass X , where X 2 fB

2

;P

H

;P

V

g.

For the omplexity-theoretial investigations it is quite ruial whih information is

part of the input of the problem. Thus let us reall the formal de�nition of the main

problem PARTIAL VISIBILITY with respet to a given body lass X . Note that the

dimension is part of the input.

Problem PARTIAL VISIBILITY

X

:

Instane: m, n, bodies B

0

; B

1

; : : : ; B

m

� R

n

from the lass X .

Question: Deide whether B

0

is partially visible with respet to B

1

; : : : ; B

m

.

Our hardness results for this problem will exploit the property that in the de�nition of

partial visibility every viewpoint outside of onv(

S

m

i=1

B

i

) is allowed. In order to show that

similar hardness results also hold for visibility problems with more restrited viewpoint

regions we also investigate the following problem QUADRANT VISIBILITY.

We all B

0

partially visible from the positive orthant (with respet to B

1

; : : : ; B

m

) if

there exists a viewpoint v 2 (0;1)

n

n onv([

m

i=1

B

i

) suh that B

0

is partially visible from

v.

Problem QUADRANT VISIBILITY

X

:

Instane: m, n, bodies B

0

; B

1

; : : : ; B

m

� R

n

from the lass X .

Question: Deide whether B

0

is partially visible from the positive orthant with

respet to B

1

; : : : ; B

m

.

We add the index ; if the input bodies B

0

; : : : ; B

m

are required to be disjoint. Fur-

thermore we add the index � if B

0

is a degenerated body that onsists of a single point

in the origin (e.g., PARTIAL VISIBILITY

B

2

;�;;

). If X = P

H

or X = P

V

, we will usually

denote the bodies by P

0

; : : : ; P

m

.
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Ray sets. In the next setions, the following notation will be onvenient. A ray whih

issues from the origin is alled a entral ray. For a set A � R

n

let pos A = f

P

k

i=1

�

i

x

i

:

fx

1

; : : : ; x

k

g � A; �

1

; : : : ; �

k

� 0; k 2 Ng denote the positive hull of A. For a set

A � R

n

nf0g let the entral ray set of A be the set of entral rays de�ned by the elements

of A. A entral ray set R overs a set B � R

n

nf0g if the entral ray set of B is ontained

in R.

7.3 Main omplexity results

We analyze the binary Turing mahine omplexity of the visibility problems for the ase

of variable dimension. Our main intratability results are summarized in the following

theorem.

Theorem 7.2. (a) For X 2 fB

2

;P

H

;P

V

g the problems PARTIAL VISIBILITY

X

and

QUADRANT VISIBILITY

X

are NP-hard. This statement remains true if the bodies are

disjoint and/or if B

0

(or P

0

, respetively) is a single point loated in the origin.

(b) For X 2 fP

H

;P

V

g the problems PARTIAL VISIBILITY

X ;�

and QUADRANT VIS-

IBILITY

X

are NP-omplete.

These hardness results are ontrasted by the following positive results for �xed dimen-

sion.

Theorem 7.3. Let the dimension n be a �xed onstant. For X 2 fB

2

;P

H

;P

V

g, the prob-

lems PARTIAL VISIBILITY

X

and QUADRANT VISIBILITY

X

an be solved in polyno-

mial time.

7.4 Complexity results for variable dimension

7.4.1 Idea of the hardness proofs

Let us onsider the ase where the body B

0

is a degenerated body loated in the origin.

In order to show NP-hardness, we provide redutions from the well-known NP-omplete

3-satis�ability (3-SAT) problem [57℄. Let C = C

1

^ : : : ^ C

k

denote a 3-SAT formula with

lauses C

1

; : : : ; C

k

in the variables y

1

; : : : ; y

n

. Further, let y

i

denote the omplement of a

variable y

i

, and let the literals y

1

i

and y

0

i

be de�ned by y

1

i

= y

i

, y

0

i

= y

i

. Let the lause C

i

be of the form

C

i

= y

e

i

1

i

1

_ y

e

i

2

i

2

_ y

e

i

3

i

3

; (7.1)

where e

i

1

; e

i

2

; e

i

3

2 f0; 1g and 1 � i

1

; i

2

; i

3

� n are pairwise di�erent indies.

Eah of the redutions onsists of two ingredients. First we enfore that any entral

visibility ray has a diretion whih is lose to a diretion in the set f�1; 1g

n

. For this

purpose, onsider the ube [�1; 1℄

n

. For eah of the 2n faets of the ube we onstrut
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x1x1 x1

(a) Plaing strutural bodies (b) Vertex simplies

Fig. 7.1: Imposing disrete struture

a suitable body (a ball or a polytope) whose positive hull overs the whole faet with

the exeption of \regions near the verties". We all these bodies strutural bodies. Fig-

ure 7.1(a) shows the situation for the 3-dimensional ase of a ball. Any entral visibility

ray an then be naturally assoiated with a entral ray in one of the diretions f�1; 1g

n

;

this imposes a disrete struture on the problem. The 2n strutural bodies are always

part of the onstrution, independent of the spei� 3-SAT formula. The positions of

eah of these 2n bodies will depend linearly on some positive parameter . In fat, all

bodies an be moved radially and their size be appropriately adjusted so that the ruial

overing properties persist. The parameters will be used later to make the bodies disjoint.

In order to de�ne the \region near a vertex" we onsider Figure 7.1(b). For every vertex

v of [�1; 1℄

n

let the vertex simplex of v be de�ned as the onvex hull of v and those n

points whih result by dividing exatly one omponent of v by 2. The onstrution will

be suh that any point in the boundary of [�1; 1℄

n

that is not overed by the entral ray

set of a strutural body will be ontained in some vertex simplex.

In the seond step, we relate satisfying assignments of a lause (7.1) to ertain en-

tral visibility rays. Let t : fTrue;Falseg ! f�1; 1g be de�ned by t(True) = 1 and

t(False) = �1. Then, more preisely, we establish a orrespondene between a truth as-

signment a = (a

1

; : : : ; a

n

)

T

2 fTrue;Falseg

n

to the variables y

1

; : : : ; y

n

and the entral

ray with diretion (t(a

1

); : : : ; t(a

n

))

T

.

For this purpose, let us onsider the lause (7.1), and without loss of generality let

e

i

1

= 0, e

i

2

= 1, e

i

3

= 0. Then we want to ensure that neither one of the 2

n�3

entral rays

in fx 2 f�1; 1g

n

: x

i

1

= 1; x

i

2

= �1; x

i

3

= 1g nor a ray de�ned by the orresponding

vertex simplex an be a visibility ray. Hene, we onstrut a body whose entral ray set

ompletely overs an (n � 3)-dimensional fae of the ube [�1; 1℄

n

but whih does not

over any vertex not belonging to this fae. Similar to the strutural bodies, the positions

of eah body depends linearly on some positive parameter Æ. Again, the parameters will

be spei�ed later so as to ahieve disjointness of the bodies. The bodies whih represent

the lauses are alled lause bodies.

The onstrution will guarantee that a truth assignment a is a satisfying assignment
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for the 3-SAT formula C if and only there exists a visibility ray for B

0

.

7.4.2 The ase of balls

For p 2 R

n

, q 2 R

n

n f0g, let d(p; [0;1)q) denote the Eulidean distane of p 2 R

n

from

the entral ray [0;1)q. In the �rst lemma we ompute some distanes needed within the

onstrution.

Lemma 7.4. (a) Let n � 3,  > 0, 0 � � � 1, p =  � (1; 0; : : : ; 0)

T

, and q =

(1; : : : ; 1; �)

T

2 R

n

. Then

d(p; [0;1)q)

2

= 

2

�

1�

1

n� 1 + �

2

�

:

(b) Let n � 4, Æ > 0, �1 � � � 1, p = Æ � (1;�1; 1; 0; : : : ; 0)

T

, and q = (1;�1; �; 1; : : : ;

1)

T

2 R

n

. Then

d(p; [0;1)q)

2

= Æ

2

�

3�

(2 + �)

2

n� 1 + �

2

�

:

Proof. (a) For � 2 R, let q

�

:= � � q. The parameter � for whih the minimum distane of

Rq to p is attained satis�es q

�

� (p� q

�

) = 0. Hene,

�( � �)� (n� 2)�

2

� �

2

�

2

= 0 ;

whose nontrivial solution is � = =(n� 1 + �

2

) > 0. For this value of � we obtain

d(p; [0;1)q)

2

= 

2

 

�

1

n� 1 + �

2

� 1

�

2

+ (n� 2)

�

1

n� 1 + �

2

�

2

+

�

�

n� 1 + �

2

�

2

!

= 

2

�

1�

1

n� 1 + �

2

�

:

(b) Here,

2�(�� Æ) + ��(��� Æ) + (n� 3)�

2

= 0

has the nontrivial solution � = Æ(2 + �)=(n� 1 + �

2

) > 0. Hene,

d(p; [0;1)q)

2

= Æ

2

 

2

�

2 + �

n� 1 + �

2

� 1

�

2

+

�

(2 + �)�

n� 1 + �

2

� 1

�

2

+ (n� 3)

�

2 + �

n� 1 + �

2

�

2

!

= Æ

2

�

3�

(2 + �)

2

n� 1 + �

2

�

:
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x1
s1 x1
s1 x1
s1

Fig. 7.2: Computing the distane from the diagonal rays

Lemma 7.5. PARTIAL VISIBILITY

B

2

;�;;

is NP-hard.

Proof. We omplete the onstrution outlined so as to provide a polynomial time redution

from 3-SAT to PARTIAL VISIBILITY

B

2

;�;;

. Without loss of generality let n � 4.

Let us onsider the 2n strutural balls S

i

(

i

) = (n; s

i

(

i

); �

i

(

i

)), 1 � i � 2n, where

s

i

(

i

) 2 R

n

and �

i

(

i

) > 0 are the enter and the square of the radius of S

i

, and 

i

is the

saling parameter of S

i

as desribed above. Naturally, we plae these balls symmetrially

so that so that their enters lie on oordinate axes, i.e., let

s

i

(

i

) = 

i

e

i

and s

n+i

(

n+i

) = �

n+i

e

i

;

where e

i

denotes the i-th standard unit vetor, 1 � i � n.

In order to speify the squares of the radii �

i

(

i

) of the strutural balls, let us onsider

S

1

(

1

). For onveniene of notation, we omit to state the index 1 and the dependene on

 = 

1

, and shortly write S = (n; s; �). See also Figure 7.1(a). The onstrution of the

other balls is done analogously.

In order to impose the disrete struture we will satisfy the following two onditions.

Firstly, pos(S) must not ontain the verties f1g�f�1; 1g

n

. Seondly, pos(S) must over

those points whih result from the verties of the faet f1g � [�1; 1℄

n�1

after dividing

exatly one of the last n � 1 omponents by 2. The two onditions will yield an upper

and a lower bound for �.

We start with the �rst ondition. Sine any of the entral rays f1g�f�1; 1g

n�1

has the

same distane from the enter s, it suÆes to onsider q = (1; 1; : : : ; 1)

T

(see Figure 7.2).

Hene, by hoosing � = 1 in Lemma 7.4(a),

d(s; [0;1)q)

2

= 

2

n� 1

n

:

Consequently, we have to hoose � < 

2

(n� 1)=n. For the seond ondition, onsider the

point q = (1; : : : ; 1; 1=2)

T

. Then, hoosing � = 1=2 in Lemma 7.4(a) yields

d(s; [0;1)q)

2

= 

2

4n� 7

4n� 3

:
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Therefore, a ball entered in s with square of the radius � satisfying



2

4n� 7

4n� 3

< � < 

2

n� 1

n

guarantees the two onditions. The onstrution of strutural balls for all 2n faets guar-

antees that any point in a faet of [�1; 1℄

n

that is not overed by the entral ray set of a

strutural ball is ontained in a faet of some vertex simplex.

Now we an turn towards onstruting the balls C

i

(Æ

i

) = (

i

(Æ

i

); �

i

(Æ

i

)), 1 � i � k,

representing the k lauses. For notational onveniene we assume that the lause is

given by y

0

1

_ y

1

2

_ y

0

3

, and abbreviate the ball for this lause by C = (n; ; �) (assum-

ing impliitly the dependene on the parameter Æ := Æ

i

in this notation). By setting

 = Æ(1;�1; 1; 0; : : : ; 0)

T

, all the Boolean variables y

4

; : : : ; y

n

are treated in a uniform

way. The rotation axis of the resulting entral ray set is the entral ray spanned by

(1;�1; 1; 0; : : : ; 0)

T

.

In order to represent the given lause by the ballC we guarantee the following two prop-

erties. First, none of the vetors in f�1; 1g

n

n(1;�1; 1)�f�1; 1g

n�3

must be overed by the

entral ray set of the ball. Among this set of vetors, the vetor q = (1;�1;�1; 1; : : : ; 1)

T

leads to the smallest distane. Choosing � = �1 in Lemma 7.4(b) implies

d(; [0;1)q)

2

= Æ

2

3n� 1

n

whih yields the ondition � < Æ

2

(3n� 1)=n.

Moreover, we guarantee the following seond property. The entral ray set of C

must over all the points in (1;�1; 1) � f�1; 1g

n�3

as well as their vertex simplies.

Among all these points and among the verties of the vertex simplies, the vetor q =

(1;�1; 1=2; 1; : : : ; 1)

T

has largest distane from . Lemma 7.4(b) with � = 1=2 implies

d(; [0;1)q)

2

= Æ

2

12n� 34

4n� 3

:

Hene, a ball entered in  with square of the radius � satisfying

Æ

2

12n� 34

4n� 3

< � < Æ

2

3n� 1

n

guarantees the two onditions for the lause ball. Note that the upper bound implies that

the origin is not ontained in the ball.

As yet, the de�nitions of the 2n strutural balls and the k lause balls depend on the

positive parameters 

1

; : : : ; 

2n

and Æ

1

; : : : ; Æ

k

, respetively. Finally, by hoosing these

parameters appropriately, we make the balls disjoint. Sine �

i

< 

2

i

(n � 1)=n for the

strutural balls, we hoose the parameter 

i

of the i-th strutural ball suessively so that



i

� 

i

r

n� 1

n

> 

i�1

+ 

i�1

r

n� 1

n

:
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Setting 

0

= 1, this leads to



i

>

0

�

1 +

q

n�1

n

1�

q

n�1

n

1

A

i

=

�

2n� 1 + 2

p

n � (n� 1)

�

i

:

Hene, hoosing 

i

= (4n � 1)

i

for 1 � i � 2n guarantees that the strutural balls are

pairwise disjoint. The binary logarithm of these numbers grows only polynomially in the

number of balls. Hene, indutively, we an hoose the enters and the squares of the

radii of the strutural balls as rational numbers of polynomial size. The same method

applies to the parameters Æ

1

; : : : ; Æ

k

of the lause balls. In partiular, when also hoosing

Æ

1

suÆiently large, then the lause balls are disjoint from the strutural balls.

Now we show that the given 3-SAT formula C an be satis�ed if and only if B

0

is

partially visible. Let a = (a

1

; : : : ; a

n

)

T

be a satisfying assignment of C. Then there does

not exist any ball B in the onstrution whose entral ray set intersets with the entral

ray in diretion (t(a

1

); : : : ; t(a

n

))

T

. Hene, B

0

is partially visible. Conversely, let b be a

visibility ray for B

0

. Due to the strutural balls the ray b intersets with the vertex simplex

of some vetor v 2 f�1; 1g

n

. Consequently, the truth assignment (t

�1

(v

1

); : : : ; t

�1

(v

n

))

T

is a satisfying assignment beause otherwise the entral ray set of some lause ball would

ontain the vertex simplex of v. Hene, C an be satis�ed.

Corollary 7.6. PARTIAL VISIBILITY

B

2

;;

is NP-hard.

Proof. The proof for the ase that B

0

is a single point generalizes to the ase of a non-

degenerated ball entered in 0 with some square of the radius �

0

> 0 by the following

onsideration. Let 0 < �

0

< minf�

1

; : : : ; �

2n

; �

1

; : : : �

k

g, where S

i

= (n; s

i

; �

i

) and C

j

=

(n; 

j

; �

j

) are the strutural balls and the lause balls in the proof of Lemma 7.5. Further,

let B

0

0

= (n; 0; �

0

). If b is a visibility ray for B

0

then b is in partiular a visibility ray

for B

0

0

. Conversely, onsider the situation where all the squares of the radii �

i

of the

strutural balls S

i

, 1 � i � 2n, and all the squares of the radii �

j

of the lause balls C

j

,

1 � j � k, in the proof of Lemma 7.5 are dereased by �

0

. If b

0

is a visibility ray for B

0

0

in the new situation, then there exists a visibility ray b parallel to b

0

for the single point

B

0

. Hene, if the given inequalities in the proofs of Lemma 7.5 hold for both �

i

, �

j

and

for �

0

i

:= �

i

� �

0

, �

0

j

:= �

j

� �

0

, 1 � i � 2n, 1 � j � k, then the redution from 3-SAT

also holds for the non-degenerated ball B

0

0

. The given bounds show that it is possible to

hoose �

0

both in polynomial size and at the same time suÆiently small in its value.

7.4.3 The ase of V-polytopes

Lemma 7.7. PARTIAL VISIBILITY

P

V

;�;;

is NP-hard. This result persists if the in-

stanes are restrited to those onsisting of ross polytopes.
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Fig. 7.3: Imposing disrete struture with ross polytopes

Proof. We establish a polynomial time redution from 3-SAT to the problem PARTIAL

VISIBILITY

P

V

;�;;

based on the framework in Setion 7.4.1.

This time, we hoose the 2n strutural bodies as ross polytopes of the form S

i

(

i

) =

onv(fs

i

(

i

) + �

ij

(

i

)e

j

: 1 � j � ng) with rational oeÆients s

i

(

i

), �

ij

(

i

) depending

on the saling parameter 

i

. The enters of the ross polytopes are de�ned by

s

i

(

i

) = 

i

e

i

and s

n+i

(

n+i

) = �

n+i

e

i

; 1 � i � 2n :

Now we speify the oeÆients �

ij

. By symmetry, similar to the proof of Lemma 7.5, it

suÆes to onsider the ross polytope S

1

(

1

) whih we abbreviate by S = onv(fs+�

j

e

j

:

1 � j � ng) impliitly assuming the dependene on  := 

1

; see Figure 7.3.

For any hoie of the parameters �

2

; : : : ; �

n

> 0, the (n�1)-dimensional ross polytope

S

0

= onv(fs + �

j

e

j

: 2 � j � ng) is ontained in the hyperplane x

1

= . Similar to

the ase of the balls, two onditions are imposed on the hoie of �

2

; : : : ; �

n

. Firstly, the

entral ray set of S

0

must not ontain the verties f1g�f�1; 1g

n

. Seondly, the entral ray

set of S

0

must over those points resulting from the verties of the faet f1g � [�1; 1℄

n�1

by dividing exatly one of the last n� 1 omponents by 2.

We hoose �

2

= : : : = �

n

. The neessary upper and lower bounds for �

2

result as

follows. Without loss of generality we onsider the entral ray (1; : : : ; 1)

T

. The vertex

(1; : : : ; 1)

T

of [�1; 1℄

n

is ontained in a faet of the (n� 1)-dimensional ross polytope

onv(fs� (n� 1)e

j

: 2 � j � ng). On the other hand, the point (1; 1; 1; : : : ; 1; 1=2)

T

is ontained in a faet of the (n� 1)-dimensional ross polytope with verties onv(fs�

(n� 3=2)e

j

g), 2 � j � n. Hene, if �

2

satis�es



�

n�

3

2

�

< �

2

<  (n� 1)

then the two onditions enforing the disrete struture are satis�ed.

In order to make the (n � 1)-dimensional polytope S

0

full-dimensional we onsider

some " with 0 < " < . Then s� "e

1

2 pos S

0

. Hene, by adding the verties s� "e

1

we

obtain an n-dimensional ross polytope S having the same entral ray set as S

0

.

Now we show how to represent a lause by a ross polytope. One more, we assume

that the lause is given by y

1

1

_ y

0

2

_ y

1

3

. Let C be the ross polytope C = onv(f� �

j

e

j

:
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2 � j � ng) with  = Æ(1;�1; 1; 0; : : : ; 0)

T

and oeÆients �

j

(also depending on the

parameter Æ) as de�ned in the following.

For any hoie of parameters �

4

; : : : ; �

n

> 0, the (n � 3)-dimensional ross polytope

C

0

= onv(f� �

j

e

j

: 2 � j � ng) is ontained in the (n� 3)-dimensional plane x

1

= Æ,

x

2

= �Æ, x

3

= Æ. We hoose �

4

= : : : = �

n

. Moreover, we make the (n � 3)-dimensional

ross polytope C

0

full-dimensional by adding the verties  � "e

j

, 1 � j � 3, for some

parameter 0 < " < Æ. If �

4

= 2(n� 3) then the point Æ(1;�1; 1=2; 1; : : : ; 1)

T

is ontained

in the n-dimensional ross polytope. Hene, by hoosing �

4

> 2(n � 3) the entral ray

set of C overs all the points in (1;�1; 1)� f�1; 1g

n�3

as well as their vertex simplies.

Moreover, sine the whole entral ray set of the ross polytope is loated in the orthant

de�ned by x

1

� 0, x

2

� 0, x

3

� 0, none of the vetors in f�1; 1g

n

n (1;�1; 1)�f�1; 1g

n�3

is overed by the entral ray set of the ball.

Similar to the proof of Lemma 7.5, we an hoose the parameters 

1

; : : : ; 

2n

, Æ

1

; : : : ; Æ

k

,

and " (for making the bodies n-dimensional) in suh a way that the bodies are pairwise

disjoint and that their enoding lengths remain polynomially bounded. Hene, the polyno-

mial time redution from 3-SAT follows in the same way as in the proof of Theorem 7.5.

Using an inlusion tehnique like in Lemma 7.6 we obtain the following orollary.

Corollary 7.8. PARTIAL VISIBILITY

P

V

;;

is NP-hard. This result remains true if the

instanes are restrited to those onsisting of ross polytopes.

Lemma 7.9. PARTIAL VISIBILITY

P

V

;�

is ontained in NP.

Proof. Let (m;n;P

0

; : : : ; P

m

) be an instane of PARTIAL VISIBILITY

P

V

;�

with P

0

= f0g

and V-polytopes P

1

; : : : ; P

m

, and let F

n�2

(P

i

) denote the set of all (n � 2)-dimensional

faes of P

i

, 1 � i � m. Further let lin F denote the linear hull of a set F . The set of all

linear subspaes lin F , F 2 F

n�2

(P

i

), naturally deomposes the unit sphere S

n�1

:= fx 2

R

n

: jjxjj = 1g into (n � 1)-dimensional setors. For two entral rays belonging to the

same setor either both of them are visibility rays or none of them.

We show: if the single point P

0

is partially visible then there exists a erti�ate of

polynomial size. Let [0;1)q be a visibility ray for P

0

spanned by some vetor q 2 R

n

nf0g.

By the deomposition of S

n�1

into equivalene lasses we an assume that the linear

subspae Rq is the intersetion of (at most) n � 1 linear subspaes lin F

1

; : : : ; lin F

n�1

with F

1

; : : : ; F

n�1

2

S

m

i=1

F

n�2

(P

i

).

Of ourse, the number of ombinatorial hoies for F

1

; : : : ; F

n�1

might grow expo-

nentially in the input size. However, the following onsiderations show that the witness

vetor q an be represented in polynomial size nevertheless. For any subspae lin F

i

the

V-presentation of F

i

immediately gives a generating system of polynomial size. Sine Rq

is the intersetion of at most n � 1 of these subspaes, we an �nd a witness vetor of

polynomial size.

It remains to show: one an verify in polynomial time that a given witness ray does

not interset with the interior of any of the polytopes P

i

. Sine the number of polytopes
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(a) Initial objet (b) After deomposition

Fig. 7.4: Representing a 2-lause

is bounded by the input length of the instane, it suÆes to explain this polynomial

veri�ation method for a single polytope P 2 fP

1

; : : : ; P

m

g. Let the V-presentation of P

be P = onv(fv

1

; : : : ; v

k

g) with vetors v

1

; : : : ; v

k

2 R

n

. P does not interset with the

ray [0;1)q if and only if the system

P

k

i=1

�

i

v

i

= �q ;

P

k

i=1

�

i

= 1 ;

�

i

� 0 ; 1 � i � k ;

� � 0

does not have a solution. This an be heked in polynomial time by linear programming.

However, if P \ [0;1)q 6= ; then we still have to hek whether int(P ) \ [0;1)q 6= ;.

Let �

1

:= min� and �

2

:= max� under the linear onstraints stated before. Obviously,

int(P ) \ [0;1)q 6= ; if and only if the point p :=

1

2

(�

1

+ �

2

)q is ontained in int(P ). By

onsidering the k linear programs

max�

j

P

k

i=1

�

i

v

i

= p ;

P

k

i=1

�

i

= 1 ;

�

i

� 0 ; 1 � i � k ;

(1 � j � k) we an ompute whih of the vetors v

j

ours with non-zero oeÆient in

some onvex ombination p =

P

k

i=1

�

i

v

i

. Now p 2 int(P ) if and only if this set of vetors

has aÆne dimension n. Altogether, veri�ation of a witness ray an be done in polynomial

time.

7.4.4 The ase of H-polytopes

Lemma 7.10. PARTIAL VISIBILITY

P

H

;;

is NP-hard. This statement persists if we

restrit the polytopes to be n-dimensional boxes.
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Proof. We give a polynomial time redution from 3-SAT. This time the proof di�ers from

the given framework. We begin with the ase where P

0

is a single point loated in the

origin.

For notational onveniene, onsider the lause y

1

1

_ y

0

2

_ y

1

3

. We onstrut a set of

polytopes ensuring that entral rays spanned by some vetor b 2 R

n

with b

1

� 0, b

2

� 0,

b

3

� 0 annot be visibility rays. Figure 7.4 depits the idea of the onstrution for two

variables y

1

, y

2

, and the 2-lause y

1

1

_ y

0

2

: the polytopes will originate from a \big" n-

dimensional box in whih a small n-dimensional ube is ut o� (see Figure 7.4(a)) and

whih is then deomposed to re-establish boxes (see Figure 7.4(b))

When representing the lause, we have to take are that in the visibility problem only

the interior points of the boxes P

1

; : : : ; P

m

are onsidered. As a onsequene, we have

to extend the boxes bloking P

0

slightly aross the oordinate hyperplanes. For some

parameters ", Æ with 0 < " < Æ we de�ne the box Q by

�Æ � x

1

� " ; �" � x

2

� Æ ; �Æ � x

3

� " ; �Æ � x

j

� Æ ; 4 � j � n : (7.2)

SineQ ontains the origin, we onsider Qn[�"; "℄

n

instead. In order to re-establish onvex

bodies, we deompose Q n [�"; "℄ into smaller boxes Q

1

; : : : ; Q

r

. This deomposition will

satisfy the following onditions.

(a) int(Q

1

); : : : ; int(Q

r

) are disjoint and do not ontain the origin.

(b) For any vetor a 2 fTrue;Falseg

n

one of the boxes Q

1

; : : : ; Q

r

intersets the

entral ray in diretion (t(a

1

); : : : ; t(a

n

))

T

if and only if t(a

1

) = �1, t(a

2

) = 1,

t(a

3

) = �1.

Let E = f(x

1

; x

2

; x

3

)

T

: �Æ � x

1

� "; �" � x

2

� Æ; �Æ � x

3

� "g. For 1 � i � n� 3,

de�ne the boxes Q

2i�1

, Q

2i

by the following onditions.

Q

2i�1

: (x

1

; x

2

; x

3

)

T

2 E ;

�Æ � x

j

� Æ; 4 � j < n� i+ 1 ;

�Æ � x

n�i+1

� �" ;

�" � x

j

� "; n� i+ 1 < j � n ;

Q

2i

: (x

1

; x

2

; x

3

)

T

2 E ;

�Æ � x

j

� Æ; 4 � j < n� i+ 1 ;

" � x

n�i+1

� Æ ;

�" � x

j

� "; n� i+ 1 < j � n :

These boxes suessively ut o� parts of Q. In partiular, Q n

S

k

i=1

(Q

2i�1

[Q

2i

), 1 � k �

n� 3, results in the subset of R

n

satisfying

(x

1

; x

2

; x

3

)

T

2 E ;

�Æ � x

j

� Æ ; 4 � j < n� k + 1 ;

�" � x

j

� " ; n� k + 1 � j � n :
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Further let Q

2n�5

, Q

2n�4

, Q

2n�3

serve to ut o� the parts referring to the variables

x

1

; x

2

; x

3

:

Q

2n�5

: �Æ � x

1

� " ; �" � x

2

� Æ ; �Æ � x

3

� �" ;

�" � x

j

� " ; 4 < j � n ;

Q

2n�4

: �Æ � x

1

� " ; " � x

2

� Æ ; �" � x

3

� " ;

�" � x

j

� " ; 4 < j � n ;

Q

2n�3

: �Æ � x

1

� �" ; �" � x

2

� " ; �" � x

3

� " ;

�" � x

j

� " ; 4 < j � n :

Then Q n

S

2n�3

i=1

Q

i

results to

�" � x

j

� " ; 1 � j � n :

In other words: the union of Q

1

; : : : ; Q

2n�3

results to Q with the exeption of a small ube

ontaining the origin. Note that the interior parts of Q

1

; : : : ; Q

2n�3

are pairwise disjoint.

Now we show that ondition (b) is satis�ed. First let a 2 fTrue;Falseg

n

with

t(a

1

) = �1, t(a

2

) = 1, t(a

3

) = �1. Sine Q n

S

2n�3

i=1

Q

i

= [�"; "℄

n

and by (7.2), one of the

open boxes int(Q

i

) intersets with the entral ray spanned by (t(a

1

); : : : ; t(a

n

))

T

. Namely,

the points �(t(a

1

); : : : ; t(a

n

))

T

with � 2 ("; Æ) are ontained in Q but not in [�"; "℄.

Conversely, let a 2 fTrue;Falseg

n

and for some j 2 f1; : : : ; 2n�3g let int(Q

j

) interset

with the entral ray spanned by (t(a

1

); : : : ; t(a

n

))

T

. Sine all entries of this vetor are

of absolute value 1, there exists some � 2 ("; Æ) suh that �(t(a

1

); : : : ; t(a

n

))

T

2 int(Q

j

).

Hene, the de�nitions of Q;Q

1

; : : : ; Q

2n�3

imply t(a

1

) = �1, t(a

2

) = 1, t(a

3

) = �1.

The essential reason why it suÆes to onsider the interior parts of Q

j

, 1 � j � 2n�3,

for the intersetions is that none of their faets is ontained in one of the oordinate

hyperplanes x

i

= 0. For exatly the same reason it is possible to make every box slightly

smaller and therefore properly disjoint.

For di�erent lauses C

i

and C

j

, i < j, of the 3-SAT formula C we have to ensure that

the resulting ubes are all disjoint. This an be ahieved by suitably setting "

i

; Æ

i

and

"

j

; Æ

j

for the lauses C

i

and C

j

. If "

j

> Æ

i

then the boxes of C

i

and C

j

do not interset with

eah other.

Finally, we show that the 3-SAT formula C is satis�able if and only if B

0

is partially

visible. First let a 2 fTrue;Falseg

n

be a satisfying assignment for C. Sine a is a satis-

fying assignment for every 3-lause C

j

, ondition (b) guarantees that (t(a

1

); : : : ; t(a

n

))

T

is

a visibility ray for B

0

. Conversely, let [0;1)b be a visibility ray for B

0

spanned by some

vetor b 2 R

n

. De�ne the modi�ed sign funtion sg : R ! f�1; 1g by

sg(x) =

(

1 if x � 0 ;

�1 if x < 0 :

Hene, by de�nition of the boxes, the vetor (sg(b

1

); : : : ; sg(b

n

))

T

is a visibility ray. By on-

dition (b), a := (t

�1

(sg(b

1

)); : : : ; t

�1

(sg(b

n

)))

T

satis�es every 3-lause C

j

. Consequently,

C is satis�able.
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Finally, we remark that the single point P

0

an be replaed by a suÆiently small

ube, sine none of the faets of the boxes lies in a hyperplane ontaining the origin.

Lemma 7.11. PARTIAL VISIBILITY

P

H

;�

is ontained in NP.

Proof. Similar to the proof of Lemma 7.9 we show: if the single point P

0

is partially visible

then there exists a erti�ate of polynomial size. One more, it suÆes to onsider the rays

[0;1)b resulting from the intersetion of at most n�1 subspaes lin F

1

; : : : ; lin F

n�1

with

F

1

; : : : ; F

n�1

2 [

m

i=1

F

n�2

(P

i

). The H-presentations of F

1

; : : : ; F

n�1

immediately give an

H-presentation of the one-dimensional subspae Rb. Hene, there exists a witness vetor b

of polynomial size. Finally, it an be heked in polynomial time, whether a given witness

ray [0;1)b intersets with the interior of at least one of the H-polytopes P

1

; : : : ; P

m

.

7.4.5 Quadrant visibility

In Setions 7.4.1{7.4.4 our hardness results for PARTIAL VISIBILITY were based on

redutions from 3-SAT in whih any assignment a 2 fTrue;Falseg

n

was identi�ed with

one of the 2

n

quadrants in R

n

. For that reason, the question arises whether the hardness

results still hold for more restrited viewpoint areas, say, for those viewpoint areas whih

are ontained in a single quadrant.

In the following we prove the part of Theorem 7.2 whih says that the hardness results

also hold QUADRANT VISIBILITY.

Lemma 7.12. QUADRANT VISIBILITY

B

2

;�;;

is NP-hard.

Proof. One more, we provide a redution from 3-SAT, and therefore onsider a 3-SAT

formula in the variables y

1

; : : : ; y

n

. The essential idea of the redution is to onstrut an

instane of QUADRANT VISIBILITY in (n + 1)-dimensional spae R

n+1

. The entral

ray with diretion v := (1; : : : ; 1)

T

is ontained in the positive orthant Q of R

n+1

. By

onsidering a hyperplane whih is orthogonal to v and whih intersets (0;1)v, we transfer

the proof ideas of PARTIAL VISIBILITY to QUADRANT VISIBILITY.

In order to simplify notation, we apply an orthogonal transformation to transform

the diagonal ray [0;1)v into [0;1)e

n+1

, the non-negative part of the x

n+1

-axis. By this

operation, Q is transformed into a one Q

0

. Similar to the proof of Lemma 7.5, we impose

a disrete struture on the visibility problem. Namely, for some positive parameter � > 0

spei�ed below, we assoiate the 2

n

truth assignments fTrue;Falseg

n

with the entral

rays spanned by the vetors f��; �g

n

� f1g. Note that the set [��; � ℄

n

� f1g is an n-

dimensional ube in R

n+1

.

In order to ahieve this disrete struture, we plae 2n+ 1 strutural balls S

i

(

i

; �) =

(n; s

i

(

i

; �); �

i

(

i

; �)), 0 � i � 2n, at the enters 

0

= 

0

e

n+1

, 

i

= 

i

(e

n+1

+ �e

i

), 

n+i

=



n+i

(e

n+1

� �e

i

), 1 � i � n. In ontrast to the proofs for PARTIAL VISIBILITY, the

enters of the strutural balls do not only depend on positive parameters 

i

, but also on

the global positive parameter � . Figure 7.5 shows this situation for the ase n = 2. The

parameter � is hosen suh that the n-dimensional ube [��; � ℄

n

�f1g is ontained in Q

0

.
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xn+1 = x3

x1

x2

c1

xn+1 = x3

x1

x2

c1

xn+1 = x3

x1

x2

c1

xn+1 = x3

x1

x2

c1

xn+1 = x3

x1

x2

c1

xn+1 = x3

x1

x2

c1

Fig. 7.5: Imposing disrete struture on QUADRANT VISIBILITY in ase n = 2 and 

0

=

: : : = 

2n

=:  (so all the enters of the strutural balls are ontained in the hyperplane

x

n+1

= ). The positive hull of the triangle represents Q

0

, the positive orthant after

the orthogonal transformation.

The squares of the radii s

i

(

i

; �), 1 � i � n, of the strutural balls an be hosen suh

that any visibility ray must be lose to a vertex of the n-dimensional ube; this establishes

the disrete struture. In a seond step, the parameters 

i

an be used to sale the balls

in order to make them disjoint.

Then, similar to the proof of Lemma 7.6, we an onstrut balls representing the lauses

of the 3-SAT formula in order to omplete the desired polynomial time redution.

Similar to proof of Lemma 7.6, we an extend this result to the ase QUADRANT

VISIBILITY

B

2

;;

, where B

0

is a proper ball. Moreover, by ombining the proofs of Lemmas

and Corollaries 7.7{7.11 with a lifting into R

n+1

, the hardness results an also be estab-

lished for the ase of V- and H-polytopes. Note that the proof tehnique of Lemma 7.12

an also be generalized to establish hardness results for other lasses of viewpoint areas.

7.5 Polynomial solvability results for �xed dimension

In order to prove the polynomial solvability results for �xed dimension, we use the fat

that for �xed dimension the theory of real losed �elds an be deided in polynomial

time [7, 29℄. More preisely, for rational polynomials p

1

(x

1

; : : : ; x

n

); : : : ; p

l

(x

1

; : : : ; x

n

)

in the variables x

1

; : : : ; x

n

, a Boolean formula over p

1

; : : : ; p

l

is de�ned as a Boolean

ombination (allowing the operators ^, _, NOT) of polynomial equations and inequalities

of the type p

i

(x

1

; : : : ; x

n

) = 0 or p

i

(x

1

; : : : ; x

n

) � 0. We onsider the following deision

problem for quanti�ed Boolean formulas over the real numbers.
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Problem REAL QUANTIFIER ELIMINATION:

Instane: n, l, rational polynomials p

1

(x

1

; : : : ; x

n

); : : : ; p

l

(x

1

; : : : ; x

n

), a

Boolean formula '(x

1

; : : : ; x

n

) over p

1

; : : : ; p

l

, and quanti�ers

Q

1

; : : : ; Q

n

2 f8 ; 9 g.

Question: Deide the truth of the statement

Q

1

(x

1

2 R) : : : Q

n

(x

n

2 R) '(x

1

; : : : ; x

n

) :

In [7, 29℄ it was shown:

Proposition 7.13. For �xed dimension n, REAL QUANTIFIER ELIMINATION an

be deided in polynomial time.

Remark 7.14. In spite of this polynomial solvability result for �xed dimension, urrent

implementations are only apable of dealing with very small dimensions. Generally, there

are two approahes towards pratial solutions of deision problems over the reals. One

is based on Collins' ylindrial algebrai deomposition (CAD) [29℄, and the other is the

ritial point method ([61℄; for the state of the art see [5℄).

In order to prove polynomial solvability of PARTIAL VISIBILITY

B

2

for �xed dimen-

sion, we formulate the problem algebraially. We represent a ray p+ [0;1)q by its initial

vetor p 2 R

n

and a diretion vetor q 2 R

n

with jjqjj = 1. B

0

is partially visible with

respet to B

0

= (n; 

0

; �

0

); : : : ; B

m

= (n; 

m

; �

m

) if and only if there exist p; q 2 R

n

suh

that for all � 2 R the following formula holds:

jjqjj

2

= 1 ;

and jjp� 

0

jj

2

� �

0

;

and (� < 0 _ jjp+ �q � 

i

jj

2

� �

i

) ; 1 � i � m :

Hene, we have to deide the truth of the following statement:

9p 2 R

n

9q 2 R

n

8� 2 R

jjqjj

2

= 1 ^ jjp� 

0

jj

2

� �

0

^

�

(� < 0 _ jjp+ �q � 

i

jj

2

� �

i

) ; 1 � i � m

�

:

After expanding the Eulidean norm and applying some trivial transformations (suh as

establishing the mentioned normal form p

i

(x

1

; : : : ; x

n

) � 0 for the polynomial inequali-

ties), this is a quanti�ed Boolean formula of the required form. Hene, Proposition 7.13

implies the following statement.

Lemma 7.15. For �xed dimension n, PARTIAL VISIBILITY

B

2

an be solved in polyno-

mial time.
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For the ase of H-polytopes, let P

i

= fx 2 R

n

: A

i

x � b

i

g with A

i

2 Q

k

i

�n

, b

i

2 Q

k

i

,

0 � i � m. P

0

is partially visible if and only if there exist p; q 2 R

n

suh that for all

� 2 R we have

jjqjj

2

= 1 ;

and A

0

p � b

0

;

and (� < 0 _ NOT(A

i

(p+ �q) < b

i

)) ; 1 � i � m :

Applying Proposition 7.13 on this formulation we an onlude:

Lemma 7.16. For �xed dimension n, PARTIAL VISIBILITY

P

H

an be solved in poly-

nomial time.

Sine for �xed dimension n, a V-polytope an be transformed into a H-polytope in

polynomial time [44℄, this also implies

Corollary 7.17. For �xed dimension n, PARTIAL VISIBILITY

P

V

an be solved in poly-

nomial time.

Similarly, by small modi�ations of the proofs, the polynomial time solvability results

for PARTIAL VISIBILITY an also be transferred to QUADRANT VISIBILITY.

7.6 On the frontiers of Theorems 7.2 and 7.3

Theorems 7.2 and 7.3 do not guarantee membership of PARTIAL VISIBILITY

B

2

or PAR-

TIAL VISIBILITY

B

2

;�

in NP. Let us illuminate this situation from the algebrai point of

view. First note that even though quanti�er elimination methods an deide PARTIAL

VISIBILITY

B

2

for �xed dimension in polynomial time (see Lemma 7.15), it is not known

how to ompute a short witness of a positive solution with these methods (see [7℄).

Combining the algorithmi, the algebrai, and the omplexity-theoretial viewpoint,

the situation looks as follows. For PARTIAL VISIBILITY

B

2

or PARTIAL VISIBIL-

ITY

B

2

;�

, we an onstrut instanes in R

n

whih have exatly a single visibility ray.

This visibility ray an be seen as a ommon tangent line to several spheres. Hene, the

question of membership in NP is tightly onneted to the algebrai haraterization of the

ommon tangent lines to a given set of spheres in R

n

from Setion 5.1.

Similarly, Theorems 7.2 and 7.3 do not guarantee membership of PARTIAL VISIBIL-

ITY

P

H

or PARTIAL VISIBILITY

P

V

in NP. These questions are tightly onneted to

the ommon transversals to 2n�2 given (n�2)-dimensional planes in R

n

. For algebrai

haraterizations of this problem see Setion 5.2.1.

In both ases (balls and polytopes), the algebrai degree statements in the orale model

are reeted by our hardness results in the Turing mahine model. However, we do not

know in how far the algebrai haraterizations for balls or polytopes an be exploited for

proving a short witness visibility ray.
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Conerning NP-hardness, Theorem 7.2 does not inlude a statement for PARTIAL

VISIBILITY

B

2

;;

or PARTIAL VISIBILITY

B

2

;�;;

if the balls are restrited to be unit

balls. However, the following statement shows that in \Yes"-instanes of PARTIAL

VISIBILITY

B

2

;;

the number of balls neessarily grows exponentially in the input dimen-

sion n. Even if this does not rule out the existene of a polynomial time algorithm (sine

the running time of the algorithm is not measured in terms of the dimension n but in the

overall length of the input size), it might give a useful suÆient riterion for large input

dimensions.

Lemma 7.18. Let n � 6, m 2 N, and let B

0

; B

1

; : : : ; B

m

be a set of n + 1 disjoint unit

balls in R

n

. If m <

p

3n e

3

8

(n�1)

then B

0

is partially visible with respet to B

1

; : : : ; B

m

.

Proof. Without loss of generality we an assume that B

0

is the unit ball entered in the

origin. Let 0 < r < 1 and H be a hyperplane in R

n

at distane r from the origin. Then

the set of points on the unit sphere separated from the origin by H is alled an r-ap.

Sine any ball B

i

, 1 � i � m, is disjoint from B

0

, an elementary geometri inspetion

shows that pos(B

i

) intersets the unit sphere in an r-ap with

p

3=2 < r < 1. A neessary

ondition for B

0

being not partially visible is that these r-aps over the unit sphere. Let

�(n; r) denote the minimum number of r-aps overing the unit sphere. By Lemma 5.2

in [20℄, for r > 2=

p

n we have

�(n; r) � 2r

p

ne

r

2

(n�1)=2

:

Substituting the value r =

p

3=2 into this formula implies the desired estimation.

7.7 Partial visibility and view obstrution

Throughout this thesis, we have investigated the hardness of visibility omputations with

moving viewpoints with regard to the underlying algebrai omplexity and with regard

to omputational omplexity. In this �nal setion, we would like to mention a related

number-theoretial aspet.

In 1968, Wills investigated the following problem of diophantine approximation [150℄.

Let jjxjj

I

denote the distane of a real number x to the nearest integer. For any n 2 N

and v

1

; : : : ; v

n

2 N , let

d(v

1

; : : : ; v

n

) = sup

�2[0;1℄

min

1�i�n

jj�v

i

jj

I

;

and

�(n) = inf

v

1

;::: ;v

n

2N

d(v

1

; : : : ; v

n

)

= inf

v

1

;::: ;v

n

2N

sup

�2[0;1℄

min

1�i�n

jj�v

i

jj

I

:
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x

1

x

2

1

1

Fig. 7.6: The piture shows the situation of the view obstrution problem in R

2

. In partiular,

�(2) =

1

3

.

Based on the pigeonhole priniple, Wills showed

1

2n

� �(n) �

1

n+1

and onjetured

�(n) =

1

n+1

. This onjeture was later restated by Cusik [34℄ who interpreted it as a

visibility problem alled view obstrution. Let C = [�

1

2

;

1

2

℄

n

. For some fator � > 0,

onsider the in�nite set of ubes

(

�



1

+

1

2

; : : : ; 

n

+

1

2

�

T

+ �C : 

1

; : : : ; 

n

2 N

0

)

: (7.3)

Now the problem is to determine the supremum of � > 0 suh that there exists a visibility

ray in the stritly positive orthant (see Figure 7.6). This supremum, alled �(n), an be

written as

�(n) = 2 sup

!

1

;::: ;!

n

2(0;1)

inf

x2(0;1)

max

1�i�n

jj!

i

x�

1

2

jj

I

:

The following statement from [34, 150℄ establishes the onnetion between Wills' prob-

lem and the view obstrution problem.

Proposition 7.19. For n � 2 we have �(n) = 1� 2�(n) :

Yet another approah to the same ore problem alled lonely runner has been given

in [12℄. In spite of many researh e�orts during the last 30 years, the exat value of �(n)

is known only for values up to 5 ([13℄). For n � 6, only upper and lower bounds have

been determined. If one onsiders balls instead of ubes [35℄, then the exat values for

the view obstrution problem are also known up to dimension 5 ([39℄).

Let us lose the present thesis by disussing some tight onnetions between our om-

plexity results and the view obstrution problem. First of all, the number-theoretial
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papers do not give any real evidene why determining �(n) is hard. Although, of ourse,

the view obstrution problem involves an in�nite number of bodies, our omplexity re-

sults for �nite instanes an be seen as a ertain omplexity-theoretial indiation for

the hardness of this evaluation. Namely, by Theorem 7.3, for �xed dimension PARTIAL

VISIBILITY or QUADRANT VISIBILITY an be solved in polynomial time. However,

if the dimension is part of the input, then the problem beomes NP-hard by Theorem 7.2.

In a non-rigorous sense, this an be seen as a quanti�ation of the strong inuene of the

dimension ompared to the other input parameters.

Another onnetion whih we would like to point out refers to haraterizing some easy

instanes of PARTIAL VISIBILITY or QUADRANT VISIBILITY. Namely, onsider the

view obstrution problem in R

n

. If the edge length � of the ubes in (7.3) satis�es

� � �(n) then there exists a visibility ray [0;1)q in the stritly positive orthant for

this visibility problem with in�nitely many ubes. Fix this ray, and onsider now the

following lass of n-dimensional instanes of QUADRANT VISIBILITY. The bodies are

ubes whose enters are ontained in the grid (

1

2

; : : : ;

1

2

)

T

+ N

n

0

, and every ube has an

edge length at most �(n). Additionally, let there be bodies whih do not interset the ray

[0;1)q and whih guarantee that there annot be a visibility ray whih has a diretion

\quite lose" to one of the oordinate hyperplanes. By the de�nition of �(n) we know

that in this instane the answer is \VISIBLE". So the haraterization of that lass might

be seen as a suÆient riterion for QUADRANT VISIBILITY (or similarly for PARTIAL

VISIBILITY), and progress on the evaluation of �(n) might { at least theoretially {

improve the haraterization of that lass.
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DEUTSCHSPRACHIGE ZUSAMMENFASSUNG

New algebrai methods in omputational geometry {

Neue algebraishe Methoden in der algorithmishen Geometrie

Gegenstand der Arbeit sind fundamentale algebraish-geometrishe Probleme in der

nihtlinearen algorithmishen Geometrie, die beispielsweise bei Sihtbarkeitsproblemen

mit bewegten Kamerapunkten oder der Berehnung minimal einshlie�ender Kreiszylinder

von Punktmengen im R

n

(n � 3) auftreten.

Im dreidimensionalen Fall f

�

uhren die algorithmishen Probleme auf Anzahl- und End-

lihkeitsfragen der Form: Wie viele Geraden gibt es (im Endlihkeitsfall) im R

3

, die gleih-

zeitig Transversale zu k vorgegebenen Geraden und Tangente an 4�k vorgegebene Sph

�

aren

im R

3

sind (0 � k � 3) ? Unter welhen Bedingungen gibt es unendlih viele solher Gera-

den? Bereits f

�

ur den Fall von Einheitssph

�

aren stellte die Anzahlfrage ein von D. Larman

im Jahr 1990 aufgeworfenes o�enes Problem dar.

Vom algebraishen Standpunkt sind hierzu die reellen L

�

osungen polynomialer Glei-

hungssysteme zu studieren. Ausgehend von Fragen des obigen Typs werden in der Arbeit

algebraishe Methoden zur L

�

osung dieser reell-enumerativen Fragen f

�

ur wihtige Klas-

sen geometrisher Tangentenprobleme im dreidimensionalen sowie n-dimensionalen Raum

entwikelt.

In Kapitel 2 der Arbeit werden die zugrundeliegenden geometrishen und algorithmi-

shen Grundlagen zusammengestellt. Insbesondere wird ein sweep-basierter Algorithmus

zur L

�

osung des zweidimensionalen Sihtbarkeitproblems vorgestellt sowie gezeigt, wie im

dreidimensionalen Fall die algorithmishen Probleme auf die algebraish-geometrishen

Kernprobleme zur

�

ukgef

�

uhrt werden k

�

onnen. Ferner werden Tangentialbedingungen in li-

niengeometrishen Pl

�

ukerkoordinaten formuliert, die in den weiteren Kapiteln von grund-

legender Bedeutung sind.

In Kapitel 3 wird das Problem der gemeinsamen Tangenten an vier Sph

�

aren studiert.

F

�

ur den Fall aÆn unabh

�

angiger Mittelpunkte wird eine Formulierung des Problems als

Shnittpunkte einer kubishen sowie einer quartishen Kurve in der projektiven Ebene P

2

angegeben. Anshlie�end wird der Fall von Einheitssph

�

aren betrahtet. Es wird folgender

Satz gezeigt, der das Problem von D. Larman vollst

�

andig l

�

ost:

Satz. Vier Einheitssph

�

aren im R

3

mit niht-kollinearen Mittelpunkten haben h

�

ohstens

12 gemeinsame Tangenten im R

3

. Diese Shranke ist sharf.
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Die Tatsahe, da� f

�

ur das algebraishe Problem vom Grad 12 eine exakte Charakteri-

sierung der F

�

alle mit unendlih vielen gemeinsamen Tangenten angegeben werden kann,

ist besonders bemerkenswert.

Der Beweis der Aussage untersheidet zwishen mehreren F

�

allen. F

�

ur den Fall aÆn

unabh

�

angiger Mittelpunkte sowie einer irreduziblen, kubishen Kurve werden die sehs

Kantenrihtungen des Grundtetraeders untersuht, die sehs ausgezeihnete Punkte auf

der kubishen Kurve de�nieren. Eine genaue Analyse dieser Punkte zeigt, da� die kubi-

she Kurve niht in der quartishen Kurve enthalten sein kann. Ist die kubishe Kurve

reduzibel, dann liefern die algebraishen Zerfallsbedingungen geometrishe Bedingungen

an das Grundtetraeder, auf deren Grundlage in jedem der zu untersuhenden Unterf

�

alle

ein Endlihkeitsbeweis gelingt. Der Beweis f

�

ur den Fall aÆn abh

�

angiger Mittelpunkte be-

ruht auf einer direkten Betrahtung der Ellipsen mit vorgegebener kleinerer Halbahse

durh die vier gegebenen Mittelpunkte.

Hinsihtlih der Realisierbarkeit von Kon�gurationen wird gezeigt, da� f

�

ur alle Zahlen

k 2 f0; : : : ; 12g eine Kon�guration von vier Einheitssph

�

aren existiert, die auf k vershie-

dene, relle, gemeinsame Tangentialgeraden f

�

uhrt.

Ferner wird die Berehnung des minimal umshreibenden Kreiszylinders eines vor-

gegebenen (niht notwendigerweise regul

�

aren) Tetraeders im R

3

untersuht. F

�

ur diese

Optimierungsvariante des Tangentenproblems haben Devillers, Mourrain, Preparata und

Tr�ebuhet polynomiale Formulierungen mit B�ezout-Zahl 60 angegeben. Die Gleihungen

enthalten einige zus

�

atzlihe L

�

osungen mit Vielfahheit 4, und als Folge dieser Vielfahhei-

ten sind die Rehenzeiten (mittels aktueller numerisher L

�

oser polynomialer Gleihungssy-

steme) um etwa einen Faktor 100 gr

�

o�er als die Rehenzeiten f

�

ur vergleihbare Probleme,

in denen nur einfahe L

�

osungen auftreten. Wir verbessern diese Ergebnisse, indem wir eine

polynomiale Formulierung f

�

ur die lokal extremen Zylinder mit B�ezout-Zahl 36 angeben,

bei der jede L

�

osung generish die Vielfahheit 1 hat. Dar

�

uber hinaus werden Teilklas-

sen von Tetraedern studiert, in denen die Grade der algebraishen Formulierungen weiter

verringert werden k

�

onnen.

Wir shlie�en Kapitel 3 mit einer kurzen Diskussion dynamisher Visualisierungsa-

spekte des Tangentenproblems.

Vom algebraish-geometrishen Standpunkt ist das Tangentenproblem an Sph

�

aren aus

folgendem Grund von besonderem Interesse. Die Formulierung des Problems in liniengeo-

metrishen Pl

�

ukerkoordinaten ergibt f

�

unf quadratishe Gleihungen im reellen projek-

tiven Raum P

5

R

, deren gemeinsame L

�

osungen im komplexen projektiven Raum P

5

eine

gemeinsame Komponente im Unendlihen enthalten (die f

�

ur die

"

fehlenden\ 2

5

� 12 = 20

L

�

osungen z

�

ahlt). Diese gemeinsame Komponente kann niht durh einen einzigen Blow-up

aufgel

�

ost werden.

In Kapitel 4 wird das Problem der gemeinsamen Tangenten an vier allgemeine Qua-

driken im R

3

und P

3

studiert. Zun

�

ahst wird gezeigt, da� vier reelle Quadriken im dreidi-

mensionalen Raum 32 reelle gemeinsame Tangenten haben k

�

onnen. Hierzu wird f

�

ur dieses

Problem vom Grad 32 konstruktiv eine Familie von Kon�gurationen angegeben, deren

Symmetrien die explizite Untersuhung der rellen L

�

osungen erm

�

ogliht.
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Dar

�

uber hinaus werden omputeralgebraishe Methoden entwikelt, um den doppel-

ten Blow-up des Tangentenproblems an Sph

�

aren zu studieren. Hierzu beshreiben wir

das Ideal der eindimensionalen Komponente. Durh Erweiterung des Polynomrings sowie

Hinzuf

�

ugen geeigneter Polynome simulieren wir den Blow-up im Computeralgebra-System

Singular und studieren das resultierende Ideal sowie den zweiten Blow-up.

In Kapitel 5 werden die verallgemeinerten Probleme der gemeinsamen Tangenten an

2n�2 Sph

�

aren bzw. allgemeine Quadriken im R

n

studiert, insbesondere unter Gesihts-

punkten der reellen, abz

�

ahlenden Geometrie. In den algorithmishen Anwendungen treten

diese Probleme etwa beim Berehnen minimal einshlie�ender Zylinder im R

n

auf. F

�

ur den

Fall der Sph

�

aren wird folgende Aussage gezeigt:

Satz. Sei n � 3.

(a) Seien 

1

; : : : ; 

2n�2

2 R

n

von der aÆnen Dimension n, und seien r

1

; : : : ; r

2n�2

> 0.

Haben die 2n�2 Sph

�

aren mit Mittelpunkten 

i

und Radien r

i

nur eine endlihe

Anzahl gemeinsamer Tangentialgeraden in C

n

, dann ist diese Anzahl h

�

ohstens 3 �

2

n�1

.

(b) Es existiert eine Kon�gurationen mit 3 � 2

n�1

vershiedenen, reellen, gemeinsamen

Tangentialgeraden. Dar

�

uber hinaus k

�

onnen solhe Kon�gurationen mit Einheits-

sph

�

aren erzielt werden.

Ferner werden Kon�guration von Sph

�

aren studiert, deren Mittelpunkte eine aÆne

Dimension kleiner als n haben.

F

�

ur die gemeinsamen Tangenten an 2n�2 Quadriken in P

n

wird gezeigt:

Satz. Zu 2n�2 allgemeinen quadratishen Hyper

�

ahen im P

n

gibt es

d

n

:= 2

2n�2

�

1

n

�

2n� 2

n� 1

�

komplexe gemeinsame Tangentialgeraden an die 2n�2 Hyper

�

ahen (n � 2). Dar

�

uber

hinaus gibt es eine Kon�guration von quadratishen Hyper

�

ahen im R

n

, f

�

ur die alle

diese Tangentialgeraden reell sind und im aÆnen Raum R

n

liegen.

Der Beweis dieser Aussage beruht auf der Kombination sehr junger Resultate des

reellen Shubert-Kalk

�

uls und auf die reelle Situation angepa�ten, klassishen Perturbati-

onstehniken. Im Gegensatz zum dreidimensionalen Fall ist der Beweis im n-dimensionalen

Fall lediglih existentiell.

Die folgende Tabelle veranshauliht die gro�e Di�erenz zwishen der maximalen An-

zahl der (reellen) Tangentialgeraden f

�

ur Sph

�

aren und f

�

ur allgemeine Quadriken.

n 3 4 5 6 7 8 9

3 � 2

n�1

12 24 48 96 192 384 768

d

n

32 320 3584 43008 540672 7028736 93716480
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Dar

�

uber hinaus wird der Fall von 2n�2 Quadriken in P

n

betrahtet, die alle die gleihe

glatte Quadrik in einer vorgegeben Hyperebene enthalten.

Mit Hilfe der Charakterisierungen der Tangenten an 2n�2 Sph

�

aren werden zudem

eÆziente polynomiale Formulierungen zur Berehnung minimal umshreibender Zylinder

von Simplexen im R

n

vorgestellt und analysiert. Die B�ezout-Zahlen dieser Formulierungen

liefern obere Shranken f

�

ur die Anzahl lokal extremer Zylinder. Da diese Shranken niht

sharf sind, werden f

�

ur kleine Dimensionen bessere Shranken auf der Grundlage gemish-

ter Volumina und dem Satz von Bernstein bestimmt. F

�

ur den Fall regul

�

arer Simplexe wird

mittels elementarer Invariantentheorie gezeigt, da� in einem geeigneten Koordinatensy-

stem der Rihtungsvektor jedes lokal extremen umshreibenden Zylinders h

�

ohstens drei

vershiedene Eintr

�

age enth

�

alt.

Kapitel 6 behandelt die Geraden, die gleihzeitig tangential an k Sph

�

aren und trans-

versal zu 4�k Geraden im R

3

sind, k 2 f0; : : : ; 4g. Vom algorithmishen Standpunkt tre-

ten diese Probleme in den genannten Anwendungen auf, wenn die Klasse der zul

�

assigen

K

�

orpern aus Kugeln und Polytopen besteht. Es werden die sharfen oberen Shranken f

�

ur

die Anzahl der gesuhten Geraden (im Endlihkeitsfall) im R

3

bestimmt. Zum Nahweis

der Korrektheit der angegebenen Konstruktionen mit der Maximalzahl an reellen Gera-

den werden teilweise omputeralgebraishe Methoden (Standardbasen in lokalen Ringen)

verwendet. Die Anzahlergebnisse sind in der nahstehenden Tabelle zusammengefa�t.

Sharfe obere Charakterisierung der

Shranke 1-Kon�gurationen

4 Geraden 2 (wohlbekannt) ja (wohlbekannt)

3 Geraden, 1 Sph

�

are 4 ja

2 Geraden, 2 Sph

�

aren 8 ja

1 Gerade, 3 Sph

�

aren 12 {

4 Einheitssph

�

aren 12 ja

4 Sph

�

aren 12 {

Wie in der Tabelle angegeben, k

�

onnen f

�

ur den Fall von drei Geraden und einer Sph

�

are

sowie zwei Geraden und zwei Sph

�

aren die F

�

alle mit unendlih vielen reellen gemeinsa-

men Tangenten exakt harakterisiert werden. In den Eintr

�

agen mit einem

"

{\ sind diese

Charakterisierungen o�ene Probleme.

Die Charakterisierung der degenerierten Situationen im Fall dreier Geraden und einer

Sph

�

are erfolgt mittels klassisher Methoden der Geometrie.

F

�

ur den Fall zweier Geraden und zweier Sph

�

aren sind die degenerierten Situationen von

algebraishen Problemen ahten Grades zu untersuhen. Zur Untersuhung der Geometrie

dieser Probleme werden omputeralgebraishe Methoden entwikelt und mit klassishen

Methoden der Klassi�kation algebraisher Kurven kombiniert. Zun

�

ahst wird das allge-

meinere Problem behandelt, bei dem die Sph

�

aren im R

3

durh allgemeine Quadriken in

P

3

ersetzt werden. Um die Geometrie dieses Problem zu studieren, werden zwei Geraden

und eine Quadrik in allgemeiner Lage �xiert, und die Menge der (zweiten) Quadriken,
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f

�

ur die es unendlih viele gemeinsame Transversalen/Tangenten gibt, durh eine algebrai-

she Kurve beshrieben. Diese Kurve ist vom Grad 24 im Raum P

9

der Quadriken. Das

Faktorisieren des Ideals dieser Kurve zeigt, da� sie erstaunlih reduzibel ist:

Satz. Gegeben seien zwei windshiefe Geraden `

1

und `

2

sowie eine allgemeine Quadrik Q

in P

3

. Der Abshlu� der Menge der Quadriken Q

0

, f

�

ur welhe es unendlih viele Geraden

gibt, die transversal zu `

1

und `

2

sowie Tangente an Q und Q

0

sind, ist eine Kurve vom

Grad 24 im Raum P

9

der Quadriken. Diese Kurve besteht aus 12 ebenen Kegelshnitten.

Der Beweis dieser Aussage erfolgt durh eine genaue Analyse des Ideals, das die al-

gebraishe Kurve der (zweiten) Quadriken de�niert. Darauf aufbauend wird der Satz mit

Hilfe einer Computerberehnung im Computeralgebra-System Singular ausgef

�

uhrt. Der

Erfolg der Berehnung h

�

angt ma�geblih von der vorangehenden Klassi�kation der Kurve

sowie der

�

Uberf

�

uhrung in Normalformen ab. Ferner wird gezeigt, da� es reelle Geraden

`

1

und `

2

und eine Quadrik Q gibt, f

�

ur die alle 12 Komponenten der Kurve der zweiten

Quadriken reell sind.

Aufbauend auf diesen strukturgeometrishen Untersuhungen wird die folgende Cha-

rakterisierung der gemeinsamen Transversalen/Tangenten an zwei Geraden und zwei Sph

�

a-

ren bewiesen.

Satz. Seien S

1

6= S

2

Sph

�

aren, und seien `

1

und `

2

windshiefe Geraden im R

3

. Es gibt

unendlih viele reelle transversale Tangenten zu `

1

, `

2

, S

1

und S

2

in genau den folgenden

F

�

allen:

(1) Die Sph

�

aren S

1

und S

2

ber

�

uhren sih an einem Punkt p, der auf einer der Geraden

liegt, und die zweite Gerade liegt in der gemeinsamen Tangentialebene der Sph

�

aren

am Punkt p.

(2) `

1

und `

2

sind beide Tangenten sowohl von S

1

als auh von S

2

, und sie gehen durh

eine Rotation um eine die Mittelpunkte von S

1

und S

2

verbindende Gerade hervor.

In Kapitel 7 werden die algebraishen Ergebnisse durh komplexit

�

atstheoretishe Un-

tersuhungen von Sihtbarkeitsproblemen mit bewegten Kamerapunkten reektiert. Es

wird die Turingmashinen-Komplexit

�

at dieser Sihtbarkeitsprobleme in R

�

aumen variabler

und fester Dimension untersuht. Die hierbei betrahteten Klassen geometrisher K

�

orper

sind die Klasse der Kugeln, der als konvexe H

�

ulle endlih vieler Punkte dargestellten Po-

lytope (

"

V-Polytope\) sowie der als Durhshnitt endlih vieler Halbr

�

aume dargestellten

Polytope (

"

H-Polytope\).

Es werden die folgenden Resultate gezeigt, die die komplexit

�

atstheoretishe Grenzlinie

zwishen eÆzient l

�

osbaren und shwierigen Problemen harakterisiert. Falls die Dimensi-

on des Raumes Teil der Eingabe ist, dann ist das

�

Uberpr

�

ufen der partiellen Sihtbarkeit

eines gegebenen K

�

orpers NP-shwer. Falls die Dimension fest ist, dann wird das Siht-

barkeitsproblem f

�

ur alle drei Klassen in polynomialer Zeit l

�

osbar. Der Nahweis der NP-

Shwierigkeitsresultate beruht auf geometrishen Konstruktionen, durh die den Sihtbar-

keitsproblemen eine kombinatorishe Struktur induziert wird. In einem zweiten Shritt
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werden diese Probleme auf das aussagenlogishe 3-SAT-Problem reduziert. Einige der

Polynomialit

�

atsaussagen beruhen auf der algebraish-geometrishen Tehnik der reellen

Quantorenelimination.

Shlie�lih wird eine Verbindung zwishen den Komplexit

�

atsresultaten und dem

"

view

obstrution\ Problem aus der diophantishen Approximation hergestellt.


