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1. INTRODUCTION

In its maturing stage, computational geometry has focused its
attention mostly on linear objects. The motivation was sound:
Why deal with curved shapes if we do not even understand poly-
hedral objects? In manufacturing, such a limitation is simply
unacceptable. The time has come to bridge this gap.

From Application challenges to computational geometry ([30]).

The design of geometric algorithms can be seen as a reduction of the initial problems
to sequences of subproblems on geometric, combinatorial, and algebraic properties of
geometric objects [9, 45]. In the early ages of computational geometry, the algebraic
aspects could often be neglected, since the degree of the problems under consideration was
quite small. A famous “classical” example demonstrating the deep connections between
algebraic methods and computational geometry is the field of motion planning (see [22,
119, 120]). Many current world-wide research efforts on computational geometry of non-
linearly bounded bodies indicate that algebraic methods will become increasingly important
in computational geometry.

Algorithmic questions involving lines in R? and R® belong to the fundamental problems
in computational geometry [26, 102, 136], coming from applications in computer graphics
[104], robotics [122], visualization [106], and computer-aided geometric design (CAGD)
[106]. These questions are immediately connected with nonlinear, algebraic problems,
since the set of lines in real projective space P2 is naturally associated with a certain
quadric in P3, the so-called Klein quadric.

In the last years, a variety of algorithmic questions involving lines in R?* and R” have
led to a challenging, both geometrically and algebraically rich class of algebraic-geometric
core problems involving the

lines simultaneously tangent to given bodies in R™ .

As an initial reference example, consider the problem of determining which bodies of
a given scene in R?® cannot be seen from any viewpoint outside of the scene. Here, by
“outside of the scene” we mean a viewpoint which is not contained in the convex hull of
the bodies. From the geometric point of view, this leads to the problem of determining
the common tangent lines to four given bodies in R® (cf. Section 2.2). Besides several
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visibility applications [21, 36, 41, 42, 43, 146], other algorithmic tasks leading to the same
geometric core problem include computing smallest enclosing cylinders [3, 114], computing
geometric permutations/stabbing lines [3, 103], controlling a laser beam in manufacturing
[102], or placement problems in geometric modeling [40, 76].

However, already for the class of unit balls in R?* the questions of finiteness (under what
conditions do there exist only finitely many real common tangents?) and the maximum
number of real solutions show that the tangent problem is much more involved than
its simple formulation suggests. In fact, the question on the mazimum number of real
common tangent lines to four unit spheres (in the finite case) was first formulated by David
Larman [87]. Independently, this question — in the equivalent formulation of circular unit
cylinders passing through four given points — was explicitly stated in [79]. For four general
spheres, the question on the maximum number appears as an explicit open question in [30,
Section 9]. Hence, it is not surprising that (in connection with the applications in [40])
concrete instances of the problem also served as hard three-dimensional geometric test
problems for numerical polynomial solvers [144].

Real enumerative geometry. The tangent problem can be seen as a problem from real
enumerative geometry. This discipline is concerned with questions of the following type:
Given a class of geometric problems (say, given by a class of systems of polynomial equa-
tions) with a finite number of (a priori complex) solutions, what is the maximum number
of real solutions?

One of the most famous classical results in enumerative geometry is the enumeration
by Cayley and Salmon of the 27 (a priori complex) lines on a smooth cubic surface
(see [71, 72]). According to another famous result, misstated by Steiner [135] and correctly
proven first by Chasles (cf. [117]), there are 3264 (a priori complex) conics tangent to five
given conics. For some rigorous modern treatises based on modern algebraic geometry see
(56, 55, 81].

However, as pointed out in [55, p. 55], the question of how many solutions in a given
enumerative setting can be real is still widely open. For an excellent recent survey we refer
to [130]. The general difficulty of proving tight bounds of this kind may be seen by the
following two aspects. For the conics tangent to five given conics the existence problem
of 3264 real solutions had not been solved until few years ago ([110] and [55, §7.2]).
Furthermore, as pointed out in [127], there are nearly no criteria or general techniques for
proving the maximum number of real solutions.

Degeneracy of classes of polynomial equations. Besides the questions on the maximum
number of (real) solutions which reflect the algebraic difficulty of a problem, efficient
algorithmic approaches require to find exact characterizations of the configurations with
infinitely many solutions, i.e., where the discrete and combinatorial nature of the problem
gets lost. In contrast to other problems in computational geometry, characterizing these
situations cannot be neglected (say, by applying perturbation techniques [46]), since the
large algebraic degree involved makes it usually highly nontrivial to guarantee a correct
perturbation.
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1.1 Topics and results of this thesis.

In this thesis, we provide substantial contributions towards the clarification of the funda-
mental problems stated above. In the following, we give an outline of the results, and put
them into appropriate contexts.

The main chapters are preceded by Chapter 2, which introduces relevant geometric
concepts and connects the algorithmic applications to the geometric problems under in-
vestigation.

1.1.1 Common tangents to four spheres in R?

For the common tangents to four (not necessarily disjoint) spheres we show that in the
case of finitely many solutions this number of common tangents is bounded by 12. For
the case of unit spheres we provide a complete classification by showing the following
theorem.

Four unit spheres in R® whose centers are not collinear have at
most 12 common tangent lines in R®. This bound is tight, i.e., there
exists a configuration of four unit spheres in R® with 12 distinct real
common tangent lines.

The fact that for this algebraic problem of degree 12 the cases with infinitely many common
tangent lines can be characterized ezactly is particularly remarkable. Moreover, our results
solve the open questions in [30, 79, 87] mentioned before.

We complement this result by investigating the following question raised by David
Cox:

For which numbers k£ € {0,...,12} does there exist a configuration with exactly &
different common tangents in real space R? ?

Additional motivation for studying this question comes from several quite different
aspects. Firstly, any knowledge on the subset K C {0,...,12} of realizable numbers
gives important information for the mentioned applications. When using numerical solvers
of polynomial equations to find the numerical values of the tangents, the computations
may become instable, especially for configurations of centers which are close to singular
configurations (cf. Section 3.5). If not all numbers k£ € {0,...,12} can be established in
real space this offers the possibility of strong and valuable consistency checks within a
program. If, however, all numbers can be realized then this proves the non-existence of
such a control mechanism.

Secondly, the set of realizable numbers gives important insights into the algebraic,
geometric, and combinatorial structure of the tangent problem. Observe that the tangent
problem to four spheres could be seen as a purely geometric problem. In contrast to
this, the proof of the theorem above is of algebraic nature and therefore does not fit well
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together with additional purely geometric constraints (e.g., disjointness) on the spheres.
Here, the hardness in the geometric construction of concrete configurations might be seen
as an indication of the difficulty to establish a purely geometric proof.

Thirdly, exploring the realizable numbers allows to relate the tangent problem (which
arose from recent applications) to some well-studied problems in classical and enumerative
geometry (which mainly arose from their natural formulations). Concerning the 27 lines
on a smooth cubic surface, the question of real solutions has already been studied long
time ago ([113, 121], see also [111, p. 188]). In particular, for a cubic surface in P§ only the
numbers 3, 7, 15, and 27 can be established with real lines. Another famous example in
geometry is Apollonius’ problem which asks for the circles tangent to three given circles.
For this problem, there exist configurations with £ € {0,1,...,6,8} real tangent circles
but provably no configuration with 7 real tangent circles [101].

We show that the situation for the tangents to four unit spheres is different from these
situations. Namely, we prove:

For any number k£ € {0,...,12} there exists a configuration of four
unit spheres in R?® which have exactly k distinct common tangents
in R3.

As an application of the results, we study the problem of finding the smallest circum-
scribing cylinder of a (not necessarily regular) tetrahedron in R®. Devillers, Mourrain,
Preparata, and Trébuchet [37] demonstrated that using their state-of-the-art numerical
polynomial solvers, various problems related to cylinders in R? can be solved rather effi-
ciently. In particular, they give a polynomial formulation for the smallest circumscribing
cylinders of a tetrahedron in R?®, whose Bézout number — the product of the degrees of
the polynomial equations — is 60. However, these equations contain certain undesired
solutions with multiplicity 4, and as a consequence of these multiplicities the computa-
tion times (using state-of-the-art numerical techniques) are about a factor 100 larger than
those of similar problems in which all solutions occur with multiplicity 1.

In Section 3.4, we improve the results of [37] by providing a polynomial formulation for
the locally extreme cylinders, whose Bézout bound is 36 and whose solutions generically
have multiplicity one. We also present classes of tetrahedra for which the algebraic degrees
in computing a smallest circumscribing cylinder can be considerably reduced.

We close Chapter 3 with a short discussion of dynamic visualization aspects of the
tangent problem and their connection to homotopy-based solvers of polynomial equations.

1.1.2 Common tangents to four quadrics in P* and R3

From the algebraic-geometric point of view, the tangent problem is of particular im-
portance for the following reason. The formulation of the problem in terms of Pliicker
coordinates gives five quadratic equations in projective space P%, whose common solutions
in (complex space) P° include a one-dimensional component at infinity (accounting for
the “missing” 2% — 12 = 20 solutions). Quite remarkably, as observed by P. Aluffi and
W. Fulton [1], this excess component cannot be resolved by a single blow-up.
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In Section 4.1, we solve the real enumerative question for quadratic surfaces in P?
(shortly, quadrics) by showing that 32 is the true upper bound of tangents to four quadrics,
even over the reals. We present and analyze a class of configurations of four quadrics in
R? such that any configuration in this class leads to 32 distinct real common tangent lines.

In Section 4.2 we propose to use computer-algebraic methods to study intersection-
theoretical phenomena such as this double blow-up. For this, we describe the ideal of
the one-dimensional excess component. By extending the polynomial ring and adding
suitable polynomials we simulate the blow-up in the computer algebra system SINGULAR
and study the resulting ideal as well as the second blow-up.

1.1.3 Tangent problems to quadrics in n-dimensional space

In Chapter 5, we study the natural (real) enumerative generalizations of the tangent prob-
lem to n-dimensional space. Given 2n—2 spheres (respectively quadrics) in n-dimensional
space, what is the maximum number of (real) common tangent lines in the finite case?
The number of 2n—2 quadrics guarantees that in the generic case there is indeed a finite
number of common tangent lines. The problem to find the common tangents to 2n—2
given spheres in R” arises, for example, in the computation of smallest enclosing cylinders
in n-dimensional space (which is a fundamental problem in statistical analysis, see [24]).

Consider 2n—2 spheres in R” whose centers affinely span R”. We show that if the
spheres have a finite number of complex common tangent lines, then that number is
bounded by 3 -2"~!. Moreover, we show that there exists a configuration of unit spheres
such that all these 3 - 2"~! tangents are real. We also discuss the case of 2n—2 spheres
whose centers have affine dimension less than n.

In Section 5.2, we consider the tangents to 2n—2 quadrics in P™. Since this prob-
lem can be formulated as the complete intersection of 2n—2 quadratic equations on the
Grassmannian of lines in P, the expected number of (complex) solutions is given by the
product of the degrees of the equations with the degree of the Grassmannian,

o ymea (=2
" n\n—1)"

As our main result of this section, we show: Given 2n—2 general quadrics in P” there are
d,, complex lines that are simultaneously tangent to all 2n—2 quadrics (n > 2), and there
is a choice of quadrics in R™ for which all the lines are real and lie in affine space R".

Our proof combines recent results in the real Schubert calculus with classical perturba-
tion arguments adapted to the real numbers. With regard to the application mentioned
above, Table 1.1 exhibits the amazingly large difference between the number of (real)
tangent lines for spheres and the number of (real) tangent lines for general quadrics.

We also put the tangent problem to spheres into the perspective of common tangents
to general quadrics. In particular, we discuss the problem of common tangents to 2n—2
smooth quadrics in P, and describe the excess component at infinity for the problem of
spheres. In this setting, the upper bound on the number of tangents to spheres implies
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| n 3] 4] 5 | 6 | 7 8 9
3.2n1 112 24 | 48 | 96 192 384 768
d, || 32| 320 | 3584 | 43008 | 540672 | 7028736 | 93716480

Tab. 1.1: Maximum number of tangents to 2n—2 spheres in R” and to 2n—2 quadrics in P”

that there will be at most 3-2" ! isolated common tangents to 2n—2 quadrics in P*, when
the quadrics all contain the same (smooth) quadric in a given hyperplane. In particular,
the problem of the spheres can be seen as the case when the common quadric is at infinity
and contains no real points.

In Section 5.3, as an application of the characterization of tangents to spheres, we give
an efficient polynomial formulation for smallest circumscribing cylinders of a simplex in
R". Using this formulation we give a bound on the number of locally extreme cylinders
based on the Bézout number. Since this bound is not tight, we provide better bounds for
small dimensions; these bounds are based on mixed volume computations and Bernstein’s
Theorem. Moreover, we study in detail the locally extreme circumscribing cylinders of
a regular simplex in R”. To exploit many symmetries in the analysis, we provide a
formulation based on symmetric polynomials. Using elementary invariant theory, we show
that the direction vector of every locally extreme circumscribing cylinder has at most three
distinct values in its components. With this result we can illustrate our combinatorial
results on the number of solutions for general simplices.

As a byproduct of our computational studies, we discovered a subtle but severe mistake
in the paper [148] on the explicit determination of the smallest enclosing cylinder for a
regular simplex in R”, thus completely invalidating the proof given there. In an appendix
to Section 5.3, we give a description of that flaw, including some computer-algebraic
calculations illustrating it.

1.1.4 Common transversals and tangents

In Chapter 6, we consider the lines which are simultaneously tangent to k spheres and
4—Fk lines in R®, k € {0,...,4}. From the algorithmic point of view, these problems
immediately arise in the mentioned applications when the class of admissible bodies in
the scene consists of both balls and polytopes (see Section 2.2.5). The case k£ = 0 asks
for the common transversals to four given lines in R®. This geometric problem has been
well-known for many years (see, e.g., [70, 75, 117]). In particular, if a configuration has
only finitely many common transversals, then this number is bounded by 2; and it is well-
known how to characterize the configurations with infinitely many common transversals.

We compute tight upper bounds for the number of real common tangents to k spheres
and 4—Fk lines in the finite case, k € {0,...,4}. Table 1.2 summarizes our results. It
shows the tight upper bounds for the maximum number of real solutions. The last column
shows that in some cases, we are able to explicitly characterize the configurations with an
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tight upper bound characterization of

# solutions degenerate instances

4 lines 2 (well-known) | yes (well-known)
3 lines, 1 sphere 4 yes
2 lines, 2 spheres | 8 yes
1 line, 3 spheres || 12 -

4 unit spheres 12 (see Chapter 3) | yes (see Chapter 3)
4 spheres 12 (see Chapter 3) | —

Tab. 1.2: Lines tangent to k given spheres and transversal to 4—k given lines in R3

“w»

infinite number of real common tangents. In the entries with a we do not know such

a characterization.

The proofs of these results are of different flavors. For k € {1,2}, the upper bounds
immediately follow from Bézout’s Theorem. Whereas for k = 1 it is easy to give a construc-
tion matching this bound, for k¥ = 2 we use a computation of intersection multiplicities
based on standard bases in local rings to prove correctness of the construction. For k = 3,
the Bézout bound in the Pliicker formulation will be 16 instead of 12. In order to find
a better bound for the number of solutions in R?, we prove that there are two solutions
with multiplicity at least two in the plane at infinity.

The characterization of the degenerated situations in the case of three lines and one
sphere is based on classical methods of geometry.

For the case of two lines and two spheres, we have to investigate the degenerated
situations of an algebraic problem of degree 8. In order to establish this characterization,
we develop a variety of symbolic methods and combine them with classical methods of
classification of algebraic curves. First we deal with the more general problem where we
replace the spheres in R* by general quadrics in P3. In order to study the geometry of
this problem, we fix two lines and a quadric in general position, and describe the set of
(second) quadrics for which there are infinitely many common transversals/tangents in
terms of an algebraic curve. It turns out that this set is an algebraic curve of degree 24
in the space P? of quadrics. Factoring the ideal of this curve shows that it is remarkably
reducible. Namely, the curve consists of 12 plane conics.

In the proof of this statement, we first investigate the ideal defining the algebraic
curve of the set of (second) quadrics. Based on this, we prove the theorem with the
aid of a computer calculation in the computer algebra system SINGULAR [62]. As will
be explained in Section 6.2.3, the success of that computation depends crucially on the
preceding analysis of the curve. Quite interestingly, there are real lines ¢; and /5 and
real quadrics () such that all 12 components of the curve of second quadrics are real. In
general, given real lines /;, /5, and a real quadric (), not all of the 12 components are
defined over the real numbers.
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1.1.5 Algorithmic complexity of visibility computations with moving viewpoints

In Chapter 7, we change our viewpoint towards the following guiding question: In how
far is the algebraic difficulty of visibility computations with moving viewpoints reflected
by complexity-theoretical hardness results in the Turing machine model.

We analyze the binary Turing machine complexity of visibility computations in spaces
of variable dimension. Here, an additional motivation of dealing with visibility compu-
tations in spaces of variable dimension comes from high-dimensional data visualization
[139]. The classes of geometric bodies under consideration are that of balls, that of poly-
topes represented as the convex hull of finitely many points (“V-polytopes”), and that
of polytopes represented by an intersection of finitely many halfspaces (“H-polytopes”).
Roughly speaking, we show the following results that characterize the borderline between
tractable and hard problems. If the dimension of the space is part of the input, then
checking visibility of a given body B in the scene is NP-hard for all three classes. In the
case where the given body B degenerates to a single point, we can prove also membership
in NP for the two classes of polytopes. If however, the dimension is fixed then the visibility
problem becomes solvable in polynomial time for all three classes. (For precise statements
of the results see Theorems 7.2 and 7.3.)

Moreover, we establish a link between these hardness results and the view obstruction
or lonely runner conjecture from diophantine approximation [12, 34, 150]. For z € R let
||z||; denote the distance of x to a nearest integer. Then, for each positive integer n, let

k(n) = inf Sup min, [Iroillr,
a measure for simultaneous homogeneous diophantine approximation. Wills [150] and later
Cusick [34] conjectured that x(n) = n%rl Although this conjecture has been investigated
in a series of papers in the last 30 years (see the list of references in [27]), the exact value of
k(n) is known only for n < 5. Our hardness results can be seen as a complexity-theoretical
indication why the number-theoretical view obstruction problem is hard.

1.2 Publications in advance and viewpoint of this thesis.

Most of the results in this thesis have been published beforehand, partly in connection
with various coauthors: see [19, 85, 90, 96, 131, 132, 140, 141, 142]. Rather than keeping
the results of these papers separated, the material has been restructured in this thesis.
The aim is to provide a comprehensive treatment of the results on that research. However,
in order to allow a self-contained access to the three-dimensional problems (which are the
most relevant ones for algorithmic purposes), the three-dimensional problems on spheres
and quadrics are treated before the general n-dimensional problems.

The following list enumerates for each of the chapters of this thesis which papers are
the essential sources of the results:

Chapter 2: [142].
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Introduction




2. BACKGROUND AND PRELIMINARIES

In order to keep this thesis self-contained within the different research communities in-
volved, we present our geometric notions in Section 2.1. In Section 2.2, we introduce the
algorithmic problems and the algorithmic framework relevant to our work. Finally, in
Section 2.3, we review the well-known Pliicker coordinates from line geometry and state
some tangent conditions. These coordinates will be extensively used in Chapters 4 to 6.

2.1 Geometric preliminaries

2.1.1 Basic geometric notions

Dot product, scalar product, and norm. For z,y € C*, let x -y := Y .  x;y; denote
their usual dot product. We write 22 for z - . Within real space R?, the bilinear form
R* x R* — R, (z,y) — z -y is the Euclidean scalar product, and || - || : R* — R,
||z]| :== (2 - 2)'/? is the Euclidean norm.

Projective spaces. For n > 1, let P" denote n-dimensional complex projective space, and
let Py denote n-dimensional real projective space.

Quadrics and spheres. Let n > 1, and let Q € C**4»+1\ {0}, where C*™ denotes the
set of k x m-matrices with complex entries. Then the set {z € P" : 2TQx = 0} is
a quadratic hypersurface in P”, shortly, a quadric in P"; without loss of generality we
can assume that () is symmetric. Throughout the presentation, we will often identify a
quadric in P" with the symmetric representation matrix . Quadrics which can be defined
by representation matrices with real entries are called real quadrics.

A quadric defined by a representation matrix @ is smooth (i.e., the gradient of 27 Qx
is non-zero for any (z, ... ,z,)T € P?) if its representation matrix has rank n+1.

For ¢ € R” and r > 0, the sphere in R" with center ¢ and radius r is denoted by S(c, ).
In P", it is described by (z1 — ¢120)* + ... 4+ (¥, — ¢u20)? = 2, and it is identified with
the matrix

Sk =1 —ei —cy o —ey
—C1 1 0 0
—c 0 1 (2.1)
0
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Convezity. Let n € N. For a set A C R", conv(A) denotes the convex hull of A. A convex
body (or simply body) is a bounded, closed, and convex set which contains interior points.
A polytope in R™ is the convex hull of finitely many points vy, ... ,vx € R". A simpler in
R” is the convex hull of n + 1 affinely independent points. In R?, a simplex is also called
a tetrahedron. Let e; denote the i-th standard unit vector in R®. Then for ¢ € R® and
P1y---ypn > 0, conv({c+ pie; : 1 < i< n})is called a cross polytope in R*. A boz is a
polytope of the form {z € R* : a; < x; < f3;} with given a; < f;, 1 <i < n.

Segments and rays in R". Let x #y € R, and let w € R* \ {0}. Then conv{z,y} is the
segment connecting x and y. A ray issuing from x is a set of the form z + [0, co)w.

2.1.2 Polynomial equations

Nonlinear geometric problems are naturally described in terms of polynomial equations.
Throughout the text, we apply a number of techniques from computational algebraic
geometry. For easily accessible, comprehensive treatments and the state of the art see [31,
32, 137]. In particular, let us recall the following version of Bézout’s Theorem [32, p. 91],
which will be used many times.

Theorem 2.1. (Bézout) Let n > 2, and let fi,..., f, be homogeneous polynomials in
Xo, ..., Ty of degrees dy, ... ,d, > 0. If f1,..., f. have a finite number of common zeroes
in complex projective n-space P" then the number of zeroes (counted with multiplicity) is

dy-dy - d,.

The theorem does not only give a theoretical bound on the number of solutions. From
the practical point of view, the computational costs of solving a system of polynomial
equations are mainly dominated by the Bézout number (= product of the degrees) and
the mixed volume (the latter one is discussed in Section 5.3.1).

2.2 Motivation and algorithmic background

As mentioned in the introduction, a variety of algorithmic applications has led to the
algebraic core problems studied in the next chapters. Exemplarily, we describe three of
these applications. The first one comes from ray-tracing with moving viewpoints and
will also be our main visibility problem for the complexity-theoretical investigations in
Chapter 7. Namely, we want to compute information on the viewpoint positions where
the visibility topology of the scene changes. This includes tackling the problem of partial
visibility, which will be introduced in Section 2.2.1. In Section 2.2.2 we introduce the
problem of computing smallest enclosing cylinders. Then, in Section 2.2.3, we introduce
the concept of envelopes in the design of computational-geometric data structures.

For all these problems and related problem classes, in dimension 2 the resulting geo-
metric questions remain rather elementary (cf. [99, 105]), and the primary focus on these
problems is on efficient algorithms and data structures. Therefore, exemplarily for the
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treatment of two-dimensional problems of this kind, we present a sweep algorithm for the
partial visibility problem in Section 2.2.4.

In Section 2.2.5, we show how the three-dimensional versions of these problems lead to
the tangent problems to common bodies. In particular, for the smallest enclosing cylinder
of a point set in R, we study this reduction in full detail.

2.2.1 Partial visibility

We consider a scene in R" consisting of m + 1 (not necessarily disjoint) convex bodies
By, By, ..., B, from a class X in R* (X might be the set of all balls or the set of all
full-dimensional polytopes).

Let v € R™ be the viewpoint of the scene. We call By partially visible from the viewpoint
v (with respect to By, ..., By) if there exists an x € By satisfying

conv{z,v} Nrelint(B;) =0 foralll <i<m,

where relint(B;) denotes the relative interior of the body B;.

Concerning the variety of possible viewpoint areas, we will particularly concentrate on
the most natural one: all viewpoints “outside of the scene” are possible. More precisely,
if the body By is partially visible from some viewpoint v € R" \ conv({J:~, B;) then it is
called partially visible; otherwise it is called inwvisible. A wisibility ray b for By is a ray
issuing from some point x € By with b Nrelint(B;) = @ for all 1 < i < m. Hence, By is
partially visible if and only if there exists a visibility ray for By.

The main problem PARTTAL VISIBILITY with respect to a given body class X is
defined as follows.

Problem PARTIAL VISIBILITY u:

Instance: m, n, bodies By, Byq,...,B,, C R” from the class X.
Question: Decide whether B is partially visible with respect to By, ..., B,.

Bodies which are not partially visible can be immediately removed from the scene,
which reduces the complexity of the visualization process. In case of dense crystals whose
atoms are visualized as sufficiently large balls in R?, the reduction in complexity may be
quite substantial.

Remark 2.2. The problem of partial visibility can be seen as one of the easiest visibility
problem with moving viewpoints. Concerning the algebraic aspects treated in the next
chapters, all the related visibility problems in [36, 41, 42, 43, 146] lead to the same algebraic
questions.
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2.2.2  Smallest enclosing cylinders

Let n € N. Given points py,... ,pm € R*, let P := {py,... ,pm}. For our purposes, we
define a cylinder in R" to be a set of the form

bd(¢+ pB") ,

where / is a line in R", B” denotes the unit ball, p > 0, the addition denotes the Minkowski
sum, and bd(-) denotes the boundary of a set. We say that P can be enclosed in a cylinder
C if P is contained in the convex hull of C. Equivalently, we can speak of an enclosing
cylinder of the polytope conv{p,... ,pn}. An enclosing cylinder of P of minimal radius
is called a smallest enclosing cylinder of P. One of the most natural examples of this
class is the one for dimension 3, i.e., the smallest enclosing (circular) cylinder of a point
set in R3.

In the notation of [17, 63], the radius p of a smallest enclosing cylinder of a polytope
P is called the outer (n—1)-radius of P. This notion comes from the fact that it is the
radius of an enclosing (n—1)-dimensional sphere in the optimal orthogonal projection of
P onto an (n—1)-dimensional linear subspace.

The decision variant of the smallest enclosing cylinder problem asks whether there
exists an enclosing cylinder of a given polytope P whose radius is not larger than a given
value r > 0.

An enclosing cylinder C of a simplex P is called a circumscribing cylinder of P if all
the vertices of P are contained in (the hypersurface) C.

2.2.3 Envelopes

Let B be a collection of m convex bodies in R3. A line £ is called a line transversal of B if
it intersects every member of B. The set of line transversals of B can be represented as the
region enclosed between an upper and a lower envelope as follows (see [2, 3, 26]). These
representations are important in the design of data structures supporting ray shooting
queries (i.e., seeking the first body, if any, met by a query ray) [2].

If we exclude lines parallel to the yz-plane, a line £ in R? can be uniquely represented
by its projections on the zy- and zz-planes: y = oyx + 09, 2 = o3x + 04. Hence, a line
can be represented by the quadruple (o1, 05, 03,04) € R

Let B be a convex body in R3. For fixed oy, 09, 03, the set of lines (0, 09, 03, 04) that
intersect B is obtained by translating a line in the z-direction between two extreme values
(01,09,03,05(01,09,03)) and (01, 09,03, ¢5(01, 72, 03)), which represent lines tangent to
B from below and from above, respectively. Hence, the set of line transversals to B can
be represented as

{(01702703704) : rgggd)g(o-lao-Q)O-?)) S 04 S %fleigd)g(o-laoéaai;)})
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which is a region enclosed between a lower envelope and an upper envelope in R*. If the
elements of B are balls or polytopes, then the set of line transversals defines a semialgebraic
set in R (see [3]). Assuming general position, the vertices (= zero-dimensional faces) of

the boundary of this region correspond to lines which are tangent to four of the bodies in
B (cf. Section 2.2.5).

2.2.4 A sweep algorithm for the two-dimensional case

We present an efficient algorithm for solving the partial visibility problem for arbitrary
convex bodies in R?. Here, we are not only interested in checking partial visibility of one
of the bodies but also in computing all bodies which are not partially visible. In order to
avoid several special cases we assume that the bodies are pairwise disjoint.

Let B := {By,..., By} be aset of disjoint bodies in the plane. In the two-dimensional
case, checking partial visibility of a body B € B can be reduced to a finite number of
geometric problems as follows (cf. the treatment of stabbing lines in [47]). Without loss
of generality let |B| > 2 and assume B = By. If there exists a visibility ray for B then we
can continuously transform (i.e., rotate and translate) the visibility ray until we reach a
situation where the underlying line is tangent to at least two of the bodies (one of them
might be By itself). Hence, it suffices to compute the set of all common tangent lines to
all pairs of bodies in B and check whether one of these lines contains a visibility ray. For
any pair of disjoint bodies, the number of common tangent lines is exactly 4 (which can be
seen as a very special case of the results in [23, 89] on the number of common supporting
hyperplanes in general dimension).

In order to handle any class of bodies in the plane algorithmically, we have to assume
that we can perform the following operations on this class.

1. Compute the four common tangent lines to two bodies B;, B;.
2. Compute the at most two intersections of a ray or a line with a body B;.

In the following, we assume that we have access to two oracles performing these op-
erations. Obviously, for the class of discs, the class of polygons, and the class combining
discs and polygons these oracles can be realized quite easily. In particular, if the maxi-
mum number of vertices of any polygon is bounded by a constant then both oracles can
be implemented in constant time.

Definition 2.3. A line is called critical if it is tangent to at least two bodies B;, B; with
0<i#j<m. A rayis called critical if it is contained in a critical line.

Hence, the body B is partially visible if and only if there exists a critical visibility ray
for By. Consequently, it suffices to compute the set of critical lines and to check whether
a critical line contains a visibility ray for B,. Obviously, checking whether a given line
contains a visibility ray for By can be achieved with O(m) calls to oracle 2.
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-¥ r-tangent ray

-

[-tangent ray

r-tangent ray

[-tangent ray

Fig. 2.1: r- and [-tangent rays from B; to B;

Theorem 2.4. In dimension 2, the set of all partially visible bodies can be computed
with O(m3) arithmetic steps, O(m?) calls to the first oracle and O(m?) calls to the second
oracle.

Proof. There are 4- () (not necessarily different) critical lines. For each critical line ¢ it
can be computed with O(m) arithmetic steps and O(m) calls to the second oracle which
bodies intersect with ¢ and which bodies are visible with regard to the line /. O

The algorithm of Theorem 2.4 computes the set of all partially visible bodies in cubic
time. However, the straightforward idea to modify it to a quadratic time algorithm for
checking partial visibility of one specific body does not work. The reason is that it is a
priori not clear which of the O(m?) critical lines can be omitted. If we are only interested in
partial visibility of one specific body, say By, we can do better by using the following plane
sweep algorithm requiring O(m?logm) time and O(m) space. (For extensive material on
sweep techniques we refer to [9].)

We interpret the four common tangent lines of two bodies B; and B; as rays starting
in some boundary point of B;. As a consequence of the results in [23, 89], there are two
tangent rays such that B; is on the left side of these tangent rays (“r-tangent rays of
B,”); and there are two tangent rays such that B; is on the right side of the tangent rays
(“I-tangent rays of B;”), see Figure 2.1.

For checking visibility of By we first investigate the 2(m — 1) (not necessarily different)
r-tangent rays touching By and some other body B;, 1 < ¢ < m. For each r-tangent
ray we consider the outer normal u € S' where S* denotes the unit sphere in R?; with
each of these normals u € S we associate the corresponding angle 0 < o < 27 measured
from the positive z-axis. As described in the following algorithm, we sweep the r-tangents
according to increasing angles.

Sub-algorithm for sweeping the r-tangents of By and B;, 1 <i<m:

1. Compute the set of r-tangents of By and B;, 1 <1 < m, and sort them by increasing
angles.
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Fig. 2.2: Update step during the sweep

2. Compute the number of intersections of the first r-tangent with bodies B;, i > 1.

3. Consider the r-tangents successively in the order of increasing angles. In each of
these steps do:

(a) Update the number of intersections with bodies B;, i > 1.
(b) If the number of intersections is 0, then By is partially visible; STOP.

For the update step we use the following lemma.

Lemma 2.5. Let t; and ty be r-tangent rays of By with angles 0 < a; < g < 2w, and
let C' be some body with t, NC # 0, ta N C' = (). Then there exists an r-tangent ray to By
with angle ay € [an, ) which is tangent to C.

Proof. For any « € [0,27) there exists some oriented tangent to By with angle « (see,
e.g., [14]) and therefore some r-tangent ray to By with angle a. Let ap be the supremum
of a € [, ap) such that the tangent with angle a intersects with C'. Since C' is compact
the tangent with angle qy is tangent to By and C, i.e., the supremum is a maximum. [

In each step of the sweep we update the number of intersections of the sweep ray with
bodies B;, © > 1, in the following way. Let us first consider the case where the new angle
iy is strictly larger than the current angle oy and where the r-tangent rays with angle a;
and ay are each tangent to exactly two bodies. Let the r-tangent ray with angle oy be
tangent to By and Bj, and let the r-tangent ray with angle ay be tangent to By and By,
1 < j# k < m. Then we only have to check whether the ray with angle cs intersects
with B; (i.e., if the sweep ray is just “entering” B;) and if the ray with angle o intersects
with By (i.e., if the sweep ray is just “leaving” By); see Figure 2.2. Due to Lemma 2.5 any
additional change would imply the existence of some r-tangent with angle ay € (v, avg).
Consequently, the update step can be done in constant time. If there are several r-tangent
rays with the same angle we can combine these update steps. The amortized costs for
the update step are not larger than in the case of different angles. If during the sweep we
reach a situation where the number of intersections is 0 then B, is partially visible and
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final ray ‘
____4"':::/ initial ray

backward ray

Fig. 2.3: Initial and final ray for sweeping the r-tangent rays of B;, 71 > 1

we can stop immediately. After the inspection of the r-tangent rays of By the [-tangent
rays of By are swept in the same way.

So far, we have inspected the r- and [-tangent rays of By. However, a visibility ray of
By is not necessarily tangent to By, and we also have to investigate the common tangents
of bodies B;, B; with 1 < i # j < m. More precisely, for every fixed i € {1,...,m},
we consider the critical rays which are tangent to B;. Here, we start the sweep with that
r-tangent ray from B; to By that has By on the left side (see Figure 2.3). For this ray we
count the number of intersections between B; and By, and separately we count the number
of intersections of the backward ray with other bodies. Now we sweep the r-tangent rays
of B; according to increasing angles and update the number of intersections between B;
and By as well as the number of intersections of the backward ray. If we reach a situation
where both numbers of intersections are simultaneously zero then By is partially visible
and we can stop immediately. In any case, the algorithm can stop if the r-tangent ray to
B; has By on its right side; see the illustration in Figure 2.3. After sweeping the [-tangent
rays of B; the r-tangent rays of B; are investigated in the same way.

The correctness of the whole algorithm follows from the fact that the sweep inspects
all O(m?) critical visibility lines and that the update step is correct due to Lemma 2.5.

For sweeping the tangent rays of some given body B;, 0 < ¢ < m, the time requirements
are dominated by the time to sort the tangent rays according to increasing angles. We
can conclude:

Theorem 2.6. Let the dimension be n = 2. Then checking partial visibility of a body By
can be done with O(m?logm) arithmetic steps, O(m?) calls to the first oracle, and O(m?)
calls to the second oracle, as well as O(m) space.

Similar algorithmic ideas can also be applied to the two-dimensional versions of other
problems involving the interaction of lines with bodies.

Using much more sophisticated data structures, the logarithmic factor in time can be
removed. Namely, with the concept of visibility complexes [4, 105], the partial visibility
problem can be solved in time O(m?) with space requirements O(m?). For other recent
results on visibility computations in R? see also [4].
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2.2.5 Algorithmic framework for three-dimensional problems

In the three-dimensional case we can essentially use the same framework as in the two-
dimensional case. A line in real projective space P3 can be regarded as a point on the
(four-dimensional) Klein quadric in P§ (cf. Section 2.3). Assuming that our bodies are
given by algebraic inequalities (e.g., balls or polytopes), and assuming general position,
the core problem (corresponding to the first oracle in Section 2.2.4) is to compute the
common tangents to four bodies in R* (cf. [3, 103]). However, in the three-dimensional
case, there are also some special cases where we can transform a visibility ray only to
a situation with less than four bodies, or where a configuration with four bodies has an
infinite number of common tangents.

Let us consider the decision problem whether there exists an enclosing cylinder with
radius r of a given point set. The following statement reduces that problem to a prob-
lem involving the common tangents to four spheres with radius r, including an exact
characterization of all special cases which can occur.!

Theorem 2.7. Let P = {py,... ,bm} be a set of m > 4 points in R®, not all collinear. If
P can be enclosed in a circular cylinder C of radius r, then there exists a circular cylinder
C' of radius r enclosing all elements of P such that the surface C' passes through

(i) at least four non-collinear points of P, or
(ii) three non-collinear points of P, and the axis € of C' is contained in

(a) the cylinder naturally defined by spheres of radius r centered at two of these
points;

(b) the double cone naturally defined by spheres of radius r centered at two of these
points (and these spheres are disjoint);

(c) or the set of lines which are tangent to the two spheres of radius r centered at
two these points and which are contained in the plane equidistant from these
points (and the spheres are non-disjoint).

Moreover, C can be transformed into C' by a continuous motion.

Figures 2.4 and 2.5 visualize the three geometric properties in the second possibility.

Since the second possibility in Theorem 2.7 characterizes the possible special cases,
this lemma reduces our decision problem to the problem of finding the lines tangent to four
given spheres with radius » in R*. Namely, it suffices to compute the circular cylinders
of radius r passing through four given points (corresponding to case (i)) as well as the
circular cylinders whose axes satisfy one of the conditions in (ii); the latter case gives
a constant number of problems of smaller algebraic degree (since the positions of the
axes are very restricted). Similarly, the theorem reduces the computation of a smallest

! We remark that a similar statement has already been used in [114], but the manuscript referenced
there does not contain a complete proof.
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(a) Cylinder (b) Double cone with apex (a/2,0,0)"

Fig. 2.4: Extreme situations of the set of hyperboloids for disjoint spheres

(a) Hyperboloid for 0 < z;, < 2r?/a (b) Degenerated hyperboloid for x, = a/2

Fig. 2.5: The left figure shows a general situation for disjoint spheres; the right figure shows an
extreme situation for non-disjoint spheres

enclosing cylinder of a tetrahedron in R? to the computation of a smallest circumscribing
cylinder of a tetrahedron.

Remark 2.8. Before we start with the proof, we remark that Theorem 2.7 and its differ-
ent cases show a quite similar behaviour as the well known statement that the (unique)
circumsphere of a simplex in R” touches all its vertices, or one of its great (n—1)-circles
is the circumsphere of one of the (n—1)-faces of the simplex (see [14, p. 54]).

In the proof we will apply the following geometric equivalence. A point z € R? is
enclosed in a cylinder with axis £ if and only if / is a transversal of the sphere with radius
r centered at z (i.e., £ is a line intersecting the sphere).

Proof of Theorem 2.7. Let C be a cylinder with axis ¢ and radius r enclosing P. Then,
denoting by S; := S(p;, r) the sphere with radius r centered at p;, £ is a common transversal
to Si,...,Sn,. By continuously translating and rotating ¢, we can assume that ¢ is tangent
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to two of the spheres, say S; and S5. Further, by changing coordinates, we can assume
that S; and S, have the form S; = S((0,0,0)T,r), Sy = S((a,0,0)T,r) for some a > 0.

The set of lines tangent to two spheres of radius r constitutes a set of hyperboloids of
one sheet (see, e.g., [33, 73]). Moreover, any of these hyperboloids touches the sphere S}
on a circle lying in a hyperplane parallel to the yz-plane. Hence, the set of hyperboloids
can be parametrized by the z-coordinate of this hyperplane which we denote by zj,.

If S; NS, = O then the boundary values are z, = 0 and zj, = 2r?/a. These two extreme
situations yield a cylinder and a double cone with apex (a/2,0,0)”, respectively (see
Figure 2.4). For 0 < zj, < 2r?/a we obtain a hyperboloid of one sheet (see Figure 2.5(a)).

If S; N Sy # () then the boundary values are z, = 0 and z, = a/2. Here, for 0 < z;, <
a/2 we obtain hyperboloids of one sheet, too. For x;, = a/2 the hyperboloid degenerates
to a set of tangents which are tangents to the circle with radius r. = v/4r? — a? in the
hyperplane z = a/2 (see Figure 2.5(b)).

Let xp, o be the parameter value of the hyperboloid containing the line ¢. The tangent to
S1 and S, is contained in the hyperboloid with some parameter value xj . By decreasing
the parameter ), starting from z, o the hyperboloid changes its shape towards the cylinder
around S and S. Let z;,; be the infimum of all 0 < x;, < x3, such that the hyperboloid
does not contain a generating line tangent to some other sphere S(p;, r) for some 3 < i <
m. If z,; = 0, then by choosing any point of P not collinear to p; and p; we are in case
(i) (a).

If 25,1 > 0 then let p3 be the corresponding point. Let T(S}, S2,S3) denote the
set of lines simultaneously tangent to Sy, Sy, and S3. Now let xj 9 be the infimum of all
0 <z, <m0 such that there exists a continuous function ¢ : (zp2, zp,1) = T({S1, S2, S5})
with ¢(z;) lying on the hyperboloid with parameter xj. Since the spheres are compact,
the infimum is a minimum. If 2,5 > 0 then one of three hyperboloids involved by the
three pairs of spheres must be one of the extreme hyperboloids in that situation and we
are in cases (ii) (a), (b), or (c¢). If 2,2 = 0 then we distinguish between two possibilities.
Either during this process we also reached a tangent to some other sphere S(p;,r) for
some 4 < 7 < m; in this case we are in case (i). Or during the transformation all the
points p4, ... ,pm, are enclosed in the cylinder with axis ¢ and radius r, but none of them
is contained in it. Then we arrive at situation (ii) (a). O

The crucial point in the algorithmic realization is that the main subproblem described
in case (i) has finitely many solutions; to show this is the content of Section 3.2. Moreover,
the special cases described in case (ii) can also be handled in a finite way.

Similar reductions can be done, e.g., in the case of the partial visibility problem if
the class of admissible objects consists of unit balls. Hence, by our results of the later
Section 3.2, we can solve this problem rigorously. If n denotes the number of unit balls,
a first upper bound on the number of calls of the algebraic oracle is O(n°). Here, the
algebraic oracle has to solve the corresponding polynomial equations of degree at most 12.
Using the implementation techniques from [3, 103, 114] the exponent 5 can be decreased
to a value below 4.
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If the bodies are polytopes, then the common tangent lines to the bodies are common
transversals to four given lines (stemming from the edges of the polytopes) in R? (see
[103]). Characterizing and computing the common transversals to four given lines in R?
is a classical problem in geometry (see, e.g., [75, §XIV.7]). For configurations of four lines
with only finitely many common transversals, there are at most two solutions (which can
be found by solving a quadratic equation); and it is well-known how to characterize the
degenerate configurations with infinitely many common transversals.

However, in case the class of admissible objects consists of balls of general radii or
of combinations of balls and polytopes, then we arrive soon at the situations where the
geometry of the tangent problems is still open (see the discussions in Section 3.2.5 and
in Chapter 6). Hence, we do not know how to do similar rigorous reductions of the
algorithmic problems to a finite number of algebraic-geometric core problems, all having
finitely many solutions. However, for a theoretical possibility to solve also these problems
(based on real quantifier elimination) see Section 7.5.

2.3 Pliicker coordinates

We review the well-known Pliicker coordinates of lines in complex projective space P". For
a general reference, see [31, 74, 106]. Let x = (2, Z1,--- ,%,)" and y = (Yo, Y1, --- ,Yn)" €
P" be two distinct points on a line /. Then ¢ can be represented (not uniquely) by the
(n+1) x 2-matrix L whose two columns are z and y. Let N := ("}) — 1. The Pliicker
vector p = (Dij)i<icj<n € PV of the line ¢ is the vector of the determinants of the 2 x 2-
submatrices of L, that is, p;; := z;y; — z;4;. The set of all lines in P" is called the
Grassmannian of lines in P* and is denoted by Gy ,,. The set of vectors in PV satisfying
the Plicker relations

DijPki — PikPji + Pupjr = 0 for0<i<j<k<l<n (2.2)

is in 1-1-correspondence with Gy ,. See, for example, [74, §VIL6], [54, §1.2.5], or (for
dimension 3) [31, Theorem 11 in §8.6].

Remark 2.9. If n = 3 then (2.2) gives a single equation. In this case, the quadric in P®
defined by (2.2) is called Klein quadric.

Similarly, we describe (n—2)-planes in terms of dual Pliicker coordinates. If an (n—2)-
plane A is given as the intersection of the two hyperplanes Y "  u;z; and Y ., v;z;, then
the dual Pliicker coordinates of A are defined by ¢;; := u;v; — u;v;.

A line ¢ intersects an (n—2)-plane A in P™ if and only if the dot product of the Pliicker
vector p of ¢ and the dual Pliicker vector ¢ of A vanishes, i.e., if and only if

Z pijdi; = 0 (2.3)

0<i<j<n
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(see, e.g., [74, Theorem VIL.5.1]). Since this is a linear relation in the Pliicker coordinates
of the line ¢, geometrically the set of lines intersecting a given (n—2)-plane is described
by a hyperplane section of the Grassmannian in PV.

In dimension 3 this specializes as follows. For any line ¢ C P3, the Pliicker vector
(o1, Po2, Pos, P12, P13, Pa3)” coincides with the dual Pliicker vector (gos, —¢13, ¢12, 903, —Go2,
qo1)” in P5 [74, Theorem VIL3.I]. Hence, a line ¢ intersects a line ¢ in P? if and only if
their Pliicker vectors p and p’ satisfy

pOlp,23 - p02pl13 + p03pl12 + p12p63 - p13p62 + p23p61 =0. (2-4)

We use Pliicker coordinates to characterize the lines tangent to a given quadric in
P™. Recall the following algebraic characterization of tangency: The restriction of the
quadratic form to the line 7 is singular, in that either it has a double root, or it vanishes
identically. When the quadric is smooth, this implies that the line is tangent to the
quadric in the usual geometric sense.

Lemma 2.10. Let L be an (n+1) X 2-matriz representing the line £ C P™. ( is tangent
to a quadric Q in P™ if and only if the 2 x 2-matriz LT QL is singular.

Proof. If we denote the two columns of L by x and y, then the line ¢ consists of all points

{z=(20,...yz)" : 2=2z+py, A\, )" € C\{(0,07}}.

By the algebraic definition of tangency, /¢ is tangent to () if and only if this line intersects
the quadric exactly once (namely, with multiplicity 2), or if it is contained in the quadric.
The homogeneous quadratic equation

(A2 + py)"Q(Ax + py) = 0

can be made affine by setting © = 1. Since the discriminant of this affine quadratic
equation in A is

(22" Qy)” — 4(+" Q) (y" Qy) = —4det(L"QL),
the statement follows immediately. O

In order to transfer this condition to Pliicker coordinates, we use the second exterior
power of matrices

AZ . Cbm (C(g)’(ﬂ;)

(see [106, p. 145],[129]). The row and column indices of the resulting matrix are subsets
of cardinality 2 of {1,...,k} and {1,...,m}, respectively. For I C {1,... ,k} and J C
{1,...,m} with |I| = |J| =2,

(/\QA)[’J = det A[[’J},
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where Ajr j; denotes the 2 x 2-submatrix of the given matrix A with row indices I and
column indices J. Let ¢ be a line in P* and L be an (n+1) X 2-matrix representing /.
Interpreting the ("}') x l-matrix A2L as a vector in PV, we observe A2L = p,, where p,
is the Pliicker vector of /.

Lemma 2.11. A line { C P" is tangent to a quadric Q if and only if the Pliicker vector
pe of U lies on the quadratic hypersurface in PN defined by A2Q, if and only if

pi (N°Q)pe = 0. (2.5)
Proof. Let L be a (n+1) x 2-matrix whose two columns contain distinct points of ¢. The
Cauchy-Binet formula from multilinear algebra (see, e.g., [91]) implies
Qet(LTQL) = (RPLT)(AQ)(AL)
(ML) (N’Q)(AL).

Now the claim follows from Lemma 2.10. O

For an alternative deduction of this tangent condition see [129].
Explicitly, for a sphere with center (c;, ¢, c3)” € R® and radius r the quadratic form

pf (A*Q)py is

Po1 ’ a+cE—rt  —cie —ciC3 co c3 0 Dot

Do2 —cic G+ —r? —CaC3 —c; 0 ¢ Doz

Dos3 —C1C3 —ce3  GHG—1r 0 —c —cy Dos3 (2.6)
P12 C2 —C 0 10 0 P12 '
P13 3 0 —C1 0 1 0 P13

D23 0 3 —Cy 0 0 1 D23



3. COMMON TANGENTS TO FOUR SPHERES IN R3

We discuss the lines which are simultaneously tangent to four (not necessarily disjoint)
given spheres in R3.

In Section 3.1, we show that if four spheres in R?® with affinely independent centers
have a finite number of common tangent lines in C*, then this number is bounded by
12. For reasons which will be discussed in detail in Chapter 4, rather than using Pliicker
coordinates we prefer an elementary description of the lines. Describing a line ¢ C C* by
its direction vector v € P? and by a point p lying on the line with p - v = 0 the common
tangent lines to the four spheres can be characterized as the intersection of a cubic and
a quartic curve in the projective plane corresponding to the three homogeneous variables
vy, Vg, and vs.

In Section 3.2, we show the following result for unit spheres:

Theorem 3.1. Four unit spheres in R® whose centers are not collinear have at most 12
common tangent lines in R®. This bound is tight, i.e., there exists a configuration of four
unit spheres in R® with 12 distinct real common tangent lines.

In Section 3.3, we study realization questions. In particular, David Cox had raised
the question on the possible numbers of real solutions which can occur in the tangent
problem. We complement Theorem 3.1 by answering this question as follows:

Theorem 3.2. For any number k € {0,... 12} there exists a configuration of four unit
spheres in R® which have ezactly k distinct common tangents in R3.

In Section 3.4, we discuss the optimization variant of the tangent problem. Given
four affinely independent points c;,...,cs € R?, find the minimum radius r such that
there exist a real common tangent line to the spheres S(cq,7),...,S(¢eq,7). This problem
is equivalent to finding the minimum circumscribing cylinder of a given (not necessarily
regular) tetrahedron in R3.

In Section 3.5, we discuss some dynamic visualization aspects.

Before entering into the technical details, let us point out two other results in enumer-
ative geometry, which are somewhat related to our tangent problem:

1. The number of spheres touching four given spheres in R? is at most 16 in the generic
case [77, 116]. (This can be regarded as the 3-dimensional version of Apollonius’
problem).
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2. The number of spheres tangent to four given skew lines in R® is at most 8 (see [78]),
and in [133] the configurations with infinitely many tangent spheres are character-
ized.

3.1 A cubic and a quartic equation

We represent a line in C? by a point p € C? lying on the line and a direction vector v € P?
of that line. (For notational convenience we typically work with a representative of the
direction vector in C* \ {0}.) If v? # 0 we can make p unique by requiring that p - v = 0.

By definition, a line £ = (p,v) is tangent to the sphere with center ¢ € R® and radius
r if and only if it is tangent to the quadratic hypersurface (x —¢)? = r?, i.e., if and only if
the quadratic equation (p + pv — ¢)? = r? in u has a solution of multiplicity two. When ¢
is real then this is equivalent to the metric property that ¢ has Euclidean distance r from
¢ (see Figure 3.1).

The tangent condition on ¢ gives the equation

(v-(p—c))?

For v? # 0 this is equivalent to
v2p? — 20%p e+ 02 — (v-¢) —r*? = 0, (3.1)

and, using Lagrange’s identity,
v’p? — 20°p-c+ (e x v)? —r*v® = 0. (3.2)

Here, the notion x of the vector product is also used for complex vectors.

Let c¢,...,cs € R? be affinely independent, let ry,...,r, > 0, and let T be the
tetrahedron with vertices ¢y, ... ,cs. Without loss of generality we can choose ¢, to be
the origin and set r := r4. Then the remaining centers span R?. Subtracting the equation
for the sphere centered at the origin from the equations for the spheres 1,2, 3 gives the

C={p+pv : peR}
T

\

Fig. 3.1: Distance of the line ¢ from ¢ in the real case
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system
p-v =0,
p? = r?, and (3.3)
20%p-c; = (¢ xv)?—v*(r? —r?), 1<i<3.

Remark 3.3. Note that this system of equations does not have a solution with v? = 0.
Namely, if we had v?> = 0 then v-¢; = 0 for all 4 € {1,2,3}. Since the centers span R?,
this would imply v = 0, contradicting v € P2. This validates our assumption that v? # 0
prior to (3.1).

By assumption, ¢q,co, and c3 are linearly independent. Hence, the matrix M :=
(c1,¢2,c3)T is invertible, and we can solve the equations in the bottom line of (3.3) for p:

(1 x v)2 —v2(r?2 —r?)
p = — M| (c2xv)?=0v*ri—1r?) |. (3.4)
(c3 x v)? —v2(r2 —r?)

Now substitute this expression for p into the the first and second equation of the sys-
tem (3.3) and then clear the denominators. This gives two homogeneous equations in the
coordinate v, namely a cubic and a quartic. By Bézout’s Theorem, this means that if the

system has only finitely many complex solutions, then the number of solutions is bounded
by 3-4 =12.

Remark 3.4. In [76] the common (complex) tangents to four spheres have been formu-
lated by polynomial equations with Bézout number 24. Thus our polynomial formulation
improves that result. Moreover, by the results in Section 3.2.2, our formulation is optimal,
even over the reals.

3.2 An exact characterization of the finiteness problem for unit spheres

In this section we consider unit spheres and prove Theorem 3.1. In detail, in Section 3.2.1,
we treat the case of affinely independent centers. We start from the characterization of
the common tangents from Section 3.1 in terms of the a cubic and a quartic curve in P2.
If all spheres have the same radius then the cubic curve describes the lines equidistant to
four given points in R*, and it is discussed in [15, 112]. Thus our main task is to relate
the cubic to the quartic equation. If the cubic curve is irreducible, a detailed geometric
inspection ensures that the cubic and the quartic cannot have a common component;
hence, the desired result is implied by Bézout’s Theorem. In case of a reducible cubic,
we use the results from [112] to find suitable parametrizations of the quadratic or linear
factors. Substituting the parametrization into the radius condition gives a univariate
polynomial equation whose leading coefficient can be explicitly analyzed.
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In Section 3.2.2, we show that 12 tangents can indeed be established in real space,
and we exhibit a whole class of these configurations based on ¢y,... ,cs constituting an
equifacial tetrahedron.

Finally, Section 3.2.3 contains the proof for the affinely dependent case. In this case, we
give a direct argument using the ellipses passing through the four centers, whose shorter
half-axis is fixed.

3.2.1 Affinely independent centers

If all four spheres have the same radius r, then (3.4) simplifies to

1 (e1 X v)?
p = 2—U2M_1 (2 xv)* | . (3.5)
(c3 x v)?

Note that this expression is independent of . By Cramer’s rule,

1
M_l = W(CQ X C3,C3 X C1,C1 X CQ), (36)

where V' := det(cy, cq,¢3)/6 denotes the oriented volume of 7. Introducing the normal
vectors

nyi=(ca X 3)/2, ny:i=(c3xe)/2, nzg:=(c; Xc)/2, (3.7)

and substituting (3.5) into p - v = 0, we can eliminate p and obtain a homogeneous cubic
condition for the direction vector v:

Z(Ci x v)’n;-v=0. (3.8)

=1

In order to simplify this equation, we express v in terms of the three centers ¢y, ¢o, ¢3, i.e.,

3
v = thCj (39)
j=1

with homogeneous coordinates ¢, ¢, t3. This yields
3
ni-v:ni-thcj:tini-ci.
7j=1

As the scalar triple product n; - ¢; is invariant for 1 < i < 3, equation (3.8) simplifies to

3

D tileix )’ =0. (3.10)

=1
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Let A; be the area of the face of T" which is opposite to ¢;, 1 < i < 4. By using
Al = ||TL1||, AQ = ||TL2||, A3 = ||7’L3||, A4 = ||(Cl — CQ) X (63 — CQ)||/2, and setting F =
(A3 + A2+ A3 — A2)/2 = —(n1 - na + no - ng + ng - ny), the expansion of this sum yields

Altots(te +t3) + Adtsti(tz + 1) + Adtita(ts +to) + 2Ftitat3 = 0. (3.11)

In Section 3.2.4 we give an alternative deduction of that cubic curve based on a classical
construct in projective geometry, the pedal surface of a tetrahedron.

We conclude that the set of lines tangent to the spheres S(c;, r) for some radius r can
be characterized by the homogeneous cubic equation (3.11) in ¢y, to, t3. In addition, for a
fized radius r, equation (3.5) in conjunction with p?> = r? leads to a homogeneous equation
of degree 4. Hence, unless the cubic curve C and the quartic curve Q in projective plane
P2 have a common component, Bézout’s Theorem implies there are 12 (possibly complex)
solutions including multiplicities.

The irreducible case

Assume first that C is irreducible (over C). Then C and Q have a common component if
and only if C C Q. Now observe that any solution of (3.11) uniquely defines a radius r
via (3.5). Hence, if C C Q then the radius is constant for all elements in C. Since we know
six points on C, namely the six edge directions, it suffices to prove the following lemma.

Lemma 3.5. If all siz edge directions give the same radius, then C is reducible.

Proof. Consider two directions, parallel to two skew edges of T', say v := ¢; — ¢4 and
v' := ¢3 — co. Using (3.5) and (3.6), we can compute the corresponding radii r, and 7.
We obtain

r _ 2A2A3||n1 + n2||

! 3Vl ’

||(Cl X (C3 — CQ))2(62 X 63) + 4A%(63 X Cl) + 4A%(Cl X CQ)H
12V(63 - 02)2 .

Ty =

Applying the relation Ay = ||(c1—¢2) X (c3—¢2)]||/2, the latter expression can be compactly
written as

L 2A1A4||n1 + n2||
Y 3V(03 — 62)2

Now r, = r, implies
C%A1A4 = (C3 - 62)2A2A3 . (312)

Let a;; = ||e; — ¢jl|, i # j. Further, let R; denote the circumradius of the face opposite
to ¢;, 1 < i < 4. In view of the well-known triangle formula “R = (abc)/4A”, we have
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Ry = as3as4a34/4A; and three analogous equations for Ry, R3, and Ry. Hence, (3.12)
becomes

R1R4 — R2R3 . (313)

By our assumptions, the radii corresponding to the directions ¢y — ¢4 and c3 — ¢; as well
as the radii corresponding to the directions c3 — ¢4 and ¢y — ¢; coincide. Thus, we obtain

R2R4 - R1R3 3 R3R4 — R1R2 3 (314)

and hence Ry = Ry = R3 = R4. Therefore, the four faces of the tetrahedron are equidis-
tant from the center of the sphere through c;,...,cs. In other words, the in-center of T
coincides with its circumcenter. Hence, the circumcenter of a face is the point at which
the inscribed sphere of 1" touches that face. In particular, it lies inside the face, which
implies that every face of T" has only acute angles.

Let «;; denote the angle at ¢; in the face opposite to ¢;. By the Law of Sines (]33,
p. 13]), ags = 2Ry sin ay; = 2Ry sin a4, so that

sin q;; = sin oy , 1<i#j5<4.
Altogether, any pair of faces have a common edge, identical acute angles opposite to this
edge, and the same circumradius. Consequently, the two faces are congruent and have

the same area, i.e., A; = Ay = A3 = A,. However, if all four faces have the same area,
the cubic C is reducible; this will be discussed in detail below. O

The reducible cases

Now let C be reducible over C. We distinguish between the case A; = Ay = A3 = A4 and
the case that not all of A, Ay, A3, A4 are equal.

The case of an equifacial tetrahedron

If Ay = Ay = A3 = A, then the tetrahedron with vertices ¢,...,cq defines a (not
necessarily regular) equifacial tetrahedron. The cubic equation (3.11) decomposes into
the union of three lines,

(1 +ta) (ta + L) (ts + ) = 0. (3.15)

We consider the line ¢, + t, = 0, the other two cases are symmetric. In P2, the line
t1 + to = 0 can be parametrized by

(t1, o, t3)T = (, —p, N)' € P2, [\, p] € P, (3.16)

For convenience of notation, we dehomogenize by setting p = 1 and write A = oo for the
point [\, u] = [1,0] € P'. Thus our parametrization is

ti=1, to=-1, t3=2M\, AeCU{x}. (3.17)
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Substituting these expressions into the square of (3.5) yields a polynomial equation Py(\) =
0 of degree at most 4 in A. We show that the polynomial P, cannot degenerate to zero;
hence, the equation has at most 4 solutions. For a polynomial ¢ in the variable A\, let
Coeff) 1.(q), denote the coefficient of A* in the polynomial ¢. In the following computations
no higher power in \ than the inspected one can occur. Since in (3.17) the degree of ¢3 is
larger than the degree of t5, we obtain

Coeﬁ’,\,g ((Cl X ’1))2) = 4Ag, Coeff,\,g ((CQ X ’1))2) = 4A%, Coeﬁ’,\,g ((03 X 0)2) =0.

Hence, (3.6) implies

4A1A2||n1+n2||>2

Coeff, 4 ((z\rl((c1 % 0)2, (¢5 X )2, (3 X 0)2)1“)2) - < o

Since Coeff o(v?) = 3, the coefficient of degree 4 in P; vanishes if and only if

2A1A2||n1 + n2|| _ 7"62

. 1

Let ro > 0 be the radius defined by this equation. For 0 < r # ry, the leading coefficient
of P, does not vanish, and P, has exactly 4 zeroes in C counted with multiplicity.

For r = ry, the polynomial P, is of degree at most 3. However, it cannot degenerate to
the zero polynomial, since the polynomials for  # ry have (possibly complex) zeroes. In
particular, at any of these zeroes A the polynomial P, for » = ry does not evaluate to 0.
Hence, for r = ry there are at most 3 solutions in C. Additionally, in this case we have to
consider the solution A = co. More precisely, ry can be interpreted as follows. For A = oo
within the parametrization, the resulting radius 7, is computed — in the same way as rg
— by using the leading coefficients. This implies 7o, = ryg.

Altogether, for any given radius r > 0, there are at most 3 -4 = 12 common tangents
in C? to the four spheres S(c;, 7).

The remaining reducible cases

Now consider the case that not all of the faces have the same area. The homogeneous
cubic equation (3.11) defines a cubic curve C in projective plane P2. Based on a discussion
of the real algebraic curve defined by (3.11), we will parametrize the components of C.
As already mentioned, the directions of the six tetrahedron edges give points on C. In
particular, let X;; :==¢; —¢;, 1 <i < j <4,

Following [112], we characterize the relationships between those six points on C. Due
to (3.9) the t-coordinates of X4, X4, X34, X190, X13, Xo3 are (1,0,0)7, (0,1,0)7, (0,0,1)7,
(1,—-1,0)", (1,0,—1)", and (0,1, —1)", respectively.

For any of the four tetrahedron faces, the set of directions parallel to that face de-
fines a line in PZ. Of course, this remains true even after applying the linear variable
transformations.



32 3. Common tangents to four spheres in R

(a) Complete quadrilateral (b) Configuration of the points Xj;

Fig. 3.2: A complete quadrilateral consists of 4 lines and 6 vertices Py, ... , Ps; the three diago-
nals are drawn by dashed lines. Figure (b) shows a complete quadrilateral stemming
from the reducible case.

In order to characterize this configuration of four lines, the following notation will be
useful. A complete quadrilateral in real projective plane consists of four lines in general
position and the six points in which the lines intersect [33], see Figure 3.2(a); here, general
position means that no three lines have a common point of intersection.

Since there does not exist a vector which is parallel to more than two faces, the four
lines define a complete quadrilateral. One line contains the set of points { X9, X3, X34},
another one contains { X2, Xo4, X14}, the third one contains {Xi3, X34, Xo4}, and the
fourth one contains { X3, X34, Xo4}. In particular, the points X;; are the 6 vertices of the
complete quadrilateral. Figure 3.2(b) illustrates this configuration.

Since the cubic C is reducible (over C), it can be decomposed into a line and a (not
necessarily irreducible) conic section. An irreducible conic section intersects with any
given line in at most two points; this implies that an irreducible conic section does not
contain three collinear points. Hence, one of the factors of C is a line [ that contains at
least two of the six points Xj;.

Whenever some direction vector v of a real common tangent is parallel to a face of the
tetrahedron, v can only take the direction of an edge; otherwise, the tangent cannot have
the same distance from all three vertices of that face. For this reason, [ cannot contain
two points from the same line of the complete quadrilateral. Hence, [ must be one of the
three diagonals of the complete quadrilateral. Any of these diagonals contains two points
Xj, Xj; which do not have any common index.

Without loss of generality we can assume that [ contains X3 and Xyy. First we show
that this implies A; = A3 and Ay = A,. Since the t-coordinates of X3 and Xy, are
(1,0, —1)T and (0,1,0)T, I is given by ¢, + t3 = 0. The coefficient 7 of #2 in the remain-
ing conic section must be non-zero, because the coefficient of #¢3 in (3.11) is non-zero.
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Comparing the coefficients of #;¢3 and t3t3 in (3.11) with the corresponding coefficients in
the decomposed representation yields 7 = A? = A2; hence A; = Az. Furthermore, let 7
and 75 denote the coefficients of #1¢5 and t5¢3 in the remaining conic section, respectively.
Comparing the coefficients of 3¢, yields 7, = A2 = A?. In the same way, with regard to
tot2 and tityts we obtain 7, = A2, and 2F = 2A4%, whence (by definition of F): Ay = A,.
Hence, the remaining conic section results to

A2(tyty + 13 + tots) + Adtits = 0. (3.19)

Since, by assumption, not all of the faces have the same area, we have A; # A,. Further-
more, it can be verified that for A; # A, the conic section (3.19) is irreducible.
Parametrizing the line [ can be done like in the case A; = Ay, = A3 = A,. In particular,
the line [ gives at most 4 common tangents.
In order to parametrize (3.19), we intersect the conic with a suitable pencil of lines.
First observe that X1, is a regular point on the conic with tangent A2ty + A3t3 = 0. Then
consider the pencil of lines

N3ty — (ATty + Adtz) = 0, A€ CU {0}

with apex Xy4. In particular, solving for t3 gives t3 = A%(A—1)ty/A2. The parameter value
A = 0 gives the tangent in X4; the parameter value A\ = oo yields ¢, = 0, which is the
line through X4 and X34. Replacing ¢3 in (3.19) via the pencil equation and eliminating
the linear factor ¢, caused by the apex (1,0,0)7 yields (AZ(\ — 1) + A2)ty + A3t = 0.
This gives the parametrization

(ti,to, t3)T = (AN —1) — A2, A2\, A2(A =DV, XeCuU{oo}. (3.20)
Consequently,
Coeffya((c; x v)?) = 4ATAZ Coeffya((cy x v)?) = 445, Coeffyi((c5 x v)?) = 0.

Here, the radius ry where the leading coefficient vanishes is the same one as in (3.18) and
refers to the situation A = co. Hence, the conic section gives at most 8 common tangents.
Altogether, we obtain at most 4 + 8 = 12 common tangents in this reducible case.

3.2.2 A configuration with 12 common tangents

The easiest example of a construction with 12 real tangents stems from a regular tetrahe-
dron configuration of ¢y, ... , ¢4. Since in Section 3.2.3 we will relate the affinely dependent
configurations to the limit case of affinely independent configurations, we exhibit a more
general class of configurations with 12 real tangents.

Namely, consider an equifacial tetrahedron, as in Section 3.2.1. Tt is well-known that
the vertices of such a tetrahedron 7" can be regarded as four pairwise non-adjacent vertices
of a rectangular box (see, e.g., [86]). Hence, there exists a representation ¢; = (A1, Ao, A3)7,
co = (A1, = Ao, =A3)T, 3 = (= A1, Ao, —=A3) T, ca = (= A1, =X, A3)T with Ap, Ag, A3 > 0.
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Assuming without loss of generality v = 1, (3.1) gives

3

Grvt2e-p=Y N4p -1’ 1<i<4. (3.21)

j=1
Subtracting these equations pairwise gives
4(Aopa + A3p3) = —4(A Azv103 + A Aqviv3)
(for indices 1, 2) and analogous equations, so that
A1p1 = —A2A30203,  Agp2 = — A1 A3u1v3,  Azps = — A1 Aav102.

Since p - v = 0, this yields vyvov3 = 0. By assuming without loss of generality v; = 0, we

obtain
Ao
p= (— 2 31)21)3,0,0> .
A1

So (3.21) becomes

3 Y 2
23
Aoy + Ajvs = ;)\3 + (- N UQU3> —r?,
which, by using v5 + v3 = 1, gives
AoAus + (ATAS — ATA — AoA3)vs + AT(rP — A7 — A3) = 0. (3.22)

There are two distinct real solutions for v3 if and only if

AIAS 4+ AIAZ + A3A3 > 20 Ao s (3.23)

Since the volume V' of T is 81 \o)\3/3 and the area A of a face is 24/A3\3 + A2A2 + A\3)32,
(3.23) becomes A%/4 > 3Vr/4. In case of reality, both solutions for v3 are positive if and
only if

r? > A+ A2 (3.24)

and
AAZ 4+ A2A: > A2A3. (3.25)
Hence, there will be 12 distinct real common tangents to S(cq,7), ..., S(cq,r) if and

only if r satisfies (3.23) and the three inequalities such as (3.24), and if in addition the
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tetrahedron T satisfies the three inequalities such as (3.25). Since 24/A? + A2 is the length
of one of the edges, it follows that we require

Ccr< :
J— 7" RS
2 3V’

where e is the length of the longest edge; also, expressing (3.25) by using the area A gives
A% > 8)\2)\2.

Applying the formula “A = %ab siny” on the left side and the Laws of Cosines on the
right side establishes a relation among the angles «, 3, and 7 of the face triangle:

tan Stany > 2.

Since tan atan ftany = tan o + tan § + tany in a triangle and since all three angles are
acute, we can conclude:

Lemma 3.6. Let c¢q,...,cq constitute an equifacial tetrahedron, and let r > 0. Then
there are exactly 12 distinct real common tangents to S(cy,r), ... ,S(cs,r) if and only if

@)

¢ <r< i

p— 7" —_

2 3V’
where e is the length of the longest edge, A is the area of a face, and V is the volume
of the tetrahedron; and

b) the angles in one (and hence in all) of the face triangles satisfy
tan 3 + tany > tan«, (3.26)

where a is the largest of the three angles.

Figure 3.3 depicts the configuration ¢; = (4,4,4)T, ¢y = (4, —4,—4)T, c5 = (4,4,
—4)7 ¢y = (—4,—4,4)" and radius v/33, which gives 12 tangents by Lemma 3.6.

3.2.3 Affinely dependent centers

Let ¢q,...,cq be non-collinear points in the xy-plane. As introduced in Section 2.2.2, a
circular cylinder in R* with radius r is a set of the form bd(¢ + rB*). We work in real
space and look for circular cylinders C' with radius r passing through ¢q,...,c;. Unless
the axis of C is parallel to the zy-plane, the intersection of C' with the xy-plane is an
ellipse with smaller half-axis . We can assume that none of the given points is contained
in the convex hull of the other points; otherwise, three points are collinear (giving at most
two distinct circular cylinders) or there is no circular cylinder.
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Fig. 3.3: Construction with 12 tangents. Note that the four spheres slightly intersect with each
other.

An axis parallel to the xy-plane is only possible if the quadrangle formed by ¢q,... , ¢4
is a trapezoid. Since such an axis can be located above or below the zy-plane, and since a
parallelogram has two pairs of parallel edges, we obtain at most 4 circular cylinders with

axis parallel to the xy-plane. If ¢, ... , ¢4 constitute a trapezoid but not a parallelogram,
this number reduces to 2.
Now any ellipse with smaller half-axis r passing through ¢y, ... , ¢4 defines two circular

cylinders with radius r, whose intersection with the zy-plane gives the ellipse; in case of
a circle these two cylinders coincide.
Consider a general ellipse

E :ax® + 2hay + by* + 292 + 2fy +d =0,

in other form

a(z — x0)” + 2h(z — 20)(y — yo) + b(y —yo)> +d =0. (3.27)

Comparing the coefficients of the two forms yields
a h T —q
() ()= (7)
With the standard invariants of conic section classification

I, = tr<Z Z)za—l—b,

I, = det( )zab—hQ,

Ig = det

@ > T8
- T

S



3.2. An exact characterization of the finiteness problem for unit spheres 37

and the notation F' := gh — af, G := fh — bg, we obtain g = G/I, yo = F/I;. In
particular, since E is an ellipse, we have I3 # 0, I, > 0, and I;I3 < 0. Consequently, the
absolute term d’ in (3.27) results to

, 1 a h g G
d:ﬁ(GFQ)hbf F
2 g [ d I

1

_Is

= 1

E has smaller half-axis r if and only if both eigenvalues of the matrix

hfah
I\ h b
are positive and the larger one is 1/r2, i.e., if the largest solution of the quadratic equation
in A

EXN 4+ L LIAN+13=0

is 1/r? and both solutions are positive.

It is well-known that the set of ellipses passing through four given points are members
of the pencil of conics S; + Sy, with S, Sy equations of two arbitrary conics passing
through the four points (see, e.g., [109]). Let I 1(u), Io(u), I3(p) be the invariants of
S(p) := S1 + 1Ss, so that I;(p) is a polynomial in p of degree i. Any ellipse S(u) with

smaller half-axis r passing through ¢y, ... , ¢, must necessarily satisfy the condition
Is(p)?  Li(p)(p)I

Equation (3.28) is of order 6 in u. The two cases for r where the coefficient of degree 6
vanishes stem from our affine notation of a pencil and refer to the case y = oo.

Altogether, there are at most 12 circular cylinders with smaller half-axis r passing
through ¢y, ... , ¢4, whose axis is not parallel to the xy-plane. It remains to show that this
number can be decreased in the case of parallelograms and trapezoids.

For the parallelogram case, suppose that the parallelogram is given by the two pairs of
parallel lines y = v, y = —v, and y = ax + 3, y = ax — [ for some constants «, 3,y > 0.
As generators Sy, S of the pencil of conics through the four vertices, we can choose the
two degenerated conics given by the two pairs of lines

Si:(y—7y+v) =0,
Sy:(y—ar—PB)y—ar+p)=0.
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Since both the center of S; and the center of Sy is (9, yo) = (0,0)”, each ellipse in the
pencil S; + 1S, has center (0,0)7. Hence, any ellipse S(u) in the pencil is of the form

az’® 4+ 2hxy + by +1=0.
Since

a; + Jazen) hl + MhQ 0
I3(p) =det | hy+ phy by + pbs 0 = L(p) (14 pn),
0 0 1+ p

Equation (3.28) becomes

L(p)? (14 p)*r + Li(p) (1 + p)r® + I(p) = 0.

Consequently, since I5(u) # 0 for any ellipse in the pencil, we obtain a quadratic condition
in .

For the trapezoid case, suppose that two vertices are located on the line y = 0 and
that two vertices are located on the line y = 2a with o > 0. Then S, can be chosen as
the degenerated conic consisting of two parallel lines

Sy y(y —2a) = 0.
The representation matrix of the ellipse S; + .S is of the form

a1 hy f1
hy bi+p g —ap
fi g1—oap d;

Therefore I5(1) is only linear in p, and I3(p) is only quadratic in . Hence, equation (3.28)
is only of degree 4 in . We can conclude:

Corollary 3.7. Let ¢q,...,cq be affinely dependent, and let r > 0. If ¢1,... ,cq4 form a
trapezoid, then there are at most 10 common tangents to S(cy,r), ..., S(cq, 7). Ifcr, ... ¢y
form a parallelogram, then there are at most 8 common tangents to S(ci,7),...,S(cs,r).

Concerning constructions with many real tangents in the affinely dependent case, we
give a construction with 8 real tangents. Let c¢y,... ¢4 constitute a square with edge
length e. For ¢/2 < r < v/2e/2 two neighboring spheres intersect with each other, but
a sphere does not intersect with its opposite partner. Hence, the opposite pairs of the
intersection circles are disjoint, and they lie on the vertical planes bisecting opposite edges
of the square. The four common tangents to such a pair of intersection circles are common
tangents to the four spheres which altogether gives 8 common tangents.

We remark that the upper bound of 12 is not tight in the affinely dependent case. In
fact, our proof replaces the condition “1/r? is the largest eigenvalue and both eigenvalues
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are positive” by the weaker condition “1/r? is an eigenvalue”. Meanwhile, Megyesi has
shown that the number of real tangents to four unit spheres with coplanar centers is
bounded by 8 ([93]). Quite interestingly, that proof does not decrease the algebraic degree
of the problem. Instead, based on an an explicit analysis it shows that the set of conic
sections under investigation always contains some hyperbolas.

Finally, we want to explain what happens to some of the tangents when trying to
approach a rectangle configuration (with at most 8 common tangents) as a limit case of
affinely independent centers. Let cq,...,c4 constitute a rectangle in the zy-plane. By
lifting two opposite of the four centers appropriately, we can establish a configuration
with 12 tangents by Lemma 3.6. By reducing the height of the resulting box with base
rectangle in the zy-plane, we can interpret the rectangle as limit case of this flattening
process. Now Lemma 3.6 explains where some of the 12 tangents get lost in this limit
process. Namely, flattening of the box implies that the triangular faces of the tetrahedron
tend towards rectangular triangles. However, then tan « in (3.26) tends to infinity, and
(3.26) is violated at some stage of this process. Intuitively, this means that some of the
tangents get lost even before the limit case is reached.

3.2.4 Relations to classical projective geometry

In this section, we provide an alternative characterization of the cubic equation (3.11)
based on the pedal surface of a tetrahedron from classical projective geometry. Through-
out this section, we work in real space.

Note that the numbers in (3.9) can be interpreted as barycentric coordinates of the
direction vector v in the projective space relative to ¢y, ¢z, ¢z (cf. [33]). If we allow ¢4 to
be an arbitrary vector again, the representation in barycentric coordinates is

4
v = thCj . (329)
j=1

Then the equation of II,,, the plane at infinity in three-dimensional real projective space
P2, is

th+ta+tz3+t,=0 (3.30)
(cf. [33]). The locus of all points & with the property that the feet of the perpendiculars
from z on the planes supporting the faces of the tetrahedron T lie in a plane, is a cubic

surface 3 ([111, Exer. 17 on p. 118]). At the end of this section, we provide a proof of
this statement. Namely, ¥ is given by

Altotsty + Adtitsty + Adtitaty + Adtitots = 0, (3.31)
or, in a nicer (but slightly imprecise) form
At A3 AT AL

el S AR R (D 3.32
t1+t2+t3+t4 (3:32)
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Obviously, all six lines defined by the edges ¢;c;, 1 <14 # j < 4, belong to £. Consider now
any circular cylinder C' circumscribing 7" and let 2(C') denote the point at infinity of the
axis of C'. We claim that z(C) € X, i.e., its barycentric coordinates satisfy (3.31). By the
Wallace-Simson Theorem, the feet of the perpendiculars from ¢4 on the planes ¢;cox(C),
c1c32(C), coc3x(C) are collinear ([33, Exer. 11 on p. 16], [68]). Consequently, the feet
of the perpendiculars from ¢4 on the four planes supporting the faces of the tetrahedron
c1cac3x(C) lie in a plane. But then z(C) is in the same relation to the tetrahedron ¢y caczey,
ie., z(C) € X (see [6, p. 25]).

By solving (3.30) for ¢4 and substituting this expression into (3.31), we obtain a cubic
equation in ty,ts,t3. It can be easily checked that for ¢, = 0 this equation is equivalent
to (3.11).

The pedal surface of a tetrahedron. We close this section by providing a proof for the
pedal surface of a tetrahedron. Let ci,...,cs € R?® be the vertices of a tetrahedron T, let
N; denote the unit outer normal vector of the face opposite to ¢;, and let A; denote the
area of that face. An elementary computation (using (3.7), ny := ((c; — ¢2) X (¢3 — ¢2))/2
and a suitable orientation) shows

AINI —+ A2N2 + A3N3 + A4N4 = 0 . (333)

We would like to write up the equation of the so-called pedal surface ¥ of the tetrahedron,
i.e., the locus of the points x such that the feet of the perpendiculars from x to the planes
supporting the faces of the tetrahedron lie in a plane.

Let w; € R® be the vector connecting x to the foot of the perpendicular from z to
the plane supporting the face opposite to ¢;. The feet of these perpendiculars (i.e., the
endpoints of these vectors) are coplanar if and only if the determinant of the 4 x 4-matrix
with i-th row (w;, 1) vanishes. The latter condition is equivalent to

(wy w3 wg) — (wy w3 wy) + (wy we wy) — (W wyws) =0,

where (abc) = (a X b) - ¢ is the scalar triple product. If b; is defined by v; = b;N;, then
the equation becomes

Ny N3 N, N; N3 N, N; Ny N, Ny Ny N.
(N2 Ny No) (M N5 No) (N No Na) - (N No Na) (3.34)
bl b2 b3 b4

It follows from (3.33) by taking scalar products with Ny x N3 that
AI(NI N2 Ng) + A4(N2 N3 N4) == 0 y

and from the analogous relations we obtain that for some b € R,
(N2 N3 N4) :bAl, (N1 N3N4) — —bAQ, (N1 N2 N4) :bAg, (N1 N2N3) - —bA4
Comparing this with (3.34) yields

S22 =0, (3.35)
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Let #y,...,t4 denote the projective barycentric coordinates of x relative to cq,... ,¢c;.
Notice that ¢; is proportional to ¢; A; (cf. [33]). Therefore, z satisfies the required property
if and only if

AP A2 A2 A2
243,24 3.36
t + ts + ts ty ’ (3.36)

as desired.

3.2.5 Open questions

Concerning the geometry of the tangent problem, there are two main open questions.
Firstly, under which conditions do four spheres of arbitrary radii do have infinitely many
real common tangent lines? There are some obvious situations with infinitely many real
common tangent lines: whenever the four centers are collinear and the four spheres are
inscribed in the same hyperboloid of one sheet. We conjecture that there does not exist
any configuration with four spheres of arbitrary radii, non-collinear centers, and infinitely
many real common tangent lines. For the special case of affinely dependent centers, this
has recently been proven by Megyesi [95].

Secondly, in our construction with 12 real common tangent lines the unit spheres are
intersecting each other. Hence, the natural question arises, which is still open: What is
the maximum number of real common tangent lines to four disjoint unit spheres (cf. the
treatment of realization questions in the next section)?

3.3 Realization questions

In this section, we prove Theorem 3.2 stated at the beginning of this chapter. For any k£ €
{0, ..., 12} we give geometric constructions leading to this number of common tangents (of
course, some values of k are trivial). For some of the constructions, the number of different
real tangent lines can be computed by combining careful geometric investigations with
symmetry arguments. However, for some constructions, a purely geometric correctness
proof seems to be out of reach. In these cases the algebraic framework developed in
Section 3.1 and 3.2 helps to establish a rigorous proof. This leads to nice and effective
interactions between the geometry and the algebra of the problem.

Before giving an outline of the paper, we remark that the cases with 0, 1, 2, or oo
tangents are trivial. For the unit spheres centered in ¢; = (0,0,0)T, ¢ = (2,0,0)T,
c3 = (4,0,0)T, ¢y = (6,¢,0)T, the valuest = 0,¢t =1, ¢ =2, and t = 3 lead to oo, 2, 1, and
0 distinct real tangents, respectively. Constructions of four (non-disjoint) spheres with 12
and 8 tangents have already been given in Sections 3.2.2 and 3.2.3, respectively.

The constructions for the remaining numbers are presented in the following order. In
Section 3.3.1, we analyze constructions where the centers are the vertices of a regular
tetrahedron. Besides the constructions with 12 real tangents known from Section 3.2.2



42 3. Common tangents to four spheres in R

this also yields constructions with 3 and 6 tangents. Based on this analysis, Section 3.3.2
deals with constructions where three centers form an equilateral triangle; this gives con-
structions with 3, 6, 9, and 7 tangents. Parallelogram configurations of the four centers
are discussed in Section 3.3.3; in particular, this yields constructions with 4, 5, and 8 tan-
gents. In Section 3.3.4 gives constructions with 10 and 11 tangents. In Section 3.3.5, we
close the discussion of realization questions with a short discussion of the relation between
the algebra and the geometry of the tangent problem.

3.3.1 The case of a regular tetrahedron

In Section 3.2.2, we have given a specific configuration with 12 real tangents, where the
four centers constitute the vertices of a regular tetrahedron. The following complete
classification of a regular tetrahedron configuration will be used within the constructions
in the next sections. As before, let ¢, ..., cy4 be the centers of the four spheres in R*. By
appropriate scaling, the four spheres of radius r can be transformed into unit spheres.

Lemma 3.8. Let cq,... ,cq be the vertices of a reqular tetrahedron with edge length 1.

(a) For 1/2 < r < 3v/2/8 there exist evactly 12 distinct real common tangents to the
spheres S(c1,7), ..., S(cq, 7).

(b) For r = 1/2 and r = 3+/2/8 there exist exactly 3 and 6 distinct real common
tangents, respectively.

(¢c) Forr < 1/2 orr > 3v/2/8 there do not exist any real common tangents.

PT‘OOf. Let C4 = (07070)T7 €1 = (17070)T7 C2 = (1/27 \/5/270)T7 C3 = (1/27\/5/67 \/6/3)T
be the vertices of a regular tetrahedron with edge length 1. In this situation, the cu-
bic (3.11) is reducible and can be decomposed into

(t1 + ta) (ta + t)(ts + ) = 0, (3.37)

where ty,19,%3 are the homogeneous coordinates of the direction vector v in the basis
c1,C2, 3. By symmetry of this equation it suffices to consider the factor ¢; + ¢t = 0.
Over the reals, this linear equation can be parametrized by (t1,ts,t3)7 = (1,—1,A)7,
—00 < A < oco. Here, the case A = oo refers to the homogeneous vector t = (0,0,1)7.
Using (3.5) and p* = 72, r?()\) can be expressed by

O\ 4+ 14)2 + 9\

"N =50

with nominator of degree 4 and strictly positive denominator. The function graph of r(\)
is depicted in Figure 3.4. Elementary calculus yields

o A1)
(V)] = 02 51)
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r(A)

w\/
0.5+

1 Y

‘ 1/2
Fig. 3.4: The function r(\) = (%)

with strictly positive denominator. Hence,

minr(\) = r(1)=r(-1)=1/2,
maxr(\) = r(0)= lim r(A) = lim r(\) = 3v/2/8 ~ 0.5303..
A——00 A—00
Note that the difference between minr(\) and maxr()\) is rather small. The extreme
values and the strict monotony of 7?()\) between these values show: for 1/2 < r <
3v/2/8 there are four different real solutions of A and hence four different real tangents.
Considering all three factors of (3.37), there are exactly 12 different tangents altogether.
In case r = 1/2 these 12 tangents collapse to 3 tangents. The direction vectors in
t-coordinates are (1,1, —1)", (1,—1,1)", and (—1,1,1)”, respectively. In case r = 3v/2/8
the 12 tangents collapse to 6 tangents; the direction vectors are the direction vectors of
the 6 tetrahedron edges. O

Figure 3.5 shows a regular tetrahedron configuration with edge length 1 and radius
r = 53/100. Since a tangent to S(cy,7),...,S(c4,7) can also be interpreted as axis of
a circular cylinder with radius r circumscribing the tetrahedron with vertices cq, ... , ¢y,
the following statement can be deduced immediately (cf. the treatment of optimization
aspects in Section 3.4).

Corollary 3.9. Let T be a reqular tetrahedron with edge length a > 0. Then the smallest
and largest circular cylinder circumscribing T have radius a/2 and 3v/2a/8, respectively.

Remark 3.10. The lower bound a/2 in Corollary 3.9 can also be deduced from the fact
that a minimal circular cylinder enclosing a regular tetrahedron with edge length a has
radius a/2 [147].

3.3.2 Equilateral triangle constructions

In this section, we give configurations with 3, 6, 7, and 9 tangents. We start from
a regular tetrahedron configuration with edge length 1. However, in order to stress

. . _ T _ T
symmetries, we now use the coordinates ¢; = (v/3/3,0,0)7, c; = (—/3/6,1/2,0)7,
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—2

Fig. 3.5: Construction of four (non-disjoint) spheres with 12 common tangents. Here, if the

coordinates of cy,...,cq are those of Section 3.3.2 then there are exactly 6 tangents
which touch all spheres with positive z-coordinate. These tangents are drawn in grey
color.

c3 = (—v3/6,-1/2,0)T, ¢, = (0,0,4/6/3)T . Further, let 1/2 < r < 3v/2/8. Figure 3.6(a)
shows the parallel projection of this configuration on the xy-plane. Note that c¢q,... ,c3
form an equilateral triangle in the zy-plane with center in the origin. By Lemma 3.8, the
spheres S(¢;, 1), 1 <i < 4, have 12 real common tangents.

In this configuration with 12 real tangents, 6 of the tangents touch all four spheres
with positive z-coordinate, and 6 tangents touch exactly two spheres with negative z-
coordinates (see Figure 3.5). We call these tangents the upper and the lower tangents,
respectively.

Now observe what happens when replacing the z-coordinate in ¢4 by increasing values
t > 1/6/3. The geometry of this process implies: the z-coordinate vs/||v|| of the unit
direction vector increases, until eventually — for some value ¢t = tq — the tangent touches
two of the spheres S(cy,7), S(ca,7), S(es,r) at the same point (see Figure 3.6(a) for an
illustration of the xy-projection). In the latter situation, the 6 upper tangents collapse
to 3 tangents. Figure 3.6 depicts the section of this constellation through the xz-plane.
One of these 3 remaining upper tangents touches S(cs, r) and S(e3,r) in the same point,
namely on the circle where S(cqo,7) and S(cs,7) intersect; this circle of intersection is
located in the plane y = 0. By symmetry of the equilateral triangle, the other 4 upper
tangents collapse to 2 tangents in the same way. Since for ¢ = ¢y the lower tangents
neither have vanished nor collapsed (see below), the four spheres have exactly 9 different
common tangents.

In order to compute tg, let ¢, = (—/3/6,0,0)7 and 7, = /r> —1/4 denote the
center and the radius of the circle of intersection. Then, setting b = ||cs — ¢1]| and
2y = ((V/3/2)% — (r — r,)?)Y/2, a straightforward geometric computation yields the two



3.3. Realization questions 45

(a) Projection on the zy-plane (b) Section through the zz-plane

Fig. 3.6: Different views of the constructions with 3, 6, and 9 tangents. The common radius of
the spheres is 0.53.

points on the tangent pg, qo,
Py = (_\/5/6 - Ts(r - rs)/ba 0; rsZQ/b)TJ Gy = (\/5/3 - 7’(7‘ o Ts)/b’ 0’ ng/b)T'

Do is located on the circle of intersection, and ¢ is located on S(cs, ) (see Figure 3.6(b)).
Now the tangent condition for the sphere S((0,0,t9)T, r) implies a quadratic equation for
tg. The larger one of the two solutions gives the desired value of .

For values t > tq there exist at most 6 real tangents. Analogous to the critical case with
9 tangents there exists some value ¢3 where the 6 lower tangents collapse to 3 tangents.
The dashed lines in Figure 3.6(b) show the section of this situation through the zz-plane.
The tangent in the xz-plane is given by the two points

P3 = (—\/5/6 +ry(r +74)/b,0, —r,23/b)", = (\/5/3 —r(r+4175)/b,0,723/b)7",

where 23 = ((v/3/2)? — (r +r,)?)"/2. For values t > t3 there does not exist any common
tangent to the four spheres.

In particular, for any given r satisfying 1/2 < r < 3v/2/8 the two values 3 and t,
can be computed exactly. However, since the resulting expressions are quite long, we only
give some numerical values to illustrate the relationships in size. Table 3.1 contains some
values of r together with the resulting numerical values of 3 and ¢g. Figure 3.7 illustrates
the construction.

For a construction with 7 tangents, we start from the above configuration with 9
tangents. In this configuration, the remaining 3 upper tangents are critical in the sense
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Lr 1 b | & |
0.51 | 0.8463 | 0.8478
0.52 | 0.8760 | 0.9293
0.53 | 0.9028 | 1.0172

Tab. 3.1: Some values of the radius r and the resulting coordinates t9 and ¢3 leading to 9 and 3
distinct real common tangents, respectively.

1,2

Fig. 3.7: In this construction with 9 real tangents, the remaining 3 upper tangents are drawn in
grey color. The tangent labeled by 1,2 stems from the tangents labeled by 1 and 2 in
Figure 3.5.

that for any additional increment of the z-value of ¢4 these tangents vanish. Now we move
the fourth center (0,0,%9)7 along the line (0,0, t9)T + (g9 —pg), A € R. For any A > 0, the
line through pg and ¢q is still tangent to the four spheres. However, the other two upper
tangents from the situation A = 0 immediately vanish for A > 0. Hence, there exists some
e > 0 such that any configuration with 0 < A < ¢ leads to exactly 7 common tangents.
As an example, for r = 0.53 we can choose 0 < A < 1/10.

3.3.3 Parallelogram constructions

In order to give constructions with 4, 5, and 8 tangents, we start from the following
situation depending on some parameter a € R. Let ¢; = (—a — 1,—1,0)", ¢y = (—a +
1,-1,0)", ¢3 = (a—1,1,07), ¢4 = (a+1,1,0)" define a parallelogram in the zy-plane, and
let » = 1. By Corollary 3.7, a parallelogram configuration gives at most 8 real common
tangents.

As illustrated in Figure 3.8(a), the special case a = 0 yields a square. Obviously, these
four spheres have two common tangents, namely the lines t = 2 =0 and y = 2z = 0.
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(a) a = 0 gives 2 real common tangents. (b) a =1 gives 3 real common tangents.

Fig. 3.8: Initial configurations for constructions with 5 and 8 real tangents. In the right figure
the dotted line shows the two tangents with z-coordinate v/2 and —v/2, respectively.

Now observe what happens for parameter values 0 < a < 1. For 0 < a < 1, there
exist exactly 5 tangents. As before, one of the tangents is the line defined by y = z = 0.
However, the tangent z = z = 0 from the case a = 0 splits for @ > 0 into four tangents.
More precisely, for 0 < a < oo there are two tangents parallel to the zy-plane (see the
dotted line in Figure 3.8(b)); these two tangents are symmetric with respect to the zy-
plane.

For 0 < a < 1, there exist two tangents passing through the origin. These two tangents
are symmetric with respect to the xz-plane, too. Here, we have to compute the lines which
pass through the origin and which are tangent to S(e3, 1) and S(eq,1). For 0 < a < 1,
there exist two lines with this property. By symmetry, these lines are also tangent to
S(c1,1) and S(cz, 1). For a = 1, these two lines collapse to the line y = z = 0. Obviously,
if 0 < a < 1 then multiplying the y-coordinates of all four centers by a factor u slightly
larger than 1 yields a configuration with 4 instead of 5 distinct common tangents.

Now we turn towards a construction with 8 tangents. For 0 < a < 1/2, we multiply the
y-coordinates of all four centers by some 0 < p < 1 such that ||c; — ¢3|| = ||ea — ]| = 2.
Geometrically, the upper spheres “roll” on top of the lower spheres (see Figure 3.9(a)).
Elementary geometry yields u = /1 —a?/2. Compared to the situation « = 0, for
0 < a < 1/2 the tangent y = z = 0 is split into 4 tangents in the same way as in the
transition from 2 to 5 tangents.

In particular, since 5% + 122 = 132, the choice a = 5/13 yields the rational co-
ordinates ¢; = (—18,—12,0)"/13, co = (8,—12,0)7/13, ¢3 = (—8,—-12,0)"/13, ¢, =
(18,—12,0)"/13. This configuration is depicted in Figure 3.9(b). For a = 1/2 the 4
tangents passing through the origin collapse to 2 tangents; hence, this yields another
configuration with 6 real tangents.

Note that in the configuration with 8 tangents there are 4 points which belong to more
than one sphere. However, the radius can be slightly decreased without altering the num-
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(a) Parallel projection on the zz-plane (b) Three-dimensional view

Fig. 3.9: Construction with 8 tangents. In the right picture, tangents which are parallel to the
zy-plane are drawn in grey color.

ber of common tangents. After rescaling these disjoint spheres we obtain a configuration
of 4 disjoint unit spheres with 8 common tangents.

3.3.4 Constructions with 10 and 11 real tangents

In order to give constructions with 10 and 11 distinct real tangents, we start from the
initial regular tetrahedron in Section 3.3.2 (see Figure 3.6(a)). However, for notational
convenience, we exchange the centers c; and ¢;. By Lemma 3.8, the radius r = 3v/2/8
leads to 6 common tangents, whose directions are the directions of the six tetrahedron
edges. Figure 3.10 shows the projection of this situation in the direction of the edge cycy.
Note that the lower left disc in this figure refers to the spheres S(cy,7) and S(cy, 7).

In this situation, we move the spheres S(cy,7) and S(cy,r) slightly in opposite di-
rections along the edge connecting their centers. This movement does not change the
position of the tangent with direction cscs. However, the movement will give some “free-
dom” to any of the five other tangents, and hence any of these edges will split into two
edges. Intuitively, this situation leads to 11 tangents; by increasing the radius slightly the
tangent with direction cyc3 vanishes.

To formalize this idea, we consider the four centers ¢; = (v/3/3,0,0)7, ¢, = (—/3/6,
1/2 4+ a,0)", c3 = (0,0,v6/3)7, ¢4 = (—V/3/6,—1/2 — a,0)T for some a > 0. In order
to apply the algebraic framework from Section 3.3.1, we translate all centers by —c,; this
translation moves ¢4 into the origin. Since the two faces c;coc3 and c¢ic3cq have the same
area, and the two faces cicocy, and cpczcy have the same area, we have A; = Az and
Ay = Ay. As already seen in (3.19), the cubic (3.11) specializes to

(A2t) + A2t3) (A2 (it + 12 + tots) + A2tit3) = 0.

In particular, the cubic is reducible. Using (3.20), the set of all real tangents to the four
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Fig. 3.10: Parallel projection of S(ci,r),...,S(cs,r) in the zz-plane with r = 34/2/8. This is
the projection along the edge with direction cocy. The position of the common tangent
in this direction is marked by the cross.

spheres S(¢;, 1) for some radius r > 0 can be parametrized by the line
(ti, 1o, 13)" = (A2, AZN, — AT, —00 < A < o0 (3.38)
and the conic section
(ti,ta, t3) = (—A2(N — 1) — A2, A2\, A2(A — D)N)T, —00 < A< 00. (3.39)

For a given radius, the linear function gives at most 4 common tangents and the conic sec-
tion gives at most 8 common tangents. Analogous to Section 3.3.1, for both parametriza-
tions the square of the radius function r()\) is a rational function in A.

A suitable choice of @ which will have the desired properties and which leads to rational
values of A7, A2 is a = (4/112/100 — 1)/2. Then A? = 78/400, A2 = 84/400, and the
parametrization of the linear factor yields

2(0) 169(1764\* + 2492)\% + 1521)
/r =
32(17512 + 169)?

The graph of 7()) is shown in Figure 3.11. The derivative of r?(\) is

; 1183X(11438)\2 — 7943)
© 8(169A2 4 175)3

]

with nominator of degree 3 and strictly positive denominator. In particular, r(0) =
3v/2/8 ~ 0.5303 is a local maximum, and

. . 169 - 1764
Jim r(A) = Jim 7)) =/ 553752 > 054
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1 Y

Fig. 3.11: In the parametrization of the linear factor, the square of the radius function r(}) is a
rational function in .

r(at
0.54
0.501
2 32?2 -1 (120 e 1 @3rp 2 X

Fig. 3.12: r(\) for the parametrization of the conic section. For better illustration of the region
near A = 0 the A-axis is scaled quadratically.

Consequently, there exist exactly three different real values of A with r()\) = 31/2/8; and
for slightly larger radii r than 3v/2/8, say r, < r < ry with 7, := 3v/2/8, ry := 0.54, we
only obtain two such real values of \.

It remains to show: for a given radius r € [ry, 73], the parametrization of the conic
section contains exactly 8 real values of A with r(A) = r. Figure 3.12 illustrates the
function graph of r(\). By (3.39), the A-values —oco, —A2/A? + 1, 0, 1, oo represent the
t-vectors (0,0,1)T, (0,1,-1)T, (1,0,0)T, (1,—1,0)T, and (0,0, 1)%, respectively. For all
these A-values we obtain r(A\) = 31/1378/206 > 0.54. These 5 values decompose the real
axis into 4 intervals. If any of these intervals contains some value A with r()\) < 3v/2/8,
then for a given r € [ry, 5], there are at least 8 solutions with 7(\) = r. We can choose,
e.g., the following values of \: —3/10, —5/100, 2/10, and 2. For any of these 4 values we
obtain r(A) < 0.52 which implies the desired result. Since there cannot be more than 8
solutions, there are exactly 8 real solutions.

Finally, it can be easily checked that for As > A; the line (3.38) and the conic sec-
tion (3.39) do not have real intersection points; so the tangents stemming from the line
and the tangents stemming from the conic section are indeed different. This completes
the proof of the constructions with 10 and 11 tangents.
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3.3.5 Discussion and open questions

In this section, we have shown that for any &£ € {0,...,12} there exists a configuration
with four unit spheres and exactly k& distinct real common tangents. Although we have
motivated every construction by purely geometric arguments, the rigorous proofs of some
constructions (in particular 10, 11 tangents) heavily depend on the algebraic framework
of the problem as developed in Sections 3.1 and 3.2. We interpret this observation as an
indication why a purely geometric proof of the upper bound of 12 real common tangents
(Theorem 3.1) should be quite hard to establish.

Furthermore, observe that all constructions with more than 8 tangents are based on
non-disjoint sphere configurations. Already in Section 3.2.5 we have stated the open
question on the maximum number of distinct real tangents for disjoint unit spheres. The
difficulty in treating this question is the same one as above. Namely, it seems to be difficult
to exploit the condition of disjointness in the algebraic setting; but we do not know how
to handle these situations from a purely geometric point of view.

Finally, the following open problem plays an important role in the interplay between
the algebra and the geometry of the tangent problem. For some famous problems in
enumerative geometry (flexes and bitangents of plane curves, lines on cubic surfaces,
conics tangent to five given conics), the resulting Galois groups in the generic case are
non-solvable [69]. This situation reflects the difficulty of purely geometric methods to
handle these problems. Using the computer algebra system GAP [115] for the handling
of groups, we have checked for some specific instances of tangents to four unit spheres
that the resulting Galois groups are non-solvable. It is an open problem to provide a
non-computer-algebraic proof of this non-solvability for generic instances.

3.4 Computing smallest circumscribing cylinders of a tetrahedron in R?

We study the optimization aspect of the tangent problem. Given affinely independent cen-
ters ci,...,c, € R?, finding the minimal radius r > 0 such that the spheres S(cy,7),. ..,
S(cy,r) have a real common tangent is equivalent to finding the minimal radius of a circu-
lar cylinder circumscribing the tetrahedron with vertices ¢, ... ,c4. In Section 2.2.5, we
have seen that this problem is tightly connected to the computation of a smallest enclosing
cylinder for general polytopes in R?.

As mentioned in Section 2.1.2, the computational costs of solving a system of polyno-
mial equations are dominated by the Bézout number and the mixed volume (the latter
will become relevant in the n-dimensional case treated in Section 5.3). Hence, it is an
essential task to find the right algebraic formulations.

In Section 3.4.1, we apply our framework of Sections 3.1 and 3.2 to provide a for-
mulation for the smallest circumscribing cylinder of a tetrahedron with Bézout number
36.

Based on this formulation, we can investigate tetrahedron classes for which the degrees
can be further reduced. This is done in Section 3.4.2.
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3.4.1 General tetrahedra in R?

In the proof of [37, Theorem 6], a polynomial formulation is given to compute a smallest
enclosing cylinder of a tetrahedron in R?. This formulation describes the problem by three
equations in the direction vector v = (v, v, v3)” of the line, one of them normalizing the
direction vector v by

vi+vi+v; = 1. (3.40)

The equations are of degree 10, 3, and 2, respectively, thus giving a Bézout number of
60. However, as pointed out in that paper, some of the solutions to that system are
artificially introduced by the formulation and occur with higher multiplicity, and there
are only 18 really different solutions. Even more severely, in the experiments in that paper
(using SYNAPS, a state-of-the-art software for numerical polynomial computations), the
numerical treatment of these multiple solutions needs much time, roughly a factor 100
compared to similar systems without multiple solutions.

Here, we present an approach, which reflects the true algebraic bound of 18. Namely,
we give a polynomial formulation with Bézout bound 36 in which every solution generically
has multiplicity one. The additional factor 2 just results from the fact that due to the
normalization condition (3.40) every solution v also implies that —v is a solution as well.

Our framework is based on Sections 3.1 and 3.2. Here, we are interested in real lines.
As before, a line in R? is represented by a direction vector v € R*\ {0} and a point p € R?
lying on the line with p-v = 0. Moreover, we assume v? = 1.

Let ¢y, ... ,cq be the affinely independent vertices of the given tetrahedron, and assume
cy, = 0. Further let M := (ci,co,c3)". After substituting (3.5) into p-v = 0, we set
v? = 1 in the resulting denominator; this gives the homogeneous cubic equation which we
denote by g;(v1,v9,v3) = 0. Hence, we arrive at the following polynomial optimization
formulation in terms of the variables vy, v, and v3 to compute the square of the radius
of the minimal circumscribing cylinder.

w22 — (v-p)® \\

min | M~ | 0%p3 — (v ps)?

v?p2 — (v-p3)? (3.41)
s.t. g1(v1,v9,v3) = 0,
go(vi,v9,v3) :=0v2 —1 = 0.

Rather than using v? = 1 to further simplify the objective function, we prefer to keep the
homogeneous form, so that the objective function is a homogeneous polynomial of degree
4. We denote this polynomial by f.

By the considerations in Section 3.2, the edge directions of the base tetrahedron are
admissible solutions; thus the set of admissible solutions is nonempty.

Using Lagrange multipliers A\; and \,, a necessary local optimality condition is

grad f = M\jgrad ¢g; + Aograd ¢o . (3.42)
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By thinking of an additional factor Ay before grad f and considering (3.42) as a system
of linear equations in g, A1, Ao, we see that if (3.42) is satisfied for some vector v then
the determinant

_9f d; 9g2
ovy ovy ovy

f dg1 @
det | —z- B—g; a—f; (3.43)

_9f 991 0g2
vy Ovg  Ovg

vanishes.

Lemma 3.11. (a) For any normalized direction vector (vy,ve,v3)T € R® of the axis of a
locally extreme circumscribing cylinder, the determinant (3.43) vanishes. If there are only
finitely many locally extreme, normalized direction vectors then that number is bounded
by 36.

(b) For a generic tetrahedron the number of solutions is indeed finite, and all solutions
have multiplicity one.

Proof. Let v be the direction vector of an axis of a locally extreme circumscribing cylinder.
Then v satisfies the first constraint of (3.41), and the determinant (3.43) vanishes. Since
these are homogeneous equations of degree 3 and 6, respectively, Bézout’s Theorem implies
that in connection with v? = 1 we obtain at most 36 isolated solutions.

For the second statement it suffices to check that for one specific tetrahedron there
are only finitely many solutions and that all solutions are pairwise distinct. O

3.4.2 Special tetrahedron classes in R?

We investigate conditions under which the degree of the resulting equations decreases.
Moreover, we show that for the equifacial tetrahedron, the minimal circumscribing radius
can be computed quite easily.

In Section 3.2.1, we have seen that the polynomial ¢g; in the cubic equation factors
into a linear polynomial and an irreducible quadratic polynomial if and only if the four
faces of the tetrahedron T can be partitioned into two pairs of faces {Fy, Fo}, {F3, Fy}
with area(F)) = area(F,) # area(F3) = area(F,). Moreover, ¢; factors into three linear
terms if and only if the areas of all four faces of T" are equal.

First let us consider the case where g; decomposes into a linear polynomial and an irre-
ducible quadratic polynomial. By optimizing separately over the linear and the quadratic
constraint, the degrees of our equations are smaller than for the general case. Namely,
analogously to the derivation in Section 3.4.1, for the quadratic constraint we obtain a
Bézout bound of

B+1+4+1)-2-2=20,
and for the linear constraint we obtain
(34+0+1)-1-2=38.

Thus, we can conclude:
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Lemma 3.12. If the four faces of the tetrahedron can be partitioned into two pairs of
faces {Fy, B>}, {F3, Fy} with area(Fy) = area(Fy) # area(F3) = area(Fy) then there are
at most 28 isolated local extrema for the minimal circumscribing cylinder. They can be
computed from two polynomial systems with Bézout numbers 20 and 8, respectively.

Equifacial simplices. As described in Section 3.2.2, for an equifacial tetrahedron the cubic
polynomial g; factors into three linear terms. Hence, we obtain at most 3 - 8 = 24 local
extrema. Somewhat surprisingly, it is even possible to compute smallest circumscribing
cylinder of an equifacial tetrahedron essentially without any algebraic computation. We
follow the notation and reasoning in Section 3.2.2. Thus we assume that the vertices of
an equifacial tetrahedron have the form c¢; = (A1, Ay, \3)T, 2 = (A1, = o, —=A3)T, 3 =
(=1, A2, —=A3)T, ey = (=M1, —Ag, A3)T with A, Ao, A3 > 0. For any radius r > 0, the
direction vector of any common tangent to the four spheres S(¢y,7),...,S(cq, ) satisfies
v1v9v3 = 0. Considering without loss of generality the case v; = 0, (3.22) yields

A3\ A3\2
= M (A%—)\g— ;;)gugmg. (3.44)
1 1

Thus, by computing the derivative of this expression r> = r?(v,) and taking into account
the three cases v; = 0, we can reduce the computation of the minimal circumscribing
cylinder to solving three univariate equations of degree 3. However, we can still do better.
Substitute 2z, := v2, and let p be the expression for r? in terms of 2y,

A3 o

N
) = =228 - (- - 228 ) a3,
1 1

Since the second derivative of that quadratic function is negative, p(z2) is a concave
function. Hence, within the interval z, € [0, 1], the minimum is attained at one of the
boundary values z, € {0,1}. Consequently, two of the components of (v1, ve,v3)T must
be zero and therefore v is perpendicular to two opposite edges. Since the latter geometric
characterization is independent of our specific choice of coordinates, we can conclude:

Theorem 3.13. If all four faces of the tetrahedron T have the same area then the azis
of a minimum circumscribing cylinder is perpendicular to two opposite edges.

Hence, for an equifacial tetrahedron it suffices to investigate the cross products of the
three pairs of opposite edges (equipped with an orientation), and we do not need to solve
a system of polynomial equations at all.

In order to illustrate how these three solutions relate to the 18 solutions of the general
approach above, we consider the regular tetrahedron in R®. In the general approach,
as already pointed out in [37], the six edge directions c;c; (1 < i < j < 4) all have
multiplicity 1, and each of the three directions in Theorem 3.13, c¢ico X c3¢4, ¢1c3 X Cacy,
c1C4 X Coc3, have multiplicity 4.
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3.5 Dynamic visualization aspects

As illustrated within the constructions in Section 3.3, many properties and constructions
of the tangent problem can best be understood in terms of dynamic configurations. For a
dynamic visualization of our algebraic problem of degree 12, we do not only have to solve
a single system, but instead have to solve several systems per second. In this section, we
briefly describe a prototype of a homotopy-based visualization tool, which demonstrates
that visualization of algebraic-geometric problems of this degree in real time is indeed
possible. For a demonstration video of these visualizations see the video review tape of
the Symposium on Computational Geometry 2002 [85].

General framework. In the last years, homotopy continuation techniques techniques have
been very fruitfully applied to build state-of-the-art numerical solvers of polynomial equa-
tions (see [32, 143]). The goal is to find all solutions of a zero-dimensional system of
polynomial equations

filz,. oo mp) = o= fulz, ... ,2,) =0,

abbreviated f(x) = 0. The idea of the homotopy technique is to start from a second
system ¢(z) = 0 whose solutions are known a priori. Then we consider the family of
systems of equations

0=nh(z,\):=(1-Ng(z)+ Mf(x)

for 0 < A < 1. By successively increasing A in small steps from 0 to 1 we can use either
Newton’s method to find the solutions for the next step, or solvers of ordinary differential
equations. The latter approach is based on the equation

J(x()\),)\)dz()\)\) - —%(x()\),)\), J(x,)) = (%u,m) :

j
which is implied by the Implicit Function Theorem.

Homotopy methods for the tangents to spheres. If the starting system g(z) = 0 of a
homotopy solver has more solutions than the system f(z) = 0, some paths necessarily
diverge as A — 1. Therefore a main concern in the design of homotopy solvers is to
find an appropriate starting system of polynomials g(z), which is expected to have the
same number of zeroes as f(z). By Bernstein’s Theorem, this means that the starting
polynomials g(x) should have the same Newton polytope as f(z) (see, e.g., [32, 137]).

For two reasons, homotopy techniques seem to be particularly suitable for visualizing
configurations of the tangents to spheres. Firstly, for the given polynomial formulation
the Bézout number agrees with the number of expected zeroes. Secondly, as exhibited in
Section 3.3, geometric understanding of configurations suggests also to inspect topologi-
cally neighboring configurations. For two-dimensional geometric problems, the latter issue
is treated comprehensively in dynamic geometry software such as CINDERELLA [108].
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Implementation aspects. The homotopy-based visualization of dynamic tangent configu-
rations has been prototypically implemented in Visual C++. The input to the program
is a description of the dynamic configurations. For computing and visualizing the tan-
gents of the initial configurations, the homotopy method starts from a standard starting
system. For the subsequent configurations, it starts from the preceding configuration.
Both Newton’s method and numerical methods for solving the differential equation are
implemented.

The 3D graphics have been implemented using the OPEN GL-based COIN 3D graphics
library. This library provides an application programming interface based on the widely
distributed OPEN INVENTOR graphics library.

Frontiers of the implementation. Despite an automatic adaption of the step size, numerical
problems of course arise whenever we reach too close to a configuration in which the
Jacobian matrix J is singular. If this configuration is only an intermediate configuration
on a homotopy path, this can be avoided by choosing a long way round the singularity.
However, if the singular configuration is our destination, then this strategy obviously does
not work. Experimental data on the numerical behavior can be found in the Diplom thesis
of D. Kotzor [84].



4. COMMON TANGENTS TO FOUR QUADRICS IN P* AND R?

In this chapter, we study the problem of common tangents to four quadrics in P? and
relate it to the sphere problem discussed in Chapter 3.

Using Pliicker coordinates, each of the tangent conditions gives a quadratic equation in
P5. In connection with the single Pliicker relation (2.2), we obtain five quadratic equations
in P°. By Bézout’s Theorem, if this system has only finitely complex solutions, then this
number is bounded by 32. The discrepancy between this upper bound and the number
of 12 for spheres is caused by the fact that for spheres, the common zeroes of the Pliicker
formulation in P include a one-dimensional excess component at infinity (accounting for
the “missing” 2% — 12 = 20 solutions [1]). This observation can also be seen as the main
argument why we used an elementary description of lines in Chapter 3.

In Section 4.1, we solve the real enumerative question for quadrics by showing that 32
is the true upper bound for quadrics, even over the real numbers.

In Section 4.2, we propose some computer-algebraic methods to relate the enumerative
geometry problem for general quadrics to the enumerative geometry problem for spheres.
In order to resolve the one-dimensional component of solutions at infinity, the algebraic-
geometric technique of blow-ups can be used. In most examples coming from geometry, a
single blow-up suffices to resolve an excess component. However, for the tangent problem
after one blow-up the excess component is still not resolved, and a second blow-up is
necessary. Thus the tangent problem is an outstanding example of a natural geometric
problem whose analysis requires a double blow-up. The aim of this section is to use
computer-algebraic methods to show the necessity of a second blow-up.

4.1 Real lines

Recall from Section 2.1.1 that we call a quadratic hypersurface real if it can be described
by a quadratic form with real coefficients. Here, we show the following result.

Theorem 4.1. There exists a configuration of four real quadrics in P3 with 32 distinct
real common tangent lines.

Before going into the technical details, let us illustrate the geometric idea underlying
our construction. We start from the well-known fact that four lines in P? have at most two
or infinitely many common transversals (see, e.g., [75, §XIV.7]). In order to demonstrate
the geometry behind this number of two, consider a tetrahedron A € R?, where we fix two
opposite edges e; and es. Let /4, ... , ¢, be the lines underlying the other four edges. These
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four lines intersect pairwise in the vertices of A. Hence, the two common transversals are
the lines underlying the two edges e; and e;. See Figure 4.1.

\

Uy

€9

€1

ly

4l

Fig. 4.1: Tetrahedron configuration of four lines in R? with two real tangents.

Consider the lines ¢q,...,¢; as (degenerate) infinite circular cylinders with radius
r = 0. If we increase the radius slightly, then the cylinders intersect pairwise in the regions
(combinatorially) given by the four vertices of A. Intuitively, after this perturbation
process, the common tangents roughly have the direction of e; and e;. However, due to the
intersection of the cylinders every of these intersection points defines four combinatorial
types. Therefore, there are 4 - 4 tangents close to the direction of e; and 4 - 4 tangents
close to the direction of ey. Figure 4.2 illustrates this situation for the case of a regular
tetrahedron.

While this demonstration of Theorem 4.1 is visually appealing and is easily verified
numerically, its proof requires more work. Namely, perturbing the given lines into cylinders
transforms a problem of degree 2 into one of degree 32. In order to make this idea precise,
we describe a family of projective configurations each of which is equivalent to that of
Figure 4.1. Exploiting symmetries, we are able to determine configurations in the family
having all common transversals real. This provides a constructive proof of Theorem 4.1.

We realize the tetrahedral configuration of Figure 4.1 in projective 3-space, using the
coordinates (g, 1, 7o, v3)T for P3. For the lines /1, ..., s, we we give a description in
terms of equations, as well as a parametrization using the coordinates s, t] for P!.

6+ mg=ax3=0, e, (0,510,

by + my=20=0, de., (0,0,s1)7, (4.1)
b3 1 my=29=0, d.e., (£0,0,5)7, '
by @ my=x3=0, ie., (51007,

Then the lines underlying e; and e, are (s,0,¢,0)7 and (0, s,t,0)T, respectively.
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Fig. 4.2: Configuration of 4 quadrics with 32 real tangents.

Now, for some parameters «, f € R, consider the four quadrics

Q : 2+as—alri+zd) = 0,
Qr : x5+ a5—a(ri+rl) = 0,
Qs : w2+t -pB2+123) = 0,
Qi @ w2+ —pB3+123) = 0.

For o« = f = 0, these quadrics become the corresponding lines, and for small o, 5 >
0, these quadrics are deformations of the lines. Recall that the signature of a quadric
denotes the number of positive eigenvalues of its representation matrix minus the number
of negative eigenvalues. Since for o, § > 0 each quadric @); has rank 4 and signature 0,
we see that all four quadrics are ruled surfaces.

Theorem 4.2. Let (o, 3) € R? satisfy
0B(1 — aB)(1+ B)(1 +0) (1 - a)’(1 - 67 — 16a8) # 0.

Then there are 32 distinct (possibly complex) common tangent lines to Q1, ... ,Q4. More-
over, if 0 < a, f < 3 — 2v/2, then all these 32 distinct tangent lines are real.

Proof. We work in the Pliicker coordinates for the space of lines in P%. Since the quadrics
only contain monomials of the form z?, the four tangent equations (2.5) of Q,...,Q4
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only contain monomials of the form p?j. More precisely, the four tangent equations give

the following system of linear equations in p3,, ... , p3,:
p%l
—a —a o> 1 —a —a\ |p
o2 —a —a —a —a 1 P3s

-6 =B 1 B =B =B |k

1 -3 =B =B =B B°) |l

p%&;

We permute the variables into the order (po2, p13, Pos, P12, Po1, P23)- Then, for «, 3 satisfying
6B(1 - aB)(1+ B)(1+a) # 0, (42)

Gaussian elimination yields the following system:

Po2
-8 =8 (I1-a)(1=6) 0 0 0 i3
0 0 a =80 0 ||| _
0 0 0 B a 0 ||ph|
0 0 0 0 a -8/ |

2

Pag

Hence, in connection with the single Pliicker equation (2.2), we have the following system
of equations:

—Bpte — Bpls + (1 —a)(1 = P)pgy = 0, (4.3)
Po1P23 — Do2P13 + Pozpiz = 0, (4-4)
apy = apyy = Bpia = Bpis- (4.5)

We analyze this system for «, § satisfying (4.2) by considering the following three disjoint
cases.

Case 1: po2 = 0.
Since py3 = 0 would imply that all components are zero and hence contradict (poy, .. . , pa3
€ P5, we can assume pj3 = 1. Then (4.3) and (4.5) imply

)T

af
1—a)(1-p)
Since (4.4) implies sgn(pgip23) = —sgn(po3pi2), only 8 of the 2 = 16 sign combinations

for po1, pos, P12, P23 are possible. More precisely, the 8 (possibly complex) solutions for
Po1, Po3, P12, P23 are

04pg1 = 04pg3 = 5,’0%2 = 5,’0%3 = ( #0.

1
(p01ap03,p12,p23)T = \/ (701ﬁ,703ﬁ,71204, —Sgn(701703712)04)T (4-6)

(1-a)(1-5)
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with 01,703, 712 € {—1,1}. Hence, for a, 3 € R? satisfying (4.2), this case gives 8 distinct
common tangents.

Case 2: p13 = 0.
This case is symmetric to case 1. Setting p13 = 1, the resulting 8 solutions for the variables
Do, Do3, P12, P23 are the same ones as in (4.6).

Case 3: poap1s # 0.
Without loss of generality, we can assume pyy = 1. Solving (4.4) for p;3 and substituting
this expression into (4.3) yields

—B — Bpgipas — BrasPia — 2BP01Pospiapas + (1 —a)(1 — B)psy = 0.

We next use (4.5) to write this in terms of pg;. This is straightforward for the squared
terms, but for the other terms, we observe that, by (4.5), poipas = tpospi2 and since
poap13 # 0, the Pliicker equation (4.4) implies these have the same sign. This gives the
quartic equation in pg;

B+ (1 —a) - 6)2931 - 4ap31 = 0.
Considering this equation as a quadratic equation in p3,, the discriminant is
(1—0a)*(1-pB)?—16a3. (4.7)

Hence, for a, 8 € R? satisfying (4.2), and for which this discriminant does not vanish,
there are two different solutions for p,. For each of these two solutions for p?,, there are
8 distinct solutions for py1, pos, P12, P23, namely

(p01ap03,p12,p23)T = \/pg1 (701,703,’712,Sgn(’701703’712))T (4-8)

with o1, Y03, 712 € {—1,1}. Since py3 is uniquely determined by po1, po2, Pos, P12, case 3
gives 16 distinct common tangents.

With this solution, we can easily determine when all solutions are real. First, suppose
that o = 3. Then the discriminant (4.7) becomes (a? — 6 + 1)(a + 1)?, and its smallest
positive root is o := 3 — 2¢/2 ~ 0.17157. In particular, for 0 < a < a, the discriminant
in case 3 is positive and both solutions for p3, are positive. Thus, for 0 < f = a < ),
the solutions of all three cases are distinct and real. Next, fix 0 < a < «ap and suppose
that 0 < 5 < a. Then the discriminant (4.7) is positive. To see this, note that for fixed
0 < a < ap, the discriminant (4.7) is decreasing in 3 for 0 < < « and positive when
B = a. This concludes the proof of Theorem 4.2. O

Figure 4.3 illustrates the construction and the 32 tangents for « = 1/10 and 5 = 1/20.
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Fig. 4.3: The configuration of quadrics from Theorem 4.2.

4.2 Computer-algebraic aspects

Let four spheres in R® be given by centers ci,...,cs € R® and radii r,...,ry > 0.
By (2.6), each of the tangent conditions gives a quadratic equation in Pliicker coordinates,
and additionally we have to consider the single Pliicker equation (2.2). So we obtain a
system with Bézout number 2° = 32 in the projective space P* of Pliicker coordinates p;;,
0<i<y<3.

Besides the isolated solutions there is an excess component of tangents located in the
plane at infinity. Namely, any vector p € P° which satisfies

Do1 = Doz = Poz = Dig + p?g + pgg =0 (4.9)

both fulfils the algebraic tangent condition given by (2.6) and the Pliicker condition (2.2).
Due to the conditions pg; = po2 = pe3 = 0, the geometric lines described by the Pliicker
vectors in this variety are located in the plane at infinity.

A fundamental technique in algebraic geometry is to resolve singularities of a variety
by means of a blow-up. Here, we use this technique to remove the excess component of
our variety of tangents. Intuitively, we can think of lifting our variety into a space of
larger dimension, there having the freedom to add further information which then allows
to distinguish the points we do not want to count.
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Fig. 4.4: The nodal cubic.

In most examples coming from geometry, a single blow-up suffices to resolve an excess
component. However, for the tangent problem to spheres it has originally been observed
by P. Aluffi and W. Fulton [1] that after one blow-up the excess component is still not
resolved and that a second blow-up is necessary.

4.2.1 Algebraic-geometric background

Before providing the computer-algebraic details, let us shortly review the geometric idea
of the blow-up technique (see [55, 71]). For an illustration, consider the nodal cubic curve
in R? defined by y* = z?(x + 1) (see Figure 4.4(a)). The origin is a singular point of the
curve. In order to determine the exact multiplicity of the origin, we resolve the singularity
by means of a blow-up. Namely, we embed the two-dimensional curve C' appropriately
into R?> x P,. For each point (x,y) € R* we encode its tangent direction z/y in the third
component. Formally, we consider the curve in R? x P} defined by the two equations in
the variables (z,y, [to, t1]),

y? =2 (z + 1), tor = t1y. (4.10)

The latter equation expresses that the tangent direction z/y coincides with ¢;/t,. The
illustration in Figure 4.4(b) shows that this curve consists of two branches: on the one
hand we have the branch E := (0,0) x Pk, called the exceptional divisor, and on the
other hand we have the “stretched” curve C' which we wanted to achieve. Figure 4.4(b)
illustrates that C' does not contain a singular point anymore.

The concept can be generalized to resolve not only single singular points but also
common components (see [55, 71]). Our excess component E is given by (4.9) in P°. The
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underlying theory requires to start from an affine space. Therefore we set po3 = 1 (since
we want to analyze the excess component, we choose a variable here which does not affect
the existence of our excess component itself).

The ideal Iy generated by the polynomials in (4.9) is a radical ideal, i.e., whenever
I contains some positive power of a polynomial f then it also contains f itself. For that
reason we can blow up R" along the subvariety E (see [125, p. 111]). (In case Ig is not
radical, this leads to the more general notion of a blow-up along the subscheme defined
by an ideal If.)

4.2.2 Simulating the double blow-up

Using the computer-algebra system SINGULAR [62], we can simulate the blow-up as fol-
lows. First we define a polynomial ring R in the variables pg1, poz2, Po3, P12, P13 over a field
with characteristic zero (i.e., the base field is Q). Moreover, we choose a degree reverse
lexicographical ordering (dp). The option redSB forces SINGULAR to work with reduced
Grobner (standard) bases.

option(redSB) ;
ring R = 0, (p01,p02,p03,p12,p13), (dp);

The following procedure computes the tangent equation of a sphere. Since the SINGULAR
implementation of the wedge function works in a different basis (namely, with regard to

our notation A%2Q € R(Z),(Z), SINGULAR computes (—1)"(A2Q);;, 1 < 4,5 < (3)), we
compensate these differences in signs by using a modified Pliicker vector.

proc tangenteq(int c1, int c¢2, int c3, int rr)

{
matrix sphereeq[4][4] = c172+c272+c3"2-rr"2, -cl, -c2, -c3,
-c1, 1, 0, 0,
-c2, 0, 1, 0,
-c3, 0, O, 1;

matrix plueckermod[6][1] = pO1l, -p02, p03, -pl2, pl3, -1;
return(transpose (plueckermod) * wedge(sphereeq,2) * plueckermod);

}

We consider the four spheres with centers (0,0,0)7, (1,-2,3)", (1,0,1)7, and (0, —1,0)"
and common radius 1. For these spheres, we define our ideal of common tangent lines, with
pa3 set to 1. We compute a Grobner (standard) basis of I and compute the dimension and
degree (multiplicity) of . Adapting the convention in [49], we use comment lines starting
with // to display the output of a SINGULAR computation.

ideal I1 = tangenteq(0,0,0,1);
ideal I2 = tangenteq(1,-2,3,1);
ideal I3 = tangenteq(1,0,1,1);
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ideal I4 = tangenteq(0,-1,0,1);
ideal IPlu = p01*1 - p02#pl3 + p03*pl2; // Pluecker relation

ideal I = std(I1 + I2 + I3 + I4 + IPlu);
dim(I), mult(I);
// 14

The variety V(I) contains a one-dimensional excess component, whose radical ideal is
generated by the polynomials in (4.9).

// exceptional divisor of I
ideal IE = pO1, p02, p03, pl2~2 + p13~2 + 1;

Let fi,..., fs denote these polynomials. Since fi,..., fs form a regular sequence, the
blow-up ideal is generated by the polynomials

Uifj — Ujfi, 1 < 1 <j < 4, (411)

where vy, ... ,vs denote new variables (see [55, p. 12]; for the non-regular case see [124]).
This construction naturally generalizes the blow-up with respect to a single point in
Section 4.2.1. The following procedure computes the blow-up for any regular sequence
fis--., fr of polynomials. In this procedure, the parameter I denotes the list of poly-
nomials of the excess component, and NewVars denotes the corresponding list of new
variables.

proc computeblowup(ideal I, ideal NewVars)
{

int i, j;

ideal A, B;

for (1 = 1; 1 <= gize(I); i++) {
for (j = 1; j <= size(NewVars); j++) {
if 1A'= j) {
B = I[i] * NewVars[j] - I[j] * NewVars[il;
A A + B;
}

+
}
return(A) ;

}

We extend the polynomial ring R by adjoining new variables g1, g2, o3, ¢ to the ring R.
Since we will work in the coordinate patch where tg3 # 0, we can set to3 = 1. We compute
the blow-up ideal which has dimension 5 and degree 6.
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ring S = 0, (p01,p02,p03,p12,p13,t01,t02,q), (dp);
ideal NewVarsl = t01, t02, 1, q;

ideal BlowUpl = computeblowup(imap(R,IE), NewVarsl);
// 5 6

Taking the union of the generators of the blow-up ideal and the generators of I, we
obtain an ideal whose variety corresponds to the one illustrated in Figure 4.4(b). In
order to remove the exceptional divisor, we compute the ideal quotient of the ideal in the
larger space divided by the exceptional divisor. The resulting ideal .J; is called the proper
transform of I. Here, the proper transform is an ideal in Clpo1, po2, Po3, P12, P13, to1, toz, q|-
We compute the ideal of the proper transforms and see that there is still a one-dimensional
excess component of degree 4.

// compute equations after the blow-up

ideal J1 = std(quotient(BlowUpl + imap(R,I1), imap(R,IE)));
ideal J2 = std(quotient(BlowUpl + imap(R,I2), imap(R,IE)));
ideal J3 = std(quotient(BlowUpl + imap(R,I3), imap(R,IE)));
ideal J4 = std(quotient(BlowUpl + imap(R,I4), imap(R,IE)));
ideal JPlu = std(quotient(BlowUpl + imap(R,IPlu), imap(R,IE)));
ideal J = std(J1 + J2 + J3 + J4 + JPlu);

dim(J), mult(J);

// 14

In order to explain this observation, we analyze the blow-up by hand. In the coordinate
patch o3 # 0, we can set tp3 = 1. Hence, the blow-up equations (4.11) yield po; = postor,
Po2 = Postoz, and ply +p?5 +1 = po3q. The tangent equation (2.5) after the blow-up results
in

0 = p' A’Qp

2 2 2
Co + C3 —7T —C1Co —C1C3 Po1
_ 2 2 2
= pos - | (to1, 02, 1) —ciC2 ci+cg—r —CoC3 P2 | +a+gq
2 2 2
—C1C3 —CoC3 Cl + 02 —Tr Po3
with
Co C3 0 P12
a:=2 (tor,te2, 1) | —c1 0 ¢ P13
0 —C1 —Co 1

The factor pg3 describes the exceptional divisor, which we want to remove. Let Vi denote
the affine variety satisfying (4.9) as well as py3 = 1. For elements in Vi x R*, the tangent
equation after the blow-up simplifies to

a+q = 0. (4.12)
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The equation of the Pliicker relation (2.2) after the blow-up results in

Pos * (tor — toepiz +p12) = 0.

Hence, the proper transform of the Pliicker equation is given by

tor — toep1z +p12 = 0. (4.13)
Now we can state the excess component of the proper transforms.

Lemma 4.3. Let (por, po2, Pos, P12, P13, 1)T € Vi and (to1,t02,1,9)" € R*. If ¢ = 0 and
the matrix

C?Q P13 1) (4.14)

—to2  To1

has rank 1 then for any center ¢ = (ci,co,c3)T and any radius r the equations (4.12)
and (4.13) are satisfied.

Proof. First we consider the tangent equation (4.12). Expanding the expression « yields

—c1 (pratoz + p13) + c2(prator — 1) + c3(prstor + to2) -

Hence, if the matrix (4.14) has rank 1 then all its 2 X 2-subdeterminants vanish, and
consequently & = 0. In conjunction with ¢ = 0, we see that (4.12) is satisfied.

The ideal described by the vanishing of the 2 x 2-subdeterminants is generated by
g1 := piatos + p13 and go := piatpr — 1. To see this, just observe that g3 := pi3tor + fp2 can
be expressed by g3 = —tp191 + to202.

In order to see that (4.13) is satisfied, observe that the left-hand side of (4.13) is
contained in the ideal generated by ¢y, g2 and g,

tor — toep1s + P12 = —Pi292 — P13gs +to1q -
Hence, if the matrix (4.14) has rank 1 and ¢ = 0 then this expression evaluates to zero. O

We implement the second blow-up. The variety of the following radical ideal Jg is the
new exceptional divisor.

ideal JE = p01, p02, p03, pl2°2 + p13°2 + 1, q, pl2%t02 + pi3,
p12%t01 - 1;

We define a ring extension, creating new variables wugy, ug2, %3, Uos, U, w1, wo for the poly-
nomials defining the excess component. One of the new auxiliary variable has to be fixed,
since we work locally in one patch. Thus we set ugz = 1. Since the generators of Jg form a
regular sequence, we can use our procedure to compute the blow-up ideal. The dimension
of that ideal is 8, and its degree is 26.
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ring T = 0, (p01,p02,p03,p12,p13,t01,t02,q,u01,u02,u04,v,wl,w2), (dp);

ideal NewVars2 = u0O1, u02, 1, u04, v, wil, w2;

ideal BlowUp2 = std(computeblowup(imap(S,JE), NewVars2));
dim(BlowUp2), mult(BlowUp2);

// 8 26

Now we compute the proper transforms of the second blow-up.

ideal K1 = std(quotient (BlowUp2
ideal K2 = std(quotient (BlowUp2
ideal K3 = std(quotient(BlowUp2 + imap(S,J3), imap(S,JE)));
ideal K4 = std(quotient(BlowUp2 imap(S,J4), imap(S,JE)));
ideal KPlu = std(quotient(BlowUp2 + imap(S,JPlu), imap(S,JE)));

imap(S,J1), imap(S,JE)));
imap(S,J2), imap(S,JE)));

+ + + +

ideal K = std(quotient (K1 + K2 + K3 + K4 + KPlu, imap(S,JE)));
dim(K), mult(K);
// 0 12

We see that after this second blow-up the ideal has become zero-dimensional. The degree
of 12 corresponds to the 12 solutions in Section 3.1.



5. TANGENT PROBLEMS TO QUADRICS IN N-DIMENSIONAL
SPACE

We consider the natural (real) enumerative generalization of the tangent problem to
spheres and quadrics to n-dimensional space.

In Section 5.1, we discuss the common tangents to 2n—2 spheres in R”. The main
result of this section can be stated as follows.

Theorem 5.1. Suppose n > 3.

(a) Let ci,...,con o € R" affinely span R™, and let ri,... ,ron o > 0. If the 2n—2
spheres with centers ¢; and radii r; have only a finite number of common tangent
lines in C3, then that number is bounded by 3 - 2"~ 1.

(b) There exists a configuration with 3-2"~" different real common tangent lines. More-
over, this configuration can be achieved with unit spheres.

We also discuss configurations of spheres whose centers have affine dimension less than
n. In particular, we show that there are configurations of such spheres having 3 - 27!
compler common tangents; thus, the upper bound of Theorem 5.1 also holds for spheres
in this special position.

In Section 5.2 we prove the following result on the lines tangent to 2n—2 quadrics in
P".

Theorem 5.2. Given 2n—2 general quadratic hypersurfaces in P™ there are

L g (=2
" n\n—1

complex lines that are simultaneously tangent to all 2n—2 hypersurfaces (n > 2). Further-
more, there is a choice of quadratic hypersurfaces in R™ for which all the lines are real
and lie in affine space R™.

Table 5.1 exhibits the amazingly large difference between the number of (real) tangent
lines for spheres and the number of (real) tangent lines for general quadrics.

We also discuss the case of 2n—2 quadrics in P" when the quadrics all contain the
same (smooth) quadric in a given hyperplane.

In Section 5.3, we discuss the problem of finding minimal circumscribing cylinders of
a given simplex with vertices ¢q,co, ... ,c,yq in R?. This problem is equivalent to finding
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| n 3] 4] 5 | 6 | 7 8 9
3.2n1 112 24 | 48 | 96 192 384 768
d, || 32| 320 | 3584 | 43008 | 540672 | 7028736 | 93716480

Tab. 5.1: Maximum number of tangents to 2n—2 spheres in R” and to 2n—2 quadrics in P”

the smallest radius r such that the spheres S(ci,r),...,S(cpi1,7) have a real common
tangent line. Using the framework of Section 5.1, we provide bounds on the number of
local extrema. Moreover, for regular simplices we prove structural results for the direction
vectors of any locally extreme circumscribing cylinder.

5.1 Common tangents to 2n—2 spheres in R"

In this section we prove Theorem 5.1. First, in Section 5.1.1, we prove part (a) of that
Theorem. Then, in Section 5.1.2, we prove part (b) by explicitly describing configurations
with 3 - 2"~! common real tangents.

In Section 5.1.3, we discuss configurations of spheres whose centers do not affinely
span R”.

5.1.1 Polynomial formulation for centers affinely spanning R"

Analogous to Section 3.1, we represent a line in C" by a point p € C* and a direction
vector v € P*"~'. (For notational convenience we typically work with a representative
of the direction vector in C* \ {0}.) If v*> # 0 we can make p unique by requiring that
p-v=0.

First note that for v? # 0, the tangent condition (3.1) of a line (p,v) to a sphere with
center ¢ and radius r also holds in general dimension n,

v2p® —20p e+ v — (v-e)? —r*? = 0. (5.1)
To prove part (a) of Theorem 5.1, let ¢y,...,co, o € R" contain n + 1 affinely inde-
pendent points and let ry,... ,ry,_o > 0. We can choose cy,_» to be the origin and set
7 := ron_o. Then the remaining centers span R". Subtracting the equation for the sphere

centered at the origin from the equations for the spheres 1,... ,2n—3 gives the system

p-v = 07
p? = r?, and (5.2)
20%p-c; = Vit — (v-e)? =0 (r} —r?), i=1,2,...,2n-3.

Remark 5.3. In generalization of Remark 3.3 for the three-dimensional case, this system
of equations does not have a solution with v> = 0. Namely, if we had v?> = 0, then v-¢; = 0
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foralli € {1,...,2n—3}. Since the centers span R", this would imply v = 0, contradicting
v € P*~1. This validates our assumption that v? # 0 prior to (5.1).

Since n > 3, the bottom line of (5.2) contains at least n equations. We can assume

that cy, ... ,c, are linearly independent. Then the matrix M := (cy,...,c,)" is invertible,
and we can solve the equations with indices 1,... ,n for p:
. v’e? — (v-c)? — v (r} — r?)
= —M! : . 5.3
p 20?2 (5-3)

v2e2 — (v-c,)? — v (r2 —r?)

Now substitute this expression for p into the first and second equation of the system (5.2),
as well as into the equations for i =n +1,...,2n — 3, and then clear the denominators.
This gives n—1 homogeneous equations in the coordinate v, namely one cubic, one quartic,
and n — 3 quadrics. By Bézout’s Theorem, this means that if the system has only finitely
many solutions, then the number of solutions is bounded by 3-4-2"=3 = 3.2"=! forn > 3.
For small values of n, these values are shown in Table 5.1. The values for n = 4,5, 6 were
computed experimentally in [129].

We simplify the cubic equation obtained by substituting (5.3) into the equation p-v = 0
by expressing it in the basis ¢y, ... ,c,. Let the representation of v in the basis ¢1,... , ¢,
be

n
v = E tiCi
=1

with homogeneous coordinates ty,...,t¢,. Further, let ¢;,...,c, be a dual basis to
Ci,...,Cp; Le., let c),... ¢, be defined by ¢} - ¢; = d;;, where ;; denotes Kronecker’s
delta function. By elementary linear algebra, we have t; = ¢} - v.

When expressing p in this dual basis, p = 3 pic}, the third equation of (5.2) gives
1
P, = 2 (v’ — (v-¢)* =%} = 7)) .

Substituting this representation of p into the equation

0 = 20%(p-v) = 20° (Zpécé) o= 21}22p;ti,
i=1 i=1

we obtain the cubic equation

n

Z(U2C? — (W) =i —r)t; = 0.

i=1
In the case that all radii are equal, expressing v in terms of the t-variables yields

ST ettt Y 2Bttty = 0, (5.4)

1<i#j<n 1<i<j<k<n
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where

Cj Ci Cj+Cy

Bijk = det(ci'cj Ci'ck>+det(q:-6k Ci.cy.)

Ck-Cj Ck * Ck CJ'Ck Cj'Cj
+ det < €%k G )
Ci*Cr C;-*C
and voly(¢;, ¢;) denotes the oriented area of the parallelogram spanned by ¢; and ¢;. In

particular, if Oc; ... ¢, constitutes a regular simplex in R”, then we obtain the following
characterization.

ai; = (voly(ci,c))? = det( CitCi Ci G ) ,

Theorem 5.4. Let n > 3. If Ocy...c, is a reqular simplex and all spheres have the same

radius, then the cubic equation expressed in the basis cq, ... , ¢, s equivalent to
oot +2 Yttt = 0. (5.5)
1<i#j<n 1<i<j<k<n

For n = 3, this cubic equation factors into three linear terms; for n > 4 it is irreducible.

Proof. Let e denote the edge length of the regular simplex. Then the form of the cubic
equation follows from computing o;; = e*(1-1—1/2-1/2) = 3e?/4, B, = 3e*(1/2-1 —
1/2-1/2) = 3¢2/4.

As discussed in Section 3.2, for n = 3 the cubic polynomial factors into (¢ + to) (¢t +
t3)(ta + t3). For n > 4, assume that there exists a factorization of the form

n
(tl + Z Pz’ti) ( Z O'ijtitj>
=2 1<i<j<n

with 019 = 1. Since (5.5) does not contain a monomial t?, we have either p; =0 or g;; =0
for 1 <3 <n.

If there were more than one vanishing coefficient p;, say p; = p; = 0, then the mono-
mials #2¢; could not be generated. So only two cases have to be investigated.

Case 1: p; # 0 for 2 < ¢ < n. Then 05 = 0 for 1 < ¢ < n. Furthermore, 0;; = 1
for 1 # 7 and p; = 1 for all 7. Hence, the coefficient of the monomial ¢,¢5t3 is 3, which
contradicts (5.5).

Case 2: There exists exactly one coefficient p; = 0, say, ps = 0. Then o1 = 092 = 033 =0,
044 = 1. Further, 0;; = 1for 1 <i < j <3and p; =1for1 <i < 3. Hence, the coefficient
of the monomial ¢,¢5t5 is 3, which is again a contradiction. O



5.1. Common tangents to 2n—2 spheres in R” 73

5.1.2 Real lines

In Section 5.1.1, we have given the upper bound of 3 - 2"~! for the number of complex
solutions to the tangent problem. Now we complement this result by providing a class of
configurations leading to 3-2""! real common tangents. Hence, the upper bound is tight,
and is achieved by real tangents.

Our construction is based on the following geometric idea. For four spheres with
radius 7 in R® centered at the vertices (1,1,1)", (1,-1,-1)7, (-=1,1,-1)7, (=1,-1,1)7
of a regular tetrahedron, Lemma 3.8 implies that there are

e 3 different real tangents (of multiplicity 4) for radius r = v/2;
e 12 different real tangents for V2<r< 3/2;
e 6 different real tangents (of multiplicity 2) for r = 3/2.

Furthermore, from the explicit calculations in Section 3.2.2, it can be easily seen that the
symmetry group of the tetrahedron acts transitively on the tangents. By this symmetry
argument, all 12 tangents have the same distance d from the origin. In order to construct
a configuration of spheres with many common tangents, say, in R*, we embed the centers
via

($1,$2,1‘3)T L ($1,$2,1‘3,0)T

into R* and place additional spheres with radius r at (0,0,0,a)” and (0,0,0, —a)” for
some appropriate value of a. If a is chosen in such a way that the centers of the two
additional spheres have distance r from the above tangents, then, intuitively, all common
tangents to the six four-dimensional spheres are located in the hyperplane x4 = 0 and
have multiplicity 2 (because of the two different possibilities of signs when perturbing the
situation). By perturbing this configuration slightly, the tangents are no longer located
in the hyperplane x, = 0, and therefore the double tangents are forced to split. The idea
also generalizes to dimension n > 5.

Formally, suppose that the 2n—2 spheres in R” all have the same radius, r, and the
first four have centers

c = (1, 1, 1,0,...,0)7,
c == ( 1,-1,-1,0,...,0)7,
cs = (=1, 1,-1,0,...,0)", and
cy = (—=1,-1, 1,0,...,0)

at the vertices of a regular tetrahedron inscribed in the 3-cube (41,1, #£1,0,...,0)T.
We place the subsequent centers at the points +ae; for j = 4,5,... ,n, where e;,... ,e,
are the standard unit vectors in R”.
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Theorem 5.5. Letn >4, 17 >0, a >0, and v := a*(n — 1)/(a®> +n — 3). If

(r*=3)(3=7) (@ =2) (r* =) (B -7 +4y—4%) # 0, (5.6)
then there are exactly 3 - 2" % different lines tangent to the 2n—2 spheres. If

a>>2, ~v<3, and v < 1’ <7+i(3—7)2, (5.7)
then all these 3 - 2" 1 lines are real. Furthermore, this system of inequalities defines a
nonempty subset of the (a,r)-plane.

Given values of a and r satisfying (5.7), we may scale the centers and parameters by
1/r to obtain a configuration with unit spheres, proving Theorem 5.1(b).

Remark 5.6. The set of values of a and r which give all solutions real is nonempty. To
show this, we calculate

7:M:(n—1)(1—”7_3>, (5.8)

a?+n—3 a?+n—3

which implies that v is an increasing function of a®. Similarly, set § := v+ (3 —v)?/4, the
upper bound for r2. Then

d d (v+3—17)? v-3
dry d’y( 4 b T

and so 4 is an increasing function of v when v > 1. When a? = 2, we have v = 2; so § is
an increasing function of @ in the region a> > 2. Since when a = v/2, we have 6§ = % > 7,
the region defined by (5.7) is nonempty.

Moreover, we remark that the region is qualitatively different in the cases n = 4 and
n > 5. For n = 4, v satisfies v < 3 for any a > /2. Hence, § < 3 and r < v/3. Thus the
maximum value of 24 real lines may be obtained for arbitrarily large a. In particular, we
may choose the two spheres with centers +ae4 disjoint from the first four spheres. Note,
however, that the first four spheres do meet, since we have v/2 < r < /3.

For n > 5, there is an upper bound to a. The upper and lower bounds for 72 coincide
when v = 3; so we always have r? < 3. Solving v = 3 for a?, we obtain a® < 3(n—3)/(n—4).
When n = 5, Figure 5.1 displays the discriminant locus (defined by (5.6)) and shades the
region consisting of values of a and r for which all solutions are real.

Proof of Theorem 5.5. We prove Theorem 5.5 by treating a and r as parameters and
explicitly solving the resulting system of polynomials in the coordinates (p,v) € C* x P!
for lines in C*. This shows that there are 3-2" ! compler lines tangent to the given spheres,
for the values of the parameters (a, r) given in Theorem 5.5. The inequalities (5.7) describe
the parameters for which all solutions are real.
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all solutions real

Fig. 5.1: Discriminant locus and values of a,r giving all solutions real

First consider the equations (5.1) for the line to be tangent to the spheres with centers

+ae; and radius r:

vip? — 2av2pj +a*v? — a*v? —r?? =

v?p? + 2av2pj +a?v? — a*v? —r?? =

SN SN

Taking their sum and difference (and using av? # 0), we obtain

p; = 07 4 S;j §;n7
av; = (p*+a>—r)?, 4<j<n.
Subtracting the equations (5.1) for the centers ¢y, ... , ¢4 pairwise gives
402 (py +p3) = —4(vivs + v1v9)

(for indices 1,2) and analogous equations. Hence,

U2U3 U1U3

P = ——, P2 = ———, P33 = —

V2 v?2

U1U2

(5.9)
(5.10)

Further, p-v = 0 implies v;vov3 = 0. Thus we have three symmetric cases. We treat one,

assuming that vy = 0. Then we obtain
V2U3
P= ——5 p2=p3=0.
v
Hence, the tangent equation (5.1) for the first sphere becomes

V2Pt — 207 + 307 — (vg +v3)? —r¥0? =

0.
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Using 0 = v?p; + vyv3, we obtain
vs +v; = vi(pl+3—1?). (5.11)

The case j = 4 of (5.10) gives a?v] = v?(p? + a® — r?), since p, = p3 = 0. Combining
these, we obtain
vs +vs = a’vj +v*(3—d?).

Using v? = v3 4+ v3 + (n — 3)v} yields
(a®> —2)(v3 +v3) = vi(3(a* +n —3) —a*(n—1)).
We obtain
(a®> —2)(v3+v2) = vi(a®*+n—3)(3—7), (5.12)
where v = a*(n — 1)/(a®> + n — 3).
Note that a®> +n — 3 > 0 since n > 3. If neither 3 — v nor a?> — 2 are zero, then we

may use this to compute

(@®>+n-=3)3—-7)v" = ((@®+n-=3)3B—7)+(n—3)(a*-2)) (v3+3)
= (a®+n—3)(v3+v3),

and so
(3—)v? = vi+o]. (5.13)
Substituting (5.13) into (5.11) and dividing by v? gives
pl = r?—n. (5.14)
Combining this with v%p; + vov3 = 0, we obtain
p1(v: +v2) + (3 —7)vevy = 0. (5.15)

Summarizing, we have n linear equations

Ul:pQ:p3:p4:---:pn:0,
and n — 4 simple quadratic equations
vi = vp = e =0

and the three more complicated quadratic equations, (5.12), (5.14), and (5.15).
We now solve these last three equations. We solve (5.14) for p;, obtaining

po= EVri—o.
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Then we solve (5.15) for v, and use (5.14), obtaining

oo 3=t VB -4 -
? 2p .

Finally, (5.12) gives

29
wvVat+n—3 = :I:\/C; (v3 + v3).
Y

Since v3 = 0 would imply v = 0 and hence contradict v € P*!, we see that v3 # 0. Thus
we can conclude that when none of the following expressions

=3, 3—v, a®>=2, r*—v, 3—7)2+4y—4?

vanish, there are 8 = 23 different solutions to the last 3 equations. For each of these, the
simple quadratic equations give 2"~* solutions; so we see that the case v; = 0 contributes
2n=1 different solutions, each of them satisfying v, # 0, v3 # 0. Since there are three
symmetric cases, we obtain 3 - 2"~! solutions in all, as claimed.

We complete the proof of Theorem 5.5 and determine which values of the parameters
a and r give all these lines real. We see that

(1) py is real if r> — v > 0.
(2) Given that p, is real, vy /vs is real if (3 —)? + 4y — 4r% > 0.
(3) Given this, vy/vs is real if (a*> —2)/(3 — ) > 0.

Suppose the three inequalities above are satisfied. Then all solutions are real, and (5.13)
implies that 3 —~ > 0, and so we also have a? — 2 > 0. This completes the proof of The-
orem 9.5. 0

5.1.3 The lower-dimensional case

In our derivation of the Bézout number 3 - 27! of common tangents for Theorem 5.1, it
was crucial that the centers of the spheres affinely spanned R". Also, the construction
in Section 5.1.2 of configurations with 3 - 2"! real common tangents had centers affinely
spanning R”. When the centers do not affinely span R", we prove the following result.

Theorem 5.7. For n > 4, there are 3 - 2" ! complex common tangent lines to 2n—2
spheres whose centers have affine dimension less than n, but otherwise general. There
is a choice of unit spheres whose centers have affine dimension less than n and 2" real
common tangent lines.
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Remark 5.8. Theorem 5.7 extends the results of Section 3.2.1, which say that when
n = 3, there are 12 complex common tangents. Megyesi [93] has shown that there is a
configuration of four spheres in R* with affinely dependent centers and 12 real common
tangents, but that the number of tangents is bounded by 8 for the case of unit spheres.
For n > 4, we are unable either to find a configuration of unit spheres whose centers
do not affinely span R” having more than 2" real common tangents, or to show that the
maximum number of real common tangents is less than 327!, Similar to the case n = 3,
it might be possible that the case of unit spheres and the case of spheres with general radii
might give different maximum numbers. Megyesi [94] showed that there are 2n—2 spheres
whose centers have affine dimension less than n having all 3-2"~! common tangents real.
Furthermore, all but one of the spheres in his construction have equal radii.

By Theorem 5.1, 3 - 2"~ ! is the upper bound for the number of complex common
tangents to spheres whose centers do not affinely span R”. Indeed, if there were a config-
uration with more common tangents, then—since the system is a complete intersection—
perturbing the centers would give a configuration whose centers affinely span R” and more
common tangent lines than allowed by Theorem 5.1.

By this discussion, to prove Theorem 5.7 it suffices to give 2n—2 spheres, whose centers
have affine dimension less than n, having 3-2"! complex common tangents and also such
a configuration of 2n—2 unit spheres with 2" real common tangents. For this, we use
spheres with equal radii whose centers are the vertices of a perturbed cross polytope in a
hyperplane. We work with the notation of Sections 5.1.1 and 5.1.2.

Let a # —1 and suppose we have spheres with equal radii 7 and centers at the points

aey, —ez, and =£e;, for3<j<n.

Then we have the equations

p-v 0, (5.16)

f o= v*(p* —2apy +a® —r?) —a*vi = 0, (5.17)
g = V(P + 200 +1—1%) —v] = 0, (5.18)
P2 +1-17) -0 = 0, 3<j<n (5.19)

As in Section 5.1.2, the sum and difference of the equations (5.19) for the spheres with
centers +e; give

b; = 07 .
3< 1 <n.
V(PP +1 -1 = 0. =J=
Thus we have the equations
pPs = pa = =P = 0,

(5.20)
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Similarly, we have

f+ag = (1+a) (V@ —1r*+a)—av3) =0,
f—d’g = (L+a)’ (1-a)(p”—1r") +2ap;) =0.
As before, v? # 0: If v? = 0, then (5.18) and (5.19) imply that vy = -+ = v, = 0. With

v? = 0, this implies that v; = 0 and hence v = 0, contradicting v € P!, By (5.20), we
have p? = p?+p2, and so we obtain the system of equations in the variables p;, pa, v1, Vg, v3:

PV + P2 =
(I —a)(p +p3 —7°) + 2apy =
vApt +p5 — ¥ +a) —av =

v(pi+ps—r’+1)—v] =

)

Y

(5.21)

Y

0
0
0
0.

(For notational sanity, we do not yet make the substitution v? = v} 4+ v2 + (n — 2)v3.)

We assume that a # 1 and will treat the case a = 1 at the end of this section. Using
the second equation of (5.21) to cancel the terms v?(p? + p3) from the third equation and
dividing the result by a, we can solve for ps:

(1 —a)(v* —v3)
202 '

2 =
If we substitute this into the first equation of (5.21), we may solve for p;:

(1= a)(v* = v3)vs

2
0%,

pPr = —

Substitute these into the second equation of (5.21), clear the denominator (4vjv*), and
remove the common factor (1 — a) to obtain the sextic

(1 —a)?(v? +v3)(v? — v3)? — 4r®vo* + 4av?v?*(v? —vd) = 0. (5.22)

Subtracting the third equation of (5.21) from the fourth equation and recalling that v* =
v? +v3 + (n — 2)vZ, we obtain the quadratic equation

(1—a)v?4+vs+((n—3)—a(n—2)v; = 0. (5.23)

Consider the system consisting of the two equations (5.22) and (5.23) in the homogeneous
coordinates vy, vy, v3. Any solution to this system gives a solution to the system (5.21),
and thus gives 2% solutions to the original system (5.16)—(5.19).

These last two equations (5.22) and (5.23) are polynomials in the squares of the vari-
ables v?, v3,v2. If we substitute o = v?, 3 = v3, and 7 = v, then we have a cubic and a
linear equation, and any solution «, 3, to these with non-vanishing coordinates gives 4
solutions to the system (5.22) and (5.23): (v1,va, v3)T = (a2, £Y2 £4Y2)T as vy, vy, v3
are homogeneous coordinates.
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Solving the linear equation in «, 3,7 for [ and substituting into the cubic equation
gives a homogeneous cubic in o and v whose coefficients are polynomials in a,n,r. The
discriminant of this cubic is a polynomial with integral coefficients of degree 16 in the
variables a,n,r having 116 terms. Using a computer algebra system, it can be verified
that this discriminant is irreducible over the rational numbers. Thus, for any fixed integer
n > 3, the discriminant is a non-zero polynomial in a,r. This implies that the cubic has 3
solutions for general a, r, and any integer n. Since the coefficients of this cubic similarly
are non-zero polynomials for any n, the solutions «, 3, will be non-zero for general a, 7,
and any n. We conclude:

For any integer n > 3 and general a,r, there will be 3 - 271
complex common tangents to spheres of radius r with centers

aep, —ey, and =+e;, for3 <j<n.

We return to the case when a = 1, i.e., the centers are the vertices of the cross polytope
+e; for j =2,...,n. Then our equations (5.20) and (5.21) become

D2 = p3 = = pn = 0,
v: = v = = v?,

? ’ (5.24)
pvr = 0,
vi(pt—r*+1)—v3 = 0.

As before, v? = v? + (n — 1)vs. We solve the last two equations. Any solution they have
(in C' x P') gives rise to 2”2 solutions, by the second list of equations v = --- = v2.
By the penultimate equation pyv; = 0, one of p; or vy vanishes. If vy = 0, then the last
equation becomes

(n—1)vi(p? —r*+1) = v2.

Since vy = 0 implies v? = 0, we have vy # 0 and so we may divide by v2 and solve for p;

to obtain
1
p1o= i\/T2—1+ .
n—1

If instead p; = 0, then we solve the last equation to obtain

U1 1
— = =+ 1—n.
Vo \/1—r2+ "

Thus for general r, there will be 2” common tangents to the spheres with radius r and
centers £e; for j =2,... ,n. We investigate when these are real.

We will have p; real when r*> > 1—1/(n — 1). Similarly, v;/vy will be real when
1/(1=r% > n—1. In particular, 1 — 7% > 0 and so 1 > r2. Using this we get

1
so that 2> 11— ——
n — n—1

1-r% <

b
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which we previously obtained.
We conclude that there will be 2" real common tangents to the spheres with centers
+e; for j = 2,...,n and radius r when

1

n —

1-— < r < 1.

This concludes the proof of Theorem 5.7.

5.2 Common tangents to 2n—2 quadrics in P" and R"

In this section, we study the common tangent lines to 2n—2 quadrics in P" (or R",
respectively). In Section 5.2.1, we prove Theorem 5.2 stated at the beginning of this
chapter on the maximum number of real lines tangent to 2n—2 quadrics in P". Here, we
combine recent results in the real Schubert calculus with classical perturbation arguments
adapted to the real numbers.

In Section 5.2.2, we put the tangent problem to spheres into the perspective of common
tangents to general quadrics. We discuss the excess component at infinity for the problem
of spheres. In this setting, Theorem 5.1(a) implies that there will be at most 3 - 2"~!
isolated common tangents to 2n—2 quadrics in P”, when the quadrics all contain the
same (smooth) quadric in a given hyperplane. In particular, the problem of the spheres
can be seen as the case when the common quadric is at infinity and contains no real points.

5.2.1 Real lines

In Section 4.1, we have given a construction of four real quadrics in P? with 32 real
common tangent lines. The main idea of that construction was encapsulated by the
visually appealing transition from Figure 4.1 to Figure 4.2. Here, we generalize this
idea to the n-dimensional case. However, in contrast to the symbolic construction of
Section 4.1, the proof of the n-dimensional case is only existential.

Recall that the (n—1)-st Catalan number is C,_; := (*" %) which is the number
of lines in P" simultaneously transversal to 2n—2 general (n—2)-planes [81, 118]. We
begin with a configuration of 2n—2 real (n—2)-planes in R" having C,, ; common real
transversal lines. (Such configurations exist, see below.) We then argue that we can
replace each of these (n—2)-planes by a real quadratic hypersurface such that for each of

the original transversal lines, there are 22" 2 nearby real lines tangent to each quadric.

Proposition 5.9. There ezists a configuration of 2n—2 real (n—2)-planes in R* having
exactly C,_1 common real transversals.

Proof. The corresponding statement for real projective space P§ was proven in [127, The-
orem C]. We deduce the affine counterpart above simply by removing a real hyperplane
that contains none of the (n—2)-planes or any of the transversal lines. O
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Remark 5.10. The purely existential statement in [127] was strongly improved by Ere-
menko and Gabrielov [52] who gave the following explicit construction of such a collection
of (n—2)-planes. Let

v(s) = (1,58 ...,s" HT
be the moment curve in R™. For each s € R set A(s) to be
A(s) := linear span(7y(s),7'(s), ..., 7(”*3)(5)) :

Geometrically, A(s) is the kissing, or osculating (n—2)-plane to the moment curve at the

point v(s). Eremenko and Gabrielov showed that for any distinct numbers sy, ... , Sop_o €
R, the (n—2)-planes A(sy), A(s2), ..., A(s2,—2) have exactly C),,_; common real transver-
sals.

Definition 5.11. Let A C R” be an (n—2)-plane and r be a positive real number. Then
we define the (n—2)-cylinder Cy(A,r) to be the set of points having Euclidean distance r
from A. This is a singular quadratic hypersurface in P", but smooth in R".

A real line / is tangent to Cy (A, r) if and only if the Euclidean distance d(¢, A) between
¢ and A is r. We use the following notation to characterize the Euclidean distance between
a line ¢ and an (n—2)-plane A. For vectors vy,...,v, 1 € R”, let [vy,...,v, 1] € R”
denote their n-dimensional vector product (see, e.g., [16, 58]):

(V1,0 U] = E it sin1.j Vliin " Un—lin_15 1<j<n,

U1 yeeesin—1

where €;, . ;. is the Levi-Civita symbol, which is zero unless the indices are distinct, and
when they are distinct, it is the sign of the resulting permutation:

0 if at least two of the indices iy, ... , 1, are equal,

1 if the indices are pairwise different
Eitsin = 3 and the permutation ¢q,... ,1, is even,

-1 if the indices are pairwise different
and the permutation 4, ... ,%, is odd.

\

The vector [vy, ... ,v,_1] is perpendicular to vq,... ,v,_; and its length is the volume of
the parallelotope spanned by vy, ... ,v, 1.

Lemma 5.12. Let { ={a+ Xb : A € R} witha € R", b€ R" \ {0} and

n—2
A = {p+ZMiQi DLy s a2 € R}
i=1
with p € R" and linearly independent vectors qy, ... ,qn—o € R*. Ifb & span{q1,... ,qn_o}
then the Euclidean distance d(¢,\) is

|[b7Q17"' 7Qn—2] : (a_p)|
(6, A) = .
( ) ||[b7q17"'7qn—2]||
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Proof. Since b ¢ span{qi,... ,qn_o}, the vectors b, qi,... ,qn_2,[b,q1,... ,qn_2] form a
basis of R”. Hence, there exist unique real numbers «, 3,71, ... ,Vn_2 such that

n—2
a—p:a[ba(ha--- ,qn_2]+5b+zf}/zqz
=1

Suppose = and y are points on ¢/ and A, respectively. Then there exist A, p1,..., tn_s
such that

n—2
r—y = (a—p)+ b= p;
i—=1

n—2
= alb,q, ... qua] + BN+ (i — 1) ai-
i=1
Hence, the distance of £ and A is ||a[b, q1,. .. ,qn 2]||- Since
Ot||[b, qi, ... 7qn—2]||2 = Oé[b, qi, ... 7qn—2] ' [ba qi, ... 7qn—2] = [ba qi, ... 7Qn—2] ' (CL - p) )
the lemma follows. 0

We record the following useful and basic property of intersection multiplicities [55,
p. 1], which we will use.

Proposition 5.13. Let A be an algebraic curve in complex projective space P™, and let x
be a singular point on A. For any hyperplane H C P™ such that x is an isolated point in
AN H, the intersection multiplicity of A and H in x is greater than 1.

Theorem 5.14. Let Ay, Ay, ..., Ny, o be (n—2)-planes in R" having ezactly C,, 1 com-
mon real transversals. For each k = 0,1,...,2n—2, there exist positive real numbers
T1,...,7s such that there are exactly 28C,_; real lines that are simultaneously tangent to
each of the (n—2)-cylinders Cy(A\;,r;), 7 =1,...,k, and transversal to the (n—2)-planes
Ak+1, Ceey Agn_g.

The case of k = 2n—2 implies Theorem 5.2; since the number of real lines will not
change under a small perturbation of the cylinders Cy(A;,r;), we may replace them by
quadratic hypersurfaces which are even smooth in P”, without altering the conclusion of
the theorem.

In the proof of Theorem 5.14, we identify the lines we are looking for with the Pliicker
vectors satisfying the relevant transversal conditions (2.3), tangent conditions (2.5) and
the Pliicker conditions (2.2).

Proof. We induct on k, with the case of £ = 0 being the hypothesis of the theorem.

Suppose that £ < 2n—2 and that there exist r,...,7,_1 > 0 and distinct real lines
Uy, ... lo—1¢, that are simultaneously tangent to Cy(A;,r;), for each j =1,... k-1,
and transversal to Ay, ..., Ag,_s.
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Dropping the condition that the lines meet A, we obtain a one-dimensional family
of lines that are tangent to the cylinders Cy(A;,r;) for j = 1,...,k—1 and that are also
transversal to the (n—2)-planes Ay, 1, ..., Ao,_o. We consider this one-dimensional family
of lines as a curve in Pliicker space G;,, C PV, denoted by A. In particular, the curve A
contains the Pliicker coordinates of all the lines ¢y, ..., lor-1¢, .

Let ¢ be one of the lines ¢y, ..., {31, , and denote its Pliicker coordinate by p. Then
p is a smooth point on A (the tangent space of A at p is one-dimensional). Namely, oth-
erwise Proposition 5.13 would imply a contradiction to the number of solutions (counting
multiplicity) in the induction hypothesis. Consequently, by the complex Implicit Func-
tion Theorem (see e.g., [80, Theorem 3.5]), there exist neighborhoods U C C" of 0 € C,
V C PN of p, and a complex-analytic map ¢ : U — Gy,, C P¥ such that ¢(0) = p
and in V' the curve A is given by the parametrization ¢(t), t € U. By choosing V' small
enough, we can assume that A NV does not contain the Pliicker coordinate of another
line {¢1,...,lo-1¢, } \ {¢}, and that none of the points in ANV is the Pliicker coordinate
of a line at infinity.

Now the crucial point is that the restriction g maps to real lines. Namely, assume
that the image of any real neighborhood U’ of p (or of any other real point ¢(t) for
some real t) contains a non-real point ¢ € G, C PV. Since p(U’) also contains the
complex-conjugated point g, this would imply that p is singular.

Hence, we can assume that ¢k is a function (=4, ) — Gy, NPY for some § > 0. For
a parameter value t € (=4, 9) let d(¢(t), Ax) be the distance of the real line with Pliicker
coordinate ¢(t) from Ay. If the direction vector of ¢(t) is not parallel to Ay then d is
given by Lemma 5.12. Otherwise, the problem reduces to a lower-dimensional problem.
However, d(p(t), Ax) is a continuous function in ¢; and we have d(p(t),Ay) = 0if t =0
and d(p(t),Ax) > 0if t € (=0,9) \ {0}. Let p := min{d(o(—0/2), Ag),d(¢(5/2), Ag)}.
Then there are at least two distinct real lines whose Pliicker coordinate is contained in
ANV and whose Euclidean distance to A is p.

We can assume that the 2¥='C,,_; local parts of A obtained in this way are disjoint.
Moreover, let rp be the minimum value of p which has been computed for all the lines
l1,... by, . Then there are at least 2C,_; distinct real lines whose Pliicker co-
ordinate is contained in A and whose Euclidean distance to Ay is 7. Since 2FC,_; is
the maximum number of lines with this property, there are exactly distinct 2*C,, lines
tangent to Cy(A;,r;) for j = 1,...,k and that are also transversal to the (n—2)-planes
Ak+1, Ceey Agn_g. O

5.2.2  Quadrics versus spheres

In the spirit of Section 4.2 for the three-dimensional case, we can also relate the tangent
problem to spheres to the tangent problem to quadrics in n-dimensional space.
Consider a sphere in affine n-space

(21— 1)’ + (22 = )" + - 4 (20— €a)* = 77
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Homogenizing this with respect to the new variable zy, we obtain

(21 — c120)” + (T2 — c210)” + -+ + (¥ — cuz0)® = r’mg.

If we restrict this sphere to the hyperplane at infinity, setting o = 0, we obtain

4wy -4+ 22 =0, (5.25)
the equation for an imaginary quadric at infinity. It turns out that every line at infinity
tangent to this quadric satisfies the algebraic tangent condition (2.5); we will come back
to this in Section 6.1 (see Lemma 6.6). In generalization of (4.9), the resulting excess
component in the n-dimensional case is defined by the following equations.

Poi = 07 1 S i S n,
Z pzzj = 07
1<i<j<n

It would be interesting to understand the algebraic-geometric and computer-algebraic
aspects from Section 4.2 also for general dimension n > 3. For example, how many blow-
ups are needed to resolve the excess component? From the computer-algebraic point of
view, we have not even been able to simulate the multiple blow-up for n = 4. Here, the
initial excess component is of dimension 3 and is generated by the polynomials

Do1, P02, Po3, Po4, p%z + p%g + pi; + p%g + p§4 + p§4, D14P23 — P13D24 + P12P34 -

After one blow-up there is still an excess component of dimension 3. However, since every
blow-up introduces several new variables, already the computation of the second blow-up
exceeds 1 GB of available memory (even when using computer-algebraic standard tricks
such as performing the computation over a finite field).

Now let us look at another relationship between tangents to spheres and tangents to
general quadrics. Namely, since all smooth quadrics are projectively equivalent, Theo-
rem 5.1 has the following implication for this problem of common tangents to projective
quadrics.

Corollary 5.15. Given 2n—2 quadrics in P* whose intersection with a fized hyperplane
is a given smooth quadric Q, but are otherwise general, there will be at most 3 - 27!
isolated lines in P tangent to each quadric.

We would like close this section by pointing out some recent results on the following
reality question of Corollary 5.15. When all the quadrics are real, how many of the
327! common isolated tangents can be real? This question is only partially answered by
Theorem 5.1. The point is that projective real quadrics are classified up to real projective
transformations by the absolute value of the signature of the quadratic forms on R"*!
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defining them. Theorem 5.1 implies that all lines can be real when the shared quadric )
has no real points (signature is +n).

For n = 3, it was shown in [129] that each of the five additional cases concerning
nonempty quadrics can have all 12 lines real. For general dimension, the question has
largely been answered in [94]. Namely, for any non-zero real numbers A3, ..., \,, there
are 2n—2 quadrics of the form

(w1 — 1)’ + (12— 2)° + ) _N(w;—¢)* = R
=3

having all 3 - 2"~! tangents real. These all share the same quadric at infinity
T} 4+ a5+ Mg o+ Nzl = 0,

and thus the upper bound of Theorem 5.15 is attained, when the shared quadric is this
quadric.

5.3 Smallest circumscribing cylinders of simplices in general dimension

In Section 3.4, we have given polynomial formulations with small Bézout number for
computing smallest circumscribing cylinders of a tetrahedron in R*. Based on the char-
acterization in Section 5.1, we generalize these formulations to smallest circumscribing
cylinders of a simplex in R”, n > 3.

In Section 5.3.1, we deal with general simplices. Then, in Section 5.3.2, we study the
regular simplex in detail.

As a byproduct of our computational studies, we discovered a subtle but severe mistake
in the paper [148] on the explicit determination of the outer (n—1)-radius for a regular
simplex in R”, thus completely invalidating the proof given there. In Section 5.3.3, serving
as an appendix to the section, we give a description of that flaw, including some computer-
algebraic calculations illustrating it.

5.3.1 General simplices

Let ¢y, ... ,cyy1 be the affinely independent vertices of the simplex in R”, and let ¢, be
located in the origin.

Using (5.3), we can generalize the optimization formulation (3.41) for the three-
dimensional case and obtain the program

2

min %M‘l :
v2c2 — (v-cp)? (5.26)
s.t gi(vi,...,v,) = 0,
Go(vi, .. vp) =02 =1 = 0.
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Here, M := (ci,...,c,)", and g; denotes the cubic equation which results from substi-
tuting (5.3) for a common radius into p - v and setting v?> = 1 in the denominator.

In order to show that set of admissible solutions for our optimization problem is
nonempty, we record the following result.

n+1

Lemma 5.16. For any simplex in R™ the ( 5

vectors of circumscribing cylinders.

) edge directions of the simplex are direction

Proof. Since the edge directions ¢; — ¢; have a simple description in the basis ci, ... , ¢,
we use the representation (5.4) of the cubic equation g;(v) = 0 in that basis. In terms of
the t-coordinates, the (";“1) edges of the simplex are t =¢;, 1 < i <n, and t = ¢; —¢;,
1 <4 < j < n, where ¢; denotes the i-th standard unit vector. For all these edges, the

cubic equation is satisfied. O

Considering Lagrange multipliers A\; and A, yields the following necessary optimality
condition.

grad f = Ajgrad g; + \ograd gs,
91(7}17 s 7Un) 0 ) (527)
go(v1,...,v,) = 0.

Since the Bézout bound of this system is 3" -3 -2 = 2- 3"t we have:

Lemma 5.17. For n > 2, the number of isolated local extrema for the minimal circum-
scribing cylinder is bounded by 2 - 371,

This bound is not tight. Trying to reduce this upper bound of isolated solutions like
in the three-dimensional case, we can eliminate the linear occurrences of the Lagrange
variables A; and A,. Generalizing (3.43), we have to consider the vanishing of all 3 x 3-
subdeterminants of the matrix

of  dq1 g2

T v ovy ovy
_9f 991 Og2

31}2 8112 31}2 . (528)

Lo o om

Ovn Ovn Ovn
Thus, for n > 4 we arrive at a non-complete intersection of equations where we have more

equations than variables. Hence, we cannot apply our Bézout bound on these systems.

However, for small dimensions we can improve Lemma 5.17 by directly working on the
formulation (5.27). In order to provide better bounds, we use well-known characterizations
of the number of zeroes of a polynomial equation by the mixed volume of a Minkowski
sum of polytopes (for an easily accessible introduction into this topic we refer to [32]).

Here, let C* := C\ {0}.
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Lemma 5.18. For2 < n <7, the number of solutions of the system (5.27) in (vq,... ,Up,
A1, A2) € (C*)"2 is bounded by
6{n + 1} |
3

where {7} denotes the Stirling number of the second kind (see, e.g., [60, 134]).

n+1

5 ¢ starts as follows.

The sequence 6{

n 213 | 4 5 6 7
6{"1'} | 636|150 | 540 | 1806 | 5796

Proof. For a polynomial h = ZaeNg cox® € Clzy,. .. 2], let
NP(h) := conv{a € Ny : ¢, # 0}

denote the Newton polytope of h (see, e.g., [32, §7.1]). Let hy,... , h, be the polynomials
of the gradient equation in (5.27). Further let P, ..., P,, Q1, Q2 be the Newton polytopes
of hi,..., hpn, g1, go for generic instances of these equations.

Recall that the mixed volume MV (Py, ... , P,, Q1, Q2) is the coefficient of the monomial
A1-Ag -+ - Ay pig- 1o in the (n+2)-dimensional volume Vol,, ;o (A; Pi+. . .4+, P+ Q14 112Q2)
(which is a polynomial expression in Ay,..., A, pi1, o). By Bernstein’s Theorem, the
number of isolated common zeroes in (C*)"*2 of the set of polynomials hy, ..., h,, g1, Go
is bounded above by

MV(Pla 7Pn7Q17Q2)

(see [32, Theorem 5.4 in Chapter 8]). For every given n this volume can be computed
using software for computing mixed volumes (see, e.g, [51, 143]). O

We conjecture that for any n > 2, the number of isolated solutions in (C*)"*? is
bounded by 6{" "}

5.3.2 'The regular simplex in R

Here, we analyze the local extrema of circumscribing cylinders for the regular simplex.
Our aim is both to illustrate the algebraic formulations given before and to relate our
investigations to classical investigations on the regular simplex in convex geometry. In
order to achieve many symmetries in the algebraic formulation, we use a slightly modified
coordinate system that is particularly suited for the regular simplex; these coordinates
have also been used in [18, 147].

The equation x; + ...+ 2,.1 = 1 defines an n-dimensional affine subspace in R**!.
Now let the regular simplex in this n-dimensional subspace be given by the n + 1 vertices
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¢; = e;, where e; denotes the i-th standard unit vector, 1 < i < n + 1. We consider the
tangency equation (5.1) for the point ¢, 1,

v*p? — 20%p, g1 + 0% — viﬂ —r%? = 0.
Subtracting this equation from the equation for ¢;, 1 <1 < n, yields
27}2(1%’ — Png1) = —(Ui2 - U,QH_l), 1<i<n.

Moreover, the embedding into the hyperplane Z?;l x; = 1 implies Z?;l p; = 1. In order
to solve these n + 1 equations for p, let M be the (n+ 1) x (n+ 1)-matrix whose i-th row

contains the vector e/ — el and whose n-th row is (1,1,...,1). Since M is invertible,
we obtain
— (v} - U?L-i—l)
1 | :
p=—M-" : . (5.29)
20 — (v = Vi)

202

As before, substituting this expression into p-v = 0 and setting v = 1 in the denominator
gives a cubic equation g;(v) = 0. Hence, we obtain the following optimization problem.
Here, the objective function f stems from the condition for the vertex c¢,,;, and the
condition 3" v; = 0 comes from the embedding.

minp? — 2pp 1 + 1 — vl
st. gi(v1,...,vpp1) = 0,
ntl 5.30
> i 0, (5.30)
i=1
v? = 1.

First we record that the functions f and g; are symmetric polynomials in the variables
U1y...,Uns1- In order to show this, let oy, ... ,0,.1 be the elementary symmetric functions
invy,...,0041,

o1 = U1+---+Un+1;

O = E Uiy Uiy = * = Uiy,

1<i1 <o<ip <n+1
On+1 = U102 Upy1

(see, e.g., [31, 138]). By providing explicit expressions for f and ¢; as polynomials in the
elementary symmetric polynomials oy, ... , 0,11, the symmetry of f and g, follows. More
precisely, we obtain:



90 5. Tangent problems to quadrics in n-dimensional space

Lemma 5.19. The quartic polynomial f(vy,... ,v,11) and the cubic polynomial g (v,
.y Uny1) are symmetric polynomials in the variables vy, ... ,vy11. In terms of the ele-
mentary symmetric functions, f results in

1

f:4m+n

(no-il _ 4n0'%0'2 + 2(7’), — 1)0’% — 40'% + 80'2 + 4n) + 0103 — 04,

and the homogeneous polynomial g, results in

1

= om+1)

(—(n - 2)0% +3(n — 1)0102) — gag .

Since o; = 0 and Z?jll v;? = 0} — 203, we can also deduce the following formulation
of our optimization problem:

Corollary 5.20. Finding the critical values of the minimization problem (5.30) is equiv-

alent to finding the critical values (vi, ... ,v,11)" € R of the mazimization problem
max oy
st. o = 0,
1
09 = —5 5 (531)
O3 — 0,
where o; are the elementary symmetric functions in vy, ..., Upyq.
Theorem 5.21. The direction vector (vi, ... ,v,11)" of any locally extreme circumscrib-
ing cylinder satisfies |{v1,... ,vn11}| < 3, i.e., for each solution vector the components

take at most three distinct values.

Proof. For n < 2, the statement is trivial, so we can assume n > 3. Let v be the direction
vector of a locally extreme circumscribing cylinder with v? = 1. Using Corollary 5.20, let
f(v) = —04(v), g1(v) := 03(v), g2(v) := 09(v) — 1/2, and g3(v) := o1(v). As a necessary
condition for a local extremum, for any pairwise different indices a,b,c,d € {1,... ,n+1}
the determinant

_Oof 091 092 Og3
Ovg Ovg, Ovg Ovg
_Oof 9g1 9dg2 Ogs
v, Ovy, Ovy, Oy
det | 9f 54 09 e (5-32)
Ove Ove Ove Ove
_Oof 091 0992 Ogs
8’Ud 19’Ud 19’Ud 19’Ud

vanishes. Since f, g1, g2, and g3 are symmetric functions in the variables vy, ..., v,11,
we can assume without loss of generality a = 1, b = 2, ¢ = 3, and d = 4. Setting



5.3. Smallest circumscribing cylinders of simplices in general dimension 91

ap =S v and B, = S 02, we can write

dg3 — 1
avi ’
dg !
2
= v +
avi JZI J "
J#i
g1
9. Z VU +anZv] o Bn)
Ui 1<j<k<4
Jsk#i J#z

(1 < i < 4). Moreover, since o3(v) = 0, we can consider o3 + 3 L instead of af_. This
allows to express the resulting expression easily in terms of a,, and ﬁn More premsely, we
obtain

4
of 1
03+8—vi:vz~ Z vjvk—i-anZv] 2( — Bn)
1<j<k<4 j=1
ikt i
Thus we can consider the determinant (5.32) as a polynomial in vy, ve,v3, 04, Ay, Bn-
Evaluating this 4 x 4-determinant A shows that it is independent of a,, 3, and that
it factors as

A = (v1 — vg)(vy — v3)(v1 — vy) (Ve — v3) (V2 — vy) (V3 — Vy) .
Hence, |{vy, v2,v3,v4}| < 3, and this holds true for any quadruple (a, b, ¢, d) of indices. [

Using this result, we illustrate the occurrence of the Stirling numbers in Lemma 5.18
for the case of a regular simplex. There are {";“1} ways to partition the set V :=
{v1,...,v,51} into three nonempty subsets Vi, V5, V5. We assume that v; € V;, 1 < i < 3,
and that all variables within the same set take the same value. Setting £ := |V}| and
[ := |V3|, the formulation in Corollary 5.20 yields the system of equations

kvi +lvo+(n+1—k—1vs = 0,
kvl +lvi+n+1—k—10v; = 1, (5.33)

N\ (1 | — k-1
Z <><><n+ ' )vilv%zv? _—
0<i) <ip<ig<3 g 2 13

i1 +iot+iz=3

If one of the indices k, [, or n + 1 — k — [ is zero then this system consists of three
equations in two variables, so we do not expect any solutions. For every choice of £, [
corresponding to a partition into nonempty subsets, we obtain a system of equations with
Bézout number 6. Thus, whenever the values of vy, v, and vz in the solutions to (5.33)
are distinct, then this reflects the bound in Lemma 5.18.

In particular, in the case n = 4 we obtain the following 150 solutions.



92 5. Tangent problems to quadrics in n-dimensional space

k=1, 1=1: The six solutions for (vy,v,,v3)" of the system (5.33) are

! Lo ' ! \/110 — 30iV/15 ! \/ 110 + 30iv/1 L V15 '
V2 V2 " \20 ’ 20 10 ’

and the solutions obtained by permuting the first two components of the first solution
and by changing the signs and/or permuting the first two components in the second
solution.

For the program (5.31) in the variables (vy, ..., v5)7, this gives (3) (%) = 20 critical
positions of the form (i.e., up to variable permutations)

<1 ! 000>T
\/57 \/57 ) ’

20 complex solutions of the form

1 1 1 1 1 r
——4/110 — 30iv/15, ——1/ 11 V15, —V/15. —V/15. —V/1
< o5 V110 = 30iv/15, =54/ 110 + 30iv/15, -v/15, 7-V15, — 5) :

and 20 complex solutions of the form

1 \/ , 1 \/ , 1 1 1 T
/110 — 30iv/T5, =1/ 110 + 30iv15, ——/15, ——/15, ——/15 ) .
(20 V90 TNV TV TV T )

k =1, 1= 2: Here, we obtain 30 solutions of the form

o L1 11 r
72727 27 2 b
30 solutions of the form
L v Lo ives vt Lyt -tva- L)
5 "4 20 "4 20 ! 20 ! 20 ’
and 30 solutions of the form

1 1 1 1 1 1 1 1 1 T
— V10, V2 + —V10. -V2 + —V10, — =2+ —V10. — V2 + —V/1 .
< 5 0’4‘[+20 0’4\[+20 ’ 4f+20 ’ 4‘[+20 0)

11 _ 1 —l)T, and the objective

The global minimum is attained for the vector (0, 2 %5 "3 %
value of the global optimum is 49/80. Hence, the radius of the smallest circumscribing

cylinder for a regular simplex in R* with edge length /2 is 1/49/80 = 7v/5/20 ~ 0.7826..
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5.3.3 Appendix: An error in the results of Weiflbach

In the course of our investigations, we discovered a subtle but severe mistake in the paper
[148] on the explicit determination of the radius of a smallest enclosing cylinder for a
regular simplex S C R”. In the notation of Section 2.2.2, this value is the outer (n — 1)-
radius of S. Since this error completely invalidates the proof given there!, we give a
description of that flaw, including some computer-algebraic calculations illustrating it.

In that paper, the computation of the outer (n—1)-radius of a regular simplex (with
edge length 1/2) is reduced to the analysis of the following optimization problem.

n+1
min Y uf
i=1
n+1
s.t. Su? = 1, (5.34)
i=1

n+1

1=1

For any local optimum (uy,... ,u,.1)7 there exist Lagrange multipliers \;, s € R
such that
dud + 20 u; + X = 0, 1<i<n+1,
n+1
doul =1, (5.35)
i=1
n+1

i=1

Erroneously, in [148] it is argued that symmetry arguments imply that Ay = 0 in any
solution. The following calculation in the computer algebra system SINGULAR [62] shows
that for n = 3 this system has 26 solutions (counting multiplicity) over C.

ring R = 0, (ul,u2,u3,u4,lal,la2), (dp);

ideal I =
4*%ul~3 + 2xlal*ul + la2,
4*u2~3 + 2xlal*u2 + la2,
4*u3~3 + 2xlal*u3d + la2,
4*%ud4~3 + 2xlal*ud + la2,

ul™2 + u272 + u372 + u4"2 - 1,
ul + u2 + u3 + u4;

degree(std(I));

! In a personal communication this has been confirmed by B. Weifibach.
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This program first defines a polynomial ring in the variables uy,... ,u4, A1, Ay over a
field of characteristic zero. We then use the degree command to compute the dimension
and the degree of the ideal defined by our equations. The output of that command is

// codimension = 6
// dimension 0
// degree 26

Hence, there are finitely many solutions (since the dimension of the ideal is zero), and the
degree of the ideal (the sum of the multiplicities of the solutions) is 26.

18 of these solutions refer to the case Ay = 0 (and those were the ones computed in
[148]). Namely, if Ay = 0 then the first row of (5.35) simplifies to

w;(2ui + X)) = 0, 1<i<n+1.
If we are only interested in the real solutions to this system, then setting A\; = —2\2 for
some A > 0 gives

ui(ui —N?) = 0, 1<i<n+1.
Since the vector (uy,... ,uni1)” = (0,...,0)7 does not satisfy the second row in (5.35),

the solutions with A\ = 0 are

Uy = )\7 ie{ila-"aih}a

Uy = _)‘7 (AS {ih+17"' 7i2h}7

U; = 0, 26{1,,n+1}\{21,,22h}
for some h > 1, some set {iy,... ,ig} of pairwise different indices, and A = (2h)~/2. In
the case n = 3, there are 12 possibilities to choose the indices and the signs for |h| = 1 and
6 possibilities to choose the indices and the signs for |h| = 2, giving 18 solutions to (5.35).

However, there are 8 additional solutions, which in fact are also real! Namely, these

are the solutions

1 7 1
(ul""’u‘l)T = 2—\/3(17_31171)T; )\1:_6; )\ZZﬁ,

1 7 1
(ula B 7u4)T - (_1,3, —]_, —]_)T, )\1 = —— )\2 —

23

as well as the six distinct solutions obtained from these two by permuting the variables
U1, ... ,us. These additional solutions invalidate the subsequent arguments in [148].
The omissions get even worse in the higher-dimensional case. E.g., for n = 4, besides

the (3)(2) + (3)(;) = 20 + 30 = 50 solutions described in [148], we obtain the following
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solutions:
(ug, ... us)" = \/%(—2,—2,—2,3,3)7“, )\1:—1—75, Agz—% 30,
(ug, ... us)" = \/%(2,2,2,—3,—3?, )\1:—1—75, AF%\/%,
(ug,...,us)" = %(1,—4,1,1,1?, )\1:—%, )\2:2—65 5,
(u,...,u5)7 = %(-1,4,-1,-1,-1)% )\1:—%, )\2:—2—65\/5,

as well as those solutions obtained by permuting the variables. Altogether, we have
10 + 10 + 5 + 5 = 30 solutions with Ay # 0, and thus a total number of 80 solutions.

Finally, we remark that the paper [147], which computes the outer (n—1)-radius of a
regular simplex in odd dimension n, is correct.
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6. COMMON TRANSVERSALS AND TANGENTS

We study the lines simultaneously tangent to k given spheres and transversal to 4—k given
lines, k € {0,...,4}. In Section 6.1, we prove the following result.

Theorem 6.1. Given 4—k lines and k spheres in R*, 0 < k < 4. If there exist only
finitely many lines in R® simultaneously tangent to the spheres and transversal to the
lines then the number of these lines is bounded by

2 ifk=0,
4 ifk=1,
8 ifk=2,

12 if ke {3,4}.

These bounds are tight, i.e., for each k there exists a configuration where the number of
distinct real solutions matches the stated number. The bounds are tight even if the spheres
are unit spheres.

Table 6.1 summarizes the results. Even if we are primarily interested in the real
solutions, the upper bounds are in fact complex bounds in C*, which are given in the
first main column. The second column contains the matching numbers of real solutions
in our constructions. The last column shows that in some cases, we are able to explicitly
characterize the configurations with an infinite number of real common tangents. In
the entries with a “~” we do not know such a characterization (cf. the discussion in
Section 3.3.5).

For k € {1, 2}, the upper bounds immediately follow from Bézout’s Theorem. Whereas
for k = 1 it is easy to give a construction matching this bound, the construction for k = 2 is
quite involved. In particular, for £ = 2 we use a computation of intersection multiplicities
based on standard bases in local rings to prove correctness of the construction. For k = 3,
the Bézout bound in the Pliicker formulation is 16 instead of 12. Here, it turns out that
there are two solutions with multiplicity at least two in the plane at infinity.

Besides the tight upper bounds, we characterize the configurations with infinitely
many common tangents for ¥ =1 and k£ = 2. For three lines and one sphere, our proof is
based on classical line-geometric techniques. In order to characterize the situations where
two lines and two spheres have infinitely many real common tangent lines, we study the
fascinating geometry behind that degree 8 problem in Section 6.2. A second purpose of
this section is to develop a variety of computer-algebraic techniques for tackling problems
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upper bound # real solutions of | characterization of
# solutions our construction degenerate instances
4 lines 2 (well-known) | 2 (well-known) | yes (well-known)
3 lines, 1 sphere 4 4 yes
2 lines, 2 spheres | 8 8 yes
1 line, 3 spheres || 12 12 -
4 unit spheres 12 (see Chapter 3) | 12 (see Chapter 3) | yes (see Chapter 3)
4 spheres 12 (see Chapter 3) | 12 (see Chapter 3) | —

Tab. 6.1: Summary of results

of this kind. For that reason, we first deal with the more general problem where we
replace the spheres in R?® by general quadrics in P2. In order to study the geometry of
this problem, we fix two lines and a quadric in general position, and describe the set of
(second) quadrics for which there are infinitely many common transversals/tangents in
terms of an algebraic curve. It turns out that this set is an algebraic curve of degree 24
in the space P of quadrics. Factoring the ideal of this curve shows that it is remarkably
reducible:

Theorem 6.2. Fiz two skew lines {1 and {5 and a general quadric Q in P>, The closure of
the set of quadrics Q' for which there are infinitely many lines simultaneously transversal
to ¢y and (5 and tangent to both QQ and to Q' is a curve of degree 24 in the P° of quadrics.
This curve consists of 12 plane conics.

We prove this theorem by investigating the ideal defining the algebraic curve describ-
ing the set of (second) quadrics. Based on this, we prove the theorem with the aid of a
computer calculation in the computer algebra system SINGULAR. As explained in Sec-
tion 6.2.3, the success of that computation depends crucially on the preceding analysis of
the curve. Quite interestingly, there are real lines ¢; and /5 and real quadrics () such that
all 12 components of the curve of second quadrics are real. In general, given real lines /1,
/5, and a real quadric @), not all of the 12 components are defined over the real numbers.

Based on the discussion of lines and general quadrics, we give a complete characteriza-
tion of configurations of two lines and two spheres having infinitely many lines transversal
to the lines and tangent to the spheres.

6.1 FEnumerative results

We show Theorem 6.1. For brevity, we denote the maximum numbers of lines in R? simul-
taneously tangent to 4—k lines and k spheres (in the finite case) by Ny, k € {0,... ,4}.
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Fig. 6.1: The figure shows a configuration with three lines ¢;, ¢s, /3, and one sphere of radius
11/10, leading to 4 common tangent lines. The two tangent lines in the z;z2-plane are
drawn in light grey, whereas the two tangent lines in the zox3-plane are drawn in dark

grey.

6.1.1 Proofs and constructions

Note that the upper bounds Ny < 2, N; < 4, N, < 8 immediately follow from Bézout’s
Theorem. Namely, since the common tangent lines to three lines and one sphere can be
formulated by three linear equations of the form (2.4), one equation of the form (2.5) as
well as the Pliicker relation (2.2) in the six homogeneous variables poq, . .. , p23, we obtain
N; < 4. Analogously, we obtain Ny < 2, Ny < 8.

As mentioned earlier, the common transversals to four given lines in 3-dimensional
space are a well-studied problem in enumerative geometry, and it is well-known that the
upper bound of 2 can be actually achieved in real space R® (see, e.g., [75, §XIV.7]); hence
Ny = 2. The number of common transversals is finite if and only if the Pliicker vectors of
the four given lines are linearly independent.

Lemma 6.3. N; =4.

Proof. Since N; < 4, it suffices to give a construction with 3 lines and 1 sphere, leading
to 4 common tangents. Denoting the three coordinate axes in R® by x4, x5, and x3, let
/1 be the xi-axis, /5 be the x,-axis, and /3 be parallel to the x3-axis and passing through
(0,2,0)T (see Figure 6.1); hence £; N ¢y = {(0,0,0)T} and £, N ¢35 = {(0,2,0)T}.

Each line intersecting the three lines ¢;, {5, and ¢3 is located in the zyz,-plane (in
which case it passes through (0,2,0)7) or is located in the zyx3-plane (in which case it
passes through the origin). For 1 < r < /2 the sphere S((1,1,1)7,r) intersects both
the xyx9-plane and the xox3-plane, but does not intersect with any of the lines ¢4, l5, /3.
Hence, since there are two tangents to the sphere passing through the origin and lying in
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the z,75-plane, and since there are two tangents to the sphere passing through (0,2, 0)”
and lying in the xjx3-plane, there are 4 common tangents altogether. Figure 6.1 shows
a configuration with 1 < r = 11/10 < /2. We remark that by appropriate scaling, the
sphere can be transformed into a unit sphere. Furthermore, by slightly perturbing the
configuration, the lines can be made pairwise skew. O

To complete the entries for 3 lines and 1 sphere in Table 6.1, it remains to characterize
the configurations with infinitely many real solutions. If the three lines are not pairwise
skew, then all real common transversals lie in the same plane or pass through a point of
intersection. Since the resulting characterization can be easily established, we can assume
that the three lines are pairwise skew.

It is well-known that the common transversals of three pairwise skew lines define a
hyperboloid of one sheet (see, e.g., [11]). By applying a translation and a rotation, the
hyperboloid can be transformed into

2 2 2
% %—%:1 with o, 8,7 > 0. (6.1)

This transformation changes the center of the sphere into some new center ¢ = (cy, ¢, ¢3)"
€ R3. Now the characterization of infinitely many solutions is given by the following
statement.

Theorem 6.4. Let (1,05, 3 be three pairwise skew lines whose common transversals gen-
erate a hyperboloid of the form (6.1), and let Sy be a sphere with center ¢ € R® and
radius r > 0. Then there exist infinitely many lines simultaneously transversal to (1, (o, (3
and tangent to Sy if and only if c; = ¢co = 0, a = [, and in the xix3-plane the circle

x4+ (x3—c3)? = r? is a tangent circle to both branches of the hyperbola x3/a? —x3/7* = 1.

Proof. The hyperboloid (6.1) can be parametrized by one of the two sets of generating
lines. In particular, this hyperboloid is generated by the set of lines

T 2 2
(07 X X
{(931,932, O)T + A <—5—7$2, %.’L’l, ].) PN R} s where Og_; + ﬂ—z =1 (62)

(see, e.g., [82]). By the upper bound of 4 in Lemma 6.3, we see that either this parametriza-
tion contains at most 4 tangents to the sphere or all lines in the parametrization are
tangent to the sphere.

First assume that there are infinitely many lines transversal to the three lines and
tangent to the sphere; thus all lines in the parametrization are tangents. Specifically, we
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consider the following lines in the parametrization:

g = {(a,A%,A)T ) E]R} (i.e., (z1,72) = (0, 0)) ,

g = {<_a,—A§,A>T PYE R} (i.e., (21, 22) = (0, 0)) ,
g = {(—A%,B,A)T A E]R} (i.e., (x1,29) = (0, 8)) ,

g = {(A%,—B,A)T S\ GR} (i.e.y (21, 22) = (0,—B)) .

The condition that the center ¢ must have the same distance from ¢; and g, gives the
equation

a(f? +7%)er + Byeaes = 0,
and the equality of distances from g3 and g4 gives the distances
B(a? + %)y — ayeres = 0.

Since «, 3,v > 0, the common solutions of these equations have ¢; = ¢, = 0. Using this
information, the equality of the distances from the first and third lines gives o = f3, or
c3 = £/ (a? +72)(B2++2)/y. To eliminate this second possibility, consider two more
lines in the ruling of the hyperboloid

{02 B0 ren) (= (3 5)
(B0 B0 e} (e ()

The equality of distances from these two lines together with ¢; = ¢, = 0 gives a@ = [ or
c3 = 0. Therefore the only case when ¢ can be at the same distance from all lines in the
ruling (6.2) is when o = /3. Hence, since ¢; = ¢o = 0 and o = 3, both the hyperboloid and
the sphere are rotational symmetric with respect to the x3-axis, and it suffices to consider
the section through the z;z3-plane. In this section, the circle 2% + (z3 — ¢3)* = r? must
be a tangent circle to both branches of the hyperbola z7/a? — z3/7* = 1.

If, conversely, ¢; = ¢ = 0, @ = 3, and in the x;z3-plane, the circle 22 + (23 —c3)? = r?
is a tangent circle to the hyperbola z?/a? — z2/7? = 1, then the rotational symmetry
implies that every line in the hyperboloid z%/a? + 22/3% — z3/v* = 1 is tangent to the
sphere S,;. Hence, there are infinitely many common tangents. O
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Fig. 6.2: The figure shows a construction with 2 lines and 2 spheres, leading to 6 distinct solu-
tions. The two tangents lying in the plane z5 = 3 and passing through (0, 3,0)” are
drawn in light grey. The other four tangents are drawn in dark grey.

Lemma 6.5. N, = 8.

Proof. Since Ny < 8, it suffices to give a construction with 2 lines and 2 spheres of the same
radius, leading to 8 solutions. We start from the following configuration with 6 distinct
solutions. The two spheres are symmetrically located on the x;-axis: ¢z = (7,0,0)7,
¢y = (—=7,0,0)7; the radius r will be specified below. The lines ¢; and f, are chosen in
a plane 7o = 3 for some 3 > 0 such that the lines intersect in (0,3,0)”. Hence, every
common transversal of the two lines either lies in the plane x5 = 3 or passes through the
point (0, 3,0)T. If the two spheres intersect with each other, and 8 < r, and (0, 3,0)T
is not contained in the union of the spheres S(c3,r), S(cy4,7), then there are exactly 6
distinct lines which are tangents to the spheres and transversal to the given lines and
tangent to the given spheres (see Figure 6.2): two tangents pass through (0, 3,0)” and lie
in the plane x; = 0; two tangents lie in the plane x5 = [ and are parallel to the xq-axis;
and two tangents lie in the plane 2o = S and pass through (0, 3,0)T. For the following
considerations it is quite useful to have a succinct description of the last two tangents
and also to work with integer coefficients for 3, v, and r. In particular, we will force
the two tangents in the plane z, = 8 and passing through (0, 3,0)” to be of the form
(0,3,0) + X(1,0,£1)". In order to obtain these tangents, 3, v and r have to satisfy
%2 ++2/2 =7r? and r > . An appropriate choice is 3 =7,y =8, and r = 9, so that the
tangents of the last type are

ty:={(0,7,0)" + (1,0, )" : Ae R} and t,:= {(0,7,0)" + A(1,0,—1)" : A€ R} .

Now the key observation is that these two tangents have multiplicity 2. In order to
prove this we consider the system of equations in Pliicker coordinates stemming from (2.4)
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and (2.6). Independent of the specific choice of lines ¢y, ¢, with the above properties, the
common transversals of /; and /¢, are given by the common zeroes of the two linear,
homogeneous polynomials

fi = —Tpo3 + D23,
fo = Tpor +pi2.

The quadratic equations resulting from the spheres S(c3,r) and S(cy,7) are

fs = —811731 — 172932 — 171733 — 16po2pi2 +p%2 — 16po3p13 + p%g +p§37
fi = —81py, — 17pgy — 1Tpas + 16pgapiz + Dty + 16pespis + Py + Das-

Furthermore let f5 = po1p23—po2p13+pospi2 be the polynomial of the Pliicker relation (2.2).
The tangent ¢; has Pliicker coordinate (1,0,1,—7,0,7)”. In order to compute the

multiplicity of this solution, we follow the method and the notation in [32, §4.4]. First

we pass to an affine version of the polynomials by adding the polynomial fg = po; — 1;

this forces pg; = 1 in any common zero of the system. Then we move the point ¢; to the

origin by applying the linear variable transformation

)T

(p01,p02,p03,p12,p13,p23 = (Q(n, qo2, 903, 412, 413, Q23)T + (L 0,1,-7,0, 7)T-

The local intersection multiplicity g can be computed as the vector space dimension of
the quotient ring

n = dim Rl/Il;
where R; := Clqo, ... ,q23](q01,___,q23> is the local ring whose elements are the rational
functions in qq1, ... , ¢23 with non-vanishing denominator at 0. I; is the ideal defined by

fi,--., fe in the local ring R;.
In order to compute 1, we use the fact that in case of finite dimension

where (LT(I;)) denotes the ideal generated by the leading terms of I; (see, e.g., [32,
Corollary 4.5 in Chapter 4]). This dimension can be easily extracted from a standard
basis of I; (For the convenience of the reader, a short review of standard bases can be
found in Section 6.1.2). Since by our choice of 3, 7, and r, all coefficients are integers, we
can apply a computer algebra package (such as SINGULAR [62]), to compute a standard
basis {h1, ..., hg} of the ideal I; with respect to anti-graded reverse lexicographical order:

hiy = qor,

hy = 112qo2 + 34qos + 14¢12 — 1613,
hy = 14qo3 + q12,

hy = quo,

hs = 64qos,

he = 112¢7,.
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Fig. 6.3: Construction with 2 lines and 2 spheres, leading to 8 distinct solutions

Hence, the leading monomials of hq,..., hg with respect to anti-graded reverse lexico-
graphical order are qo1, qo2, Go3, q12, G23, @3- The desired multiplicity u is the cardinality
of the set of cosets {1 + I, q13 + I;}, which implies ;1 = 2. By symmetry, the tangent ¢,
has multiplicity 2 as well.

Now we choose one particular configuration of the presented class, namely the one
with /1 := t; and /5 := t5. By perturbing this configuration, the two double solutions
will split into four distinct solutions: first, we slightly increase the xs-coordinate of the
line /5, so that the resulting line ¢, becomes (0, 3’,0)" + (1,0, —1)" for some 3’ > 3. In
this process, the double tangent t; splits into two tangents t¢ and ? intersecting ¢, and
¢ in different orders; i.e., one of the tangents t¢, 2 touches /¢;, ¢5, Ss, and S, in the order
(S3, 01,05, S,), and one of them in the order (S3, lo, {1, S4). However, the tangent ¢, is still
a double zero of the system of polynomials, since the parallel lines ¢5 and £, intersect in
the plane at infinity of P3.

Similarly, we can make the double tangent ¢, split into two tangents by slightly de-
creasing the zo-coordinate of the line ¢;; denote the resulting line by ¢;. Figure 6.3 shows
the configuration for ¢ passing through the points (0,6.5,0)7, (2,6.5,2)", and ¢, passing
through the points (0,7.5,0)7, (2,7.5, —2). O

For N3 the situation is more involved. The Bézout bound gives 16, but in fact, the
number of solutions in C? is bounded by 12. As in the discussion of the common tangents
to four spheres in Section 4.2, the remaining solutions are located in the plane at infinity.
Specifically, we will show that there are always two solutions at infinity with multiplicity
at least 2.

Let us recall the framework from Section 4.2. The sphere with center (ci, co, c3)T € R3
and radius r has the homogeneous equation in P3:

(xq — clxg)2 + (29 — CQ:JEO)2 + (23 — 03:1:0)2 = 7’2:[3.
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In the plane at infinity xq = 0, this gives the equation
2]+ a5+ a5 =0,

which is independent of the center and the radius. Let w denote this conic section in the
plane at infinity. Later in the proof, we will work in the space of lines in P3. In that
situation, we will have to consider those tangents through any point z € w in the plane
at infinity rather than z itself. For this reason, we provide a characterization of these
tangents:

Lemma 6.6. Let z = (0,21, 20,23)" € w. The tangent to the conic w at z which lies in
the plane at infinity has Plicker coordinate

(p(]l;p02;p037p127p13;p23)T = (07 0,0, 23, —22, Z1)T-

In particular, the tangent contains the points (0, —29,21,0)T, (0,23,0, —2,)T, and (0,0,
T
—23,2’2) .

Proof. Since 25 = 0 we can compute in projective plane P?; so let 7 = (21, 20, 23)". The
conic section

1
2T Ar =0 with A = 0
0

o = O
o O

is regular in z with tangent {y = (y1,92,53)"7 € P? : z"Ay = 0}. In particular,
(=29, 21,0)T, (23,0, —21)T, (0,—23,2)T, and Z itself lie on this tangent. Now any two
of these points can be used to compute the Pliicker coordinate of the tangent line. O

Consider a configuration with a line ¢; and three spheres in R®. Since we consider
the spheres as quadrics, we denote them by )2, ()3, and Q4. The idea to prove the
double solutions at infinity is to transfer the geometry of w to the space of lines in P3.
More precisely, let ¢ be a tangent to w at z in the plane at infinity. Since the quadrics
A2Qq, N2Q3, N2Q, € P° characterize the tangents to Qs, Q3, Q4, the Pliicker vector p; of
t is contained in A?Qs, A2Q3, and A%Q,. Let Q denote the quadric in P° defined by the
Pliicker equation (2.2). Since ¢ is a line in P3, ¢ is also contained in Q. We will show that
the tangent hyperplanes to the quadrics A2Q,, A2Q3, A2Q4, Q at p, contain a common
subspace of dimension 2. In connection with the linear form defined by the transversals
of the line /¢, this will prove the multiplicity of at least 2.

Let us investigate the spheres Qo, Q3, Q4 first. For i € {2,3,4}, we are looking for
lines whose Pliicker vectors lie in the tangent hyperplane of A%2Q; at p,. The geometric
concept behind this relation is polarity. Recall that the polar plane of a point a € P™ with
respect to an arbitrary quadric () is defined by

{y e P : a"Qy = 0}.
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If a € Q then the polar hyperplane is a tangent hyperplane. The polar line of a line ¢ € P?
is defined by

{yeP® :a"Qy=0forallac/(}.

The following lemma establishes a connection between the tangent hyperplanes to A%2Q
and the concept of polarity for a quadric Q.

Lemma 6.7. Let t be a tangent line to a quadric Q@ C P, and let the point a € P3 be
contained in the polar line of t. Then, for any line £ containing a, the Plicker vector py
of € is contained in the tangent hyperplane to A’Q at py, i.e., pl (A2Q)pe = 0.

Proof. Let T be a representation of ¢ by a 4 x 2-matrix as described in the Section 2.3.
Further let b be a point on ¢ with b # a, and let L = (a,b) be a representation of ¢ by a
4 x 2-matrix. Since a is contained in the polar line of ¢, we have T7Qa = (0,0)”. Hence,
by reasoning as in Lemma 2.11, we can conclude

pl(AQ)pe = det(TTQL) = 0. -

In particular, the following version of a well-known relationship (see, e.g., [100]) shows
that the precondition of Lemma 6.7 is satisfied if a =t N Q.

Lemma 6.8. Ift is tangent to a quadric ) at some point a, then a is contained in the
polar line of t.

Proof. Let y # a be a point on t. Since ¢ lies on the polar plane (namely, the tangent
plane) of a with respect to @, we have a”Qy = 0. Since also a”Qa = 0, a lies on the polar
line of ¢+ with respect to Q). O

Finally, we are ready to prove the upper bound for Nj.

Lemma 6.9. N; < 12.

Proof. Let L; be the hyperplane (2.4) in P characterizing the transversals of the line /1,
that is, any point on L; which satisfies the Pliicker relation is the Pliicker coordinate of a
transversal to 1. Let A2Qq, A’Q3, A’Q4 be the quadrics (2.6) characterizing the tangents
to the three spheres. Further let z = (0, 21, 2, 23)T € w, and let 7 C © C P® be the set of
Pliicker vectors whose corresponding lines in P? pass through z. 7 can be written as the
image of the projective mapping h : P> — Q C P?,

0 v
2 21 Y
22 Y2
23 Y3

h(y07 Y1, Y2, y3) =A
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Since h is linear, it follows that 7 is a two-dimensional plane in P® with = C Q.

Let t be the tangent to w at z in the plane at infinity. By Lemmas 6.8 and 6.7, 7 is
contained in the tangent hyperplane to A2Q; at p;, 2 < i < 4.

In order to show that 7 is also contained in the tangent hyperplane to € at p;, let y
be a point different from 2, and let ¢ be a line through 2z and y. Then, by Lemma 6.6, the
Pliicker vectors p; and p, satisfy

—Z1Y0

—22Yo0

—Z23%Y0
21Y2 — 221
21Y3 — 231
22Y3 — Z3Y2

pzﬂpé = (070707237_22721) *

DO | =
_o O O O O

o O O O
OO = OO O
oo O = OO
o O O O
oo OO O

1
= —§y0(zf + z% + zg,)

= 0.

Hence, the four tangent hyperplanes of A2Qs, A2Q3, A2Q4, € at p; contain a common
subspace of dimension at least 2. By Lemma 6.6, the tangents to the conic w lie on a
conic w, namely on

p%Q +p%3 +p§3=0,

in the two-dimensional subspace of P° given by py1 = po2 = pos = 0. The restriction of the
hyperplane L; to the subspace pg; = pg2 = po3 = 0 defines a one-dimensional subspace
L. Since L, is one-dimensional, it intersects with @ at two points by, by € P° in the plane
Po1 = Po2 = poz = 0. Further, since b; and by satisfy the Pliicker relation, they are Pliicker
vectors of some tangents ¢; and #, to w. Altogether, the five tangent hyperplanes of A2Qs,
N2Qs, N?Qq, Q, L, at by and by contain a common subspace of dimension at least 1.
Hence, the tangent hyperplanes are not independent, which implies that the multiplicity
of intersection in by and by is at least 2 (see, e.g., [97, p. 115]). O

In order to show that N3 = 12 it remains to give a construction with one line ¢; and
three spheres S5, S3, Sy of the same radius r, leading to 12 real solutions. Let ¢; be
the x3-axis, and let the centers ¢, c3, ¢4 of the spheres constitute an equilateral triangle
with edge length 1 in the xmy-plane, say c; = (v/3/3,0,0)", c¢3 = (—/3/6,1/2,0)7,
cs = (—V3/6,—1/2,0)T (see Figure 6.4). For 1/2 < r < 1/3/3, the spheres are non-
disjoint, and none of them contains the origin.

Let t be a line which intersects ¢;, and let H be the plane containing ¢t and ¢;. The
three cuts H N conv(S;), H Nconv(Sy), and H N conv(S3) are discs (maybe degenerated
to single points or empty sets). Unless H is equidistant to two of the centers, one of these
discs is strictly contained in one of the other two. Hence, any line transversal to the line
and tangent to the spheres lies in one of the three planes which contain the x3-axis and
which are equidistant to two of the centers.
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Fig. 6.4: Construction with one line and 3 spheres, leading to 12 solutions

For example, one of these planes is the z;z3-plane, which is equidistant to ¢, and ¢s.
The section through this plane contains two disjoint discs: one representing the (identical)
intersections of the plane with conv(Sz) and conv(Ss), and the second one because of
conv(By). These two discs are separated by the line ;. Hence, in this plane there are
4 common tangents. Altogether, since there are three planes of this kind, we have 12
common tangents.

6.1.2 Appendix: Standard bases

In Section 6.1.1, we have applied standard bases in local rings. In this appendix to that
section, we review the definitions of a standard basis, starting from Grébner basis theory
(see [32]). The theory of Grébner bases provides computational methods to find “nice”
generators for an ideal I in a polynomial ring Clzy, ... ,x,]. The theory of standard bases
extends this theory for ideals in local rings. More precisely, let R; := Clz1, ..., Zn)(a; ... on)
be the set of rational functions f/g in zy,... ,z, with ¢g(0,...,0) # 0. R; defines a local
ring, i.e., it contains exactly one maximal ideal. Since the algebraic-geometric definitions
of intersection multiplicities are related to the concept of local rings, standard bases
provide a powerful tool to effectively compute intersection multiplicities.

From the various possible term orders, we restrict ourselves to consider the anti-graded

reverse lexicographical order (arevlex). For o, f € Njj, We have 2% > ,cpien 2? if and only
if

n n
D<) B
i=1 i=1
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or

n n
§ : § : ey

Q; = /82 and = > revlex xﬁa
i—=1

=1

where >,..,.. denotes the reverse lexicographical order of Grobner basis theory. For any
polynomial f, the leading term of f, denoted L'T(f), is the maximal term of f with regard
to the arevlex-order.

For an ideal I in Ry, the set of leading terms of I, abbreviated L'T(I), is the set of
leading terms of elements of 1.

A standard basis of I is a set {g1,...,g:} C I such that (LT(I)) = (LT(¢1),-.-,
LT(g;)). Given a set of polynomial generators of I, a standard basis of I can be effectively
computed by variants of the Buchberger algorithm.

6.2 'Two lines and two quadrics

Here, we prove Theorem 6.2 and provide the characterization of two lines and two spheres
with infinitely many real common tangent lines.

The section is structured as follows. In Section 6.2.1, we characterize the set of lines
transversal to two skew lines and tangent to a quadric in terms of algebraic curves; we
study and classify these so-called (2,2)-curves. In Section 6.2.2, we discuss a normal
form for the subclass of generic curves, which we call asymmetric smooth (2,2)-curves.
Then, in Section 6.2.3, we study the set of quadrics which (for prescribed lines ¢; and
ly) lead to most (2,2)-curves. This includes computer-algebraic calculations, based on
which we establish the proof of Theorem 6.2. In Section 6.2.4, we give some detailed
examples illustrating the geometry described by Theorem 6.2, and complete its proof.
Finally, in Section 6.2.5, we solve the original question of spheres and give the complete
characterization of configurations of two lines and two spheres having infinitely many
lines transversal to the lines and tangent to the spheres. For a precise statement of that
characterization see Theorems 6.21 and 6.25. Section 6.2.6 serves an appendix to the
current section and contains annotated computer code used in the proof of Theorem 6.2.

6.2.1 Lines in P? meeting 2 lines and tangent to a quadric

We work here over the ground field C. First suppose that ¢; and ¢, are lines in P? that
meet at a point p and thus span a plane II. Then the common transversals to ¢; and /5
either contain p or they lie in the plane II. This reduces any problem involving common
transversals to ¢; and /5 to a planar problem in P? (or R?), and so we shall always assume
that ¢; and ¢, are skew. Such lines have the form

(= {wa+azb: [w,x] e P},

(6.3)
by = {yc+zd: [y, 2] € P}
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where the points a,b,c,d € P? are affinely independent. We describe the set of lines
meeting ¢; and /5 that are also tangent to a smooth quadric (). We will refer to this set
as the envelope of common transversals and tangents, or (when ¢; and ¢; are understood)
simply as the envelope of Q).

The parametrization of (6.3) allows us to identify each of ¢; and ¢, with P'; the point
wa + xb € ¢, is identified with the parameter value [w, ] € P', and the same for £,. We
will use these identifications throughout this section. In this way, any line meeting ¢; and
{5 can be identified with the pair ([w, z], [y, z]) € P! x P! corresponding to its intersections
with ¢; and ¢5. By (2.4), the Pliicker coordinates py = ps(w, x,y, z) of the transversal ¢
passing through the points wa + xb and yc+ zd are separately homogeneous of degree 1 in
each set of variables {w,z} and {y, 2z}, called bihomogeneous of bidegree (1,1) (see, e.g.,
(31, §8.5]).

By Lemma 2.11, the envelope of common transversals to ¢; and /5 that are also tangent
to @ is given by the common transversals ¢ of /; and /5 whose Pliicker coordinates py
additionally satisfy py (/\QQ) pe = 0. This yields a homogeneous equation

F(waxayaz) = pg(w,x,y,Z)T(/\2Q)pg(w,x,y,Z) =0 (64)

of degree four in the variables w, x,y, 2. More precisely, F' has the form

2
Fw,z,y,2) = Zcijwix2’iyjz2’j (6.5)

i,j=0

with coefficients ¢;;, that is F is bihomogeneous with bidegree (2, 2). The zero set of a (non-
zero) bihomogeneous polynomial defines an algebraic curve in P! x P! (see the treatment
of projective elimination theory in [31, §8.5]). In correspondence with its bidegree, the
curve defined by F'is called a (2, 2)-curve. The nine coefficients of this polynomial identify
the set of (2,2)-curves with P%.

It is well-known that the Cartesian product P' x P! is isomorphic to a smooth quadric
surface in P? [31, Proposition 10 in § 8.6]. Thus the set of lines meeting ¢; and ¢, and
tangent to the quadric () is described as the intersection of two quadrics in a projective 3-
space. When it is smooth, this set is a genus 1 curve [71, Exer. 1.7.2(d) and Exer. I11.8.4(g)].
This set of lines cannot be parametrized by polynomials—only genus 0 curves (also called
rational curves) admit such parametrizations (see, e.g., [123, Corollary 2 on p.268]). This
observation is the starting point for our study of common transversals and tangents.

Let C be a (2,2)-curve in P! x P! defined by a bihomogeneous polynomial F' of bide-
gree 2. The components of C' correspond to the irreducible factors of F', which are
bihomogeneous of bidegree at most (2,2). Thus any factors of F' must have bidegree
one of (2,2), (2,1), (1,1), (1,0), or (0,1). (Since we are working over C, a homogeneous
quadratic of bidegree (2,0) factors into two linear factors of bidegree (1,0).) Recall (for
example, [31]) a point ([wo, xo], [Y0, 20]) € C C P' x P! is singular if the gradient VF
vanishes at that point, VF([wy, zo], [0, 20]) = 0. The curve C is smooth if it does not
contain a singular point; otherwise C' is singular. We classify (2, 2)-curves, up to change
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of coordinates on ¢; X f5, and interchange of ¢; and ¢,. Note that an (a,b)-curve and a
(¢, d)-curve meet if either ad # 0 or be # 0, and the intersection points are singular on
the union of the two curves.

Lemma 6.10. Let C be a (2,2)-curve on P' x P'. Then, up to interchanging the factors
of P! x P!, C' is either

1. smooth and irreducible,

singular and irreducible,

the union of a (1,0)-curve and an irreducible (1,2)-curve,

the union of two distinct irreducible (1,1)-curves,

a single irreducible (1,1)-curve, of multiplicity two,

the union of one irreducible (1,1)-curve, one (1,0)-curve, and one (0, 1)-curve,

the union of two distinct (1,0)-curves, and two distinct (0, 1)-curves,

S R RN T s

the union of two distinct (1,0)-curves, and one (0,1)-curve of multiplicity two,

9. the union of one (1,0)-curve, and one (0,1)-curve, both of multiplicity two.
In particular, when C' is smooth it is also irreducible.

When the polynomial F' has repeated factors, we are in cases (5), (8), or (9). We study
the form F when the quadric is reducible, that is either when () has rank 1, so that it
defines a double plane, or when () has rank 2 so that it defines the union of two planes.

Lemma 6.11. Suppose Q) is a reducible quadric.

(1) If Q has rank 1, then A*°Q = 0, and so the form F in (6.4) is identically zero.

(2) Suppose Q has rank 2, so that it defines the union of two planes meeting in a line
0. If € is one of £y or {y, then the form F in (6.4) is identically zero. Otherwise
the form F is the square of a (1,1)-form, and hence we are in cases (5) or (9) of
Lemma 6.10.

Proof. The first statement is immediate. For the second, let ¢ be a line in P? with
Pliicker coordinates py. From the algebraic characterization of tangency of Lemma 2.11,
Pl (/\2Q)py = 0 implies that the restriction of the quadratic form to ¢ either has a zero
of multiplicity two, or it vanishes identically. In either case, this implies that ¢’ meets the
line ¢ common to the two planes. Conversely, if ' meets the line ¢, then p}, (/\ZQ)pg/ =0.

Thus if ¢ equals one of ¢; or ly, then p}, (/\QQ)pg/ = 0 for every common transversal ¢’
to /1 and /5, and so the form F' is identically zero. Suppose that ¢ is distinct from both
¢y and ¢5. We observed earlier that the set of lines transversal to ¢; and /5 that also meet
¢ is defined by a (1,1)-form G. Since the (2,2)-form F defines the same set as does the
(1,1)-form G, we must have that F' = G?, up to a constant factor. O
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As above, let C be defined by the polynomial F. For a fixed point [w, x], the restriction
of the polynomial F' to [w,x] x P! is a homogeneous quadratic polynomial in 3, 2. A line
passing through [w, z] € ¢; and the point of ¢; corresponding to any zero of this restriction
is tangent to (). This construction gives all lines tangent to ) that contain the point [w, x].
We call the zeroes of this restriction the fiber over [w, z| of the projection of C' to ¢;.

We investigate these fibers. Consider the polynomial F' as a polynomial in the variables
y, z with coefficients polynomials in w, z. The resulting quadratic polynomial in y, z has
discriminant

2 2 2 2
(Z cilwix2i> — 4 (Z cigwi:r2i> (Z cigwix2i> . (6.6)
i=0 i=0 i=0

Lemma 6.12. If this discriminant vanishes identically, then the polynomial F' has a re-
peated factor.

Proof. Let a, 3,7 be the coefficients of 32, yz, 22 in the polynomial F', respectively. Then
we have 32 = 4ary, as the discriminant vanishes. Since the ring of polynomials in w, z is
a unique factorization domain, either « differs from v by a constant factor, or else both
a and v are squares. If o and y differ by a constant factor, then so do a and 3. Writing
B = 2da for some d € C, we have

F = ay’+2dayz + d*a2® = a(y +dz)*.
If we have oo = 62 and v = o2 for some linear polynomials § and o, then
F = §*y+200yz +0°2* = (0y +02)%.
U

When F' does not have repeated factors, the discriminant does not vanish identically.
Then the fiber of C' over the point [w, x] of ¢; consists of two distinct points exactly when
the discriminant does not vanish at [w, z]. Since the discriminant has degree 4, there are
at most four fibers of C' consisting of a double point rather than two distinct points. We
call the points [w, x] of ¢; whose fibers consist of such double points ramification points
of the projection from C to /.

This discussion shows how we may parametrize the curve C, at least locally. Suppose
that we have a point [w,z] € P! where the discriminant (6.6) does not vanish. Then we
may solve for [y, z] in the polynomial F' in terms of [w, z]. The different branches of the
square root function give local parametrizations of the curve C.

6.2.2 A normal form for asymmetric smooth (2, 2)-curves

Recall that for any distinct points aq, as, a3 € P' and any distinct points by, by, by € P!,
there exists a projective linear transformation (given by a regular 2 x 2-matrix) which
maps a; to b;, 1 <i <3 [31, 106].
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Lemma 6.13. If the (2,2)-curve is smooth then the projection of C to ¢y has four different
ramification points.

Proof. Changing coordinates on /; and /5 by a projective linear transformation if neces-
sary, we may assume that this projection to ¢; is ramified over [w,z] = [1,0], and the
double root of the fiber is at [y, z] = [1, 0]. Restricting the polynomial F' (6.5) to the fiber
over [w,z] = [1, 0] gives the equation

coy’ + Yz + c2” = 0.

Since we assumed that this has a double root at [y, z] = [1,0], we have co; = 92 = 0.
Suppose now that the projection from C to /; is ramified at fewer than four points. We
may assume that [w,z] = [1,0] is a double root of the discriminant (6.6), which implies
that the coefficients of w* and w3z in (6.6) vanish. The previously derived condition
Co1 = €99 = 0 implies that the coefficient of w* vanishes and the coefficient of w3z becomes
—4copca. If e99 = 0, then every non-vanishing term of (6.5) depends on x; hence, = divides
F, and so C is reducible, and hence not smooth. If ¢;5 = 0 then the gradient V F' vanishes
at the point ([1,0],[1,0]), and so C' is not smooth. O

Suppose that C'is a smooth (2,2)-curve. Then its projection to ¢; is ramified at four
different points. We further assume that the double points in the ramified fibers project
to at least 3 distinct points in f5. We call such a smooth (2,2)-curve asymmetric. The
choice of this terminology will become clear in Section 6.2.4. We will give a normal form
for such asymmetric smooth curves.

Hence, we may assume that three of the ramification points are [w, z] = [0, 1], [1, 0],
and [1,1], and the double points in these ramification fibers occur at [y, z] = [0, 1], [1, 0],
and [1, 1], respectively. As in the proof of Lemma 6.13, the double point at [y, z] = [1, 0]
in the fiber over [w,z] = [1,0] implies that ¢2; = ¢ = 0. Similarly, the double point

at [y,z] = [0,1] in the fiber over [w,z] = [0,1] implies that co9 = ¢p1 = 0. Thus the
polynomial F' (6.5) becomes

2.2 2 2 2,2
CooW™ 2" + CLowI 2" + CLiWITYZ + C1oWIY” + CoeX”Y

Restricting F' to the fiber of [w,z] = [1,1] gives

2 2 2 2
C102" + 202" + C11yz + co2y” + cr2y” .

Since this has a double root at [y, z] = [1, 1], we must have
1
TRl = o +C0 = Co2tCi2.
Dehomogenizing (setting ¢;; = —2) and letting coq := s and cgy := t for some s,t € C, we

obtain the following theorem.
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Theorem 6.14. After projective linear transformations in £y and {5, an asymmetric
smooth (2,2)-curve is the zero set of a polynomial

sw?z? + (1—s)wxz? — 2wryz + (1-twwy® + tr’y?, (6.7)

for some (s,t) € C* satisfying

st(s—1)(t—1)(s—t) # 0. (6.8)
We complete the proof of Theorem 6.14. The discriminant (6.6) of the polynomial (6.7)
is
dwz(w—z) (s(t—1)w — t(s—1)x) ,
which has roots at [w, z] = [0,1],[1,0],[1,1], and o = [t(s—1), s(t—1)]. Since we assumed

that these are distinct, the fourth point o must differ from the first three, which implies
that (s, t) satisfies (6.8). The double point in the fiber over o occurs at [y, z] = [s—1,¢t—1].
This equals a double point in another ramification fiber only for values of the parameters
not allowed by (6.8).

Remark 6.15. These calculations show that smooth (2,2)-curves exhibit the following
dichotomy. Either the double points in the ramification fibers project to four distinct
points in /5 or to two distinct points. They must project to at least two points, as there
are at most two points in each fiber of the projection to /5. We showed that if they project
to at least three, then they project to four.

We compute the parameters s and ¢ from the intrinsic geometry of the curve C'. Recall
the following definition of the cross ratio (see, for example [106, §1.1.4]).

Definition 6.16. For four points ay,...,a, € P' with a; = [oy, 3;], the cross ratio of
ai,...,ay s the point of P! defined by

a1 Oy Qo Uy
det det
) <51 54> ) <52 54>
a1 Q3 ’ Q9 Q3
det det
‘ </31 /33> ‘ </32 /33>
If the points are of the form a; = [1, 3;], this simplifies to

[54—51 54—52}
B =017 Bs—Pa]

The cross ratio of four points a1, as,as,as € P* remains invariant under any projective
linear transformation.
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The projection of C' to ¢; is ramified over the points [w,z] = [0,1],[1,0],[1,1] and
a = [t(s — 1), s(t — 1)]. The cross ratio of these four (ordered) ramification points is
[t(s—1), s(t—1)]. Similarly, the cross ratio of the four (ordered) double points in the
ramification fibers is [s—1, t—1].

This computation of cross ratios allows us to compute the normal form of an asymmet-
ric smooth (2, 2)-curve. Namely, let aq, as, ag, and a4 be the four ramification points of the
projection of C' to ¢4 and by, by, b3, and by be the images in /5 of the corresponding double
points. Let 1 be the cross ratio of the four points ay, as, a3, and a4 (this is well-defined,
as cross ratios are invariant under projective linear transformation). Similarly, let 5 be
the cross ratio of the points by, by, b3, and by. For four distinct points, the cross ratio is
an element of C \ {0, 1}, so we express 71,2 as complex numbers. The invariance of the
cross ratios yields the conditions on s and ¢

s(t—1)
t(s—1)

~+

-1
= 7 and = 2.

»
—_

Again, since 1,72 € C\ {0, 1}, these two equations have the unique solution

—1 —1
s = 7%(72 ) and t = e

Ya(y1 — 1) n—1"

6.2.3 Proof of the 12 families of conics

We characterize the quadrics ) which generate the same envelope of tangents as a given
quadric. A symmetric 4 x 4 matrix has 10 independent entries which identifies the space
of quadrics with P°. Central to our analysis is a map ¢ defined for almost all quadrics
Q. For a quadric @ (considered as a point in P?) whose associated (2,2)-form (6.4) is not
identically zero, we let ¢(Q) be this (2,2)-form, considered as a point in P®. With this
definition, we see that the Theorem 6.2 is concerned with the fiber ¢='(C'), where C is
the (2, 2)-curve associated to a general quadric ). Since the domain of ¢ is 9-dimensional
while its range is 8-dimensional, we expect each fiber to be 1-dimensional.

We will show that every smooth (2,2) curve arises as ¢(Q) for some quadric Q. It is
these quadrics that we meant by general quadrics in the statement of Theorem 6.2. This
implies that Theorem 6.2 is a consequence of the following theorem.

Theorem 6.17. Let C € P® be a smooth (2,2)-curve. Then the closure ¢ 1(C) in P° of
the fiber of o is a curve of degree 24 that is the union of 12 plane conics.

We prove Theorem 6.17 by computing the ideal .J of the fiber ¢! (C'). Then we factor
J into several ideals, which corresponds to decomposing the curve of degree 24 into the
union of several curves. Finally, we analyze the output of these computations by hand to
prove the desired result.

Our initial formulation of the problem gives an ideal I that not only defines the fiber
of p, but also the subset of P? where ¢ is not defined. We identify and remove this subset
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from I in several costly auxiliary computations that are performed in the computer algebra
system SINGULAR [62]. It is only after removing the excess components that we obtain
the ideal J of the fiber ().

Since we want to analyze this decomposition for every smooth (2,2)-curve, we must
treat the representation of C' as symbolic parameters. This leads to additional difficulties,
which we circumvent. It is quite remarkable that the computer-algebraic calculation
succeeds and that it is still possible to analyze its result.

In the following, we denote the coordinates in R* and C*(C P?) by z,v, z and assume
that /¢ is the z-axis. Furthermore, we may apply a projective linear transformation and
assume without loss of generality that /5 is the yz-line at infinity. Thus we have

b = {(’LU,{L‘,O,O)TEPB; [’UJ,Q?] EPI},
ly = {(O,O,y,z)T€P3: [y,z]eIP’l}_

Hence, in Pliicker coordinates, the lines intersecting ¢; and /¢y are given by
[0, wy, wz, 3y, 72,0)" € P : [w,a], [y, 2] € P'}. (6.9)

By Lemma 2.11, the envelope of common transversals to ¢; and /5 that are also tangent
to @ is given by those lines in (6.9) which additionally satisfy

(0, wy, wz, zy, xz,0) (/\QQ) (0, wy, wz, zy, r2,0)T =0. (6.10)

A quadric @ in P? is given by the quadratic form associated to a symmetric 4 x 4-matrix

o o

d
g
A (6.11)
l

Bl i N

d

Q - 0o o

In a straightforward approach the ideal I of quadrics giving a general (2,2)-curve C' is
obtained by first expanding the left hand side of (6.10) into

(el—g*)z*2® + 2(bl—dg)wzz?® + (al—d*)w?z?
+ 2(ek—gf)r*yz + 2(2bk—cg—df)wryz + 2(ak—dc)w?yz (6.12)
+ (eh—fH2%y? + 2(bh—cf)way? + (ah—c*)w?y?.
We equate this (2,2)-form with the general (2,2)-form (6.5), as points in P®. This is

accomplished by requiring that they are proportional, or rather that the 2 x 9 matrix of
their coefficients

Coo C10 C20 Co1 C11 Ca2
el —g* 2(bl —dg) al —d* 2(ek—gf) 2(2bk —cg—df) ... ah—¢c?

has rank 1. Thus the ideal I is generated by the (g) minors of this coefficient matrix.
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With this formulation, the ideal I will define the fiber ¢~'(C) as well as additional,
excess components that we wish to exclude. For example, the variety in PY defined by the
vanishing of the entries in the second row of this matrix will lie in the variety I, but these
points are not those that we seek. Geometrically, these excess components are precisely
where the map ¢ is not defined. By Lemma 6.11, we can identify three of these excess
components, those points of P° corresponding to rank 1 quadrics, and those corresponding
to rank 2 quadrics consisting of the union of two planes meeting in either ¢y or in /5. The
rank one quadrics have ideal E; generated by the entries of the matrix A?Q), the rank 2
quadrics whose planes meet in ¢; have ideal F, generated by a,b,c,d, e, f, g, and those
whose plane meets in /5 have ideal F3 generated by c,d, f, g, h, k, 1.

We remove these excess components from our ideal I to obtain an ideal J whose set
of zeroes contain the fiber ¢~ '(C). After factoring J into its irreducible components, we
will observe that ¢ does not vanish identically on any component of J, completing the
proof that .J is the ideal of »~'(C'), and also the proof of Theorem 6.17.

Since c¢q, €10, ... ,Co0 have to be treated as parameters, the computation should be
carried out over the function field Q(cqp, c1o,--- ,¢22). That computation is infeasible.
Even the initial computation of a Grobner basis for the ideal I (a necessary prerequisite)
did not terminate in two days. In contrast, the computation we finally describe termi-
nates in 7 minutes on the same computer. This is because the original computation in
Q(coo, €10y - - - 5 22)[a, b, ..., 1] involved too many parameters.

We instead use the 2-parameter normal form (6.7) for asymmetric smooth (2, 2)-curves.
This will prove Theorem 6.17 in the case when C'is an asymmetric smooth (2, 2)-curve. We
treat the remaining cases of symmetric smooth (2, 2)-curves in Section 6.2.4. As described
in Section 6.2.2, by changing the coordinates on ¢; and /5, every asymmetric smooth (2, 2)-
curve can be transformed into one defined by a polynomial in the family (6.7). Equating
the (2,2)-form (6.12) with the form (6.7) gives the ideal I generated by the following
polynomials:

el —¢*, ek —gf, ak —dec, ah — ¢, (6.13)

and the ten 2 x 2 minors of the coefficient matrix:

s 1—s5 —9 1—¢ ‘
M = <al—d2 2(bl —dg) 2(2bk — cg —df) 2(bh — cf) 6h—f2> . (6.14)

This ideal I defines the same three excess components as before, and we must remove
them to obtain the desired ideal .J. Although the ideal I should be treated in the ring
S = Q(s,t)[a,b,c,d,e, f, g, h, k], the necessary calculations are infeasible even in this
ring, and we instead work in subring R := Q[a,b,c,d, ¢, f, g, h, k,l][s,t]. In the ring R,
the ideal I is homogeneous in the set of variables a,b, ... ,[, thus defining a subvariety
of P? x C?. The ideals Fy, E,, and Fj describing the excess components satisfy E; D I,
1<j<3.
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A SINGULAR computation shows that I is a five-dimensional subvariety of P x C2
(see Section 6.2.6 for details). Moreover, the dimensions of the three excess components
are 5, 4, and 4, respectively. In fact, it is quite easy to see that dim E; = dim FE3 =4 as
both ideals are defined by 7 independent linear equations.

We are faced with a geometric situation of the following form. We have an ideal I
whose variety contains an excess component defined by an ideal F' and we want to compute
the ideal of the difference

v({I) - V(E),

here, V(K) is the variety of an ideal K. Computational algebraic geometry gives us an
effective method to accomplish this, namely saturation. The elementary notion is that of
the ideal quotient (I : E), which is defined by

(I:FE) :={feR|fgelforallge E}.

Then the saturation of I with respect to F is

oo

(1:E®) = [J:E").

n=1
The least number n such that (I : E*®) = (I : E™) is called the saturation exponent.

Proposition 6.18. ([31, §4.4] or [48, §15.10] or the reference manual for SINGULAR).
Qver an algebraically closed field,

V(I E*) = V() - V(E).

A SINGULAR computation shows that the saturation exponent of the first excess ideal
FEyin I is 1, and so the ideal quotient suffices to remove the excess component V(FE;) from
V(I). Set I' :== (I : E,), an ideal of dimension 4. The excess ideals 5 and Fj3 each have
saturation exponent 4 in /;, and so we saturate I’ with respect to each to obtain an ideal
J:=((I': ES®) : ES°), which has dimension 3 in P x C?.

To study the components of V(.J), we first apply the factorization Grébner basis al-
gorithm to .J, as implemented in the SINGULAR command facstd (see [98] or the refer-
ence manual of SINGULAR). This algorithm takes two arguments, an ideal I and a list
L= fi,...,f, of polynomials. It proceeds as in the usual Buchberger algorithm to com-
pute a Grobner basis for I, except that whenever it computes a Grobner basis element G
that it can factor, it splits the calculation into subcalculations, one for each factor of G
that is not in the list L, adding that factor to the Grébner basis for the corresponding
subcalculation. The output of facstd is a list I, I, ..., [, of ideals with the property
that

Uv) =V fa) = VI =V f)

Jj=1
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Thus, the zero set of I coincides with the union of zero sets of the factors I;, in the region
where none of the polynomials in the list L vanish. In terms of saturation, this is

rad(ly -+ L (fifo-- o)) = rad(I: (fifar - fu)™) (6.15)

where rad(K) denotes the radical of an ideal K. Some of the ideals I; may be spurious
in that V(I;) is already contained in the union of the other V(I;).

We run facstd on the ideal .J with the list of polynomials s, ¢, s—1, t—1, and s—t, and
obtain seven components Jy, Jq,... ,Js. The components .Ji,..., Js each have dimension
3, while the component Jy has dimension 2. Since V(.Jy) is contained in the union of the
V(J),...,V(Js), it is spurious and so we disregard it.

We now, finally, change from the base ring R to the base ring S, and compute with
the parameters s,t. There, J defines an ideal of dimension 1 and degree 24 in the 9-
dimensional projective space over the field Q(s,t). As we remarked before, we have that
V(J) D ¢ '(C). The factorization of .J into Ji, ..., Js remains valid over S. The reason
we did not compute the factorization over S is that facstd and the saturations were
infeasible over S, and the arguments from computational algebraic geometry we have
given show that it suffices to compute without parameters, as long as care is taken when
interpreting the output.

Each of the factors .J; has dimension 1 and degree 4. Moreover, each ideal contains
a homogeneous quadratic polynomial in the variables k,[ which must factor over some
field extension of Q(s,t). In fact, these six quadratic polynomials all factor over the field
Q(+/5,V/1). For example, two of the J; contain the polynomial (s — 1)k? — 2kl — I?, which
is the product

(Vs+1)k + 1) (Vs—1)k — 1) .

For each ideal .J;, the factorization of the quadratic polynomial induces a factorization of
J; into two ideals J;; and J;3. Inspecting a Grobner basis for each ideal shows that each
defines a plane conic in P°. Thus, over the field Q(y/5, v/1), J defines 12 plane conics.

Theorem 6.17 is a consequence of the following two observations.

(1) The factorization of J gives 12 distinct components for all values of the parameters
s, t satisfying (6.8).

(2) The map ¢ does not vanish identically on any of the components V(.J;;) for values
of the parameters s, ¢ satisfying (6.8).

By (1), no component of .J is empty for any s,¢ satisfying (6.8) and thus, for every
asymmetric (2,2)-curve C, there is a quadric @ with ¢(Q) = C. Also by (1), J has
exactly 12 components with each a plane conic, for any s, ¢ satisfying (6.8), and by (2),

V(J) = ¢ 1(CO).
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6.2.4 Symmetric smooth (2, 2)-curves

We investigate smooth curves C' whose double points in the ramified fibers over ¢; have
only two distinct projections to f5. Assume that the ramification is at the points [w, 2] =
[1,1],[1, —1],[1, s], and at [1, —s], for some s € C\ {0,£1} with the double points in the
fibers at [y, z] = [1,0] for the first two and at [0, 1] for the second two. Since the points
[1,1],[1,=1],[1, s], and [1, —s] have cross ratio

l+s 1—s| . (1—s)?

1—s" 1+s| |7 (1+s)2]"
we see that all cross ratios in P'\ {[1, 0], [0, 1], [1, 1]} are obtained for some s € C\ {0, +1}.
Thus our choice of ramification results in no loss of generality.

As in Section 6.2.1, these conditions give equations on the coefficients ¢;; of the general
(2,2)-curve (6.5):

Coo + g+ 20 = 0, co1 +ci1+c = 0, Cop — Cig+C20 = 0,
Co1 — C11 + Coy1 = 0, Cp2 —+ C12S + 62282 = 0, Co1 + C11S —+ 02182 = 0,
Cop — C128 + C8” = 0, cop —cnus+ceus® = 0.

These equations have the following consequences
0 = ¢ = ¢ = cipo = cii = Cip = Cp2+ 02282 = Coo + C0 -
Hence after normalizing by setting ¢y = 1, the (2, 2)-form (6.5) becomes
(2% — w?)y? + con(2? — sw?) 2>,

While the choice of ramification points [1, 1], [1, —1], [1, s], [1, —s] fixes the parametrization
of /1, the double points in the fibers of [1,0] and [0, 1] do not fix the parametrization of
l5. Thus we are still free to scale the z-coordinate. We normalize this equation setting
Coo = £1. We do not simply set coo = 1 because that misses an important real form of
the polynomial. This normalization gives

(22 —w?)y? + (2 - s*w?)2? = (y*+ 2%)2? — (y* £ 222w, (6.16)

This shows the equation to be symmetric under the involution [w, z] ++ [v/F1z,y]. This
symmetry is the source of our terminology for the two classes of (2,2)-curves. Also, if
s ¢ {£1,0}, then this is the equation of a smooth (2,2)-curve. With the choice of sign
(—), which we call the curve C(s).

Note that (6.16) is real if s either is real or is purely imaginary (s € Ry/—1 ). We
complete the proof of Theorem 6.2 with the following result for symmetric (2, 2)-curves.
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Theorem 6.19. For each s € C\ {41,0}, the closure of the fiber o' (C(s)) consists of
12 distinct plane conics. When s € R or s € Ry/—1 and we use the real form of (6.16)
with the plus sign (4), then exactly 4 of these 12 components will be real. If we use the
real form of (6.16) with the minus sign (=), then if s € R, all 12 components will be real,
but if s € Rv/—1, then ezactly 4 of these 12 components will be real.

Proof. Our proof follows the proof of Theorem 6.17 almost exactly, but with significant
simplifications and a case analysis. The outline is as before, except that we work over the
ring of parameters Q(s), and find no extraneous components when we factor the ideal into
components. We formulate this as a system of equations, remove the same three excess
components, and then factor the resulting ideal. We do this calculation four times, once
for each choice of sign () in (6.16), and for s € R and s € Ry/—1. Using SINGULAR
computations similar to (but substantially simpler than) the one explained in detail in
Section 6.2.6, we can actually carry out these computations. Examining the output proves
the result. O

We consider in some detail four cases of the geometry studied in Section 6.2.1, which
correspond to the four real cases of Theorem 6.19. As in Section 6.2.1, let /; be the z-axis
and /5 be the yz-line at infinity. Viewed in R3, lines transversal to ¢; and /, are the set
of lines perpendicular to the z-axis. For a transversal line £, the coordinates [y, z] of the
point £ N /5 can be interpreted as the slope of £ in the two-dimensional plane orthogonal
to the z-axis.

Consider real quadrics given by an equation of the form

4+ (y—yo) £z = 1. (6.17)

The quadrics with the plus (4) sign are spheres with center (0,y,0)” and radius 1,
and those with the minus (—) sign are hyperboloids of one sheet. When |yg| > 1 the
quadric does not meet the x-axis. We look at four families of such quadrics: spheres and
hyperboloids that meet and do not meet the z-axis. We remark that quadrics which are
tangent to the z-axis give singular (2, 2)-curves.

First, consider the resulting (2, 2)-curve

(z* — w’)y® + (2° — (1 — yg)w?)2>,

Thus we see that these correspond to the case s = /1 — 32 in the parametrization of
symmetric (2,2)-curves given above (6.16), while in (6.17) and (6.16) the signs (£) cor-
respond.

Figures 6.5 and 6.6 display pictures of these four quadrics, together with the z-axis,
some tangents perpendicular to the z-axis, and the curve on the quadric where the lines
are tangent.

Remark 6.20. For each of the spheres, there is another sphere of radius r» which leads
to the same envelope, namely the one with center (0, —yo,0)T.
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Fig. 6.6: Real quadrics meeting the z-axis.

The ramification of the (2,2)-curve of tangents perpendicular to the z-axis is evident
from Figures 6.5 and 6.6. When x = +1, there is a single tangent line; this line has slope
ly, 2] = [1,0], i.e., it is a horizontal line. When x = +4/1 — 32, there is a single tangent
line, which is vertical (i.e., which has slope [y, z] = [0, 1]). Figures 6.5 and 6.6 depict these
lines in case they are real. In Figure 6.5 we have |yo| > 1, and hence the vertical tangent
lines are complex. All other values of z give two lines perpendicular to the z-axis and
tangent to the quadric, but some have imaginary slope.

The difference in the number of real components of the fiber o' (C(s)) noted in The-
orem 6.19 is evident in these examples. The spheres and hyperboloid displayed together
are isomorphic under the change of coordinates z — /—1 - z, which interchanges the
transversal tangents of purely imaginary slope for one quadric with the real transversal
tangents of the other and corresponds to the different signs + in (6.17) and (6.16).

For the sphere of Figure 6.5, only 4 of the 12 families are real. One consists of ellipsoids,
including the original sphere, one of hyperboloids of two sheets, and two of hyperboloids of
one sheet. Since a hyperboloid of two sheets can be seen as an ellipsoid meeting the plane
at infinity in a conic, we see there are two families of ellipsoids and two of hyperboloids.
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In Figure 6.7, we display one quadric from each family (except the family of the sphere),

together with the original sphere, the z-axis, and the curve on the quadric where the lines
perpendicular to the z-axis are tangent to the quadric.
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Fig. 6.7: The other three families.

Similarly, the hyperboloid of Figure 6.5 has only 4 of its 12 families real with two
families of ellipsoids and two of hyperboloids. The sphere of Figure 6.6 has only 4 of its
12 families real, and all 4 contain ellipsoids. In contrast, the hyperboloid of Figure 6.6
has all 12 of its families real, and they contain only hyperboloids of one sheet.

6.2.5 'Transversals to two lines and tangents to two spheres

We solve the original question of configurations of two lines and two spheres for which
there are infinitely many real transversals to the two lines that are also tangent to both
spheres. While general quadrics are naturally studied in projective space P3, spheres
naturally live in (the slightly more restricted) affine space R*. As noted in Section 6.2.1,
we treat only skew lines. There are two cases to consider. Either the two lines are in R?
or one lies in the plane at infinity. We work throughout over the real numbers.

Lines in affine space R?.

The complete geometric characterization of configurations where the lines lie in R?® is
stated in the following theorem and illustrated in Figure 6.8.

Theorem 6.21. Let S; and Sy be two distinct spheres and let {1 and (5 be two skew lines

in R3. There are infinitely many lines in R® that meet ¢, and Uy and are tangent to S,
and Sy in exactly the following cases.

(1) The spheres Sy and Sy are tangent to each other at a point p which lies on one line,
and the second line lies in the common tangent plane to the spheres at the point
p. The pencil of lines through p that also meet the second line is exactly the set of
common transversals to {1 and Uy that are also tangent to S7 and Ss.
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(2) The lines 1 and Uy are each tangent to both Sy and Sy, and they are images of
each other under a rotation about the line connecting the centers of Sy and Sy. If
we rotate (1 about the line connecting the centers of the spheres, it sweeps out a
hyperboloid of one sheet. One of its rulings contains {1 and {5, and the lines in the
other ruling are tangent to S7 and Sy and meet {1 and l5, except for those that are
parallel to one of them.

Fig. 6.8: Examples from Theorem 6.21.

Let /1 and /5 be two skew lines. The class of spheres is not invariant under the set
of projective linear transformations, but rather under the group generated by rotations,
translations, and scaling the coordinates. Thus we can assume that

0 1 0 -1
= Ol +x|0] : z€eR} , by = 0O | +z[-0) :z€eR
1 0 -1 0

for some 6 € R\ {0}. As before, there is a one-to-one correspondence between lines
meeting ¢; and /o and pairs (z,2) € R?. The transversal corresponding to a pair (z, 2)
passes through the points (x,dz,1)T and (2, =02, —1)T, and has Pliicker coordinates

(z — 2, —0(x + 2), -2, —26vz, —(x + 2),6(z — ).

Let S; have center (a,b,c)” and radius r. By Lemma 2.11 and (2.6), the transversals
tangent to S; are parametrized by a curve C; of degree 4 with equation

0 = 46%2°2° 4+ 40(b—ad)z’z + ((b—ad)® + (14+6°)((1+¢)* — r?))a”
—45(b+ ad)zz® + 2((r’—c*)(1-6%) + (1-b°) + 6*(a®—1)) 22 (6.18)
—4(14c)(a+bd)z + ((b+ad)® + (1+6°)((1—c)*—r?))2?
+4(c—1)(a—bd)z + 4(a®* +b* —1?).
This is a dehomogenized version of the bihomogeneous equation (6.5) of bidegree (2, 2).

Note also that the curve C' is defined over our ground field R. The transversals to ¢,
and /5 tangent to S, are parametrized by a similar curve C5. There are infinitely many
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lines which meet /; and /5 and are tangent to S; and S; if and only if the curves C; and
C5 have a common component. That is, if and only if the associated polynomials share a
common factor. We first rule out the case when the curves are irreducible.

Lemma 6.22. The curve Cy in (6.18) determines the sphere S; uniquely.

Proof. Given the curve (6.18), we can rescale the equation such that the coefficient of
2222 is 46%. From the coefficients of 22z and 222 we can determine a and b, and then from
the coefficients of 22 and 2? we can determine ¢ and 7. O

Remark 6.23. By Remark 6.20, Lemma 6.22 does not hold if the lines are allowed to
live in projective space P%. We come back to this in Section 6.2.5.

By Lemma 6.22, there can be infinitely many common transversals to ¢; and ¢y that
are tangent to two spheres only if the curves C; and C5 are reducible. In particular, this
rules out cases (1) and (2) of Lemma 6.10. Our classification of factors of (2,2)-forms in
Lemma 6.10 gives the following possibilities for the common irreducible factors (over R) of
C} and Cy, up to interchanging = and z. Either the factor is a cubic (the dehomogenization
of a (2,1)-form), or it is linear in z and z (the dehomogenization of a (1, 1)-form), or it is
linear in x alone (the dehomogenization of a (1, 0)-form). There is the possibility that the
common factor will be an irreducible (over R) quadratic polynomial in x (coming from a
(2,0)-form), but then this component will have no real points, and thus contributes no
common real tangents.

We rule out the possibility of a common cubic factor, showing that if C factors
as © — xo and a cubic, then the cubic still determines S;. The vector (—d,—1,dz¢)”
is perpendicular to the plane through (x¢,dzy,1)" and /5, so the center of S; will be
(w9, 619, 1) + N(=0, —1,6x0)" for some non-zero X € R. Thus r? = \*(1 + §? + 6%z3).
Substituting this into (6.18) and dividing by (x — ) we obtain the equation of the cubic:

0 = 0%x2% + §(8°—1)Azz + (1+6%(1—A%) + oA (1+6%)z0)

6.19
+ (A (1462) — §z0)2 + 6(2—1)Azgz + 40X + (6222 — 62 — 1)xg . (6.19)

Given only this curve, we can rescale its equation so that the coefficient of 222 is 62, then
if 9 # £1, we can uniquely determine \, xy and therefore Sy, too, from the coefficients of
rz and x.

The uniqueness is still true if § = £1. Assume that § = 1. Then (6.19) reduces to

2% + (2N —20)2% + (2= A+ 2 o)1 + 4N+ (V= 2)1p = 0.

Set a := 2\ — g, B := 2 — A\? + 2z, and v := 4\ + (\? — 2)zy. We can solve for A and
Zp in terms of v and S,

at\/a?+35—-6 _ —at2\/a?+33-6

\ =
3 T 3




126 6. Common transversals and tangents

(We take the same sign of the square root in both cases). If we substitute these values
into the formula for v, we see that the two possible values of v coincide if and only if
a? + 38 — 6 = 0, in which case there is only one solution for A and z, so «, 3, and ~
always determine A and zy uniquely and hence S; uniquely. The case 6 = —1 is similar.

We now are left only with the cases when C; and C5 contain a common factor of the
form x — xy or xz 4+ sx + tz 4+ u. Suppose the common factor is x — xy. Then any line
through p := (20,670, 1)T and a point of ¢, is tangent to S;. This is only possible if the
sphere S; is tangent to the plane through p and /5 at the point p. We conclude that if C
and C5 have the common factor z — zy, then the spheres S; and S, are tangent to each
other at the point p = (9,629, 1) lying on ¢; and ¢, lies in the common tangent plane
to the spheres at the point p. This is case (1) of Theorem 6.21.

Suppose now that C; and C; have a common irreducible factor zz + sx 4+ tz + u. We
can solve the equation xz + sx +tz +u = 0 uniquely for z in terms of x for general values
of x, or for x in terms of z for general values of z, this gives rise to an isomorphism ¢
between the projectivizations of ¢; and ¢;. The lines connecting ¢ and ¢(q) as ¢ runs
through the points of ¢; sweep out a hyperboloid of one sheet. The lines /; and /5 are
contained in one ruling, and the lines meeting both of them and tangent to S; are the
lines in the other ruling.

We need the following geometric statement, which is an immediate consequence of
Theorem 6.4.

Corollary 6.24. Let H C R® be a hyperboloid of one sheet. If all lines in one of its
rulings are tangent to a sphere S, then H is a hyperboloid of revolution, the center of the
sphere S is on the axis of rotation and S is tangent to H.

By this corollary, the hyperboloid swept out by the lines meeting ¢; and /5, and tangent
to S; is a hyperboloid of revolution with the center of S; on the axis of rotation. Further-
more, /; and ¢, are lines in one the rulings of the hyperboloid, therefore they are images
of each other under suitable rotation about the axis, the images of /; sweep out the whole
hyperboloid, and ¢y, /5 are both tangent to S;. Applying the lemma to Sy shows that the
center of Sy is also on the axis of rotation and /;, /5 are both tangent to S;. We cannot
have S; and S5 concentric, therefore the axis of rotation is the line through their centers.
This is exactly case (2) of Theorem 6.21, and we have completed its proof.

Lines in projective space.

We give the complete geometric characterization of configurations in real projective space
where the line /5 lies in the plane at infinity.

Theorem 6.25. Let S; and Sy be two distinct spheres and let ¢, lie in R® with {5 a line
at infinity skew to ¢1. There are infinitely many lines that meet ¢y and ¢y and are tangent
to S1 and Sy in exactly the following cases.
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(1) The spheres Sy and Sy are tangent to each other at a point p which lies on ly, and
Uy s the line at infinity in the common tangent plane to the spheres at the point p.
The pencil of lines through p that lie in this tangent plane are exactly the common
transversals to €1 and (5 that are also tangent to S1 and Ss.

(2) Any line meeting 1 and {5 is perpendicular to ¢, and Sy and Sy are related to each
other by multiplication by —1 in the directions perpendicular to ¢1. Thus we are in
exactly the situation of Remark 6.20 of Section 6.2.4 as shown in Figures 6.5(a)
and 6.6(a).

Proof. Let II be any plane passing through a point of /; and containing /5. Then common
transversals to /; and ¢/ are lines meeting ¢; that are parallel to II. Choose a Cartesian
coordinate system in R? such that ¢; is the z-axis. Suppose that S; has center (a,b,c)”
and radius r. Let u = (uy,u9,0)” and v = (v1,0,v3)" be vectors with uy # 0 and vz # 0
parallel to II. Such vectors exist as ¢; and ¢, are skew. A common transversal to /;
and /5 is determined by the intersection point (x,0,0)” with ¢; and a direction vector
corresponding to the intersection point with /5, which can be written as u + zv for some
z € R, unless it is parallel to v. Since S; has at most two tangent lines which meet /;
that are parallel to v, so by omitting these we are not losing an infinite family of common
transversals/tangents.

The transversals that are tangent to S; are parametrized by a curve ' in the xz-plane
with equation

0 = vir?2® + udx® + 2us(cv; — avs)z2® + 2(bugv; + cuivs)rz

+2uy (buy —aug)z + ((b? + & —r?)vi —2acvivs + (a® + b —1r*)v3)2? (6.20)
+2((0* + & — r?)usv; — acuqvs — bus(avy + cvs))z
+((0* + ¢ — rH)u? — 2abuyug + (a® + & — r?)ul)

The transversals tangent to Sy are parametrized by a similar curve C'y. There are infinitely
many lines that meet ¢; and /5 and are tangent to S; and S, if and only if C; and Cy
have a common nonempty real component.

It is easy to see from the coefficients of 22, xz and x and the constant term that
if u; # 0 or v; # 0, then C; determines a, b, ¢ and 7% and therefore S; uniquely, so if
(' is irreducible and u; # 0 or vy # 0, then there cannot be infinitely many common
transversals that are tangent to S; and Ss.

Assume now that u; = v; = 0, this is equivalent to the plane Il being perpendicular to
¢;. From the coefficient of 2 we can determine @, and then from the coefficients of 22, z,
and the constant term we can calculate the quantities o« = ¢2 —r2, 8 = be, and v = b? —12.
The equation (o + r?)(y +r?) — % = 0 is a quadratic equation for r? with solutions

1
2

= S(ca—yE V(=) +457).

Only the larger root is feasible, even when both are positive, since both o + r? = ¢? and
v+ r? = b? must be non-negative. Hence 72, and thus b? and ¢? are uniquely determined.
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The values of b?, be, and ¢? determine two possible pairs (b, ¢) which are negatives of
each other. This is exactly case (2) of the theorem. In fact, this case is illustrated by
Figures 6.5(a) and 6.6(b).

Let us now consider the cases when C' is reducible. As in the proof of Theorem 6.21,
we need only consider cubics and factors of the form zz + sx +tz 4+ u, v — xg, and z — 2.

Assume that C has a component with equation zz + sx + tz + u. As described in the
proof of Theorem 6.21, this establishes an isomorphism between the projectivizations of
f1 and /5. The lines connecting the corresponding points of the projectivizations of /; and
{5 sweep out a hyperbolic paraboloid. However, the lines in one ruling of the hyperbolic
paraboloid cannot all be tangent to a sphere, therefore this case cannot occur.

Likewise, the factor z—zy cannot appear, since it would mean that all the lines through
a point of ¢; parallel to a certain direction are tangent to Sy, which is clearly impossible.

Consider the case where the equation of C; has a factor of z — zy. As we saw in the
proof of Theorem 6.21, ¢; meets the sphere S; at the point p := (2¢,0,0)7, and /, lies in
the tangent plane to S; at p, and so this tangent plane is parallel to II.

If x — zy is a factor of s, too, then Cy passes through p and its tangent plane there
is also parallel to TT, so we have case (1) of the theorem.

To finish the proof we investigate what happens if the common component of C; and
(s is the cubic obtained from C after removing the line x — 2y = 0.

The center of S; has coordinates (xg + pugvs, —puivs, —pusvy)” for some p € R, since
S| passes through (x4,0,0)” and its tangent plane there is parallel to II, and we have
r? = p?(uivd + udv? + udv3). Substituting this into (6.20) we obtain the equation of the
remaining cubic,

v3r2” + usr — vs(Tovs + 2pun(v? 4 v3))2”
—Apuy iy 03z — s (Tous + 23 (uf 4 uj)) = 0.
If uy # 0 or vy # 0 then from the coefficients of this curve we can determine x, and p,

hence S; uniquely, so C; and C5 cannot have a common cubic component. If u; = v; =0
then the above equation factorizes as

(z — (2uugvs + 70)) (v32* + u3) = 0,
so if Cy contains the curve defined by this equation, then the line z — (2pusvs + o) = 0 is
a common component of both C; and Cs, which is a case we have already dealt with. O

6.2.6 Appendix: Calculations from Section 6.2.3

We describe the computation of Section 6.2.3 in much more detail, giving a commen-
tary on the SINGULAR file that accomplishes the computation and displaying its output.
In our description of the SINGULAR computation, we follow Section 4.2.2. The library
primdec.1lib contains the function sat for saturating ideals.
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LIB "primdec.lib";
option(redSB);

We initialize our ring.
ring R = 0, (s,t,a,b,c,d,e,f,g,h,k,1), (dp(2), dp(10));

The underlying coefficient field has characteristic 0 (so it is Q) and variables s, t,a, ... , k, [,
with a product term order chosen to simplify our analysis of the projection to C2?, the
space of parameters.

We consider the ideal generated by (6.13)

ideal I = el-g~2, ek-gf, ak-dc, ah-c~2;
and by the 2 x 2 minors of the coefficient matrix (6.14).

matrix M[2][5] = s s 1-s , -2 s 1-t t s
al-d~2, 2x(bl-dg), 2*(2bk-cg-df), 2*(bh-cf), eh-f~2;
I =1+ minor(M,2);

We check the dimension and degree of the variety V(I), first computing a Grobner basis
for I.

I = std(I); dim(I), mult(I);
// 6 8

SINGULAR gives the dimension of V(I) in affine space C'?. Since T is homogeneous in the
variables a,b, ... ,h,k, I, we consider V(I) to be a subvariety of P? x C?. Tts dimension
is one less than that of the corresponding affine variety. Thus V(I) has dimension 5 and
degree 8.

In Section 6.2.3, we identified three spurious components of V(I) which we remove.
The first and largest is the ideal of rank 1 quadrics, given by the 2 x 2-minors of the
4 x 4-symmetric matrix (6.11).

matrix Q[4]1[4] =

O T P
(0]
H R 0m®

d, g,
ideal E1 = std(minor(Q,2));

We remove this spurious component, computing the quotient ideal (I : Ej).

I = std(quotient(I,E1)); dim(I), mult(I);
// 5 20

The other two spurious components describe rank 2 quadrics which are unions of two
planes with intersection line ¢; or /5.
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ideal E2
ideal E3

g, f, e, d, ¢, b, a; // intersection line 11
1, k, h, g, £, d, c; // intersection line 12

The corresponding components are not reduced; rather than take ideal quotients, we
saturate the ideal I with respect to these spurious ideals. The SINGULAR command sat
for saturation returns a pair whose first component is a Groébner basis of the saturation
and the second is the saturation exponent. Here, both saturations have exponent 4. We
saturate I with respect to Ej,

I = sat(I,E2)[1]; dim(I), mult(I);
// 5 10

and then with respect to Ej.

ideal J = sat(I,E3)[1]; dim(J), mult(J);
// 4 120

Thus we now have a variety V(J) of dimension 3 in P? x C?>. We check that it projects
onto the space C? of parameters by eliminating the variables a, b, ..., h,k,[ from .J.

eliminate(J, abcdefghkl);
/7 _[11=0

Since we obtain the zero ideal, the image of V(J) is Zariski dense in C* [31, Chapter 4,
§4]. However, the projection P? x C*> — C? is a closed map, so the image of V(J) is
C%. Thus, for every smooth (2,2)-curve C' defined by (6.7), there is a quadric whose
transversal tangents are described by the curve C.

We now apply the factorization Grobner basis algorithm facstd to J. The second
argument of facstd is the list of non-zero constraints which are given by Theorem 6.14.

ideal L = s, t, t-1, s-1, s-t;
list F = facstd(J,L);

SINGULAR computes seven factors

size(F);

/17

Since .J and the seven factors Ly, ..., L7 are radical ideals, this factorization can be verified
by checking that that the following ideals V; and V5 coincide.

int i;

ideal FF = 1;

for (i = 1; i <= 7; i++) { FF = intersect(FF,F[i]); }
ideal V1, V2;

V1 = std(sat(sat(sat(sat(sat(FF,t)[1],s)[1]1,t-1)[1],s-1)[1],s-t)[1]);
V2 = std(sat(sat(sat(sat(sat(J ,t)[1],s)[1],t-1)[1],s-1)[1],s-t)[1]);
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Note, in particular, that for any given explicit values of s, satisfying the non-zero
conditions, the parametric factorization (in s,t) produced by facstd can be specialized
to an explicit factorization.

We examine the ideals in the list F', working over the ring with parameters.

ring S = (0,s,t), (a,b,c,d,e,f,g,h,k,1), 1lp; short = 0;
First, the ideal J has dimension 1 and degree 24 over this ring, as claimed.

ideal JS = std(imap(R,J));  dim(JS), mult(JS);
// 2 24

The first ideal in the list L has dimension 0.

setring R; FR = F[1]; setring S;
FS = std(imap(R,FR)); dim(FS), mult(FS);
// 1 4

This ideal is a spurious component from the factorization. It is contained in the spurious
ideal Es.

FS[5], Fs[6], FS[7], FS[8], FS[9], FS[10], FS[11];
// gfedchba

The other six components each have dimension 1 and degree 4, and each contains a
homogeneous quadratic polynomial in the variables x and y.

for (i = 2; i <= 7; i++) {
setring R; FR = F[i]; setring S;
FS = std(imap(R,FR)); dim(FS), mult(FS);

FS[1];
print("-———————————— ")
}
// 2 4
/] (-872+2%s-1)%k"2+(2%s-2) *k*x1+(s*xt—-1)*1"2
/]  mmmmmmmmm
// 24
/] (s-1)%k~2-2%k*x1-1"2
/] e
// 24
/] (872-2%s+1) ¥k "2+ (—2%s+2) kk*1+(-t+1)*1"2
/]  mmmmmmmmm
/] 24

// (872-2%s+1) *k "2+ (-2%s+2) xk*1+ (-t+1) *1"2
/]  mmmmmmm
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/] 24

/] (s-1)%k~2-2%k*x1-1"2

/] e

// 24

/] (-872+2%s-1)*k"2+(2%s-2) *k*x1+(s*t—-1)*1"2
/]  mmmmmmmmm e

The whole computation takes 7 minutes CPU time on an 800 Mhz Pentium IIT pro-
cessor, and 3 minutes of that time are spent on the facstd operation.

Each of these homogeneous quadratic polynomials factors over Q(+/s, v/1), and induces
a factorization of the corresponding ideal. We describe this factorization—which is carried
out by hand—in detail for the second component F;. We start from the Grébner basis of
the ideal F, computed in the program above,

(5 — D& — 2kl — 12, (s — D)h + (2t — 2)k + (t — 1)I, fl — gk
el —g?, d+ f+g, ¢, 2b+e, a, (6.21)
(s = 1)fk =29k —gl, (s =1)f*=2fg—¢* ek — fg.
Over Q(y/s, /1), the first polynomial factors into

(Vs+Dk+1) (Vs —1)k—1) .

We consider the first factor; the second one can be treated similarly. Substituting | =
—(v/s + 1)k into the generator fl — gk, that one factors into

—k((Vs+1)f+g) .

Since any zero of F, with £k =0 would implya=c=d=f =¢g=h =k =1[1=0 and thus
be contained in V(Fj3), we can divide by k£ and obtain a linear polynomial. Altogether,
the first two rows of (6.21) become a set of seven independent linear polynomials and one
quadratic polynomial el — g?. For any pair (s, 1) satisfying (6.8) they define a plane conic.
It can be verified that the three polynomials in the third row are contained in the ideal
generated by the first two rows.

In order to show that for none of the parameters s, t satisfying (6.8) the map ¢ vanishes
identically on this conic, consider the following point p on it:

0, =(Vs+1)(s=1), 0, =2/s(s = 1), 2(/s+1)(s = 1), =2(s — 1),
25+ 1)(s—1), 4t —1) = 2(t — )(/5+ 1), =2(s — 1), 2(v/5+ 1)(s — 1))2.

The coefficient of w?2% in p(C) is

—4s(vs = 1D)*(Vs +1)%,

so p(C') does not not vanish identically.
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In order to show that for all parameters s, ¢ satisfying (6.8) the 12 conics are distinct,
consider the quadratic polynomials in k£ and [ in the SINGULAR output above. In the
factorization over Q(+/s, /1), the ideal of each of the 12 conics contains a generator which
is linear in £ and [ and independent of a, ... ,h. To show the distinctness of two conics,
we distinguish two cases.

If these linear homogeneous polynomials are distinct (over Q(s,t)), then it can be
checked that for every given pair (s,t) they define subspaces whose restrictions to (k,1) #
(0,0) are disjoint.

In case that the linear homogeneous polynomials coincide then it can be explicitly
checked that both conics are distinct. For example, both F5 and Fj contain the factor
(v/s + 1)k + [ in the first polynomial. As seen above, the corresponding conic of Fy is
contained in the subspace a = ¢ = 0. Similarly, the corresponding conic of Fj is contained
in e = g = 0. Assuming that the two conics are equal for some pair (s,t), the equations
of the ideals can be used to show further a = b =c¢ = --- = h = 0. However, due to the
saturation with the excess component F5 this is not possible, and hence the two conics
are distinct.

The same calculations can be carried out for the other components.
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7. ALGORITHMIC COMPLEXITY OF VISIBILITY
COMPUTATIONS WITH MOVING VIEWPOINTS

We investigate the computational complexity of visibility problems with moving view-
points. The results complement our results from the previous sections on the underlying
algebraic complexity of these algorithmic problems.

Before stating our main results precisely, we review the necessary complexity-theoreti-
cal framework in Section 7.1. After formally introducing the complexity-theoretical prob-
lems in Section 7.2, we state our main results in Section 7.3.

In Section 7.4, we determine the computational complexity of the considered visibility
problems for variable dimension. Then, in Section 7.5, we use the real algebraic-geometric
technique of real quantifier elimination to establish polynomial solvability results for fixed
dimension. In Section 7.6, we establish connections between our complexity-theoretical
results and the algebraic-geometric results from the earlier sections. Finally, in Section 7.7,
we discuss the relationship between our hardness results and the number-theoretical view
obstruction problem.

7.1 Geometric objects and the model of computation

The geometric objects relevant for the complexity-theoretical investigations are convex
bodies as introduced in Section 2.1.1. Whereas in earlier sections, we used well-known
classical geometric frameworks, for our current complexity-theoretical investigations we
would like to recall the underlying geometric computation models.

Our model of computation is the binary Turing machine: all relevant convex bodies
can be presented by certain rational numbers, and the size of the input is defined as the
length of the binary encoding of the input data (see, e.g., [57, 65, 67]).

Specifically, a B-presentation of a ‘rational’ ball B is a triple (n; ¢, p) withn € N, ¢ €
Q", and p € (0,00)NQ. B and (n;c, p) are then related via B = {x € R" : ||z —¢||*> < p}.

Let B3 denote the class of all B-balls in R", and set By = |J,, o B3

Remark 7.1. In a more restrictive model of balls we might require that the radius itself is
rational. Although we will not discuss that model further, we remark that our complexity
results hold in that model in the same way.

For rational polytopes we distinguish between #- and V-presentations [65]. A V-
polytope is a polytope P that is represented by integers n, k, and points vy, ... , v, € Q"
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such that P = conv({vy,... ,u}), i.e., P is the convex hull of vy, ..., vx. An H-polytope
is a polytope P that is represented by integers n, k, a rational & x n-matrix A, and a
vector b € QF such that P = {z € R" : Ax < b}.

Let P}, and P} denote the classes of H- and V-polytopes in R", respectively, and
set Py = Unen Py Pv = U,en Py~ For fixed dimension H- and V-presentations of a
polytope can be converted into each other in polynomial time. If, however, the dimension
is part of the input then the size of one presentation may be exponential in the size of the
other [92].

In some problems under consideration, we will consider single points instead of balls
or polytopes. In this case we speak of a degenerated body.

7.2 Partial visibility and quadrant visibility

We consider the fundamental visibility problem with moving viewpoints as introduced in
Section 2.2.1. Here, we consider a scene in n-dimensional space consisting of m + 1 convex
bodies By, By, ... , B, from a class X, where X' € {B,, P, Py}.

For the complexity-theoretical investigations it is quite crucial which information is
part of the input of the problem. Thus let us recall the formal definition of the main
problem PARTIAL VISIBILITY with respect to a given body class X'. Note that the
dimension is part of the input.

Problem PARTIAL VISIBILITY :

Instance: m, n, bodies By, By, ..., B,, C R" from the class X.
Question: Decide whether By is partially visible with respect to By,... , By,.

Our hardness results for this problem will exploit the property that in the definition of
partial visibility every viewpoint outside of conv(|J:~, B;) is allowed. In order to show that
similar hardness results also hold for visibility problems with more restricted viewpoint
regions we also investigate the following problem QUADRANT VISIBILITY.

We call By partially visible from the positive orthant (with respect to By,... , By,) if
there exists a viewpoint v € (0,00)" \ conv(U™, B;) such that By is partially visible from
v.

Problem QUADRANT VISIBILITY y:

Instance: m, n, bodies By, By, ..., B,, C R" from the class X.
Question: Decide whether By is partially visible from the positive orthant with
respect to By,..., Bp,.

We add the index () if the input bodies By, ... , B,, are required to be disjoint. Fur-
thermore we add the index ® if By is a degenerated body that consists of a single point
in the origin (e.g., PARTIAL VISIBILITY3, o 9). If X = Py or X = Py, we will usually
denote the bodies by F, ..., P,.
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Ray sets. In the next sections, the following notation will be convenient. A ray which
issues from the origin is called a central ray. For a set A C R” let pos A = {Zle \NiZ;
{z1,... 1} C A A,..., A\ > 0,k € N} denote the positive hull of A. For a set
A C R*\ {0} let the central ray set of A be the set of central rays defined by the elements
of A. A central ray set R covers a set B C R™\ {0} if the central ray set of B is contained
in R.

7.3 Main complexity results

We analyze the binary Turing machine complexity of the visibility problems for the case
of variable dimension. Our main intractability results are summarized in the following
theorem.

Theorem 7.2. (a) For X € {By, Py, Py} the problems PARTIAL VISIBILITY y and
QUADRANT VISIBILITY y are NP-hard. This statement remains true if the bodies are
disjoint and/or if By (or Py, respectively) is a single point located in the origin.

(b) For X € {Py, Py} the problems PARTIAL VISIBILITY v and QUADRANT VIS-
IBILITY » are NP-complete.

These hardness results are contrasted by the following positive results for fized dimen-
sion.

Theorem 7.3. Let the dimension n be a fized constant. For X € {Bsy, Py, Py}, the prob-
lems PARTTAL VISIBILITY » and QUADRANT VISIBILITY » can be solved in polyno-
mial time.

7.4 Complexity results for variable dimension

7.4.1 Idea of the hardness proofs

Let us consider the case where the body Bj is a degenerated body located in the origin.
In order to show NPP-hardness, we provide reductions from the well-known NP-complete
3-satisfiability (3-SAT) problem [57]. Let C = C; A ... A Cy denote a 3-SAT formula with
clauses Cy,...,C in the variables yy,... ,y,. Further, let 77; denote the complement of a
variable y;, and let the literals y; and y) be defined by v} = v;, v = 7;. Let the clause C;
be of the form
Ci=y;" Vi Vi, (7.1)
where ¢€;,,¢€;,,€e;, € {0,1} and 1 < iy,1iy,i3 < n are pairwise different indices.
Each of the reductions consists of two ingredients. First we enforce that any central
visibility ray has a direction which is close to a direction in the set {—1,1}". For this
purpose, consider the cube [—1,1]". For each of the 2n facets of the cube we construct
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X1

(a) Placing structural bodies (b) Vertex simplices

Fig. 7.1: Imposing discrete structure

a suitable body (a ball or a polytope) whose positive hull covers the whole facet with
the exception of “regions near the vertices”. We call these bodies structural bodies. Fig-
ure 7.1(a) shows the situation for the 3-dimensional case of a ball. Any central visibility
ray can then be naturally associated with a central ray in one of the directions {—1,1}™;
this imposes a discrete structure on the problem. The 2n structural bodies are always
part of the construction, independent of the specific 3-SAT formula. The positions of
each of these 2n bodies will depend linearly on some positive parameter . In fact, all
bodies can be moved radially and their size be appropriately adjusted so that the crucial
covering properties persist. The parameters will be used later to make the bodies disjoint.
In order to define the “region near a vertex” we consider Figure 7.1(b). For every vertex
v of [—=1,1]" let the vertex simplex of v be defined as the convex hull of v and those n
points which result by dividing exactly one component of v by 2. The construction will
be such that any point in the boundary of [—1,1]" that is not covered by the central ray
set of a structural body will be contained in some vertex simplex.

In the second step, we relate satisfying assignments of a clause (7.1) to certain cen-
tral visibility rays. Let ¢ : {TRUE, FALSE} — {—1,1} be defined by ¢(TRUE) = 1 and
t(FALSE) = —1. Then, more precisely, we establish a correspondence between a truth as-
signment a = (ay,...,a,)" € {TRUE, FALSE}" to the variables yi,... ,y, and the central
ray with direction (t(ay),... ,t(a,))”.

For this purpose, let us consider the clause (7.1), and without loss of generality let
ei, =0, e, =1, e;;, = 0. Then we want to ensure that neither one of the 2"~ central rays
in {r € {-1,1}" : x;, = 1,2;,, = —1,2;, = 1} nor a ray defined by the corresponding
vertex simplex can be a visibility ray. Hence, we construct a body whose central ray set
completely covers an (n — 3)-dimensional face of the cube [—1,1]™ but which does not
cover any vertex not belonging to this face. Similar to the structural bodies, the positions
of each body depends linearly on some positive parameter §. Again, the parameters will
be specified later so as to achieve disjointness of the bodies. The bodies which represent
the clauses are called clause bodies.

The construction will guarantee that a truth assignment «a is a satisfying assignment
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for the 3-SAT formula C if and only there exists a visibility ray for By.

7.4.2 The case of balls

For p € R”, ¢ € R" \ {0}, let d(p,[0,00)q) denote the Euclidean distance of p € R™ from
the central ray [0,00)g. In the first lemma we compute some distances needed within the
construction.

Lemma 7.4. (a) Letn >3, v > 0,0 < ¢ <1, p=1~v-(1,0,...,007, and ¢ =
(1,...,1,¢0)" € R*. Then

d(p, [0,00)q)” = 7* <1 - n—++<152> '

(b)) Letn>4,0>0,-1<¢<1,p=6§-(1,-1,1,0,...,0)7, and ¢ = (1,—1,6,1,...,
)T € R*. Then

(2+9¢)? )

d(p, [0,00)q)* = & (3 EE g

Proof. (a) For A € R, let g\ := A-q. The parameter A for which the minimum distance of
Rq to p is attained satisfies ¢y - (p — ¢») = 0. Hence,

My =2 —(n—=2)\2 = \?¢* =0,

whose nontrivial solution is A = /(n — 1 + ¢?) > 0. For this value of A we obtain

d(p,[0,00)q)* = ~* ((ﬁ - 1>2 +(n-2) (ﬁf - (n—%qﬂ)j

1
- (i)

2A(\ = 6) + A\p(A\p— ) + (n —3)A* =0

(b) Here,

has the nontrivial solution A = §(2 + ¢)/(n — 1 + ¢?) > 0. Hence,
d(p,[0,00)q)?
_ 2+ ¢ AT 246\’
= ¢ (2 <m—1> + (m—1> +(n—3) (m>

= 52<3 _2+9)F )

=1+ ¢?
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Fig. 7.2: Computing the distance from the diagonal rays

Lemma 7.5. PARTIAL VISIBILITY 3, ¢ ¢ is NP-hard.

Proof. We complete the construction outlined so as to provide a polynomial time reduction
from 3-SAT to PARTTAL VISIBILITY s, ¢ 9. Without loss of generality let n > 4.

Let us consider the 2n structural balls S;(v;) = (n;s:(7:),0:(7:)), 1 < i < 2n, where
si(vi) € R™ and o;(;) > 0 are the center and the square of the radius of S;, and ~; is the
scaling parameter of S; as described above. Naturally, we place these balls symmetrically
so that so that their centers lie on coordinate axes, i.e., let

Si(%) = v;¢; and 3n+z‘(7n+i) = —Vn+i€i ,

where e; denotes the i-th standard unit vector, 1 < i < n.

In order to specify the squares of the radii o;(y;) of the structural balls, let us consider
S1(71). For convenience of notation, we omit to state the index 1 and the dependence on
v = 71, and shortly write S = (n;s,0). See also Figure 7.1(a). The construction of the
other balls is done analogously.

In order to impose the discrete structure we will satisfy the following two conditions.
Firstly, pos(S) must not contain the vertices {1} x {—1,1}". Secondly, pos(S) must cover
those points which result from the vertices of the facet {1} x [—1,1]""" after dividing
exactly one of the last n — 1 components by 2. The two conditions will yield an upper
and a lower bound for o.

We start with the first condition. Since any of the central rays {1} x {—1,1}"! has the
same distance from the center s, it suffices to consider ¢ = (1,1,...,1)T (see Figure 7.2).
Hence, by choosing ¢ = 1 in Lemma 7.4(a),

on—1

d(S, [07 OO)Q)2 =7 N

Consequently, we have to choose o < 7?(n — 1)/n. For the second condition, consider the
point ¢ = (1,...,1,1/2)". Then, choosing ¢ = 1/2 in Lemma 7.4(a) yields
o4n — 7

2 _
d(sa [07 OO)(]) - fy 4:’[’L . 3
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Therefore, a ball centered in s with square of the radius o satisfying

o4n — 7 c o < on — 1
An — 3 7

v

guarantees the two conditions. The construction of structural balls for all 2n facets guar-
antees that any point in a facet of [—1,1]™ that is not covered by the central ray set of a
structural ball is contained in a facet of some vertex simplex.

Now we can turn towards constructing the balls C;(d;) = (¢;(0;), pi(6:)), 1 < i < k,
representing the k clauses. For notational convenience we assume that the clause is
given by y? V yd V 99, and abbreviate the ball for this clause by C' = (n;c,p) (assum-
ing implicitly the dependence on the parameter § := ¢; in this notation). By setting
c = §(1,-1,1,0,...,0)T, all the Boolean variables y,... ,y, are treated in a uniform
way. The rotation axis of the resulting central ray set is the central ray spanned by
(1,-1,1,0,...,0)T.

In order to represent the given clause by the ball C' we guarantee the following two prop-
erties. First, none of the vectors in {—1,1}"\ (1, —1,1)x {—1, 1}"~3 must be covered by the
central ray set of the ball. Among this set of vectors, the vector ¢ = (1,—1,—1,1,...,1)"
leads to the smallest distance. Choosing ¢ = —1 in Lemma 7.4(b) implies

3n—1
n

d(c, [0, 00)q)* = §?

which yields the condition p < §?(3n — 1)/n.
Moreover, we guarantee the following second property. The central ray set of C'
must cover all the points in (1,—1,1) x {—1,1}""3 as well as their vertex simplices.

Among all these points and among the vertices of the vertex simplices, the vector ¢ =
(1,—1,1/2,1,...,1)T has largest distance from c. Lemma 7.4(b) with ¢ = 1/2 implies

2:621271—34

(e, [0, 00)0)? =

Hence, a ball centered in ¢ with square of the radius p satisfying

3n—1

52120 — 34

< p < 6
in — 3 P

guarantees the two conditions for the clause ball. Note that the upper bound implies that
the origin is not contained in the ball.

As yet, the definitions of the 2n structural balls and the k clause balls depend on the
positive parameters vi,...,%, and dy,...,d;, respectively. Finally, by choosing these
parameters appropriately, we make the balls disjoint. Since o; < v?(n — 1)/n for the
structural balls, we choose the parameter 7; of the i-th structural ball successively so that

n—1 n—1
Yi — Vi > Yie1 + Yic .
n n
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Setting v = 1, this leads to

1+,/2t
o> | — =
1—,/n=t

= <2n—1+2\/n-(n—1)> :

Hence, choosing v; = (4n — 1)* for 1 < i < 2n guarantees that the structural balls are
pairwise disjoint. The binary logarithm of these numbers grows only polynomially in the
number of balls. Hence, inductively, we can choose the centers and the squares of the
radii of the structural balls as rational numbers of polynomial size. The same method
applies to the parameters dy,... ,d; of the clause balls. In particular, when also choosing
0, sufficiently large, then the clause balls are disjoint from the structural balls.

Now we show that the given 3-SAT formula C can be satisfied if and only if By is
partially visible. Let a = (ay,...,a,)T be a satisfying assignment of C. Then there does
not exist any ball B in the construction whose central ray set intersects with the central
ray in direction (t(ay),...,t(a,))". Hence, By is partially visible. Conversely, let b be a
visibility ray for By. Due to the structural balls the ray b intersects with the vertex simplex

of some vector v € {—1,1}". Consequently, the truth assignment (t7'(vy),...,t7"(v,))"
is a satisfying assignment because otherwise the central ray set of some clause ball would
contain the vertex simplex of v. Hence, C can be satisfied. O

Corollary 7.6. PARTIAL VISIBILITY 3, ¢ is NP-hard.

Proof. The proof for the case that By is a single point generalizes to the case of a non-
degenerated ball centered in 0 with some square of the radius oq > 0 by the following
consideration. Let 0 < oy < min{oy,... 00, p1,...pr}, where S; = (n;s;,0;) and C; =
(n; ¢;, p;) are the structural balls and the clause balls in the proof of Lemma 7.5. Further,
let By = (n;0,00). If b is a visibility ray for By then b is in particular a visibility ray
for Bj. Conversely, consider the situation where all the squares of the radii o; of the
structural balls S;, 1 <4 < 2n, and all the squares of the radii p; of the clause balls C},
1 < j <k, in the proof of Lemma 7.5 are decreased by oy. If i is a visibility ray for B
in the new situation, then there exists a visibility ray b parallel to &’ for the single point
By. Hence, if the given inequalities in the proofs of Lemma 7.5 hold for both o;, p; and
for o; := 0; — 09, p = pj — 00, 1 <i < 2n, 1 < j <k, then the reduction from 3-SAT
also holds for the non-degenerated ball Bj. The given bounds show that it is possible to
choose oy both in polynomial size and at the same time sufficiently small in its value. [

7.4.3 The case of V-polytopes

Lemma 7.7. PARTIAL VISIBILITY p, o ¢ is NP-hard. This result persists if the in-
stances are restricted to those consisting of cross polytopes.
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A

Fig. 7.3: Imposing discrete structure with cross polytopes

Proof. We establish a polynomial time reduction from 3-SAT to the problem PARTIAL
VISIBILITY p, 9 based on the framework in Section 7.4.1.

This time, we choose the 2n structural bodies as cross polytopes of the form S;(v;) =
conv({s;(vi) + 0i;(vi)e; : 1 < j < n}) with rational coefficients s;(7;), 0i;(7;) depending
on the scaling parameter ~;. The centers of the cross polytopes are defined by

si(7i) = viei and s,4(Yni) = —Yngi€i, 1 <0< 2n.

Now we specify the coefficients 0;;. By symmetry, similar to the proof of Lemma 7.5, it
suffices to consider the cross polytope S; () which we abbreviate by S = conv({s+oje; :
1 < j < n}) implicitly assuming the dependence on 7y := ~;; see Figure 7.3.

For any choice of the parameters oy, ... ,0, > 0, the (n—1)-dimensional cross polytope
S" = conv({s + oje; : 2 < j < n}) is contained in the hyperplane z; = . Similar to
the case of the balls, two conditions are imposed on the choice of o, ... ,0,. Firstly, the

central ray set of S’ must not contain the vertices {1} x {—1, 1}". Secondly, the central ray
set of S’ must cover those points resulting from the vertices of the facet {1} x [—1,1]"~!
by dividing exactly one of the last n — 1 components by 2.

We choose 05 = ... = g,. The necessary upper and lower bounds for oy result as
follows. Without loss of generality we consider the central ray (1,...,1)T. The vertex
v(1,...,1)T of y[—1,1]" is contained in a facet of the (n — 1)-dimensional cross polytope

conv({s £y(n —1)e; : 2 < j <n}). On the other hand, the point y(1,1,1,...,1,1/2)"
is contained in a facet of the (n — 1)-dimensional cross polytope with vertices conv({s £
v(n—3/2)e;}), 2 < j < n. Hence, if o, satisfies

7<n—g> <oy <vy(n—1)

then the two conditions enforcing the discrete structure are satisfied.

In order to make the (n — 1)-dimensional polytope S” full-dimensional we consider
some ¢ with 0 < ¢ <. Then s —ee; € pos S’. Hence, by adding the vertices s + ce; we
obtain an n-dimensional cross polytope S having the same central ray set as S’.

Now we show how to represent a clause by a cross polytope. Once more, we assume
that the clause is given by yi V 43 V y3. Let C be the cross polytope C = conv({c+ p;e; :



144 7. Algorithmic complexity of visibility computations with moving viewpoints

2 < j < n}) with ¢ = §(1,-1,1,0,...,0)" and coefficients p; (also depending on the
parameter 0) as defined in the following.

For any choice of parameters py,...,p, > 0, the (n — 3)-dimensional cross polytope
C" = conv({c £ pje; : 2 < j < n}) is contained in the (n — 3)-dimensional plane z; =,
Ty = —0, x3 = 0. We choose py = ... = p,. Moreover, we make the (n — 3)-dimensional

cross polytope C' full-dimensional by adding the vertices ¢ +ce;, 1 < j < 3, for some
parameter 0 < ¢ < §. If p; = 2(n — 3) then the point §(1,—1,1/2,1,...,1)T is contained
in the n-dimensional cross polytope. Hence, by choosing p; > 2(n — 3) the central ray
set of C' covers all the points in (1,—1,1) x {—1,1}"3 as well as their vertex simplices.
Moreover, since the whole central ray set of the cross polytope is located in the orthant
defined by z; > 0, 7, < 0, 3 > 0, none of the vectors in {—1,1}"\ (1, —1,1) x {—1,1}*73
is covered by the central ray set of the ball.

Similar to the proof of Lemma 7.5, we can choose the parameters v, ... , %, 01,... , Ok,
and ¢ (for making the bodies n-dimensional) in such a way that the bodies are pairwise
disjoint and that their encoding lengths remain polynomially bounded. Hence, the polyno-
mial time reduction from 3-SAT follows in the same way as in the proof of Theorem 7.5. [

Using an inclusion technique like in Lemma 7.6 we obtain the following corollary.

Corollary 7.8. PARTIAL VISIBILITY p,, g is NP-hard. This result remains true if the
instances are restricted to those consisting of cross polytopes.

Lemma 7.9. PARTIAL VISIBILITY p,, ¢ is contained in NP.

Proof. Let (m;n; Py, ..., Py,) be an instance of PARTIAL VISIBILITY 5,  with Py = {0}
and V-polytopes Pi, ..., Py, and let F, »(P;) denote the set of all (n — 2)-dimensional
faces of P;, 1 < i < m. Further let lin F' denote the linear hull of a set F'. The set of all
linear subspaces lin F', F' € F, 5(P;), naturally decomposes the unit sphere S~ := {z €
R™ : ||z|| = 1} into (n — 1)-dimensional sectors. For two central rays belonging to the
same sector either both of them are visibility rays or none of them.

We show: if the single point Py is partially visible then there exists a certificate of
polynomial size. Let [0, 00)q be a visibility ray for Py spanned by some vector ¢ € R™\ {0}.
By the decomposition of S*~! into equivalence classes we can assume that the linear

subspace Rq is the intersection of (at most) n — 1 linear subspaces lin Fi,... ,lin F,
with Fl; C ,Fn,1 € U;il .7:”,2(3)
Of course, the number of combinatorial choices for Fi,..., F,_y might grow expo-

nentially in the input size. However, the following considerations show that the witness
vector ¢ can be represented in polynomial size nevertheless. For any subspace lin F; the
V-presentation of F; immediately gives a generating system of polynomial size. Since Rq
is the intersection of at most n — 1 of these subspaces, we can find a witness vector of
polynomial size.

It remains to show: one can verify in polynomial time that a given witness ray does
not intersect with the interior of any of the polytopes P;. Since the number of polytopes
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Fig. 7.4: Representing a 2-clause

is bounded by the input length of the instance, it suffices to explain this polynomial
verification method for a single polytope P € {P,..., P,}. Let the V-presentation of P
be P = conv({vy,... ,v}) with vectors vy,... ,v, € R*. P does not intersect with the
ray [0,00)q if and only if the system
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does not have a solution. This can be checked in polynomial time by linear programming.
However, if P N [0,00)q # () then we still have to check whether int(P) N [0,00)q # 0.
Let A; := min A and A\; := max A\ under the linear constraints stated before. Obviously,
int(P) N [0,00)q # 0 if and only if the point p := 3(\; + A2)q is contained in int(P). By
considering the k linear programs

max /i,

Zleﬂivi = P,

k
Zi:1 2%

(1 < j < k) we can compute which of the vectors v; occurs with non-zero coefficient in
some convex combination p = Zle p;v;. Now p € int(P) if and only if this set of vectors
has affine dimension n. Altogether, verification of a witness ray can be done in polynomial
time. O

7.4.4 The case of H-polytopes

Lemma 7.10. PARTIAL VISIBILITY p,, g s NP-hard. This statement persists if we
restrict the polytopes to be n-dimensional bozes.
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Proof. We give a polynomial time reduction from 3-SAT. This time the proof differs from
the given framework. We begin with the case where P, is a single point located in the
origin.

For notational convenience, consider the clause y{ V 99 V yi. We construct a set of
polytopes ensuring that central rays spanned by some vector b € R” with by > 0, by <0,
b3 > 0 cannot be visibility rays. Figure 7.4 depicts the idea of the construction for two
variables yi, yo, and the 2-clause yi V 49: the polytopes will originate from a “big” n-
dimensional box in which a small n-dimensional cube is cut off (see Figure 7.4(a)) and
which is then decomposed to re-establish boxes (see Figure 7.4(b))

When representing the clause, we have to take care that in the visibility problem only
the interior points of the boxes Pi,..., P,, are considered. As a consequence, we have
to extend the boxes blocking P, slightly across the coordinate hyperplanes. For some
parameters £, d with 0 < ¢ < § we define the box @ by

—0<z;<e, —e<23<6, —0<uz3<e, —0<uz;<§6, 4<j<n. (72)

Since () contains the origin, we consider @\ [—¢, ]" instead. In order to re-establish convex
bodies, we decompose @ \ [—¢, ] into smaller boxes Q1, ... ,Q,. This decomposition will
satisfy the following conditions.

(a) int(Qq), ... ,int(Q,) are disjoint and do not contain the origin.

(b) For any vector a € {TRUE, FALSE}" one of the boxes Q1,...,Q, intersects the
central ray in direction (t(ay),...,t(a,))T if and only if t(a;) = —1, t(az) = 1,
t(a3) = —1.

Let E = {(z1,10,23)7 : =0 <11 <, e <29 <6, = <a3<e} Forl<i<n-3,
define the boxes (Q2;_1, @2; by the following conditions.
Qai—1: (21,22,23)" € E;
—0<z; <6, 4<j<n—i+1;
—0 < wp_iy1 < —€;
—e<z;<g, n—i+1<jy<n;
Qu:  (v1,22,23)" € E;
—60<z; <6, 4<j<n—i+1;
€ < Tp_jp1 <05
—e<z;<e, n—i1+1<j5<n.
These boxes successively cut off parts of Q. In particular, @ \ Ule(Qgi,l UQR2), 1 <k<
n — 3, results in the subset of R" satisfying
(z1,79,23)" € B
—0<z; <6, 4<j<n—-k+1;
—e<z;<e, n—k+1<j5<n.
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Further let Qon_5, Qon_4, Qon_3 serve to cut off the parts referring to the variables
T1,T2,T3:

Qom—s: —0<m <eg; —e<<6; —0<w3< —¢;
—e<wx;<e, 4<j<n;

Qom—s: —0<x <eg; e<2<0; —e<a3<e;
—e<x;<e, 4<j<n;

Qon—3: —0<2 <—¢; —e<ay<e; —e<w3<e;

—e<z;<e, 4<j<n.
Then Q\UZ;?’ Q; results to
—e<z;j<e, 1<j<mn.

In other words: the union of ()1, ... , (QQ2,—3 results to () with the exception of a small cube
containing the origin. Note that the interior parts of @1, ..., @2, 3 are pairwise disjoint.
Now we show that condition (b) is satisfied. First let a« € {TRUE, FALSE}" with
t(a)) = —1, t(ag) = 1, t(as) = —1. Since Q \ ;" Qi = [¢,£]” and by (7.2), one of the
open boxes int(Q;) intersects with the central ray spanned by (t(a1),... ,t(a,))’. Namely,
the points 7(t(ay),...,t(a,))T with 7 € (£,8) are contained in @ but not in [—¢,z].
Conversely, let a € {TRUE, FALSE}" and for some j € {1,...,2n—3} let int(Q);) intersect
with the central ray spanned by (t(ay),...,t(a,))”. Since all entries of this vector are
of absolute value 1, there exists some 7 € (g,8) such that 7(t(ay),... ,t(a,))" € int(Q;).
Hence, the definitions of Q,Q1, ... ,Qon_3 imply t(a;) = —1, t(az) = 1, t(az) = —1.

The essential reason why it suffices to consider the interior parts of Q;, 1 < j < 2n—3,
for the intersections is that none of their facets is contained in one of the coordinate
hyperplanes x; = 0. For exactly the same reason it is possible to make every box slightly
smaller and therefore properly disjoint.

For different clauses C; and C;, ¢ < j, of the 3-SAT formula C we have to ensure that
the resulting cubes are all disjoint. This can be achieved by suitably setting &;,d; and
£j,0; for the clauses C; and C;. If €; > ¢§; then the boxes of C; and C; do not intersect with
each other.

Finally, we show that the 3-SAT formula C is satisfiable if and only if By is partially
visible. First let a € {TRUE, FALSE}"™ be a satisfying assignment for C. Since a is a satis-
fying assignment for every 3-clause C;, condition (b) guarantees that (t(ay), ... ,t(a,))7 is
a visibility ray for By. Conversely, let [0, 00)b be a visibility ray for By spanned by some
vector b € R™. Define the modified sign function sg: R — {—1,1} by

1 ifxr >0,
w-ft, 2

-1 ifxz<0.

Hence, by definition of the boxes, the vector (sg(b;), ... ,sg(b,))T is a visibility ray. By con-
dition (b), a := (t1(sg(b1)), ... ,t (sg(bn)))T satisfies every 3-clause C;. Consequently,
C is satisfiable.
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Finally, we remark that the single point P, can be replaced by a sufficiently small
cube, since none of the facets of the boxes lies in a hyperplane containing the origin. [

Lemma 7.11. PARTIAL VISIBILITY p,, ¢, is contained in NP.

Proof. Similar to the proof of Lemma 7.9 we show: if the single point P, is partially visible
then there exists a certificate of polynomial size. Once more, it suffices to consider the rays
[0, 00)b resulting from the intersection of at most n — 1 subspaces lin Fi,...  lin F,, ; with
Fi,... ,Fq € U™ F, o(P;). The H-presentations of Fy, ..., F,_; immediately give an
‘H-presentation of the one-dimensional subspace Rb. Hence, there exists a witness vector b
of polynomial size. Finally, it can be checked in polynomial time, whether a given witness
ray [0,00)b intersects with the interior of at least one of the H-polytopes Py, ..., P,. O

7.4.5 Quadrant visibility

In Sections 7.4.1-7.4.4 our hardness results for PARTTAL VISIBILITY were based on
reductions from 3-SAT in which any assignment ¢ € { TRUE, FALSE}" was identified with
one of the 2" quadrants in R”. For that reason, the question arises whether the hardness
results still hold for more restricted viewpoint areas, say, for those viewpoint areas which
are contained in a single quadrant.

In the following we prove the part of Theorem 7.2 which says that the hardness results
also hold QUADRANT VISIBILITY.

Lemma 7.12. QUADRANT VISIBILITYg, ¢ is NP-hard.

Proof. Once more, we provide a reduction from 3-SAT, and therefore consider a 3-SAT

formula in the variables yq, ... ,y,. The essential idea of the reduction is to construct an
instance of QUADRANT VISIBILITY in (n + 1)-dimensional space R"*!. The central
ray with direction v := (1,...,1)” is contained in the positive orthant @ of R**'. By

considering a hyperplane which is orthogonal to v and which intersects (0, co)v, we transfer
the proof ideas of PARTTAL VISIBILITY to QUADRANT VISIBILITY.

In order to simplify notation, we apply an orthogonal transformation to transform
the diagonal ray [0, c0)v into [0, 00)e, 1, the non-negative part of the x,i-axis. By this
operation, (Q is transformed into a cone ('. Similar to the proof of Lemma, 7.5, we impose
a discrete structure on the visibility problem. Namely, for some positive parameter 7 > 0
specified below, we associate the 2" truth assignments { TRUE, FALSE}" with the central
rays spanned by the vectors {—7,7}" x {1}. Note that the set [—7,7]" x {1} is an n-
dimensional cube in R**!,

In order to achieve this discrete structure, we place 2n + 1 structural balls S;(v;, 7) =
(n; (i, 1), 03(7i, 7)), 0 < i < 2n, at the centers ¢g = Ypeni1, ¢ = Vi(€nt1 + 7€), Cpii =
Ynvi(€nt1 — 7€), 1 < i < n. In contrast to the proofs for PARTTIAL VISIBILITY, the
centers of the structural balls do not only depend on positive parameters ;, but also on
the global positive parameter 7. Figure 7.5 shows this situation for the case n = 2. The
parameter 7 is chosen such that the n-dimensional cube [—7, 7]" x {1} is contained in @'
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Fig. 7.5: Imposing discrete structure on QUADRANT VISIBILITY in case n = 2 and vy =
... = 7y2n, =: 7y (so all the centers of the structural balls are contained in the hyperplane
ZTni1 = 7y). The positive hull of the triangle represents @', the positive orthant after
the orthogonal transformation.

The squares of the radii s;(7;,7), 1 < i < n, of the structural balls can be chosen such
that any visibility ray must be close to a vertex of the n-dimensional cube; this establishes
the discrete structure. In a second step, the parameters 7; can be used to scale the balls
in order to make them disjoint.

Then, similar to the proof of Lemma 7.6, we can construct balls representing the clauses
of the 3-SAT formula in order to complete the desired polynomial time reduction. O

Similar to proof of Lemma 7.6, we can extend this result to the case QUADRANT
VISIBILITY 5, ¢, where By is a proper ball. Moreover, by combining the proofs of Lemmas
and Corollaries 7.7-7.11 with a lifting into R"*!, the hardness results can also be estab-
lished for the case of V- and H-polytopes. Note that the proof technique of Lemma 7.12
can also be generalized to establish hardness results for other classes of viewpoint areas.

7.5 Polynomial solvability results for fixed dimension

In order to prove the polynomial solvability results for fixed dimension, we use the fact
that for fixed dimension the theory of real closed fields can be decided in polynomial
time [7, 29]. More precisely, for rational polynomials pi(xy,...,2,), ... ,pi(z1,... ,2,)
in the variables x1,...,z,, a Boolean formula over pi,...,p; is defined as a Boolean
combination (allowing the operators A, V, NOT) of polynomial equations and inequalities
of the type p;(z1,...,2,) = 0 or pi(z,...,2,) < 0. We consider the following decision
problem for quantified Boolean formulas over the real numbers.
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Problem REAL QUANTIFIER ELIMINATION:

Instance: n, [, rational polynomials pi(z1,...,25),...,0i(T1,...,2,), a
Boolean formula ¢(z4,...,z,) over pi,...,p;, and quantifiers
Q... ,Qne{V,3}.

Question: Decide the truth of the statement

Qi(r1 €R) ... Qu(zy, €R)  @(z1,...,24).

In [7, 29] it was shown:

Proposition 7.13. For fized dimension n, REAL QUANTIFIER ELIMINATION can
be decided in polynomial time.

Remark 7.14. In spite of this polynomial solvability result for fixed dimension, current
implementations are only capable of dealing with very small dimensions. Generally, there
are two approaches towards practical solutions of decision problems over the reals. One
is based on Collins’ cylindrical algebraic decomposition (CAD) [29], and the other is the
critical point method ([61]; for the state of the art see [5]).

In order to prove polynomial solvability of PARTIAL VISIBILITY g, for fixed dimen-
sion, we formulate the problem algebraically. We represent a ray p+ [0, 00)¢ by its initial
vector p € R™ and a direction vector ¢ € R™ with ||g|| = 1. By is partially visible with
respect to By = (n;co, po), ... , Bm = (n; ¢, pm) if and only if there exist p, ¢ € R” such
that for all A € R the following formula holds:

lgll* =1,
and lp—cl> < po,
and A<O0V [lp+rg—all? > p), 1<i<m.

Hence, we have to decide the truth of the following statement:

PR R YrecR
lglP =1 Allp—col? <po A((A<OV [Ip+Ag—clP>p), 1<i<m).

After expanding the Euclidean norm and applying some trivial transformations (such as
establishing the mentioned normal form p;(xq,...,x,) < 0 for the polynomial inequali-
ties), this is a quantified Boolean formula of the required form. Hence, Proposition 7.13
implies the following statement.

Lemma 7.15. For fized dimension n, PARTIAL VISIBILITY g, can be solved in polyno-
mial time.
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For the case of H-polytopes, let P, = {z € R* : A;x < b;} with A4; € Q¥ b; € Q¥
0 <1 < m. P, is partially visible if and only if there exist p,q € R” such that for all
A € R we have

lall* =1,
and AOp S bUa
and (A<0 VvV NOT(Ai(p+ X)) < b)), 1<i<m.

Applying Proposition 7.13 on this formulation we can conclude:

Lemma 7.16. For fized dimension n, PARTIAL VISIBILITYp,, can be solved in poly-
nomaial time.

Since for fixed dimension n, a V-polytope can be transformed into a H-polytope in
polynomial time [44], this also implies

Corollary 7.17. For fized dimension n, PARTIAL VISIBILITY p,, can be solved in poly-
nomzial time.

Similarly, by small modifications of the proofs, the polynomial time solvability results
for PARTIAL VISIBILITY can also be transferred to QUADRANT VISIBILITY.

7.6 On the frontiers of Theorems 7.2 and 7.3

Theorems 7.2 and 7.3 do not guarantee membership of PARTIAL VISIBILITY s, or PAR-
TIAL VISIBILITYg,  in NP. Let us illuminate this situation from the algebraic point of
view. First note that even though quantifier elimination methods can decide PARTTAL
VISIBILITY g, for fixed dimension in polynomial time (see Lemma 7.15), it is not known
how to compute a short witness of a positive solution with these methods (see [7]).

Combining the algorithmic, the algebraic, and the complexity-theoretical viewpoint,
the situation looks as follows. For PARTIAL VISIBILITYs, or PARTIAL VISIBIL-
ITYp,, we can construct instances in R"™ which have exactly a single visibility ray.
This visibility ray can be seen as a common tangent line to several spheres. Hence, the
question of membership in NP is tightly connected to the algebraic characterization of the
common tangent lines to a given set of spheres in R” from Section 5.1.

Similarly, Theorems 7.2 and 7.3 do not guarantee membership of PARTIAL VISIBIL-
ITYp, or PARTIAL VISIBILITYp, in NP. These questions are tightly connected to
the common transversals to 2n—2 given (n—2)-dimensional planes in R". For algebraic
characterizations of this problem see Section 5.2.1.

In both cases (balls and polytopes), the algebraic degree statements in the oracle model
are reflected by our hardness results in the Turing machine model. However, we do not
know in how far the algebraic characterizations for balls or polytopes can be exploited for
proving a short witness visibility ray.
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Concerning NP-hardness, Theorem 7.2 does not include a statement for PARTTAL
VISIBILITY s, g or PARTIAL VISIBILITYg, o if the balls are restricted to be unit
balls. However, the following statement shows that in “Yes”-instances of PARTIAL
VISIBILITY 5, g the number of balls necessarily grows exponentially in the input dimen-
sion n. Even if this does not rule out the existence of a polynomial time algorithm (since
the running time of the algorithm is not measured in terms of the dimension n but in the
overall length of the input size), it might give a useful sufficient criterion for large input
dimensions.

Lemma 7.18. Let n > 6, m € N, and let By, By, ..., B,, be a set of n+ 1 disjoint unit
balls in R™. If m < +/3n es=D then By is partially visible with respect to By, ..., B,,.

Proof. Without loss of generality we can assume that By is the unit ball centered in the
origin. Let 0 < r < 1 and H be a hyperplane in R” at distance r from the origin. Then
the set of points on the unit sphere separated from the origin by H is called an r-cap.
Since any ball B;, 1 < ¢ < m, is disjoint from By, an elementary geometric inspection
shows that pos(B;) intersects the unit sphere in an r-cap with v/3/2 < r < 1. A necessary
condition for By being not partially visible is that these r-caps cover the unit sphere. Let
7(n,r) denote the minimum number of r-caps covering the unit sphere. By Lemma 5.2
in [20], for r > 2/y/n we have

7(n,r) > 2ry/ne” D2

Substituting the value r = v/3/2 into this formula implies the desired estimation. 0

7.7 Partial visibility and view obstruction

Throughout this thesis, we have investigated the hardness of visibility computations with
moving viewpoints with regard to the underlying algebraic complexity and with regard
to computational complexity. In this final section, we would like to mention a related
number-theoretical aspect.

In 1968, Wills investigated the following problem of diophantine approximation [150].
Let ||z]|; denote the distance of a real number = to the nearest integer. For any n € N
and vq,...,v, € N, let

d(vy,... ) = Sup min [Ivillr,

and
= inf .
I{(n) v1,..1.r,lvn€N d(vla ;vn)
= inf  sup min ||Tv]]r.
’Ul,...,’UnEN TG[O,I] 1§z§n
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Fig. 7.6: The picture shows the situation of the view obstruction problem in R?. In particular,

A(2) = 3.

Based on the pigeonhole principle, Wills showed ﬁ < k(n) < #1 and conjectured
k(n) = —5. This conjecture was later restated by Cusick [34] who interpreted it as a
visibility problem called view obstruction. Let C' = [—1, 1]". For some factor a > 0,
consider the infinite set of cubes

1 1\’
Vit gty +aC @ y,...,mENy p . (7.3)

Now the problem is to determine the supremum of o > 0 such that there exists a visibility
ray in the strictly positive orthant (see Figure 7.6). This supremum, called A\(n), can be
written as

1
A =2 inf -
(=2 —sup Gl el =Sl

The following statement from [34, 150] establishes the connection between Wills’ prob-
lem and the view obstruction problem.

Proposition 7.19. For n > 2 we have A\(n) =1 — 2k(n).

Yet another approach to the same core problem called lonely runner has been given
in [12]. In spite of many research efforts during the last 30 years, the exact value of k(n)
is known only for values up to 5 ([13]). For n > 6, only upper and lower bounds have
been determined. If one considers balls instead of cubes [35], then the exact values for
the view obstruction problem are also known up to dimension 5 ([39]).

Let us close the present thesis by discussing some tight connections between our com-
plexity results and the view obstruction problem. First of all, the number-theoretical
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papers do not give any real evidence why determining x(n) is hard. Although, of course,
the view obstruction problem involves an infinite number of bodies, our complexity re-
sults for finite instances can be seen as a certain complexity-theoretical indication for
the hardness of this evaluation. Namely, by Theorem 7.3, for fixed dimension PARTTAL
VISIBILITY or QUADRANT VISIBILITY can be solved in polynomial time. However,
if the dimension is part of the input, then the problem becomes NP-hard by Theorem 7.2.
In a non-rigorous sense, this can be seen as a quantification of the strong influence of the
dimension compared to the other input parameters.

Another connection which we would like to point out refers to characterizing some easy
instances of PARTTAL VISIBILITY or QUADRANT VISIBILITY. Namely, consider the
view obstruction problem in R™. If the edge length « of the cubes in (7.3) satisfies
a < A(n) then there exists a visibility ray [0,00)q in the strictly positive orthant for
this visibility problem with infinitely many cubes. Fix this ray, and consider now the
following class of n-dimensional instances of QUADRANT VISIBILITY. The bodies are
cubes whose centers are contained in the grid (%, . ,%)T + Nj, and every cube has an
edge length at most A\(n). Additionally, let there be bodies which do not intersect the ray
[0,00)q and which guarantee that there cannot be a visibility ray which has a direction
“quite close” to one of the coordinate hyperplanes. By the definition of A(n) we know
that in this instance the answer is “VISIBLE”. So the characterization of that class might
be seen as a sufficient criterion for QUADRANT VISIBILITY (or similarly for PARTTAL
VISIBILITY), and progress on the evaluation of A(n) might — at least theoretically —
improve the characterization of that class.
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DEUTSCHSPRACHIGE ZUSAMMENFASSUNG

NEW ALGEBRAIC METHODS IN COMPUTATIONAL GEOMETRY —
NEUE ALGEBRAISCHE METHODEN IN DER ALGORITHMISCHEN GEOMETRIE

Gegenstand der Arbeit sind fundamentale algebraisch-geometrische Probleme in der
nichtlinearen algorithmischen Geometrie, die beispielsweise bei Sichtbarkeitsproblemen
mit bewegten Kamerapunkten oder der Berechnung minimal einschlielender Kreiszylinder
von Punktmengen im R"(n > 3) auftreten.

Im dreidimensionalen Fall fithren die algorithmischen Probleme auf Anzahl- und End-
lichkeitsfragen der Form: Wie viele Geraden gibt es (im Endlichkeitsfall) im R, die gleich-
zeitig Transversale zu k£ vorgegebenen Geraden und Tangente an 4—k vorgegebene Sphéren
im R? sind (0 < k& < 3) ? Unter welchen Bedingungen gibt es unendlich viele solcher Gera-
den? Bereits fiir den Fall von Einheitssphiren stellte die Anzahlfrage ein von D. Larman
im Jahr 1990 aufgeworfenes offenes Problem dar.

Vom algebraischen Standpunkt sind hierzu die reellen Lésungen polynomialer Glei-
chungssysteme zu studieren. Ausgehend von Fragen des obigen Typs werden in der Arbeit
algebraische Methoden zur Losung dieser reell-enumerativen Fragen fiir wichtige Klas-
sen geometrischer Tangentenprobleme im dreidimensionalen sowie n-dimensionalen Raum
entwickelt.

In Kapitel 2 der Arbeit werden die zugrundeliegenden geometrischen und algorithmi-
schen Grundlagen zusammengestellt. Insbesondere wird ein sweep-basierter Algorithmus
zur Losung des zweidimensionalen Sichtbarkeitproblems vorgestellt sowie gezeigt, wie im
dreidimensionalen Fall die algorithmischen Probleme auf die algebraisch-geometrischen
Kernprobleme zuriickgefiihrt werden konnen. Ferner werden Tangentialbedingungen in li-
niengeometrischen Pliickerkoordinaten formuliert, die in den weiteren Kapiteln von grund-
legender Bedeutung sind.

In Kapitel 3 wird das Problem der gemeinsamen Tangenten an vier Sphéren studiert.
Fiir den Fall affin unabhéngiger Mittelpunkte wird eine Formulierung des Problems als
Schnittpunkte einer kubischen sowie einer quartischen Kurve in der projektiven Ebene P2
angegeben. Anschliefflend wird der Fall von Einheitssphéren betrachtet. Es wird folgender
Satz gezeigt, der das Problem von D. Larman vollstdndig 16st:

Satz. Vier Einheitssphiiren im R® mit nicht-kollinearen Mittelpunkten haben héchstens
12 gemeinsame Tangenten im R®. Diese Schranke ist scharf.
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Die Tatsache, daf} fiir das algebraische Problem vom Grad 12 eine exakte Charakteri-
sierung der Fille mit unendlich vielen gemeinsamen Tangenten angegeben werden kann,
ist besonders bemerkenswert.

Der Beweis der Aussage unterscheidet zwischen mehreren Fillen. Fiir den Fall affin
unabhéngiger Mittelpunkte sowie einer irreduziblen, kubischen Kurve werden die sechs
Kantenrichtungen des Grundtetraeders untersucht, die sechs ausgezeichnete Punkte auf
der kubischen Kurve definieren. Eine genaue Analyse dieser Punkte zeigt, dafi die kubi-
sche Kurve nicht in der quartischen Kurve enthalten sein kann. Ist die kubische Kurve
reduzibel, dann liefern die algebraischen Zerfallsbedingungen geometrische Bedingungen
an das Grundtetraeder, auf deren Grundlage in jedem der zu untersuchenden Unterfille
ein Endlichkeitsbeweis gelingt. Der Beweis fiir den Fall affin abhéngiger Mittelpunkte be-
ruht auf einer direkten Betrachtung der Ellipsen mit vorgegebener kleinerer Halbachse
durch die vier gegebenen Mittelpunkte.

Hinsichtlich der Realisierbarkeit von Konfigurationen wird gezeigt, daf fiir alle Zahlen
k € {0,...,12} eine Konfiguration von vier Einheitssphéren existiert, die auf k verschie-
dene, relle, gemeinsame Tangentialgeraden fiihrt.

Ferner wird die Berechnung des minimal umschreibenden Kreiszylinders eines vor-
gegebenen (nicht notwendigerweise reguliren) Tetraeders im R® untersucht. Fiir diese
Optimierungsvariante des Tangentenproblems haben Devillers, Mourrain, Preparata und
Trébuchet polynomiale Formulierungen mit Bézout-Zahl 60 angegeben. Die Gleichungen
enthalten einige zusétzliche Losungen mit Vielfachheit 4, und als Folge dieser Vielfachhei-
ten sind die Rechenzeiten (mittels aktueller numerischer Loser polynomialer Gleichungssy-
steme) um etwa einen Faktor 100 grofer als die Rechenzeiten fiir vergleichbare Probleme,
in denen nur einfache Losungen auftreten. Wir verbessern diese Ergebnisse, indem wir eine
polynomiale Formulierung fiir die lokal extremen Zylinder mit Bézout-Zahl 36 angeben,
bei der jede Losung generisch die Vielfachheit 1 hat. Dariiber hinaus werden Teilklas-
sen von Tetraedern studiert, in denen die Grade der algebraischen Formulierungen weiter
verringert werden koénnen.

Wir schliefen Kapitel 3 mit einer kurzen Diskussion dynamischer Visualisierungsa-
spekte des Tangentenproblems.

Vom algebraisch-geometrischen Standpunkt ist das Tangentenproblem an Sphéren aus
folgendem Grund von besonderem Interesse. Die Formulierung des Problems in liniengeo-
metrischen Pliickerkoordinaten ergibt fiinf quadratische Gleichungen im reellen projek-
tiven Raum P3, deren gemeinsame Ldsungen im komplexen projektiven Raum P° eine
gemeinsame Komponente im Unendlichen enthalten (die fiir die ,fehlenden® 2° — 12 = 20
Losungen z&hlt). Diese gemeinsame Komponente kann nicht durch einen einzigen Blow-up
aufgelost werden.

In Kapitel 4 wird das Problem der gemeinsamen Tangenten an vier allgemeine Qua-
driken im R? und P? studiert. Zuniichst wird gezeigt, daf vier reelle Quadriken im dreidi-
mensionalen Raum 32 reelle gemeinsame Tangenten haben kénnen. Hierzu wird fiir dieses
Problem vom Grad 32 konstruktiv eine Familie von Konfigurationen angegeben, deren
Symmetrien die explizite Untersuchung der rellen Lésungen ermoglicht.
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Dariiber hinaus werden computeralgebraische Methoden entwickelt, um den doppel-
ten Blow-up des Tangentenproblems an Sphéren zu studieren. Hierzu beschreiben wir
das Ideal der eindimensionalen Komponente. Durch Erweiterung des Polynomrings sowie
Hinzufiigen geeigneter Polynome simulieren wir den Blow-up im Computeralgebra-System
SINGULAR und studieren das resultierende Ideal sowie den zweiten Blow-up.

In Kapitel 5 werden die verallgemeinerten Probleme der gemeinsamen Tangenten an
2n—2 Sphéiren bzw. allgemeine Quadriken im R" studiert, insbesondere unter Gesichts-
punkten der reellen, abzihlenden Geometrie. In den algorithmischen Anwendungen treten
diese Probleme etwa beim Berechnen minimal einschlielender Zylinder im R™ auf. Fiir den
Fall der Sphéaren wird folgende Aussage gezeigt:

Satz. Sei n > 3.

(a) Seien ¢y, ... ,cCop o € R” von der affinen Dimension n, und seien ry,... 73, 2 > 0.
Haben die 2n—2 Sphéaren mit Mittelpunkten ¢; und Radien r; nur eine endliche
Anzahl gemeinsamer Tangentialgeraden in C*, dann ist diese Anzahl hochstens 3 -
2n- 1,

(b) Es existiert eine Konfigurationen mit 3 - 2"~! verschiedenen, reellen, gemeinsamen
Tangentialgeraden. Dariiber hinaus kénnen solche Konfigurationen mit Einheits-
sphéiren erzielt werden.

Ferner werden Konfiguration von Sphéren studiert, deren Mittelpunkte eine affine
Dimension kleiner als n haben.
Fiir die gemeinsamen Tangenten an 2n—2 Quadriken in P" wird gezeigt:

Satz. Zu 2n—2 allgemeinen quadratischen Hyperflichen im P" gibt es

d _:22n—2_l 2n —2
" n\n-—1

komplexe gemeinsame Tangentialgeraden an die 2n—2 Hyperflichen (n > 2). Dariiber
hinaus gibt es eine Konfiguration von quadratischen Hyperflichen im R, fiir die alle
diese Tangentialgeraden reell sind und im affinen Raum R" liegen.

Der Beweis dieser Aussage beruht auf der Kombination sehr junger Resultate des
reellen Schubert-Kalkiils und auf die reelle Situation angepafiten, klassischen Perturbati-
onstechniken. Im Gegensatz zum dreidimensionalen Fall ist der Beweis im n-dimensionalen
Fall lediglich existentiell.

Die folgende Tabelle veranschaulicht die grofle Differenz zwischen der maximalen An-
zahl der (reellen) Tangentialgeraden fiir Sphéren und fiir allgemeine Quadriken.

L n»n [3]4[5 [ 6 [ 7 [ 8 [ 9 |
goot[12] 24 [ 48 [ 96 | 192 | 384 768
d, | 32320 | 3584 | 43008 | 540672 | 7028736 | 93716480
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Dariiber hinaus wird der Fall von 2n—2 Quadriken in P" betrachtet, die alle die gleiche
glatte Quadrik in einer vorgegeben Hyperebene enthalten.

Mit Hilfe der Charakterisierungen der Tangenten an 2n—2 Sphiren werden zudem
effiziente polynomiale Formulierungen zur Berechnung minimal umschreibender Zylinder
von Simplexen im R” vorgestellt und analysiert. Die Bézout-Zahlen dieser Formulierungen
liefern obere Schranken fiir die Anzahl lokal extremer Zylinder. Da diese Schranken nicht
scharf sind, werden fiir kleine Dimensionen bessere Schranken auf der Grundlage gemisch-
ter Volumina und dem Satz von Bernstein bestimmt. Fiir den Fall regulirer Simplexe wird
mittels elementarer Invariantentheorie gezeigt, dafl in einem geeigneten Koordinatensy-
stem der Richtungsvektor jedes lokal extremen umschreibenden Zylinders héchstens drei
verschiedene Eintridge enthilt.

Kapitel 6 behandelt die Geraden, die gleichzeitig tangential an £ Sphéren und trans-
versal zu 4—k Geraden im R® sind, k € {0,... ,4}. Vom algorithmischen Standpunkt tre-
ten diese Probleme in den genannten Anwendungen auf, wenn die Klasse der zuléssigen
Korpern aus Kugeln und Polytopen besteht. Es werden die scharfen oberen Schranken fiir
die Anzahl der gesuchten Geraden (im Endlichkeitsfall) im R® bestimmt. Zum Nachweis
der Korrektheit der angegebenen Konstruktionen mit der Maximalzahl an reellen Gera-
den werden teilweise computeralgebraische Methoden (Standardbasen in lokalen Ringen)
verwendet. Die Anzahlergebnisse sind in der nachstehenden Tabelle zusammengefaf3t.

Scharfe obere Charakterisierung der
Schranke oo-Konfigurationen

4 Geraden 2 (wohlbekannt) | ja (wohlbekannt)
3 Geraden, 1 Sphére 4 ja
2 Geraden, 2 Sphéren | 8 ja
1 Gerade, 3 Sphéren 12 -
4 Einheitssphéren 12 ja
4 Sphéren 12 -

Wie in der Tabelle angegeben, konnen fiir den Fall von drei Geraden und einer Sphiére
sowie zwei Geraden und zwei Sphéren die Félle mit unendlich vielen reellen gemeinsa-
men Tangenten exakt charakterisiert werden. In den Eintrdgen mit einem ,—* sind diese
Charakterisierungen offene Probleme.

Die Charakterisierung der degenerierten Situationen im Fall dreier Geraden und einer
Sphiére erfolgt mittels klassischer Methoden der Geometrie.

Fiir den Fall zweier Geraden und zweier Sphéren sind die degenerierten Situationen von
algebraischen Problemen achten Grades zu untersuchen. Zur Untersuchung der Geometrie
dieser Probleme werden computeralgebraische Methoden entwickelt und mit klassischen
Methoden der Klassifikation algebraischer Kurven kombiniert. Zunéchst wird das allge-
meinere Problem behandelt, bei dem die Sphiren im R*® durch allgemeine Quadriken in
P? ersetzt werden. Um die Geometrie dieses Problem zu studieren, werden zwei Geraden
und eine Quadrik in allgemeiner Lage fixiert, und die Menge der (zweiten) Quadriken,
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fiir die es unendlich viele gemeinsame Transversalen/Tangenten gibt, durch eine algebrai-
sche Kurve beschrieben. Diese Kurve ist vom Grad 24 im Raum P? der Quadriken. Das
Faktorisieren des Ideals dieser Kurve zeigt, daf} sie erstaunlich reduzibel ist:

Satz. Gegeben seien zwei windschiefe Geraden ¢; und /5 sowie eine allgemeine Quadrik @)
in P2. Der Abschlufl der Menge der Quadriken ', fiir welche es unendlich viele Geraden
gibt, die transversal zu ¢; und ¢, sowie Tangente an () und @' sind, ist eine Kurve vom
Grad 24 im Raum PY der Quadriken. Diese Kurve besteht aus 12 ebenen Kegelschnitten.

Der Beweis dieser Aussage erfolgt durch eine genaue Analyse des Ideals, das die al-
gebraische Kurve der (zweiten) Quadriken definiert. Darauf aufbauend wird der Satz mit
Hilfe einer Computerberechnung im Computeralgebra-System SINGULAR ausgefiihrt. Der
Erfolg der Berechnung hiangt mafigeblich von der vorangehenden Klassifikation der Kurve
sowie der Uberfithrung in Normalformen ab. Ferner wird gezeigt, daB es reelle Geraden
¢ und /5 und eine Quadrik @) gibt, fiir die alle 12 Komponenten der Kurve der zweiten
Quadriken reell sind.

Aufbauend auf diesen strukturgeometrischen Untersuchungen wird die folgende Cha-
rakterisierung der gemeinsamen Transversalen/Tangenten an zwei Geraden und zwei Sphé-
ren bewiesen.

Satz. Seien S; # S, Sphiren, und seien ¢; und ¢, windschiefe Geraden im R*. Es gibt
unendlich viele reelle transversale Tangenten zu /1, £5, S; und Ss in genau den folgenden
Fallen:

(1) Die Sphéren S; und S, beriihren sich an einem Punkt p, der auf einer der Geraden
liegt, und die zweite Gerade liegt in der gemeinsamen Tangentialebene der Sphéiren
am Punkt p.

(2) ¢; und /5 sind beide Tangenten sowohl von S als auch von Sy, und sie gehen durch
eine Rotation um eine die Mittelpunkte von S; und Sy verbindende Gerade hervor.

In Kapitel 7 werden die algebraischen Ergebnisse durch komplexitéitstheoretische Un-
tersuchungen von Sichtbarkeitsproblemen mit bewegten Kamerapunkten reflektiert. Es
wird die Turingmaschinen-Komplexitit dieser Sichtbarkeitsprobleme in Rdumen variabler
und fester Dimension untersucht. Die hierbei betrachteten Klassen geometrischer Korper
sind die Klasse der Kugeln, der als konvexe Hiille endlich vieler Punkte dargestellten Po-
lytope (,,V-Polytope®) sowie der als Durchschnitt endlich vieler Halbrdume dargestellten
Polytope (,,H-Polytope®).

Es werden die folgenden Resultate gezeigt, die die komplexititstheoretische Grenzlinie
zwischen effizient 16sbaren und schwierigen Problemen charakterisiert. Falls die Dimensi-
on des Raumes Teil der Eingabe ist, dann ist das Uberpriifen der partiellen Sichtbarkeit
eines gegebenen Korpers NP-schwer. Falls die Dimension fest ist, dann wird das Sicht-
barkeitsproblem fiir alle drei Klassen in polynomialer Zeit 16sbar. Der Nachweis der NP-
Schwierigkeitsresultate beruht auf geometrischen Konstruktionen, durch die den Sichtbar-
keitsproblemen eine kombinatorische Struktur induziert wird. In einem zweiten Schritt
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werden diese Probleme auf das aussagenlogische 3-SAT-Problem reduziert. Einige der
Polynomialitdtsaussagen beruhen auf der algebraisch-geometrischen Technik der reellen
Quantorenelimination.

Schliefllich wird eine Verbindung zwischen den Komplexitétsresultaten und dem , view
obstruction* Problem aus der diophantischen Approximation hergestellt.



