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1. INTRODUCTION

In its maturing stage, 
omputational geometry has fo
used its

attention mostly on linear obje
ts. The motivation was sound:

Why deal with 
urved shapes if we do not even understand poly-

hedral obje
ts? In manufa
turing, su
h a limitation is simply

una

eptable. The time has 
ome to bridge this gap.

From Appli
ation 
hallenges to 
omputational geometry ([30℄).

The design of geometri
 algorithms 
an be seen as a redu
tion of the initial problems

to sequen
es of subproblems on geometri
, 
ombinatorial, and algebrai
 properties of

geometri
 obje
ts [9, 45℄. In the early ages of 
omputational geometry, the algebrai


aspe
ts 
ould often be negle
ted, sin
e the degree of the problems under 
onsideration was

quite small. A famous \
lassi
al" example demonstrating the deep 
onne
tions between

algebrai
 methods and 
omputational geometry is the �eld of motion planning (see [22,

119, 120℄). Many 
urrent world-wide resear
h e�orts on 
omputational geometry of non-

linearly bounded bodies indi
ate that algebrai
 methods will be
ome in
reasingly important

in 
omputational geometry.

Algorithmi
 questions involving lines in R

3

and R

n

belong to the fundamental problems

in 
omputational geometry [26, 102, 136℄, 
oming from appli
ations in 
omputer graphi
s

[104℄, roboti
s [122℄, visualization [106℄, and 
omputer-aided geometri
 design (CAGD)

[106℄. These questions are immediately 
onne
ted with nonlinear, algebrai
 problems,

sin
e the set of lines in real proje
tive spa
e P

3

R

is naturally asso
iated with a 
ertain

quadri
 in P

5

R

, the so-
alled Klein quadri
.

In the last years, a variety of algorithmi
 questions involving lines in R

3

and R

n

have

led to a 
hallenging, both geometri
ally and algebrai
ally ri
h 
lass of algebrai
-geometri



ore problems involving the

lines simultaneously tangent to given bodies in R

n

:

As an initial referen
e example, 
onsider the problem of determining whi
h bodies of

a given s
ene in R

3


annot be seen from any viewpoint outside of the s
ene. Here, by

\outside of the s
ene" we mean a viewpoint whi
h is not 
ontained in the 
onvex hull of

the bodies. From the geometri
 point of view, this leads to the problem of determining

the 
ommon tangent lines to four given bodies in R

3

(
f. Se
tion 2.2). Besides several
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visibility appli
ations [21, 36, 41, 42, 43, 146℄, other algorithmi
 tasks leading to the same

geometri
 
ore problem in
lude 
omputing smallest en
losing 
ylinders [3, 114℄, 
omputing

geometri
 permutations/stabbing lines [3, 103℄, 
ontrolling a laser beam in manufa
turing

[102℄, or pla
ement problems in geometri
 modeling [40, 76℄.

However, already for the 
lass of unit balls in R

3

the questions of �niteness (under what


onditions do there exist only �nitely many real 
ommon tangents?) and the maximum

number of real solutions show that the tangent problem is mu
h more involved than

its simple formulation suggests. In fa
t, the question on the maximum number of real


ommon tangent lines to four unit spheres (in the �nite 
ase) was �rst formulated by David

Larman [87℄. Independently, this question { in the equivalent formulation of 
ir
ular unit


ylinders passing through four given points { was expli
itly stated in [79℄. For four general

spheres, the question on the maximum number appears as an expli
it open question in [30,

Se
tion 9℄. Hen
e, it is not surprising that (in 
onne
tion with the appli
ations in [40℄)


on
rete instan
es of the problem also served as hard three-dimensional geometri
 test

problems for numeri
al polynomial solvers [144℄.

Real enumerative geometry. The tangent problem 
an be seen as a problem from real

enumerative geometry. This dis
ipline is 
on
erned with questions of the following type:

Given a 
lass of geometri
 problems (say, given by a 
lass of systems of polynomial equa-

tions) with a �nite number of (a priori 
omplex) solutions, what is the maximum number

of real solutions?

One of the most famous 
lassi
al results in enumerative geometry is the enumeration

by Cayley and Salmon of the 27 (a priori 
omplex) lines on a smooth 
ubi
 surfa
e

(see [71, 72℄). A

ording to another famous result, misstated by Steiner [135℄ and 
orre
tly

proven �rst by Chasles (
f. [117℄), there are 3264 (a priori 
omplex) 
oni
s tangent to �ve

given 
oni
s. For some rigorous modern treatises based on modern algebrai
 geometry see

[56, 55, 81℄.

However, as pointed out in [55, p. 55℄, the question of how many solutions in a given

enumerative setting 
an be real is still widely open. For an ex
ellent re
ent survey we refer

to [130℄. The general diÆ
ulty of proving tight bounds of this kind may be seen by the

following two aspe
ts. For the 
oni
s tangent to �ve given 
oni
s the existen
e problem

of 3264 real solutions had not been solved until few years ago ([110℄ and [55, x7.2℄).

Furthermore, as pointed out in [127℄, there are nearly no 
riteria or general te
hniques for

proving the maximum number of real solutions.

Degenera
y of 
lasses of polynomial equations. Besides the questions on the maximum

number of (real) solutions whi
h re
e
t the algebrai
 diÆ
ulty of a problem, eÆ
ient

algorithmi
 approa
hes require to �nd exa
t 
hara
terizations of the 
on�gurations with

in�nitely many solutions, i.e., where the dis
rete and 
ombinatorial nature of the problem

gets lost. In 
ontrast to other problems in 
omputational geometry, 
hara
terizing these

situations 
annot be negle
ted (say, by applying perturbation te
hniques [46℄), sin
e the

large algebrai
 degree involved makes it usually highly nontrivial to guarantee a 
orre
t

perturbation.
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s and results of this thesis. 3

1.1 Topi
s and results of this thesis.

In this thesis, we provide substantial 
ontributions towards the 
lari�
ation of the funda-

mental problems stated above. In the following, we give an outline of the results, and put

them into appropriate 
ontexts.

The main 
hapters are pre
eded by Chapter 2, whi
h introdu
es relevant geometri



on
epts and 
onne
ts the algorithmi
 appli
ations to the geometri
 problems under in-

vestigation.

1.1.1 Common tangents to four spheres in R

3

For the 
ommon tangents to four (not ne
essarily disjoint) spheres we show that in the


ase of �nitely many solutions this number of 
ommon tangents is bounded by 12. For

the 
ase of unit spheres we provide a 
omplete 
lassi�
ation by showing the following

theorem.

Four unit spheres in R

3

whose 
enters are not 
ollinear have at

most 12 
ommon tangent lines in R

3

. This bound is tight, i.e., there

exists a 
on�guration of four unit spheres in R

3

with 12 distin
t real


ommon tangent lines.

The fa
t that for this algebrai
 problem of degree 12 the 
ases with in�nitely many 
ommon

tangent lines 
an be 
hara
terized exa
tly is parti
ularly remarkable. Moreover, our results

solve the open questions in [30, 79, 87℄ mentioned before.

We 
omplement this result by investigating the following question raised by David

Cox:

For whi
h numbers k 2 f0; : : : ; 12g does there exist a 
on�guration with exa
tly k

di�erent 
ommon tangents in real spa
e R

3

?

Additional motivation for studying this question 
omes from several quite di�erent

aspe
ts. Firstly, any knowledge on the subset K � f0; : : : ; 12g of realizable numbers

gives important information for the mentioned appli
ations. When using numeri
al solvers

of polynomial equations to �nd the numeri
al values of the tangents, the 
omputations

may be
ome instable, espe
ially for 
on�gurations of 
enters whi
h are 
lose to singular


on�gurations (
f. Se
tion 3.5). If not all numbers k 2 f0; : : : ; 12g 
an be established in

real spa
e this o�ers the possibility of strong and valuable 
onsisten
y 
he
ks within a

program. If, however, all numbers 
an be realized then this proves the non-existen
e of

su
h a 
ontrol me
hanism.

Se
ondly, the set of realizable numbers gives important insights into the algebrai
,

geometri
, and 
ombinatorial stru
ture of the tangent problem. Observe that the tangent

problem to four spheres 
ould be seen as a purely geometri
 problem. In 
ontrast to

this, the proof of the theorem above is of algebrai
 nature and therefore does not �t well
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together with additional purely geometri
 
onstraints (e.g., disjointness) on the spheres.

Here, the hardness in the geometri
 
onstru
tion of 
on
rete 
on�gurations might be seen

as an indi
ation of the diÆ
ulty to establish a purely geometri
 proof.

Thirdly, exploring the realizable numbers allows to relate the tangent problem (whi
h

arose from re
ent appli
ations) to some well-studied problems in 
lassi
al and enumerative

geometry (whi
h mainly arose from their natural formulations). Con
erning the 27 lines

on a smooth 
ubi
 surfa
e, the question of real solutions has already been studied long

time ago ([113, 121℄, see also [111, p. 188℄). In parti
ular, for a 
ubi
 surfa
e in P

3

R

only the

numbers 3, 7, 15, and 27 
an be established with real lines. Another famous example in

geometry is Apollonius' problem whi
h asks for the 
ir
les tangent to three given 
ir
les.

For this problem, there exist 
on�gurations with k 2 f0; 1; : : : ; 6; 8g real tangent 
ir
les

but provably no 
on�guration with 7 real tangent 
ir
les [101℄.

We show that the situation for the tangents to four unit spheres is di�erent from these

situations. Namely, we prove:

For any number k 2 f0; : : : ; 12g there exists a 
on�guration of four

unit spheres in R

3

whi
h have exa
tly k distin
t 
ommon tangents

in R

3

.

As an appli
ation of the results, we study the problem of �nding the smallest 
ir
um-

s
ribing 
ylinder of a (not ne
essarily regular) tetrahedron in R

3

. Devillers, Mourrain,

Preparata, and Tr�ebu
het [37℄ demonstrated that using their state-of-the-art numeri
al

polynomial solvers, various problems related to 
ylinders in R

3


an be solved rather eÆ-


iently. In parti
ular, they give a polynomial formulation for the smallest 
ir
ums
ribing


ylinders of a tetrahedron in R

3

, whose B�ezout number { the produ
t of the degrees of

the polynomial equations { is 60. However, these equations 
ontain 
ertain undesired

solutions with multipli
ity 4, and as a 
onsequen
e of these multipli
ities the 
omputa-

tion times (using state-of-the-art numeri
al te
hniques) are about a fa
tor 100 larger than

those of similar problems in whi
h all solutions o

ur with multipli
ity 1.

In Se
tion 3.4, we improve the results of [37℄ by providing a polynomial formulation for

the lo
ally extreme 
ylinders, whose B�ezout bound is 36 and whose solutions generi
ally

have multipli
ity one. We also present 
lasses of tetrahedra for whi
h the algebrai
 degrees

in 
omputing a smallest 
ir
ums
ribing 
ylinder 
an be 
onsiderably redu
ed.

We 
lose Chapter 3 with a short dis
ussion of dynami
 visualization aspe
ts of the

tangent problem and their 
onne
tion to homotopy-based solvers of polynomial equations.

1.1.2 Common tangents to four quadri
s in P

3

and R

3

From the algebrai
-geometri
 point of view, the tangent problem is of parti
ular im-

portan
e for the following reason. The formulation of the problem in terms of Pl

�

u
ker


oordinates gives �ve quadrati
 equations in proje
tive spa
e P

5

R

, whose 
ommon solutions

in (
omplex spa
e) P

5

in
lude a one-dimensional 
omponent at in�nity (a

ounting for

the \missing" 2

5

� 12 = 20 solutions). Quite remarkably, as observed by P. AluÆ and

W. Fulton [1℄, this ex
ess 
omponent 
annot be resolved by a single blow-up.
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In Se
tion 4.1, we solve the real enumerative question for quadrati
 surfa
es in P

3

(shortly, quadri
s) by showing that 32 is the true upper bound of tangents to four quadri
s,

even over the reals. We present and analyze a 
lass of 
on�gurations of four quadri
s in

R

3

su
h that any 
on�guration in this 
lass leads to 32 distin
t real 
ommon tangent lines.

In Se
tion 4.2 we propose to use 
omputer-algebrai
 methods to study interse
tion-

theoreti
al phenomena su
h as this double blow-up. For this, we des
ribe the ideal of

the one-dimensional ex
ess 
omponent. By extending the polynomial ring and adding

suitable polynomials we simulate the blow-up in the 
omputer algebra system Singular

and study the resulting ideal as well as the se
ond blow-up.

1.1.3 Tangent problems to quadri
s in n-dimensional spa
e

In Chapter 5, we study the natural (real) enumerative generalizations of the tangent prob-

lem to n-dimensional spa
e. Given 2n�2 spheres (respe
tively quadri
s) in n-dimensional

spa
e, what is the maximum number of (real) 
ommon tangent lines in the �nite 
ase?

The number of 2n�2 quadri
s guarantees that in the generi
 
ase there is indeed a �nite

number of 
ommon tangent lines. The problem to �nd the 
ommon tangents to 2n�2

given spheres in R

n

arises, for example, in the 
omputation of smallest en
losing 
ylinders

in n-dimensional spa
e (whi
h is a fundamental problem in statisti
al analysis, see [24℄).

Consider 2n�2 spheres in R

n

whose 
enters aÆnely span R

n

. We show that if the

spheres have a �nite number of 
omplex 
ommon tangent lines, then that number is

bounded by 3 � 2

n�1

. Moreover, we show that there exists a 
on�guration of unit spheres

su
h that all these 3 � 2

n�1

tangents are real. We also dis
uss the 
ase of 2n�2 spheres

whose 
enters have aÆne dimension less than n.

In Se
tion 5.2, we 
onsider the tangents to 2n�2 quadri
s in P

n

. Sin
e this prob-

lem 
an be formulated as the 
omplete interse
tion of 2n�2 quadrati
 equations on the

Grassmannian of lines in P

n

, the expe
ted number of (
omplex) solutions is given by the

produ
t of the degrees of the equations with the degree of the Grassmannian,

d

n

:= 2

2n�2

�

1

n

�

2n� 2

n� 1

�

:

As our main result of this se
tion, we show: Given 2n�2 general quadri
s in P

n

there are

d

n


omplex lines that are simultaneously tangent to all 2n�2 quadri
s (n � 2), and there

is a 
hoi
e of quadri
s in R

n

for whi
h all the lines are real and lie in aÆne spa
e R

n

.

Our proof 
ombines re
ent results in the real S
hubert 
al
ulus with 
lassi
al perturba-

tion arguments adapted to the real numbers. With regard to the appli
ation mentioned

above, Table 1.1 exhibits the amazingly large di�eren
e between the number of (real)

tangent lines for spheres and the number of (real) tangent lines for general quadri
s.

We also put the tangent problem to spheres into the perspe
tive of 
ommon tangents

to general quadri
s. In parti
ular, we dis
uss the problem of 
ommon tangents to 2n�2

smooth quadri
s in P

n

, and des
ribe the ex
ess 
omponent at in�nity for the problem of

spheres. In this setting, the upper bound on the number of tangents to spheres implies
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n 3 4 5 6 7 8 9

3 � 2

n�1

12 24 48 96 192 384 768

d

n

32 320 3584 43008 540672 7028736 93716480

Tab. 1.1: Maximum number of tangents to 2n�2 spheres in R

n

and to 2n�2 quadri
s in P

n

that there will be at most 3 �2

n�1

isolated 
ommon tangents to 2n�2 quadri
s in P

n

, when

the quadri
s all 
ontain the same (smooth) quadri
 in a given hyperplane. In parti
ular,

the problem of the spheres 
an be seen as the 
ase when the 
ommon quadri
 is at in�nity

and 
ontains no real points.

In Se
tion 5.3, as an appli
ation of the 
hara
terization of tangents to spheres, we give

an eÆ
ient polynomial formulation for smallest 
ir
ums
ribing 
ylinders of a simplex in

R

n

. Using this formulation we give a bound on the number of lo
ally extreme 
ylinders

based on the B�ezout number. Sin
e this bound is not tight, we provide better bounds for

small dimensions; these bounds are based on mixed volume 
omputations and Bernstein's

Theorem. Moreover, we study in detail the lo
ally extreme 
ir
ums
ribing 
ylinders of

a regular simplex in R

n

. To exploit many symmetries in the analysis, we provide a

formulation based on symmetri
 polynomials. Using elementary invariant theory, we show

that the dire
tion ve
tor of every lo
ally extreme 
ir
ums
ribing 
ylinder has at most three

distin
t values in its 
omponents. With this result we 
an illustrate our 
ombinatorial

results on the number of solutions for general simpli
es.

As a byprodu
t of our 
omputational studies, we dis
overed a subtle but severe mistake

in the paper [148℄ on the expli
it determination of the smallest en
losing 
ylinder for a

regular simplex in R

n

, thus 
ompletely invalidating the proof given there. In an appendix

to Se
tion 5.3, we give a des
ription of that 
aw, in
luding some 
omputer-algebrai



al
ulations illustrating it.

1.1.4 Common transversals and tangents

In Chapter 6, we 
onsider the lines whi
h are simultaneously tangent to k spheres and

4�k lines in R

3

, k 2 f0; : : : ; 4g. From the algorithmi
 point of view, these problems

immediately arise in the mentioned appli
ations when the 
lass of admissible bodies in

the s
ene 
onsists of both balls and polytopes (see Se
tion 2.2.5). The 
ase k = 0 asks

for the 
ommon transversals to four given lines in R

3

. This geometri
 problem has been

well-known for many years (see, e.g., [70, 75, 117℄). In parti
ular, if a 
on�guration has

only �nitely many 
ommon transversals, then this number is bounded by 2; and it is well-

known how to 
hara
terize the 
on�gurations with in�nitely many 
ommon transversals.

We 
ompute tight upper bounds for the number of real 
ommon tangents to k spheres

and 4�k lines in the �nite 
ase, k 2 f0; : : : ; 4g. Table 1.2 summarizes our results. It

shows the tight upper bounds for the maximum number of real solutions. The last 
olumn

shows that in some 
ases, we are able to expli
itly 
hara
terize the 
on�gurations with an
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tight upper bound 
hara
terization of

# solutions degenerate instan
es

4 lines 2 (well-known) yes (well-known)

3 lines, 1 sphere 4 yes

2 lines, 2 spheres 8 yes

1 line, 3 spheres 12 {

4 unit spheres 12 (see Chapter 3) yes (see Chapter 3)

4 spheres 12 (see Chapter 3) {

Tab. 1.2: Lines tangent to k given spheres and transversal to 4�k given lines in R

3

in�nite number of real 
ommon tangents. In the entries with a \{" we do not know su
h

a 
hara
terization.

The proofs of these results are of di�erent 
avors. For k 2 f1; 2g, the upper bounds

immediately follow from B�ezout's Theorem. Whereas for k = 1 it is easy to give a 
onstru
-

tion mat
hing this bound, for k = 2 we use a 
omputation of interse
tion multipli
ities

based on standard bases in lo
al rings to prove 
orre
tness of the 
onstru
tion. For k = 3,

the B�ezout bound in the Pl

�

u
ker formulation will be 16 instead of 12. In order to �nd

a better bound for the number of solutions in R

3

, we prove that there are two solutions

with multipli
ity at least two in the plane at in�nity.

The 
hara
terization of the degenerated situations in the 
ase of three lines and one

sphere is based on 
lassi
al methods of geometry.

For the 
ase of two lines and two spheres, we have to investigate the degenerated

situations of an algebrai
 problem of degree 8. In order to establish this 
hara
terization,

we develop a variety of symboli
 methods and 
ombine them with 
lassi
al methods of


lassi�
ation of algebrai
 
urves. First we deal with the more general problem where we

repla
e the spheres in R

3

by general quadri
s in P

3

. In order to study the geometry of

this problem, we �x two lines and a quadri
 in general position, and des
ribe the set of

(se
ond) quadri
s for whi
h there are in�nitely many 
ommon transversals/tangents in

terms of an algebrai
 
urve. It turns out that this set is an algebrai
 
urve of degree 24

in the spa
e P

9

of quadri
s. Fa
toring the ideal of this 
urve shows that it is remarkably

redu
ible. Namely, the 
urve 
onsists of 12 plane 
oni
s.

In the proof of this statement, we �rst investigate the ideal de�ning the algebrai



urve of the set of (se
ond) quadri
s. Based on this, we prove the theorem with the

aid of a 
omputer 
al
ulation in the 
omputer algebra system Singular [62℄. As will

be explained in Se
tion 6.2.3, the su

ess of that 
omputation depends 
ru
ially on the

pre
eding analysis of the 
urve. Quite interestingly, there are real lines `

1

and `

2

and

real quadri
s Q su
h that all 12 
omponents of the 
urve of se
ond quadri
s are real. In

general, given real lines `

1

, `

2

, and a real quadri
 Q, not all of the 12 
omponents are

de�ned over the real numbers.
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1.1.5 Algorithmi
 
omplexity of visibility 
omputations with moving viewpoints

In Chapter 7, we 
hange our viewpoint towards the following guiding question: In how

far is the algebrai
 diÆ
ulty of visibility 
omputations with moving viewpoints re
e
ted

by 
omplexity-theoreti
al hardness results in the Turing ma
hine model.

We analyze the binary Turing ma
hine 
omplexity of visibility 
omputations in spa
es

of variable dimension. Here, an additional motivation of dealing with visibility 
ompu-

tations in spa
es of variable dimension 
omes from high-dimensional data visualization

[139℄. The 
lasses of geometri
 bodies under 
onsideration are that of balls, that of poly-

topes represented as the 
onvex hull of �nitely many points (\V-polytopes"), and that

of polytopes represented by an interse
tion of �nitely many halfspa
es (\H-polytopes").

Roughly speaking, we show the following results that 
hara
terize the borderline between

tra
table and hard problems. If the dimension of the spa
e is part of the input, then


he
king visibility of a given body B in the s
ene is NP-hard for all three 
lasses. In the


ase where the given body B degenerates to a single point, we 
an prove also membership

in NP for the two 
lasses of polytopes. If however, the dimension is �xed then the visibility

problem be
omes solvable in polynomial time for all three 
lasses. (For pre
ise statements

of the results see Theorems 7.2 and 7.3.)

Moreover, we establish a link between these hardness results and the view obstru
tion

or lonely runner 
onje
ture from diophantine approximation [12, 34, 150℄. For x 2 R let

jjxjj

I

denote the distan
e of x to a nearest integer. Then, for ea
h positive integer n, let

�(n) = inf

v

1

;::: ;v

n

2N

sup

�2[0;1℄

min

1�i�n

jj�v

i

jj

I

;

a measure for simultaneous homogeneous diophantine approximation. Wills [150℄ and later

Cusi
k [34℄ 
onje
tured that �(n) =

1

n+1

. Although this 
onje
ture has been investigated

in a series of papers in the last 30 years (see the list of referen
es in [27℄), the exa
t value of

�(n) is known only for n � 5. Our hardness results 
an be seen as a 
omplexity-theoreti
al

indi
ation why the number-theoreti
al view obstru
tion problem is hard.

1.2 Publi
ations in advan
e and viewpoint of this thesis.

Most of the results in this thesis have been published beforehand, partly in 
onne
tion

with various 
oauthors: see [19, 85, 90, 96, 131, 132, 140, 141, 142℄. Rather than keeping

the results of these papers separated, the material has been restru
tured in this thesis.

The aim is to provide a 
omprehensive treatment of the results on that resear
h. However,

in order to allow a self-
ontained a

ess to the three-dimensional problems (whi
h are the

most relevant ones for algorithmi
 purposes), the three-dimensional problems on spheres

and quadri
s are treated before the general n-dimensional problems.

The following list enumerates for ea
h of the 
hapters of this thesis whi
h papers are

the essential sour
es of the results:

Chapter 2: [142℄.
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2. BACKGROUND AND PRELIMINARIES

In order to keep this thesis self-
ontained within the di�erent resear
h 
ommunities in-

volved, we present our geometri
 notions in Se
tion 2.1. In Se
tion 2.2, we introdu
e the

algorithmi
 problems and the algorithmi
 framework relevant to our work. Finally, in

Se
tion 2.3, we review the well-known Pl

�

u
ker 
oordinates from line geometry and state

some tangent 
onditions. These 
oordinates will be extensively used in Chapters 4 to 6.

2.1 Geometri
 preliminaries

2.1.1 Basi
 geometri
 notions

Dot produ
t, s
alar produ
t, and norm. For x; y 2 C

n

, let x � y :=

P

n

i=1

x

i

y

i

denote

their usual dot produ
t. We write x

2

for x � x. Within real spa
e R

n

, the bilinear form

R

n

� R

n

! R, (x; y) 7! x � y is the Eu
lidean s
alar produ
t, and jj � jj : R

n

! R,

jjxjj := (x � x)

1=2

is the Eu
lidean norm.

Proje
tive spa
es. For n � 1, let P

n

denote n-dimensional 
omplex proje
tive spa
e, and

let P

n

R

denote n-dimensional real proje
tive spa
e.

Quadri
s and spheres. Let n � 1, and let Q 2 C

n+1;n+1

n f0g, where C

k;m

denotes the

set of k � m-matri
es with 
omplex entries. Then the set fx 2 P

n

: x

T

Qx = 0g is

a quadrati
 hypersurfa
e in P

n

, shortly, a quadri
 in P

n

; without loss of generality we


an assume that Q is symmetri
. Throughout the presentation, we will often identify a

quadri
 in P

n

with the symmetri
 representation matrixQ. Quadri
s whi
h 
an be de�ned

by representation matri
es with real entries are 
alled real quadri
s.

A quadri
 de�ned by a representation matrix Q is smooth (i.e., the gradient of x

T

Qx

is non-zero for any (x

0

; : : : ; x

n

)

T

2 P

n

) if its representation matrix has rank n+1.

For 
 2 R

n

and r > 0, the sphere in R

n

with 
enter 
 and radius r is denoted by S(
; r).

In P

n

, it is des
ribed by (x

1

� 


1

x

0

)

2

+ : : :+ (x

n

� 


n

x

0

)

2

= r

2

x

2

0

, and it is identi�ed with

the matrix

0

B

B

B

B

B

�

P

n

i=1




2

i

� r

2

�


1

�


2

� � � �


n

�


1

1 0 : : : 0

�


2

0 1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0

�


n

0 � � � 0 1

1

C

C

C

C

C

A

: (2.1)
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Convexity. Let n 2 N . For a set A � R

n

, 
onv(A) denotes the 
onvex hull of A. A 
onvex

body (or simply body) is a bounded, 
losed, and 
onvex set whi
h 
ontains interior points.

A polytope in R

n

is the 
onvex hull of �nitely many points v

1

; : : : ; v

k

2 R

n

. A simplex in

R

n

is the 
onvex hull of n+ 1 aÆnely independent points. In R

3

, a simplex is also 
alled

a tetrahedron. Let e

i

denote the i-th standard unit ve
tor in R

n

. Then for 
 2 R

n

and

�

1

; : : : ; �

n

> 0, 
onv(f
� �

i

e

i

: 1 � i � ng) is 
alled a 
ross polytope in R

n

. A box is a

polytope of the form fx 2 R

n

: �

i

� x

i

� �

i

g with given �

i

< �

i

, 1 � i � n.

Segments and rays in R

n

. Let x 6= y 2 R

n

, and let w 2 R

n

n f0g. Then 
onvfx; yg is the

segment 
onne
ting x and y. A ray issuing from x is a set of the form x + [0;1)w.

2.1.2 Polynomial equations

Nonlinear geometri
 problems are naturally des
ribed in terms of polynomial equations.

Throughout the text, we apply a number of te
hniques from 
omputational algebrai


geometry. For easily a

essible, 
omprehensive treatments and the state of the art see [31,

32, 137℄. In parti
ular, let us re
all the following version of B�ezout's Theorem [32, p. 91℄,

whi
h will be used many times.

Theorem 2.1. (B�ezout) Let n � 2, and let f

1

; : : : ; f

n

be homogeneous polynomials in

x

0

; : : : ; x

n

of degrees d

1

; : : : ; d

n

> 0. If f

1

; : : : ; f

n

have a �nite number of 
ommon zeroes

in 
omplex proje
tive n-spa
e P

n

then the number of zeroes (
ounted with multipli
ity) is

d

1

�d

2

� � �d

n

.

The theorem does not only give a theoreti
al bound on the number of solutions. From

the pra
ti
al point of view, the 
omputational 
osts of solving a system of polynomial

equations are mainly dominated by the B�ezout number (= produ
t of the degrees) and

the mixed volume (the latter one is dis
ussed in Se
tion 5.3.1).

2.2 Motivation and algorithmi
 ba
kground

As mentioned in the introdu
tion, a variety of algorithmi
 appli
ations has led to the

algebrai
 
ore problems studied in the next 
hapters. Exemplarily, we des
ribe three of

these appli
ations. The �rst one 
omes from ray-tra
ing with moving viewpoints and

will also be our main visibility problem for the 
omplexity-theoreti
al investigations in

Chapter 7. Namely, we want to 
ompute information on the viewpoint positions where

the visibility topology of the s
ene 
hanges. This in
ludes ta
kling the problem of partial

visibility, whi
h will be introdu
ed in Se
tion 2.2.1. In Se
tion 2.2.2 we introdu
e the

problem of 
omputing smallest en
losing 
ylinders. Then, in Se
tion 2.2.3, we introdu
e

the 
on
ept of envelopes in the design of 
omputational-geometri
 data stru
tures.

For all these problems and related problem 
lasses, in dimension 2 the resulting geo-

metri
 questions remain rather elementary (
f. [99, 105℄), and the primary fo
us on these

problems is on eÆ
ient algorithms and data stru
tures. Therefore, exemplarily for the
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treatment of two-dimensional problems of this kind, we present a sweep algorithm for the

partial visibility problem in Se
tion 2.2.4.

In Se
tion 2.2.5, we show how the three-dimensional versions of these problems lead to

the tangent problems to 
ommon bodies. In parti
ular, for the smallest en
losing 
ylinder

of a point set in R

3

, we study this redu
tion in full detail.

2.2.1 Partial visibility

We 
onsider a s
ene in R

n


onsisting of m + 1 (not ne
essarily disjoint) 
onvex bodies

B

0

; B

1

; : : : ; B

m

from a 
lass X in R

n

(X might be the set of all balls or the set of all

full-dimensional polytopes).

Let v 2 R

n

be the viewpoint of the s
ene. We 
allB

0

partially visible from the viewpoint

v (with respe
t to B

1

; : : : ; B

m

) if there exists an x 2 B

0

satisfying


onvfx; vg \ relint(B

i

) = ; for all 1 � i � m ;

where relint(B

i

) denotes the relative interior of the body B

i

.

Con
erning the variety of possible viewpoint areas, we will parti
ularly 
on
entrate on

the most natural one: all viewpoints \outside of the s
ene" are possible. More pre
isely,

if the body B

0

is partially visible from some viewpoint v 2 R

n

n 
onv(

S

m

i=0

B

i

) then it is


alled partially visible; otherwise it is 
alled invisible. A visibility ray b for B

0

is a ray

issuing from some point x 2 B

0

with b \ relint(B

i

) = ; for all 1 � i � m. Hen
e, B

0

is

partially visible if and only if there exists a visibility ray for B

0

.

The main problem PARTIAL VISIBILITY with respe
t to a given body 
lass X is

de�ned as follows.

Problem PARTIAL VISIBILITY

X

:

Instan
e: m, n, bodies B

0

; B

1

; : : : ; B

m

� R

n

from the 
lass X .

Question: De
ide whether B

0

is partially visible with respe
t to B

1

; : : : ; B

m

.

Bodies whi
h are not partially visible 
an be immediately removed from the s
ene,

whi
h redu
es the 
omplexity of the visualization pro
ess. In 
ase of dense 
rystals whose

atoms are visualized as suÆ
iently large balls in R

3

, the redu
tion in 
omplexity may be

quite substantial.

Remark 2.2. The problem of partial visibility 
an be seen as one of the easiest visibility

problem with moving viewpoints. Con
erning the algebrai
 aspe
ts treated in the next


hapters, all the related visibility problems in [36, 41, 42, 43, 146℄ lead to the same algebrai


questions.
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2.2.2 Smallest en
losing 
ylinders

Let n 2 N . Given points p

1

; : : : ; p

m

2 R

n

, let P := fp

1

; : : : ; p

m

g. For our purposes, we

de�ne a 
ylinder in R

n

to be a set of the form

bd(`+ �B

n

) ;

where ` is a line in R

n

, B

n

denotes the unit ball, � > 0, the addition denotes the Minkowski

sum, and bd(�) denotes the boundary of a set. We say that P 
an be en
losed in a 
ylinder

C if P is 
ontained in the 
onvex hull of C. Equivalently, we 
an speak of an en
losing


ylinder of the polytope 
onvfp

1

; : : : ; p

m

g. An en
losing 
ylinder of P of minimal radius

is 
alled a smallest en
losing 
ylinder of P. One of the most natural examples of this


lass is the one for dimension 3, i.e., the smallest en
losing (
ir
ular) 
ylinder of a point

set in R

3

.

In the notation of [17, 63℄, the radius � of a smallest en
losing 
ylinder of a polytope

P is 
alled the outer (n�1)-radius of P . This notion 
omes from the fa
t that it is the

radius of an en
losing (n�1)-dimensional sphere in the optimal orthogonal proje
tion of

P onto an (n�1)-dimensional linear subspa
e.

The de
ision variant of the smallest en
losing 
ylinder problem asks whether there

exists an en
losing 
ylinder of a given polytope P whose radius is not larger than a given

value r > 0.

An en
losing 
ylinder C of a simplex P is 
alled a 
ir
ums
ribing 
ylinder of P if all

the verti
es of P are 
ontained in (the hypersurfa
e) C.

2.2.3 Envelopes

Let B be a 
olle
tion of m 
onvex bodies in R

3

. A line ` is 
alled a line transversal of B if

it interse
ts every member of B. The set of line transversals of B 
an be represented as the

region en
losed between an upper and a lower envelope as follows (see [2, 3, 26℄). These

representations are important in the design of data stru
tures supporting ray shooting

queries (i.e., seeking the �rst body, if any, met by a query ray) [2℄.

If we ex
lude lines parallel to the yz-plane, a line ` in R

3


an be uniquely represented

by its proje
tions on the xy- and xz-planes: y = �

1

x + �

2

, z = �

3

x + �

4

. Hen
e, a line


an be represented by the quadruple (�

1

; �

2

; �

3

; �

4

) 2 R

4

.

Let B be a 
onvex body in R

3

. For �xed �

1

; �

2

; �

3

, the set of lines (�

1

; �

2

; �

3

; �

4

) that

interse
t B is obtained by translating a line in the z-dire
tion between two extreme values

(�

1

; �

2

; �

3

; �

�

B

(�

1

; �

2

; �

3

)) and (�

1

; �

2

; �

3

; �

+

B

(�

1

; �

2

; �

3

)), whi
h represent lines tangent to

B from below and from above, respe
tively. Hen
e, the set of line transversals to B 
an

be represented as

�

(�

1

; �

2

; �

3

; �

4

) : max

B2B

�

�

B

(�

1

; �

2

; �

3

) � �

4

� min

B2B

�

+

B

(�

1

; �

2

; �

3

)

�

;
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whi
h is a region en
losed between a lower envelope and an upper envelope in R

4

. If the

elements of B are balls or polytopes, then the set of line transversals de�nes a semialgebrai


set in R

4

(see [3℄). Assuming general position, the verti
es (= zero-dimensional fa
es) of

the boundary of this region 
orrespond to lines whi
h are tangent to four of the bodies in

B (
f. Se
tion 2.2.5).

2.2.4 A sweep algorithm for the two-dimensional 
ase

We present an eÆ
ient algorithm for solving the partial visibility problem for arbitrary


onvex bodies in R

2

. Here, we are not only interested in 
he
king partial visibility of one

of the bodies but also in 
omputing all bodies whi
h are not partially visible. In order to

avoid several spe
ial 
ases we assume that the bodies are pairwise disjoint.

Let B := fB

0

; : : : ; B

m

g be a set of disjoint bodies in the plane. In the two-dimensional


ase, 
he
king partial visibility of a body B 2 B 
an be redu
ed to a �nite number of

geometri
 problems as follows (
f. the treatment of stabbing lines in [47℄). Without loss

of generality let jBj � 2 and assume B = B

0

. If there exists a visibility ray for B then we


an 
ontinuously transform (i.e., rotate and translate) the visibility ray until we rea
h a

situation where the underlying line is tangent to at least two of the bodies (one of them

might be B

0

itself). Hen
e, it suÆ
es to 
ompute the set of all 
ommon tangent lines to

all pairs of bodies in B and 
he
k whether one of these lines 
ontains a visibility ray. For

any pair of disjoint bodies, the number of 
ommon tangent lines is exa
tly 4 (whi
h 
an be

seen as a very spe
ial 
ase of the results in [23, 89℄ on the number of 
ommon supporting

hyperplanes in general dimension).

In order to handle any 
lass of bodies in the plane algorithmi
ally, we have to assume

that we 
an perform the following operations on this 
lass.

1. Compute the four 
ommon tangent lines to two bodies B

i

; B

j

.

2. Compute the at most two interse
tions of a ray or a line with a body B

i

.

In the following, we assume that we have a

ess to two ora
les performing these op-

erations. Obviously, for the 
lass of dis
s, the 
lass of polygons, and the 
lass 
ombining

dis
s and polygons these ora
les 
an be realized quite easily. In parti
ular, if the maxi-

mum number of verti
es of any polygon is bounded by a 
onstant then both ora
les 
an

be implemented in 
onstant time.

De�nition 2.3. A line is 
alled 
riti
al if it is tangent to at least two bodies B

i

, B

j

with

0 � i 6= j � m. A ray is 
alled 
riti
al if it is 
ontained in a 
riti
al line.

Hen
e, the body B

0

is partially visible if and only if there exists a 
riti
al visibility ray

for B

0

. Consequently, it suÆ
es to 
ompute the set of 
riti
al lines and to 
he
k whether

a 
riti
al line 
ontains a visibility ray for B

0

. Obviously, 
he
king whether a given line


ontains a visibility ray for B

0


an be a
hieved with O(m) 
alls to ora
le 2.
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r-tangent ray

l-tangent ray

r-tangent ray

l-tangent ray

B

i

B

j

Fig. 2.1: r- and l-tangent rays from B

i

to B

j

Theorem 2.4. In dimension 2, the set of all partially visible bodies 
an be 
omputed

with O(m

3

) arithmeti
 steps, O(m

2

) 
alls to the �rst ora
le and O(m

3

) 
alls to the se
ond

ora
le.

Proof. There are 4 �

�

m

2

�

(not ne
essarily di�erent) 
riti
al lines. For ea
h 
riti
al line ` it


an be 
omputed with O(m) arithmeti
 steps and O(m) 
alls to the se
ond ora
le whi
h

bodies interse
t with ` and whi
h bodies are visible with regard to the line `.

The algorithm of Theorem 2.4 
omputes the set of all partially visible bodies in 
ubi


time. However, the straightforward idea to modify it to a quadrati
 time algorithm for


he
king partial visibility of one spe
i�
 body does not work. The reason is that it is a

priori not 
lear whi
h of the O(m

2

) 
riti
al lines 
an be omitted. If we are only interested in

partial visibility of one spe
i�
 body, say B

0

, we 
an do better by using the following plane

sweep algorithm requiring O(m

2

logm) time and O(m) spa
e. (For extensive material on

sweep te
hniques we refer to [9℄.)

We interpret the four 
ommon tangent lines of two bodies B

i

and B

j

as rays starting

in some boundary point of B

i

. As a 
onsequen
e of the results in [23, 89℄, there are two

tangent rays su
h that B

i

is on the left side of these tangent rays (\r-tangent rays of

B

i

"); and there are two tangent rays su
h that B

i

is on the right side of the tangent rays

(\l-tangent rays of B

i

"), see Figure 2.1.

For 
he
king visibility of B

0

we �rst investigate the 2(m�1) (not ne
essarily di�erent)

r-tangent rays tou
hing B

0

and some other body B

i

, 1 � i � m. For ea
h r-tangent

ray we 
onsider the outer normal u 2 S

1

where S

1

denotes the unit sphere in R

2

; with

ea
h of these normals u 2 S

1

we asso
iate the 
orresponding angle 0 � � < 2� measured

from the positive x-axis. As des
ribed in the following algorithm, we sweep the r-tangents

a

ording to in
reasing angles.

Sub-algorithm for sweeping the r-tangents of B

1

and B

i

, 1 � i � m :

1. Compute the set of r-tangents of B

0

and B

i

, 1 � i � m, and sort them by in
reasing

angles.
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t

1

t

2

B

0

B

j

B

k

Fig. 2.2: Update step during the sweep

2. Compute the number of interse
tions of the �rst r-tangent with bodies B

i

, i � 1.

3. Consider the r-tangents su

essively in the order of in
reasing angles. In ea
h of

these steps do:

(a) Update the number of interse
tions with bodies B

i

, i � 1.

(b) If the number of interse
tions is 0, then B

0

is partially visible; STOP.

For the update step we use the following lemma.

Lemma 2.5. Let t

1

and t

2

be r-tangent rays of B

0

with angles 0 � �

1

< �

2

< 2�, and

let C be some body with t

1

\C 6= ;, t

2

\C = ;. Then there exists an r-tangent ray to B

0

with angle �

0

2 [�

1

; �

2

) whi
h is tangent to C.

Proof. For any � 2 [0; 2�) there exists some oriented tangent to B

0

with angle � (see,

e.g., [14℄) and therefore some r-tangent ray to B

0

with angle �. Let �

0

be the supremum

of � 2 [�

1

; �

2

) su
h that the tangent with angle � interse
ts with C. Sin
e C is 
ompa
t

the tangent with angle �

0

is tangent to B

0

and C, i.e., the supremum is a maximum.

In ea
h step of the sweep we update the number of interse
tions of the sweep ray with

bodies B

i

, i � 1, in the following way. Let us �rst 
onsider the 
ase where the new angle

�

2

is stri
tly larger than the 
urrent angle �

1

and where the r-tangent rays with angle �

1

and �

2

are ea
h tangent to exa
tly two bodies. Let the r-tangent ray with angle �

1

be

tangent to B

0

and B

j

, and let the r-tangent ray with angle �

2

be tangent to B

0

and B

k

,

1 � j 6= k � m. Then we only have to 
he
k whether the ray with angle �

2

interse
ts

with B

j

(i.e., if the sweep ray is just \entering" B

j

) and if the ray with angle �

1

interse
ts

with B

k

(i.e., if the sweep ray is just \leaving" B

k

); see Figure 2.2. Due to Lemma 2.5 any

additional 
hange would imply the existen
e of some r-tangent with angle �

0

2 (�

1

; �

2

).

Consequently, the update step 
an be done in 
onstant time. If there are several r-tangent

rays with the same angle we 
an 
ombine these update steps. The amortized 
osts for

the update step are not larger than in the 
ase of di�erent angles. If during the sweep we

rea
h a situation where the number of interse
tions is 0 then B

0

is partially visible and
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initial ray

�nal ray

ba
kward ray

B

i

B

0

B

j

Fig. 2.3: Initial and �nal ray for sweeping the r-tangent rays of B

i

, i � 1

we 
an stop immediately. After the inspe
tion of the r-tangent rays of B

0

the l-tangent

rays of B

0

are swept in the same way.

So far, we have inspe
ted the r- and l-tangent rays of B

0

. However, a visibility ray of

B

0

is not ne
essarily tangent to B

0

, and we also have to investigate the 
ommon tangents

of bodies B

i

, B

j

with 1 � i 6= j � m. More pre
isely, for every �xed i 2 f1; : : : ; mg,

we 
onsider the 
riti
al rays whi
h are tangent to B

i

. Here, we start the sweep with that

r-tangent ray from B

i

to B

0

that has B

0

on the left side (see Figure 2.3). For this ray we


ount the number of interse
tions between B

i

and B

0

, and separately we 
ount the number

of interse
tions of the ba
kward ray with other bodies. Now we sweep the r-tangent rays

of B

i

a

ording to in
reasing angles and update the number of interse
tions between B

i

and B

0

as well as the number of interse
tions of the ba
kward ray. If we rea
h a situation

where both numbers of interse
tions are simultaneously zero then B

0

is partially visible

and we 
an stop immediately. In any 
ase, the algorithm 
an stop if the r-tangent ray to

B

i

has B

0

on its right side; see the illustration in Figure 2.3. After sweeping the l-tangent

rays of B

i

the r-tangent rays of B

i

are investigated in the same way.

The 
orre
tness of the whole algorithm follows from the fa
t that the sweep inspe
ts

all O(m

2

) 
riti
al visibility lines and that the update step is 
orre
t due to Lemma 2.5.

For sweeping the tangent rays of some given body B

i

, 0 � i � m, the time requirements

are dominated by the time to sort the tangent rays a

ording to in
reasing angles. We


an 
on
lude:

Theorem 2.6. Let the dimension be n = 2. Then 
he
king partial visibility of a body B

0


an be done with O(m

2

logm) arithmeti
 steps, O(m

2

) 
alls to the �rst ora
le, and O(m

2

)


alls to the se
ond ora
le, as well as O(m) spa
e.

Similar algorithmi
 ideas 
an also be applied to the two-dimensional versions of other

problems involving the intera
tion of lines with bodies.

Using mu
h more sophisti
ated data stru
tures, the logarithmi
 fa
tor in time 
an be

removed. Namely, with the 
on
ept of visibility 
omplexes [4, 105℄, the partial visibility

problem 
an be solved in time O(m

2

) with spa
e requirements O(m

2

). For other re
ent

results on visibility 
omputations in R

2

see also [4℄.
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2.2.5 Algorithmi
 framework for three-dimensional problems

In the three-dimensional 
ase we 
an essentially use the same framework as in the two-

dimensional 
ase. A line in real proje
tive spa
e P

3

R


an be regarded as a point on the

(four-dimensional) Klein quadri
 in P

5

R

(
f. Se
tion 2.3). Assuming that our bodies are

given by algebrai
 inequalities (e.g., balls or polytopes), and assuming general position,

the 
ore problem (
orresponding to the �rst ora
le in Se
tion 2.2.4) is to 
ompute the


ommon tangents to four bodies in R

3

(
f. [3, 103℄). However, in the three-dimensional


ase, there are also some spe
ial 
ases where we 
an transform a visibility ray only to

a situation with less than four bodies, or where a 
on�guration with four bodies has an

in�nite number of 
ommon tangents.

Let us 
onsider the de
ision problem whether there exists an en
losing 
ylinder with

radius r of a given point set. The following statement redu
es that problem to a prob-

lem involving the 
ommon tangents to four spheres with radius r, in
luding an exa
t


hara
terization of all spe
ial 
ases whi
h 
an o

ur.

1

Theorem 2.7. Let P = fp

1

; : : : ; p

m

g be a set of m � 4 points in R

3

, not all 
ollinear. If

P 
an be en
losed in a 
ir
ular 
ylinder C of radius r, then there exists a 
ir
ular 
ylinder

C

0

of radius r en
losing all elements of P su
h that the surfa
e C

0

passes through

(i) at least four non-
ollinear points of P, or

(ii) three non-
ollinear points of P, and the axis ` of C

0

is 
ontained in

(a) the 
ylinder naturally de�ned by spheres of radius r 
entered at two of these

points;

(b) the double 
one naturally de�ned by spheres of radius r 
entered at two of these

points (and these spheres are disjoint);

(
) or the set of lines whi
h are tangent to the two spheres of radius r 
entered at

two these points and whi
h are 
ontained in the plane equidistant from these

points (and the spheres are non-disjoint).

Moreover, C 
an be transformed into C

0

by a 
ontinuous motion.

Figures 2.4 and 2.5 visualize the three geometri
 properties in the se
ond possibility.

Sin
e the se
ond possibility in Theorem 2.7 
hara
terizes the possible spe
ial 
ases,

this lemma redu
es our de
ision problem to the problem of �nding the lines tangent to four

given spheres with radius r in R

3

. Namely, it suÆ
es to 
ompute the 
ir
ular 
ylinders

of radius r passing through four given points (
orresponding to 
ase (i)) as well as the


ir
ular 
ylinders whose axes satisfy one of the 
onditions in (ii); the latter 
ase gives

a 
onstant number of problems of smaller algebrai
 degree (sin
e the positions of the

axes are very restri
ted). Similarly, the theorem redu
es the 
omputation of a smallest

1

We remark that a similar statement has already been used in [114℄, but the manus
ript referen
ed

there does not 
ontain a 
omplete proof.



20 2. Ba
kground and preliminaries

(a) Cylinder (b) Double 
one with apex (a=2; 0; 0)

T

Fig. 2.4: Extreme situations of the set of hyperboloids for disjoint spheres

(a) Hyperboloid for 0 < x

h

< 2r

2

=a (b) Degenerated hyperboloid for x

h

= a=2

Fig. 2.5: The left �gure shows a general situation for disjoint spheres; the right �gure shows an

extreme situation for non-disjoint spheres

en
losing 
ylinder of a tetrahedron in R

3

to the 
omputation of a smallest 
ir
ums
ribing


ylinder of a tetrahedron.

Remark 2.8. Before we start with the proof, we remark that Theorem 2.7 and its di�er-

ent 
ases show a quite similar behaviour as the well known statement that the (unique)


ir
umsphere of a simplex in R

n

tou
hes all its verti
es, or one of its great (n�1)-
ir
les

is the 
ir
umsphere of one of the (n�1)-fa
es of the simplex (see [14, p. 54℄).

In the proof we will apply the following geometri
 equivalen
e. A point x 2 R

3

is

en
losed in a 
ylinder with axis ` if and only if ` is a transversal of the sphere with radius

r 
entered at x (i.e., ` is a line interse
ting the sphere).

Proof of Theorem 2.7. Let C be a 
ylinder with axis ` and radius r en
losing P. Then,

denoting by S

i

:= S(p

i

; r) the sphere with radius r 
entered at p

i

, ` is a 
ommon transversal

to S

1

; : : : ; S

m

. By 
ontinuously translating and rotating `, we 
an assume that ` is tangent
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to two of the spheres, say S

1

and S

2

. Further, by 
hanging 
oordinates, we 
an assume

that S

1

and S

2

have the form S

1

= S((0; 0; 0)

T

; r), S

2

= S((a; 0; 0)

T

; r) for some a > 0.

The set of lines tangent to two spheres of radius r 
onstitutes a set of hyperboloids of

one sheet (see, e.g., [33, 73℄). Moreover, any of these hyperboloids tou
hes the sphere S

1

on a 
ir
le lying in a hyperplane parallel to the yz-plane. Hen
e, the set of hyperboloids


an be parametrized by the x-
oordinate of this hyperplane whi
h we denote by x

h

.

If S

1

\S

2

= ; then the boundary values are x

h

= 0 and x

h

= 2r

2

=a. These two extreme

situations yield a 
ylinder and a double 
one with apex (a=2; 0; 0)

T

, respe
tively (see

Figure 2.4). For 0 < x

h

< 2r

2

=a we obtain a hyperboloid of one sheet (see Figure 2.5(a)).

If S

1

\ S

2

6= ; then the boundary values are x

h

= 0 and x

h

= a=2. Here, for 0 < x

h

<

a=2 we obtain hyperboloids of one sheet, too. For x

h

= a=2 the hyperboloid degenerates

to a set of tangents whi
h are tangents to the 
ir
le with radius r




=

p

4r

2

� a

2

in the

hyperplane x = a=2 (see Figure 2.5(b)).

Let x

h;0

be the parameter value of the hyperboloid 
ontaining the line `. The tangent to

S

1

and S

2

is 
ontained in the hyperboloid with some parameter value x

h;0

. By de
reasing

the parameter x

h

starting from x

h;0

the hyperboloid 
hanges its shape towards the 
ylinder

around S

1

and S

2

. Let x

h;1

be the in�mum of all 0 � x

h

< x

h;0

su
h that the hyperboloid

does not 
ontain a generating line tangent to some other sphere S(p

i

; r) for some 3 � i �

m. If x

h;1

= 0, then by 
hoosing any point of P not 
ollinear to p

1

and p

2

we are in 
ase

(ii) (a).

If x

h;1

> 0 then let p

3

be the 
orresponding point. Let T (S

1

; S

2

; S

3

) denote the

set of lines simultaneously tangent to S

1

, S

2

, and S

3

. Now let x

h;2

be the in�mum of all

0 � x

h

< x

h;0

su
h that there exists a 
ontinuous fun
tion ` : (x

h;2

; x

h;1

)! T (fS

1

; S

2

; S

3

g)

with `(x

h

) lying on the hyperboloid with parameter x

h

. Sin
e the spheres are 
ompa
t,

the in�mum is a minimum. If x

h;2

> 0 then one of three hyperboloids involved by the

three pairs of spheres must be one of the extreme hyperboloids in that situation and we

are in 
ases (ii) (a), (b), or (
). If x

h;2

= 0 then we distinguish between two possibilities.

Either during this pro
ess we also rea
hed a tangent to some other sphere S(p

i

; r) for

some 4 � i � m; in this 
ase we are in 
ase (i). Or during the transformation all the

points p

4

; : : : ; p

m

are en
losed in the 
ylinder with axis ` and radius r, but none of them

is 
ontained in it. Then we arrive at situation (ii) (a).

The 
ru
ial point in the algorithmi
 realization is that the main subproblem des
ribed

in 
ase (i) has �nitely many solutions; to show this is the 
ontent of Se
tion 3.2. Moreover,

the spe
ial 
ases des
ribed in 
ase (ii) 
an also be handled in a �nite way.

Similar redu
tions 
an be done, e.g., in the 
ase of the partial visibility problem if

the 
lass of admissible obje
ts 
onsists of unit balls. Hen
e, by our results of the later

Se
tion 3.2, we 
an solve this problem rigorously. If n denotes the number of unit balls,

a �rst upper bound on the number of 
alls of the algebrai
 ora
le is O(n

5

). Here, the

algebrai
 ora
le has to solve the 
orresponding polynomial equations of degree at most 12.

Using the implementation te
hniques from [3, 103, 114℄ the exponent 5 
an be de
reased

to a value below 4.
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If the bodies are polytopes, then the 
ommon tangent lines to the bodies are 
ommon

transversals to four given lines (stemming from the edges of the polytopes) in R

3

(see

[103℄). Chara
terizing and 
omputing the 
ommon transversals to four given lines in R

3

is a 
lassi
al problem in geometry (see, e.g., [75, xXIV.7℄). For 
on�gurations of four lines

with only �nitely many 
ommon transversals, there are at most two solutions (whi
h 
an

be found by solving a quadrati
 equation); and it is well-known how to 
hara
terize the

degenerate 
on�gurations with in�nitely many 
ommon transversals.

However, in 
ase the 
lass of admissible obje
ts 
onsists of balls of general radii or

of 
ombinations of balls and polytopes, then we arrive soon at the situations where the

geometry of the tangent problems is still open (see the dis
ussions in Se
tion 3.2.5 and

in Chapter 6). Hen
e, we do not know how to do similar rigorous redu
tions of the

algorithmi
 problems to a �nite number of algebrai
-geometri
 
ore problems, all having

�nitely many solutions. However, for a theoreti
al possibility to solve also these problems

(based on real quanti�er elimination) see Se
tion 7.5.

2.3 Pl

�

u
ker 
oordinates

We review the well-known Pl

�

u
ker 
oordinates of lines in 
omplex proje
tive spa
e P

n

. For

a general referen
e, see [31, 74, 106℄. Let x = (x

0

; x

1

; : : : ; x

n

)

T

and y = (y

0

; y

1

; : : : ; y

n

)

T

2

P

n

be two distin
t points on a line `. Then ` 
an be represented (not uniquely) by the

(n+1) � 2-matrix L whose two 
olumns are x and y. Let N :=

�

n+1

2

�

� 1. The Pl

�

u
ker

ve
tor p = (p

ij

)

1�i<j�n

2 P

N

of the line ` is the ve
tor of the determinants of the 2� 2-

submatri
es of L, that is, p

ij

:= x

i

y

j

� x

j

y

i

. The set of all lines in P

n

is 
alled the

Grassmannian of lines in P

n

and is denoted by G

1;n

. The set of ve
tors in P

N

satisfying

the Pl

�

u
ker relations

p

ij

p

kl

� p

ik

p

jl

+ p

il

p

jk

= 0 for 0 � i < j < k < l � n (2.2)

is in 1-1-
orresponden
e with G

1;n

. See, for example, [74, xVII.6℄, [54, x1.2.5℄, or (for

dimension 3) [31, Theorem 11 in x8.6℄.

Remark 2.9. If n = 3 then (2.2) gives a single equation. In this 
ase, the quadri
 in P

5

de�ned by (2.2) is 
alled Klein quadri
.

Similarly, we des
ribe (n�2)-planes in terms of dual Pl

�

u
ker 
oordinates. If an (n�2)-

plane � is given as the interse
tion of the two hyperplanes

P

n

i=0

u

i

x

i

and

P

n

i=0

v

i

x

i

, then

the dual Pl

�

u
ker 
oordinates of � are de�ned by q

ij

:= u

i

v

j

� u

j

v

i

.

A line ` interse
ts an (n�2)-plane � in P

n

if and only if the dot produ
t of the Pl

�

u
ker

ve
tor p of ` and the dual Pl

�

u
ker ve
tor q of � vanishes, i.e., if and only if

X

0�i<j�n

p

ij

q

ij

= 0 (2.3)
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�

u
ker 
oordinates 23

(see, e.g., [74, Theorem VII.5.I℄). Sin
e this is a linear relation in the Pl

�

u
ker 
oordinates

of the line `, geometri
ally the set of lines interse
ting a given (n�2)-plane is des
ribed

by a hyperplane se
tion of the Grassmannian in P

N

.

In dimension 3 this spe
ializes as follows. For any line ` � P

3

, the Pl

�

u
ker ve
tor

(p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T


oin
ides with the dual Pl

�

u
ker ve
tor (q

23

;�q

13

; q

12

; q

03

;�q

02

;

q

01

)

T

in P

5

[74, Theorem VII.3.I℄. Hen
e, a line ` interse
ts a line `

0

in P

3

if and only if

their Pl

�

u
ker ve
tors p and p

0

satisfy

p

01

p

0

23

� p

02

p

0

13

+ p

03

p

0

12

+ p

12

p

0

03

� p

13

p

0

02

+ p

23

p

0

01

= 0 : (2.4)

We use Pl

�

u
ker 
oordinates to 
hara
terize the lines tangent to a given quadri
 in

P

n

. Re
all the following algebrai
 
hara
terization of tangen
y: The restri
tion of the

quadrati
 form to the line ` is singular, in that either it has a double root, or it vanishes

identi
ally. When the quadri
 is smooth, this implies that the line is tangent to the

quadri
 in the usual geometri
 sense.

Lemma 2.10. Let L be an (n+1) � 2-matrix representing the line ` � P

n

. ` is tangent

to a quadri
 Q in P

n

if and only if the 2� 2-matrix L

T

QL is singular.

Proof. If we denote the two 
olumns of L by x and y, then the line ` 
onsists of all points

�

z = (z

0

; : : : ; z

n

)

T

: z = �x + �y; (�; �)

T

2 C

2

n f(0; 0)

T

g

	

:

By the algebrai
 de�nition of tangen
y, ` is tangent to Q if and only if this line interse
ts

the quadri
 exa
tly on
e (namely, with multipli
ity 2), or if it is 
ontained in the quadri
.

The homogeneous quadrati
 equation

(�x + �y)

T

Q(�x + �y) = 0


an be made aÆne by setting � = 1. Sin
e the dis
riminant of this aÆne quadrati


equation in � is

(2x

T

Qy)

2

� 4(x

T

Qx)(y

T

Qy) = �4 det(L

T

QL);

the statement follows immediately.

In order to transfer this 
ondition to Pl

�

u
ker 
oordinates, we use the se
ond exterior

power of matri
es

^

2

: C

k;m

! C

(

k

2

)

;

(

m

2

)

(see [106, p. 145℄,[129℄). The row and 
olumn indi
es of the resulting matrix are subsets

of 
ardinality 2 of f1; : : : ; kg and f1; : : : ; mg, respe
tively. For I � f1; : : : ; kg and J �

f1; : : : ; mg with jIj = jJ j = 2,

(^

2

A)

I;J

:= detA

[I;J℄

;
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where A

[I;J℄

denotes the 2 � 2-submatrix of the given matrix A with row indi
es I and


olumn indi
es J . Let ` be a line in P

n

and L be an (n+1) � 2-matrix representing `.

Interpreting the

�

n+1

2

�

� 1-matrix ^

2

L as a ve
tor in P

N

, we observe ^

2

L = p

`

, where p

`

is the Pl

�

u
ker ve
tor of `.

Lemma 2.11. A line ` � P

n

is tangent to a quadri
 Q if and only if the Pl

�

u
ker ve
tor

p

`

of ` lies on the quadrati
 hypersurfa
e in P

N

de�ned by ^

2

Q, if and only if

p

T

`

�

^

2

Q

�

p

`

= 0 : (2.5)

Proof. Let L be a (n+1)� 2-matrix whose two 
olumns 
ontain distin
t points of `. The

Cau
hy-Binet formula from multilinear algebra (see, e.g., [91℄) implies

det(L

T

QL) = (^

2

L

T

)(^

2

Q)(^

2

L)

= (^

2

L)

T

(^

2

Q)(^

2

L) :

Now the 
laim follows from Lemma 2.10.

For an alternative dedu
tion of this tangent 
ondition see [129℄.

Expli
itly, for a sphere with 
enter (


1

; 


2

; 


3

)

T

2 R

3

and radius r the quadrati
 form

p

T

`

�

^

2

Q

�

p

`

is

0

B

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

C

A

T

0

B

B

B

B

B

B

�




2

2

+ 


2

3

� r

2

�


1




2

�


1




3




2




3

0

�


1




2




2

1

+ 


2

3

� r

2

�


2




3

�


1

0 


3

�


1




3

�


2




3




2

1

+ 


2

2

� r

2

0 �


1

�


2




2

�


1

0 1 0 0




3

0 �


1

0 1 0

0 


3

�


2

0 0 1

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

�

p

01

p

02

p

03

p

12

p

13

p

23

1

C

C

C

C

C

C

A

: (2.6)



3. COMMON TANGENTS TO FOUR SPHERES IN R

3

We dis
uss the lines whi
h are simultaneously tangent to four (not ne
essarily disjoint)

given spheres in R

3

.

In Se
tion 3.1, we show that if four spheres in R

3

with aÆnely independent 
enters

have a �nite number of 
ommon tangent lines in C

3

, then this number is bounded by

12. For reasons whi
h will be dis
ussed in detail in Chapter 4, rather than using Pl

�

u
ker


oordinates we prefer an elementary des
ription of the lines. Des
ribing a line ` � C

3

by

its dire
tion ve
tor v 2 P

2

and by a point p lying on the line with p � v = 0 the 
ommon

tangent lines to the four spheres 
an be 
hara
terized as the interse
tion of a 
ubi
 and

a quarti
 
urve in the proje
tive plane 
orresponding to the three homogeneous variables

v

1

, v

2

, and v

3

.

In Se
tion 3.2, we show the following result for unit spheres:

Theorem 3.1. Four unit spheres in R

3

whose 
enters are not 
ollinear have at most 12


ommon tangent lines in R

3

. This bound is tight, i.e., there exists a 
on�guration of four

unit spheres in R

3

with 12 distin
t real 
ommon tangent lines.

In Se
tion 3.3, we study realization questions. In parti
ular, David Cox had raised

the question on the possible numbers of real solutions whi
h 
an o

ur in the tangent

problem. We 
omplement Theorem 3.1 by answering this question as follows:

Theorem 3.2. For any number k 2 f0; : : : ; 12g there exists a 
on�guration of four unit

spheres in R

3

whi
h have exa
tly k distin
t 
ommon tangents in R

3

.

In Se
tion 3.4, we dis
uss the optimization variant of the tangent problem. Given

four aÆnely independent points 


1

; : : : ; 


4

2 R

3

, �nd the minimum radius r su
h that

there exist a real 
ommon tangent line to the spheres S(


1

; r); : : : ; S(


4

; r). This problem

is equivalent to �nding the minimum 
ir
ums
ribing 
ylinder of a given (not ne
essarily

regular) tetrahedron in R

3

.

In Se
tion 3.5, we dis
uss some dynami
 visualization aspe
ts.

Before entering into the te
hni
al details, let us point out two other results in enumer-

ative geometry, whi
h are somewhat related to our tangent problem:

1. The number of spheres tou
hing four given spheres in R

3

is at most 16 in the generi



ase [77, 116℄. (This 
an be regarded as the 3-dimensional version of Apollonius'

problem).
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3

2. The number of spheres tangent to four given skew lines in R

3

is at most 8 (see [78℄),

and in [133℄ the 
on�gurations with in�nitely many tangent spheres are 
hara
ter-

ized.

3.1 A 
ubi
 and a quarti
 equation

We represent a line in C

3

by a point p 2 C

3

lying on the line and a dire
tion ve
tor v 2 P

2

of that line. (For notational 
onvenien
e we typi
ally work with a representative of the

dire
tion ve
tor in C

3

n f0g.) If v

2

6= 0 we 
an make p unique by requiring that p � v = 0.

By de�nition, a line ` = (p; v) is tangent to the sphere with 
enter 
 2 R

3

and radius

r if and only if it is tangent to the quadrati
 hypersurfa
e (x� 
)

2

= r

2

, i.e., if and only if

the quadrati
 equation (p+ �v� 
)

2

= r

2

in � has a solution of multipli
ity two. When `

is real then this is equivalent to the metri
 property that ` has Eu
lidean distan
e r from


 (see Figure 3.1).

The tangent 
ondition on ` gives the equation

(v � (p� 
))

2

v

2

� (p� 
)

2

+ r

2

= 0 :

For v

2

6= 0 this is equivalent to

v

2

p

2

� 2v

2

p � 
+ v

2




2

� (v � 
)

2

� r

2

v

2

= 0 ; (3.1)

and, using Lagrange's identity,

v

2

p

2

� 2v

2

p � 
+ (
� v)

2

� r

2

v

2

= 0 : (3.2)

Here, the notion � of the ve
tor produ
t is also used for 
omplex ve
tors.

Let 


1

; : : : ; 


4

2 R

3

be aÆnely independent, let r

1

; : : : ; r

4

> 0, and let T be the

tetrahedron with verti
es 


1

; : : : ; 


4

. Without loss of generality we 
an 
hoose 


4

to be

the origin and set r := r

4

. Then the remaining 
enters span R

3

. Subtra
ting the equation

for the sphere 
entered at the origin from the equations for the spheres 1; 2; 3 gives the




` = fp+ �v : � 2 IRg

r

Fig. 3.1: Distan
e of the line ` from 
 in the real 
ase
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system

p � v = 0 ;

p

2

= r

2

; and

2v

2

p � 


i

= (


i

� v)

2

� v

2

(r

2

i

� r

2

) ; 1 � i � 3 :

(3.3)

Remark 3.3. Note that this system of equations does not have a solution with v

2

= 0.

Namely, if we had v

2

= 0 then v � 


i

= 0 for all i 2 f1; 2; 3g. Sin
e the 
enters span R

3

,

this would imply v = 0, 
ontradi
ting v 2 P

2

. This validates our assumption that v

2

6= 0

prior to (3.1).

By assumption, 


1

; 


2

; and 


3

are linearly independent. Hen
e, the matrix M :=

(


1

; 


2

; 


3

)

T

is invertible, and we 
an solve the equations in the bottom line of (3.3) for p:

p =

1

2v

2

M

�1

0

�

(


1

� v)

2

� v

2

(r

2

1

� r

2

)

(


2

� v)

2

� v

2

(r

2

2

� r

2

)

(


3

� v)

2

� v

2

(r

2

3

� r

2

)

1

A

: (3.4)

Now substitute this expression for p into the the �rst and se
ond equation of the sys-

tem (3.3) and then 
lear the denominators. This gives two homogeneous equations in the


oordinate v, namely a 
ubi
 and a quarti
. By B�ezout's Theorem, this means that if the

system has only �nitely many 
omplex solutions, then the number of solutions is bounded

by 3 � 4 = 12.

Remark 3.4. In [76℄ the 
ommon (
omplex) tangents to four spheres have been formu-

lated by polynomial equations with B�ezout number 24. Thus our polynomial formulation

improves that result. Moreover, by the results in Se
tion 3.2.2, our formulation is optimal,

even over the reals.

3.2 An exa
t 
hara
terization of the �niteness problem for unit spheres

In this se
tion we 
onsider unit spheres and prove Theorem 3.1. In detail, in Se
tion 3.2.1,

we treat the 
ase of aÆnely independent 
enters. We start from the 
hara
terization of

the 
ommon tangents from Se
tion 3.1 in terms of the a 
ubi
 and a quarti
 
urve in P

2

.

If all spheres have the same radius then the 
ubi
 
urve des
ribes the lines equidistant to

four given points in R

3

, and it is dis
ussed in [15, 112℄. Thus our main task is to relate

the 
ubi
 to the quarti
 equation. If the 
ubi
 
urve is irredu
ible, a detailed geometri


inspe
tion ensures that the 
ubi
 and the quarti
 
annot have a 
ommon 
omponent;

hen
e, the desired result is implied by B�ezout's Theorem. In 
ase of a redu
ible 
ubi
,

we use the results from [112℄ to �nd suitable parametrizations of the quadrati
 or linear

fa
tors. Substituting the parametrization into the radius 
ondition gives a univariate

polynomial equation whose leading 
oeÆ
ient 
an be expli
itly analyzed.
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3

In Se
tion 3.2.2, we show that 12 tangents 
an indeed be established in real spa
e,

and we exhibit a whole 
lass of these 
on�gurations based on 


1

; : : : ; 


4


onstituting an

equifa
ial tetrahedron.

Finally, Se
tion 3.2.3 
ontains the proof for the aÆnely dependent 
ase. In this 
ase, we

give a dire
t argument using the ellipses passing through the four 
enters, whose shorter

half-axis is �xed.

3.2.1 AÆnely independent 
enters

If all four spheres have the same radius r, then (3.4) simpli�es to

p =

1

2v

2

M

�1

0

�

(


1

� v)

2

(


2

� v)

2

(


3

� v)

2

1

A

: (3.5)

Note that this expression is independent of r. By Cramer's rule,

M

�1

=

1

6V

(


2

� 


3

; 


3

� 


1

; 


1

� 


2

) ; (3.6)

where V := det(


1

; 


2

; 


3

)=6 denotes the oriented volume of T . Introdu
ing the normal

ve
tors

n

1

:= (


2

� 


3

)=2 ; n

2

:= (


3

� 


1

)=2 ; n

3

:= (


1

� 


2

)=2 ; (3.7)

and substituting (3.5) into p � v = 0, we 
an eliminate p and obtain a homogeneous 
ubi



ondition for the dire
tion ve
tor v:

3

X

i=1

(


i

� v)

2

n

i

� v = 0 : (3.8)

In order to simplify this equation, we express v in terms of the three 
enters 


1

; 


2

; 


3

, i.e.,

v =

3

X

j=1

t

j




j

(3.9)

with homogeneous 
oordinates t

1

; t

2

; t

3

. This yields

n

i

� v = n

i

�

3

X

j=1

t

j




j

= t

i

n

i

� 


i

:

As the s
alar triple produ
t n

i

� 


i

is invariant for 1 � i � 3, equation (3.8) simpli�es to

3

X

i=1

t

i

(


i

� v)

2

= 0 : (3.10)
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Let A

i

be the area of the fa
e of T whi
h is opposite to 


i

, 1 � i � 4. By using

A

1

= jjn

1

jj, A

2

= jjn

2

jj, A

3

= jjn

3

jj, A

4

= jj(


1

� 


2

) � (


3

� 


2

)jj=2, and setting F :=

(A

2

1

+ A

2

2

+ A

2

3

� A

2

4

)=2 = �(n

1

� n

2

+ n

2

� n

3

+ n

3

� n

1

), the expansion of this sum yields

A

2

1

t

2

t

3

(t

2

+ t

3

) + A

2

2

t

3

t

1

(t

3

+ t

1

) + A

2

3

t

1

t

2

(t

1

+ t

2

) + 2Ft

1

t

2

t

3

= 0 : (3.11)

In Se
tion 3.2.4 we give an alternative dedu
tion of that 
ubi
 
urve based on a 
lassi
al


onstru
t in proje
tive geometry, the pedal surfa
e of a tetrahedron.

We 
on
lude that the set of lines tangent to the spheres S(


i

; r) for some radius r 
an

be 
hara
terized by the homogeneous 
ubi
 equation (3.11) in t

1

, t

2

, t

3

. In addition, for a

�xed radius r, equation (3.5) in 
onjun
tion with p

2

= r

2

leads to a homogeneous equation

of degree 4. Hen
e, unless the 
ubi
 
urve C and the quarti
 
urve Q in proje
tive plane

P

2

have a 
ommon 
omponent, B�ezout's Theorem implies there are 12 (possibly 
omplex)

solutions in
luding multipli
ities.

The irredu
ible 
ase

Assume �rst that C is irredu
ible (over C ). Then C and Q have a 
ommon 
omponent if

and only if C � Q. Now observe that any solution of (3.11) uniquely de�nes a radius r

via (3.5). Hen
e, if C � Q then the radius is 
onstant for all elements in C. Sin
e we know

six points on C, namely the six edge dire
tions, it suÆ
es to prove the following lemma.

Lemma 3.5. If all six edge dire
tions give the same radius, then C is redu
ible.

Proof. Consider two dire
tions, parallel to two skew edges of T , say v := 


1

� 


4

and

v

0

:= 


3

� 


2

. Using (3:5) and (3.6), we 
an 
ompute the 
orresponding radii r

v

and r

v

0

.

We obtain

r

v

=

2A

2

A

3

jjn

1

+ n

2

jj

3V 


2

1

;

r

v

0

=

jj(


1

� (


3

� 


2

))

2

(


2

� 


3

) + 4A

2

1

(


3

� 


1

) + 4A

2

1

(


1

� 


2

)jj

12V (


3

� 


2

)

2

:

Applying the relation A

4

= jj(


1

�


2

)�(


3

�


2

)jj=2, the latter expression 
an be 
ompa
tly

written as

r

v

0

=

2A

1

A

4

jjn

1

+ n

2

jj

3V (


3

� 


2

)

2

:

Now r

v

= r

v

0

implies




2

1

A

1

A

4

= (


3

� 


2

)

2

A

2

A

3

: (3.12)

Let a

ij

= jj


i

� 


j

jj, i 6= j. Further, let R

i

denote the 
ir
umradius of the fa
e opposite

to 


i

, 1 � i � 4. In view of the well-known triangle formula \R = (ab
)=4A", we have
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3

R

1

= a

23

a

24

a

34

=4A

1

and three analogous equations for R

2

, R

3

, and R

4

. Hen
e, (3.12)

be
omes

R

1

R

4

= R

2

R

3

: (3.13)

By our assumptions, the radii 
orresponding to the dire
tions 


2

� 


4

and 


3

� 


1

as well

as the radii 
orresponding to the dire
tions 


3

� 


4

and 


2

� 


1


oin
ide. Thus, we obtain

R

2

R

4

= R

1

R

3

; R

3

R

4

= R

1

R

2

; (3.14)

and hen
e R

1

= R

2

= R

3

= R

4

. Therefore, the four fa
es of the tetrahedron are equidis-

tant from the 
enter of the sphere through 


1

; : : : ; 


4

. In other words, the in-
enter of T


oin
ides with its 
ir
um
enter. Hen
e, the 
ir
um
enter of a fa
e is the point at whi
h

the ins
ribed sphere of T tou
hes that fa
e. In parti
ular, it lies inside the fa
e, whi
h

implies that every fa
e of T has only a
ute angles.

Let �

ij

denote the angle at 


i

in the fa
e opposite to 


j

. By the Law of Sines ([33,

p. 13℄), a

23

= 2R

1

sin�

41

= 2R

4

sin�

14

, so that

sin�

ij

= sin�

ji

; 1 � i 6= j � 4 :

Altogether, any pair of fa
es have a 
ommon edge, identi
al a
ute angles opposite to this

edge, and the same 
ir
umradius. Consequently, the two fa
es are 
ongruent and have

the same area, i.e., A

1

= A

2

= A

3

= A

4

. However, if all four fa
es have the same area,

the 
ubi
 C is redu
ible; this will be dis
ussed in detail below.

The redu
ible 
ases

Now let C be redu
ible over C . We distinguish between the 
ase A

1

= A

2

= A

3

= A

4

and

the 
ase that not all of A

1

; A

2

; A

3

; A

4

are equal.

The 
ase of an equifa
ial tetrahedron

If A

1

= A

2

= A

3

= A

4

then the tetrahedron with verti
es 


1

; : : : ; 


4

de�nes a (not

ne
essarily regular) equifa
ial tetrahedron. The 
ubi
 equation (3.11) de
omposes into

the union of three lines,

(t

1

+ t

2

)(t

2

+ t

3

)(t

3

+ t

1

) = 0 : (3.15)

We 
onsider the line t

1

+ t

2

= 0, the other two 
ases are symmetri
. In P

2

, the line

t

1

+ t

2

= 0 
an be parametrized by

(t

1

; t

2

; t

3

)

T

= (�;��; �)

T

2 P

2

; [�; �℄ 2 P

1

: (3.16)

For 
onvenien
e of notation, we dehomogenize by setting � = 1 and write � =1 for the

point [�; �℄ = [1; 0℄ 2 P

1

. Thus our parametrization is

t

1

= 1; t

2

= �1; t

3

= � ; � 2 C [ f1g : (3.17)



3.2. An exa
t 
hara
terization of the �niteness problem for unit spheres 31

Substituting these expressions into the square of (3.5) yields a polynomial equation P

4

(�) =

0 of degree at most 4 in �. We show that the polynomial P

4


annot degenerate to zero;

hen
e, the equation has at most 4 solutions. For a polynomial q in the variable �, let

Coe�

�;k

(q), denote the 
oeÆ
ient of �

k

in the polynomial q. In the following 
omputations

no higher power in � than the inspe
ted one 
an o

ur. Sin
e in (3.17) the degree of t

3

is

larger than the degree of t

2

, we obtain

Coe�

�;2

�

(


1

� v)

2

�

= 4A

2

2

; Coe�

�;2

�

(


2

� v)

2

�

= 4A

2

1

; Coe�

�;2

�

(


3

� v)

2

�

= 0 :

Hen
e, (3.6) implies

Coe�

�;4

�

�

M

�1

((


1

� v)

2

; (


2

� v)

2

; (


3

� v)

2

)

T

�

2

�

=

�

4A

1

A

2

jjn

1

+ n

2

jj

3V

�

2

:

Sin
e Coe�

�;2

(v

2

) = 


2

3

, the 
oeÆ
ient of degree 4 in P

4

vanishes if and only if

2A

1

A

2

jjn

1

+ n

2

jj

3V

= r


2

3

: (3.18)

Let r

0

> 0 be the radius de�ned by this equation. For 0 < r 6= r

0

, the leading 
oeÆ
ient

of P

4

does not vanish, and P

4

has exa
tly 4 zeroes in C 
ounted with multipli
ity.

For r = r

0

, the polynomial P

4

is of degree at most 3. However, it 
annot degenerate to

the zero polynomial, sin
e the polynomials for r 6= r

0

have (possibly 
omplex) zeroes. In

parti
ular, at any of these zeroes � the polynomial P

4

for r = r

0

does not evaluate to 0.

Hen
e, for r = r

0

there are at most 3 solutions in C . Additionally, in this 
ase we have to


onsider the solution � =1. More pre
isely, r

0


an be interpreted as follows. For � =1

within the parametrization, the resulting radius r

1

is 
omputed { in the same way as r

0

{ by using the leading 
oeÆ
ients. This implies r

1

= r

0

.

Altogether, for any given radius r > 0, there are at most 3 � 4 = 12 
ommon tangents

in C

3

to the four spheres S(


i

; r).

The remaining redu
ible 
ases

Now 
onsider the 
ase that not all of the fa
es have the same area. The homogeneous


ubi
 equation (3.11) de�nes a 
ubi
 
urve C in proje
tive plane P

2

. Based on a dis
ussion

of the real algebrai
 
urve de�ned by (3.11), we will parametrize the 
omponents of C.

As already mentioned, the dire
tions of the six tetrahedron edges give points on C. In

parti
ular, let X

ij

:= 


i

� 


j

, 1 � i < j � 4.

Following [112℄, we 
hara
terize the relationships between those six points on C. Due

to (3.9) the t-
oordinates of X

14

, X

24

, X

34

, X

12

, X

13

, X

23

are (1; 0; 0)

T

, (0; 1; 0)

T

, (0; 0; 1)

T

,

(1;�1; 0)

T

, (1; 0;�1)

T

, and (0; 1;�1)

T

, respe
tively.

For any of the four tetrahedron fa
es, the set of dire
tions parallel to that fa
e de-

�nes a line in P

2

R

. Of 
ourse, this remains true even after applying the linear variable

transformations.
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3

P

1

P

2

P

3

P

4

P

5

P

6

X

14

X

23

X

24

X

34

X

13

X

12

(a) Complete quadrilateral (b) Con�guration of the points X

ij

Fig. 3.2: A 
omplete quadrilateral 
onsists of 4 lines and 6 verti
es P

1

; : : : ; P

6

; the three diago-

nals are drawn by dashed lines. Figure (b) shows a 
omplete quadrilateral stemming

from the redu
ible 
ase.

In order to 
hara
terize this 
on�guration of four lines, the following notation will be

useful. A 
omplete quadrilateral in real proje
tive plane 
onsists of four lines in general

position and the six points in whi
h the lines interse
t [33℄, see Figure 3.2(a); here, general

position means that no three lines have a 
ommon point of interse
tion.

Sin
e there does not exist a ve
tor whi
h is parallel to more than two fa
es, the four

lines de�ne a 
omplete quadrilateral. One line 
ontains the set of points fX

12

; X

23

; X

34

g,

another one 
ontains fX

12

; X

24

; X

14

g, the third one 
ontains fX

13

; X

34

; X

24

g, and the

fourth one 
ontains fX

23

; X

34

; X

24

g. In parti
ular, the points X

ij

are the 6 verti
es of the


omplete quadrilateral. Figure 3.2(b) illustrates this 
on�guration.

Sin
e the 
ubi
 C is redu
ible (over C ), it 
an be de
omposed into a line and a (not

ne
essarily irredu
ible) 
oni
 se
tion. An irredu
ible 
oni
 se
tion interse
ts with any

given line in at most two points; this implies that an irredu
ible 
oni
 se
tion does not


ontain three 
ollinear points. Hen
e, one of the fa
tors of C is a line l that 
ontains at

least two of the six points X

ij

.

Whenever some dire
tion ve
tor v of a real 
ommon tangent is parallel to a fa
e of the

tetrahedron, v 
an only take the dire
tion of an edge; otherwise, the tangent 
annot have

the same distan
e from all three verti
es of that fa
e. For this reason, l 
annot 
ontain

two points from the same line of the 
omplete quadrilateral. Hen
e, l must be one of the

three diagonals of the 
omplete quadrilateral. Any of these diagonals 
ontains two points

X

ij

, X

kl

whi
h do not have any 
ommon index.

Without loss of generality we 
an assume that l 
ontains X

13

and X

24

. First we show

that this implies A

1

= A

3

and A

2

= A

4

. Sin
e the t-
oordinates of X

13

and X

24

are

(1; 0;�1)

T

and (0; 1; 0)

T

, l is given by t

1

+ t

3

= 0. The 
oeÆ
ient � of t

2

2

in the remain-

ing 
oni
 se
tion must be non-zero, be
ause the 
oeÆ
ient of t

1

t

2

2

in (3.11) is non-zero.
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Comparing the 
oeÆ
ients of t

1

t

2

2

and t

3

t

2

2

in (3.11) with the 
orresponding 
oeÆ
ients in

the de
omposed representation yields � = A

2

1

= A

2

3

; hen
e A

1

= A

3

. Furthermore, let �

1

and �

2

denote the 
oeÆ
ients of t

1

t

2

and t

2

t

3

in the remaining 
oni
 se
tion, respe
tively.

Comparing the 
oeÆ
ients of t

2

1

t

2

yields �

1

= A

2

3

= A

2

1

. In the same way, with regard to

t

2

t

2

3

and t

1

t

2

t

3

we obtain �

1

= A

2

1

, and 2F = 2A

2

1

, when
e (by de�nition of F ): A

2

= A

4

.

Hen
e, the remaining 
oni
 se
tion results to

A

2

1

(t

1

t

2

+ t

2

2

+ t

2

t

3

) + A

2

2

t

1

t

3

= 0 : (3.19)

Sin
e, by assumption, not all of the fa
es have the same area, we have A

1

6= A

2

. Further-

more, it 
an be veri�ed that for A

1

6= A

2

the 
oni
 se
tion (3.19) is irredu
ible.

Parametrizing the line l 
an be done like in the 
ase A

1

= A

2

= A

3

= A

4

. In parti
ular,

the line l gives at most 4 
ommon tangents.

In order to parametrize (3.19), we interse
t the 
oni
 with a suitable pen
il of lines.

First observe that X

14

is a regular point on the 
oni
 with tangent A

2

1

t

2

+A

2

2

t

3

= 0. Then


onsider the pen
il of lines

�A

2

1

t

2

� (A

2

1

t

2

+ A

2

2

t

3

) = 0; � 2 C [ f1g

with apexX

14

. In parti
ular, solving for t

3

gives t

3

= A

2

1

(��1)t

2

=A

2

2

. The parameter value

� = 0 gives the tangent in X

14

; the parameter value � = 1 yields t

2

= 0, whi
h is the

line through X

14

and X

34

. Repla
ing t

3

in (3.19) via the pen
il equation and eliminating

the linear fa
tor t

2


aused by the apex (1; 0; 0)

T

yields (A

2

1

(� � 1) + A

2

2

)t

2

+ A

2

2

�t

1

= 0.

This gives the parametrization

(t

1

; t

2

; t

3

)

T

= (�A

2

1

(�� 1)� A

2

2

; A

2

2

�;A

2

1

(�� 1)�)

T

; � 2 C [ f1g : (3.20)

Consequently,

Coe�

�

4

((


1

� v)

2

) = 4A

4

1

A

2

2

; Coe�

�

4

((


2

� v)

2

) = 4A

6

1

; Coe�

�

4

((


3

� v)

2

) = 0 :

Here, the radius r

0

where the leading 
oeÆ
ient vanishes is the same one as in (3.18) and

refers to the situation � =1. Hen
e, the 
oni
 se
tion gives at most 8 
ommon tangents.

Altogether, we obtain at most 4 + 8 = 12 
ommon tangents in this redu
ible 
ase.

3.2.2 A 
on�guration with 12 
ommon tangents

The easiest example of a 
onstru
tion with 12 real tangents stems from a regular tetrahe-

dron 
on�guration of 


1

; : : : ; 


4

. Sin
e in Se
tion 3.2.3 we will relate the aÆnely dependent


on�gurations to the limit 
ase of aÆnely independent 
on�gurations, we exhibit a more

general 
lass of 
on�gurations with 12 real tangents.

Namely, 
onsider an equifa
ial tetrahedron, as in Se
tion 3.2.1. It is well-known that

the verti
es of su
h a tetrahedron T 
an be regarded as four pairwise non-adja
ent verti
es

of a re
tangular box (see, e.g., [86℄). Hen
e, there exists a representation 


1

= (�

1

; �

2

; �

3

)

T

,




2

= (�

1

;��

2

;��

3

)

T

, 


3

= (��

1

; �

2

;��

3

)

T

, 


4

= (��

1

;��

2

; �

3

)

T

with �

1

; �

2

; �

3

> 0.
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3

Assuming without loss of generality v

2

= 1, (3.1) gives




i

� v + 2


i

� p =

3

X

j=1

�

2

j

+ p

2

� r

2

; 1 � i � 4 : (3.21)

Subtra
ting these equations pairwise gives

4(�

2

p

2

+ �

3

p

3

) = �4(�

1

�

3

v

1

v

3

+ �

1

�

2

v

1

v

2

)

(for indi
es 1, 2) and analogous equations, so that

�

1

p

1

= ��

2

�

3

v

2

v

3

; �

2

p

2

= ��

1

�

3

v

1

v

3

; �

3

p

3

= ��

1

�

2

v

1

v

2

:

Sin
e p � v = 0, this yields v

1

v

2

v

3

= 0. By assuming without loss of generality v

1

= 0, we

obtain

p =

�

�

�

2

�

3

�

1

v

2

v

3

; 0; 0

�

:

So (3.21) be
omes

�

2

2

v

2

2

+ �

2

3

v

2

3

=

3

X

j=1

�

2

j

+

�

�

�

2

�

3

�

1

v

2

v

3

�

2

� r

2

;

whi
h, by using v

2

2

+ v

2

3

= 1, gives

�

2

2

�

2

3

v

4

2

+ (�

2

1

�

2

2

� �

2

1

�

2

3

� �

2

2

�

2

3

)v

2

2

+ �

2

1

(r

2

� �

2

1

� �

2

2

) = 0 : (3.22)

There are two distin
t real solutions for v

2

2

if and only if

�

2

1

�

2

2

+ �

2

1

�

2

3

+ �

2

2

�

2

3

> 2�

1

�

2

�

3

r : (3.23)

Sin
e the volume V of T is 8�

1

�

2

�

3

=3 and the area A of a fa
e is 2

p

�

2

1

�

2

2

+ �

2

1

�

2

3

+ �

2

2

�

2

3

,

(3.23) be
omes A

2

=4 > 3V r=4. In 
ase of reality, both solutions for v

2

2

are positive if and

only if

r

2

> �

2

1

+ �

2

2

(3.24)

and

�

2

1

�

2

3

+ �

2

2

�

2

3

> �

2

1

�

2

2

: (3.25)

Hen
e, there will be 12 distin
t real 
ommon tangents to S(


1

; r), : : : , S(


4

; r) if and

only if r satis�es (3.23) and the three inequalities su
h as (3.24), and if in addition the
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tetrahedron T satis�es the three inequalities su
h as (3.25). Sin
e 2

p

�

2

1

+ �

2

2

is the length

of one of the edges, it follows that we require

e

2

< r <

A

2

3V

;

where e is the length of the longest edge; also, expressing (3.25) by using the area A gives

A

2

> 8�

2

1

�

2

2

:

Applying the formula \A =

1

2

ab sin 
" on the left side and the Laws of Cosines on the

right side establishes a relation among the angles �, �, and 
 of the fa
e triangle:

tan� tan 
 > 2 :

Sin
e tan� tan � tan 
 = tan� + tan � + tan 
 in a triangle and sin
e all three angles are

a
ute, we 
an 
on
lude:

Lemma 3.6. Let 


1

; : : : ; 


4


onstitute an equifa
ial tetrahedron, and let r > 0. Then

there are exa
tly 12 distin
t real 
ommon tangents to S(


1

; r); : : : ; S(


4

; r) if and only if

a)

e

2

< r <

A

2

3V

;

where e is the length of the longest edge, A is the area of a fa
e, and V is the volume

of the tetrahedron; and

b) the angles in one (and hen
e in all) of the fa
e triangles satisfy

tan� + tan 
 > tan� ; (3.26)

where � is the largest of the three angles.

Figure 3.3 depi
ts the 
on�guration 


1

= (4; 4; 4)

T

, 


2

= (4;�4;�4)

T

, 


3

= (�4; 4;

�4)

T

, 


4

= (�4;�4; 4)

T

and radius

p

33, whi
h gives 12 tangents by Lemma 3.6.

3.2.3 AÆnely dependent 
enters

Let 


1

; : : : ; 


4

be non-
ollinear points in the xy-plane. As introdu
ed in Se
tion 2.2.2, a


ir
ular 
ylinder in R

3

with radius r is a set of the form bd(` + rB

3

). We work in real

spa
e and look for 
ir
ular 
ylinders C with radius r passing through 


1

; : : : ; 


4

. Unless

the axis of C is parallel to the xy-plane, the interse
tion of C with the xy-plane is an

ellipse with smaller half-axis r. We 
an assume that none of the given points is 
ontained

in the 
onvex hull of the other points; otherwise, three points are 
ollinear (giving at most

two distin
t 
ir
ular 
ylinders) or there is no 
ir
ular 
ylinder.
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3

Fig. 3.3: Constru
tion with 12 tangents. Note that the four spheres slightly interse
t with ea
h

other.

An axis parallel to the xy-plane is only possible if the quadrangle formed by 


1

; : : : ; 


4

is a trapezoid. Sin
e su
h an axis 
an be lo
ated above or below the xy-plane, and sin
e a

parallelogram has two pairs of parallel edges, we obtain at most 4 
ir
ular 
ylinders with

axis parallel to the xy-plane. If 


1

; : : : ; 


4


onstitute a trapezoid but not a parallelogram,

this number redu
es to 2.

Now any ellipse with smaller half-axis r passing through 


1

; : : : ; 


4

de�nes two 
ir
ular


ylinders with radius r, whose interse
tion with the xy-plane gives the ellipse; in 
ase of

a 
ir
le these two 
ylinders 
oin
ide.

Consider a general ellipse

E : ax

2

+ 2hxy + by

2

+ 2gx+ 2fy + d = 0 ;

in other form

a(x� x

0

)

2

+ 2h(x� x

0

)(y � y

0

) + b(y � y

0

)

2

+ d

0

= 0 : (3.27)

Comparing the 
oeÆ
ients of the two forms yields

�

a h

h b

��

x

0

y

0

�

=

�

�g

�f

�

:

With the standard invariants of 
oni
 se
tion 
lassi�
ation

I

1

= tr

�

a h

h b

�

= a+ b ;

I

2

= det

�

a h

h b

�

= ab� h

2

;

I

3

= det

0

�

a h g

h b f

g f d

1

A

;
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and the notation F := gh � af , G := fh � bg, we obtain x

0

= G=I

2

, y

0

= F=I

2

. In

parti
ular, sin
e E is an ellipse, we have I

3

6= 0, I

2

> 0, and I

1

I

3

< 0. Consequently, the

absolute term d

0

in (3.27) results to

d

0

=

1

I

2

2

�

G F I

2

�

0

�

a h g

h b f

g f d

1

A

0

�

G

F

I

2

1

A

=

1

I

2

(gG+ fF + dI

2

)

=

I

3

I

2

:

E has smaller half-axis r if and only if both eigenvalues of the matrix

�

I

2

I

3

�

a h

h b

�

are positive and the larger one is 1=r

2

, i.e., if the largest solution of the quadrati
 equation

in �

I

2

3

�

2

+ I

1

I

2

I

3

�+ I

3

2

= 0

is 1=r

2

and both solutions are positive.

It is well-known that the set of ellipses passing through four given points are members

of the pen
il of 
oni
s S

1

+ �S

2

, with S

1

, S

2

equations of two arbitrary 
oni
s passing

through the four points (see, e.g., [109℄). Let I

1

(�), I

2

(�), I

3

(�) be the invariants of

S(�) := S

1

+ �S

2

, so that I

i

(�) is a polynomial in � of degree i. Any ellipse S(�) with

smaller half-axis r passing through 


1

; : : : ; 


4

must ne
essarily satisfy the 
ondition

I

3

(�)

2

r

4

+

I

1

(�)I

2

(�)I

3

(�)

r

2

+ I

2

(�)

3

= 0 : (3.28)

Equation (3.28) is of order 6 in �. The two 
ases for r where the 
oeÆ
ient of degree 6

vanishes stem from our aÆne notation of a pen
il and refer to the 
ase � =1.

Altogether, there are at most 12 
ir
ular 
ylinders with smaller half-axis r passing

through 


1

; : : : ; 


4

, whose axis is not parallel to the xy-plane. It remains to show that this

number 
an be de
reased in the 
ase of parallelograms and trapezoids.

For the parallelogram 
ase, suppose that the parallelogram is given by the two pairs of

parallel lines y = 
, y = �
, and y = �x+ �, y = �x� � for some 
onstants �; �; 
 > 0.

As generators S

1

, S

2

of the pen
il of 
oni
s through the four verti
es, we 
an 
hoose the

two degenerated 
oni
s given by the two pairs of lines

S

1

: (y � 
)(y + 
) = 0 ;

S

2

: (y � �x� �)(y � �x+ �) = 0 :
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3

Sin
e both the 
enter of S

1

and the 
enter of S

2

is (x

0

; y

0

) = (0; 0)

T

, ea
h ellipse in the

pen
il S

1

+ �S

2

has 
enter (0; 0)

T

. Hen
e, any ellipse S(�) in the pen
il is of the form

ax

2

+ 2hxy + by

2

+ 1 = 0 :

Sin
e

I

3

(�) = det

0

�

a

1

+ �a

2

h

1

+ �h

2

0

h

1

+ �h

2

b

1

+ �b

2

0

0 0 1 + �

1

A

= I

2

(�)(1 + �) ;

Equation (3.28) be
omes

I

2

(�)

2

�

(1 + �)

2

r

4

+ I

1

(�)(1 + �)r

2

+ I

2

(�)

�

= 0 :

Consequently, sin
e I

2

(�) 6= 0 for any ellipse in the pen
il, we obtain a quadrati
 
ondition

in �.

For the trapezoid 
ase, suppose that two verti
es are lo
ated on the line y = 0 and

that two verti
es are lo
ated on the line y = 2� with � > 0. Then S

2


an be 
hosen as

the degenerated 
oni
 
onsisting of two parallel lines

S

2

: y(y � 2�) = 0 :

The representation matrix of the ellipse S

1

+ �S

2

is of the form

0

�

a

1

h

1

f

1

h

1

b

1

+ � g

1

� ��

f

1

g

1

� �� d

1

1

A

:

Therefore I

2

(�) is only linear in �, and I

3

(�) is only quadrati
 in �. Hen
e, equation (3.28)

is only of degree 4 in �. We 
an 
on
lude:

Corollary 3.7. Let 


1

; : : : ; 


4

be aÆnely dependent, and let r > 0. If 


1

; : : : ; 


4

form a

trapezoid, then there are at most 10 
ommon tangents to S(


1

; r); : : : ; S(


4

; r). If 


1

; : : : ; 


4

form a parallelogram, then there are at most 8 
ommon tangents to S(


1

; r); : : : ; S(


4

; r).

Con
erning 
onstru
tions with many real tangents in the aÆnely dependent 
ase, we

give a 
onstru
tion with 8 real tangents. Let 


1

; : : : ; 


4


onstitute a square with edge

length e. For e=2 < r <

p

2e=2 two neighboring spheres interse
t with ea
h other, but

a sphere does not interse
t with its opposite partner. Hen
e, the opposite pairs of the

interse
tion 
ir
les are disjoint, and they lie on the verti
al planes bise
ting opposite edges

of the square. The four 
ommon tangents to su
h a pair of interse
tion 
ir
les are 
ommon

tangents to the four spheres whi
h altogether gives 8 
ommon tangents.

We remark that the upper bound of 12 is not tight in the aÆnely dependent 
ase. In

fa
t, our proof repla
es the 
ondition \1=r

2

is the largest eigenvalue and both eigenvalues
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are positive" by the weaker 
ondition \1=r

2

is an eigenvalue". Meanwhile, Megyesi has

shown that the number of real tangents to four unit spheres with 
oplanar 
enters is

bounded by 8 ([93℄). Quite interestingly, that proof does not de
rease the algebrai
 degree

of the problem. Instead, based on an an expli
it analysis it shows that the set of 
oni


se
tions under investigation always 
ontains some hyperbolas.

Finally, we want to explain what happens to some of the tangents when trying to

approa
h a re
tangle 
on�guration (with at most 8 
ommon tangents) as a limit 
ase of

aÆnely independent 
enters. Let 


1

; : : : ; 


4


onstitute a re
tangle in the xy-plane. By

lifting two opposite of the four 
enters appropriately, we 
an establish a 
on�guration

with 12 tangents by Lemma 3.6. By redu
ing the height of the resulting box with base

re
tangle in the xy-plane, we 
an interpret the re
tangle as limit 
ase of this 
attening

pro
ess. Now Lemma 3.6 explains where some of the 12 tangents get lost in this limit

pro
ess. Namely, 
attening of the box implies that the triangular fa
es of the tetrahedron

tend towards re
tangular triangles. However, then tan� in (3.26) tends to in�nity, and

(3:26) is violated at some stage of this pro
ess. Intuitively, this means that some of the

tangents get lost even before the limit 
ase is rea
hed.

3.2.4 Relations to 
lassi
al proje
tive geometry

In this se
tion, we provide an alternative 
hara
terization of the 
ubi
 equation (3.11)

based on the pedal surfa
e of a tetrahedron from 
lassi
al proje
tive geometry. Through-

out this se
tion, we work in real spa
e.

Note that the numbers in (3.9) 
an be interpreted as bary
entri
 
oordinates of the

dire
tion ve
tor v in the proje
tive spa
e relative to 


1

, 


2

, 


3

(
f. [33℄). If we allow 


4

to

be an arbitrary ve
tor again, the representation in bary
entri
 
oordinates is

v =

4

X

j=1

t

j




j

: (3.29)

Then the equation of �

1

, the plane at in�nity in three-dimensional real proje
tive spa
e

P

3

R

, is

t

1

+ t

2

+ t

3

+ t

4

= 0 (3.30)

(
f. [33℄). The lo
us of all points x with the property that the feet of the perpendi
ulars

from x on the planes supporting the fa
es of the tetrahedron T lie in a plane, is a 
ubi


surfa
e � ([111, Exer. 17 on p. 118℄). At the end of this se
tion, we provide a proof of

this statement. Namely, � is given by

A

2

1

t

2

t

3

t

4

+ A

2

2

t

1

t

3

t

4

+ A

2

3

t

1

t

2

t

4

+ A

2

4

t

1

t

2

t

3

= 0 ; (3.31)

or, in a ni
er (but slightly impre
ise) form

A

2

1

t

1

+

A

2

2

t

2

+

A

2

3

t

3

+

A

2

4

t

4

= 0 : (3.32)
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3

Obviously, all six lines de�ned by the edges 


i




j

, 1 � i 6= j � 4, belong to �. Consider now

any 
ir
ular 
ylinder C 
ir
ums
ribing T and let x(C) denote the point at in�nity of the

axis of C. We 
laim that x(C) 2 �, i.e., its bary
entri
 
oordinates satisfy (3.31). By the

Walla
e-Simson Theorem, the feet of the perpendi
ulars from 


4

on the planes 


1




2

x(C),




1




3

x(C), 


2




3

x(C) are 
ollinear ([33, Exer. 11 on p. 16℄, [68℄). Consequently, the feet

of the perpendi
ulars from 


4

on the four planes supporting the fa
es of the tetrahedron




1




2




3

x(C) lie in a plane. But then x(C) is in the same relation to the tetrahedron 


1




2




3




4

,

i.e., x(C) 2 � (see [6, p. 25℄).

By solving (3.30) for t

4

and substituting this expression into (3.31), we obtain a 
ubi


equation in t

1

; t

2

; t

3

. It 
an be easily 
he
ked that for 


4

= 0 this equation is equivalent

to (3.11).

The pedal surfa
e of a tetrahedron. We 
lose this se
tion by providing a proof for the

pedal surfa
e of a tetrahedron. Let 


1

; : : : ; 


4

2 R

3

be the verti
es of a tetrahedron T , let

N

i

denote the unit outer normal ve
tor of the fa
e opposite to 


i

, and let A

i

denote the

area of that fa
e. An elementary 
omputation (using (3.7), n

4

:= ((


1

� 


2

)� (


3

� 


2

))=2

and a suitable orientation) shows

A

1

N

1

+ A

2

N

2

+ A

3

N

3

+ A

4

N

4

= 0 : (3.33)

We would like to write up the equation of the so-
alled pedal surfa
e � of the tetrahedron,

i.e., the lo
us of the points x su
h that the feet of the perpendi
ulars from x to the planes

supporting the fa
es of the tetrahedron lie in a plane.

Let w

i

2 R

3

be the ve
tor 
onne
ting x to the foot of the perpendi
ular from x to

the plane supporting the fa
e opposite to 


i

. The feet of these perpendi
ulars (i.e., the

endpoints of these ve
tors) are 
oplanar if and only if the determinant of the 4� 4-matrix

with i-th row (w

i

; 1) vanishes. The latter 
ondition is equivalent to

(w

2

w

3

w

4

)� (w

1

w

3

w

4

) + (w

1

w

2

w

4

)� (w

1

w

2

w

3

) = 0 ;

where (a b 
) = (a � b) � 
 is the s
alar triple produ
t. If b

i

is de�ned by v

i

= b

i

N

i

, then

the equation be
omes

(N

2

N

3

N

4

)

b

1

�

(N

1

N

3

N

4

)

b

2

+

(N

1

N

2

N

4

)

b

3

�

(N

1

N

2

N

3

)

b

4

= 0 : (3.34)

It follows from (3.33) by taking s
alar produ
ts with N

2

�N

3

that

A

1

(N

1

N

2

N

3

) + A

4

(N

2

N

3

N

4

) = 0 ;

and from the analogous relations we obtain that for some b 2 R,

(N

2

N

3

N

4

) = bA

1

; (N

1

N

3

N

4

) = �bA

2

; (N

1

N

2

N

4

) = bA

3

; (N

1

N

2

N

3

) = �bA

4

:

Comparing this with (3.34) yields

A

1

b

1

+

A

2

b

2

+

A

3

b

3

+

A

4

b

4

= 0 : (3.35)
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Let t

1

; : : : ; t

4

denote the proje
tive bary
entri
 
oordinates of x relative to 


1

; : : : ; 


4

.

Noti
e that t

i

is proportional to 


i

A

i

(
f. [33℄). Therefore, x satis�es the required property

if and only if

A

2

1

t

1

+

A

2

2

t

2

+

A

2

3

t

3

+

A

2

4

t

4

= 0 ; (3.36)

as desired.

3.2.5 Open questions

Con
erning the geometry of the tangent problem, there are two main open questions.

Firstly, under whi
h 
onditions do four spheres of arbitrary radii do have in�nitely many

real 
ommon tangent lines? There are some obvious situations with in�nitely many real


ommon tangent lines: whenever the four 
enters are 
ollinear and the four spheres are

ins
ribed in the same hyperboloid of one sheet. We 
onje
ture that there does not exist

any 
on�guration with four spheres of arbitrary radii, non-
ollinear 
enters, and in�nitely

many real 
ommon tangent lines. For the spe
ial 
ase of aÆnely dependent 
enters, this

has re
ently been proven by Megyesi [95℄.

Se
ondly, in our 
onstru
tion with 12 real 
ommon tangent lines the unit spheres are

interse
ting ea
h other. Hen
e, the natural question arises, whi
h is still open: What is

the maximum number of real 
ommon tangent lines to four disjoint unit spheres (
f. the

treatment of realization questions in the next se
tion)?

3.3 Realization questions

In this se
tion, we prove Theorem 3.2 stated at the beginning of this 
hapter. For any k 2

f0; : : : ; 12gwe give geometri
 
onstru
tions leading to this number of 
ommon tangents (of


ourse, some values of k are trivial). For some of the 
onstru
tions, the number of di�erent

real tangent lines 
an be 
omputed by 
ombining 
areful geometri
 investigations with

symmetry arguments. However, for some 
onstru
tions, a purely geometri
 
orre
tness

proof seems to be out of rea
h. In these 
ases the algebrai
 framework developed in

Se
tion 3.1 and 3.2 helps to establish a rigorous proof. This leads to ni
e and e�e
tive

intera
tions between the geometry and the algebra of the problem.

Before giving an outline of the paper, we remark that the 
ases with 0, 1, 2, or 1

tangents are trivial. For the unit spheres 
entered in 


1

= (0; 0; 0)

T

, 


2

= (2; 0; 0)

T

,




3

= (4; 0; 0)

T

, 


4

= (6; t; 0)

T

, the values t = 0, t = 1, t = 2, and t = 3 lead to1, 2, 1, and

0 distin
t real tangents, respe
tively. Constru
tions of four (non-disjoint) spheres with 12

and 8 tangents have already been given in Se
tions 3.2.2 and 3.2.3, respe
tively.

The 
onstru
tions for the remaining numbers are presented in the following order. In

Se
tion 3.3.1, we analyze 
onstru
tions where the 
enters are the verti
es of a regular

tetrahedron. Besides the 
onstru
tions with 12 real tangents known from Se
tion 3.2.2
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this also yields 
onstru
tions with 3 and 6 tangents. Based on this analysis, Se
tion 3.3.2

deals with 
onstru
tions where three 
enters form an equilateral triangle; this gives 
on-

stru
tions with 3, 6, 9, and 7 tangents. Parallelogram 
on�gurations of the four 
enters

are dis
ussed in Se
tion 3.3.3; in parti
ular, this yields 
onstru
tions with 4, 5, and 8 tan-

gents. In Se
tion 3.3.4 gives 
onstru
tions with 10 and 11 tangents. In Se
tion 3.3.5, we


lose the dis
ussion of realization questions with a short dis
ussion of the relation between

the algebra and the geometry of the tangent problem.

3.3.1 The 
ase of a regular tetrahedron

In Se
tion 3.2.2, we have given a spe
i�
 
on�guration with 12 real tangents, where the

four 
enters 
onstitute the verti
es of a regular tetrahedron. The following 
omplete


lassi�
ation of a regular tetrahedron 
on�guration will be used within the 
onstru
tions

in the next se
tions. As before, let 


1

; : : : ; 


4

be the 
enters of the four spheres in R

3

. By

appropriate s
aling, the four spheres of radius r 
an be transformed into unit spheres.

Lemma 3.8. Let 


1

; : : : ; 


4

be the verti
es of a regular tetrahedron with edge length 1.

(a) For 1=2 < r < 3

p

2=8 there exist exa
tly 12 distin
t real 
ommon tangents to the

spheres S(


1

; r), : : : , S(


4

; r).

(b) For r = 1=2 and r = 3

p

2=8 there exist exa
tly 3 and 6 distin
t real 
ommon

tangents, respe
tively.

(
) For r < 1=2 or r > 3

p

2=8 there do not exist any real 
ommon tangents.

Proof. Let 


4

= (0; 0; 0)

T

, 


1

= (1; 0; 0)

T

, 


2

= (1=2;

p

3=2; 0)

T

, 


3

= (1=2;

p

3=6;

p

6=3)

T

be the verti
es of a regular tetrahedron with edge length 1. In this situation, the 
u-

bi
 (3.11) is redu
ible and 
an be de
omposed into

(t

1

+ t

2

)(t

2

+ t

3

)(t

3

+ t

1

) = 0 ; (3.37)

where t

1

; t

2

; t

3

are the homogeneous 
oordinates of the dire
tion ve
tor v in the basis




1

; 


2

; 


3

. By symmetry of this equation it suÆ
es to 
onsider the fa
tor t

1

+ t

2

= 0.

Over the reals, this linear equation 
an be parametrized by (t

1

; t

2

; t

3

)

T

= (1;�1; �)

T

,

�1 < � � 1. Here, the 
ase � = 1 refers to the homogeneous ve
tor t = (0; 0; 1)

T

.

Using (3.5) and p

2

= r

2

, r

2

(�) 
an be expressed by

r

2

(�) =

9�

4

+ 14�

2

+ 9�

32(�

2

+ 1)

2

with nominator of degree 4 and stri
tly positive denominator. The fun
tion graph of r(�)

is depi
ted in Figure 3.4. Elementary 
al
ulus yields

�

r

2

(�)

�

0

=

�(�

2

� 1)

4(�

2

+ 1)
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�

r(�)

1

3

p

2=8

0:5

Fig. 3.4: The fun
tion r(�) =

�

9�

4

+14�

2

+9

32(�

2

+1)

2

�

1=2

with stri
tly positive denominator. Hen
e,

min r(�) = r(1) = r(�1) = 1=2 ;

max r(�) = r(0) = lim

�!�1

r(�) = lim

�!1

r(�) = 3

p

2=8 � 0:5303 :

Note that the di�eren
e between min r(�) and max r(�) is rather small. The extreme

values and the stri
t monotony of r

2

(�) between these values show: for 1=2 < r <

3

p

2=8 there are four di�erent real solutions of � and hen
e four di�erent real tangents.

Considering all three fa
tors of (3.37), there are exa
tly 12 di�erent tangents altogether.

In 
ase r = 1=2 these 12 tangents 
ollapse to 3 tangents. The dire
tion ve
tors in

t-
oordinates are (1; 1;�1)

T

, (1;�1; 1)

T

, and (�1; 1; 1)

T

, respe
tively. In 
ase r = 3

p

2=8

the 12 tangents 
ollapse to 6 tangents; the dire
tion ve
tors are the dire
tion ve
tors of

the 6 tetrahedron edges.

Figure 3.5 shows a regular tetrahedron 
on�guration with edge length 1 and radius

r = 53=100. Sin
e a tangent to S(


1

; r); : : : ; S(


4

; r) 
an also be interpreted as axis of

a 
ir
ular 
ylinder with radius r 
ir
ums
ribing the tetrahedron with verti
es 


1

; : : : ; 


4

,

the following statement 
an be dedu
ed immediately (
f. the treatment of optimization

aspe
ts in Se
tion 3.4).

Corollary 3.9. Let T be a regular tetrahedron with edge length a > 0. Then the smallest

and largest 
ir
ular 
ylinder 
ir
ums
ribing T have radius a=2 and 3

p

2a=8, respe
tively.

Remark 3.10. The lower bound a=2 in Corollary 3.9 
an also be dedu
ed from the fa
t

that a minimal 
ir
ular 
ylinder en
losing a regular tetrahedron with edge length a has

radius a=2 [147℄.

3.3.2 Equilateral triangle 
onstru
tions

In this se
tion, we give 
on�gurations with 3, 6, 7, and 9 tangents. We start from

a regular tetrahedron 
on�guration with edge length 1. However, in order to stress

symmetries, we now use the 
oordinates 


1

= (

p

3=3; 0; 0)

T

, 


2

= (�

p

3=6; 1=2; 0)

T

,
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3

1

2

Fig. 3.5: Constru
tion of four (non-disjoint) spheres with 12 
ommon tangents. Here, if the


oordinates of 


1

; : : : ; 


4

are those of Se
tion 3.3.2 then there are exa
tly 6 tangents

whi
h tou
h all spheres with positive z-
oordinate. These tangents are drawn in grey


olor.




3

= (�

p

3=6;�1=2; 0)

T

, 


4

= (0; 0;

p

6=3)

T

. Further, let 1=2 < r < 3

p

2=8. Figure 3.6(a)

shows the parallel proje
tion of this 
on�guration on the xy-plane. Note that 


1

; : : : ; 


3

form an equilateral triangle in the xy-plane with 
enter in the origin. By Lemma 3.8, the

spheres S(


i

; r), 1 � i � 4, have 12 real 
ommon tangents.

In this 
on�guration with 12 real tangents, 6 of the tangents tou
h all four spheres

with positive z-
oordinate, and 6 tangents tou
h exa
tly two spheres with negative z-


oordinates (see Figure 3.5). We 
all these tangents the upper and the lower tangents,

respe
tively.

Now observe what happens when repla
ing the z-
oordinate in 


4

by in
reasing values

t >

p

6=3. The geometry of this pro
ess implies: the z-
oordinate v

3

=jjvjj of the unit

dire
tion ve
tor in
reases, until eventually { for some value t = t

9

{ the tangent tou
hes

two of the spheres S(


1

; r), S(


2

; r), S(


3

; r) at the same point (see Figure 3.6(a) for an

illustration of the xy-proje
tion). In the latter situation, the 6 upper tangents 
ollapse

to 3 tangents. Figure 3.6 depi
ts the se
tion of this 
onstellation through the xz-plane.

One of these 3 remaining upper tangents tou
hes S(


2

; r) and S(


3

; r) in the same point,

namely on the 
ir
le where S(


2

; r) and S(


3

; r) interse
t; this 
ir
le of interse
tion is

lo
ated in the plane y = 0. By symmetry of the equilateral triangle, the other 4 upper

tangents 
ollapse to 2 tangents in the same way. Sin
e for t = t

9

the lower tangents

neither have vanished nor 
ollapsed (see below), the four spheres have exa
tly 9 di�erent


ommon tangents.

In order to 
ompute t

9

, let 


s

= (�

p

3=6; 0; 0)

T

and r

s

=

p

r

2

� 1=4 denote the


enter and the radius of the 
ir
le of interse
tion. Then, setting b = jj


s

� 


1

jj and

z

9

= ((

p

3=2)

2

� (r � r

s

)

2

)

1=2

, a straightforward geometri
 
omputation yields the two
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3




4

t =

p

6=3

t = 0:84

t = 0:87

t = 0:90

x

z




s




1

p

3

q

3

p

9

q

9

t

9

t

3

(a) Proje
tion on the xy-plane (b) Se
tion through the xz-plane

Fig. 3.6: Di�erent views of the 
onstru
tions with 3, 6, and 9 tangents. The 
ommon radius of

the spheres is 0.53.

points on the tangent p

9

, q

9

,

p

9

= (�

p

3=6� r

s

(r � r

s

)=b; 0; r

s

z

9

=b)

T

; q

9

= (

p

3=3� r(r � r

s

)=b; 0; rz

9

=b)

T

:

p

9

is lo
ated on the 
ir
le of interse
tion, and q

9

is lo
ated on S(


3

; r) (see Figure 3.6(b)).

Now the tangent 
ondition for the sphere S((0; 0; t

9

)

T

; r) implies a quadrati
 equation for

t

9

. The larger one of the two solutions gives the desired value of t

9

.

For values t > t

9

there exist at most 6 real tangents. Analogous to the 
riti
al 
ase with

9 tangents there exists some value t

3

where the 6 lower tangents 
ollapse to 3 tangents.

The dashed lines in Figure 3.6(b) show the se
tion of this situation through the xz-plane.

The tangent in the xz-plane is given by the two points

p

3

= (�

p

3=6 + r

s

(r + r

s

)=b; 0;�r

s

z

3

=b)

T

; q

3

= (

p

3=3� r(r + r

s

)=b; 0; rz

3

=b)

T

;

where z

3

= ((

p

3=2)

2

� (r + r

s

)

2

)

1=2

. For values t > t

3

there does not exist any 
ommon

tangent to the four spheres.

In parti
ular, for any given r satisfying 1=2 < r < 3

p

2=8 the two values t

3

and t

9


an be 
omputed exa
tly. However, sin
e the resulting expressions are quite long, we only

give some numeri
al values to illustrate the relationships in size. Table 3.1 
ontains some

values of r together with the resulting numeri
al values of t

3

and t

9

. Figure 3.7 illustrates

the 
onstru
tion.

For a 
onstru
tion with 7 tangents, we start from the above 
on�guration with 9

tangents. In this 
on�guration, the remaining 3 upper tangents are 
riti
al in the sense
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3

r t

9

t

3

0:51 0:8463 0:8478

0:52 0:8760 0:9293

0:53 0:9028 1:0172

Tab. 3.1: Some values of the radius r and the resulting 
oordinates t

9

and t

3

leading to 9 and 3

distin
t real 
ommon tangents, respe
tively.

1,2

Fig. 3.7: In this 
onstru
tion with 9 real tangents, the remaining 3 upper tangents are drawn in

grey 
olor. The tangent labeled by 1,2 stems from the tangents labeled by 1 and 2 in

Figure 3.5.

that for any additional in
rement of the z-value of 


4

these tangents vanish. Now we move

the fourth 
enter (0; 0; t

9

)

T

along the line (0; 0; t

9

)

T

+�(q

9

�p

9

), � 2 R. For any � > 0, the

line through p

9

and q

9

is still tangent to the four spheres. However, the other two upper

tangents from the situation � = 0 immediately vanish for � > 0. Hen
e, there exists some

" > 0 su
h that any 
on�guration with 0 < � < " leads to exa
tly 7 
ommon tangents.

As an example, for r = 0:53 we 
an 
hoose 0 < � < 1=10.

3.3.3 Parallelogram 
onstru
tions

In order to give 
onstru
tions with 4, 5, and 8 tangents, we start from the following

situation depending on some parameter a 2 R. Let 


1

= (�a � 1;�1; 0)

T

, 


2

= (�a +

1;�1; 0)

T

, 


3

= (a�1; 1; 0

T

), 


4

= (a+1; 1; 0)

T

de�ne a parallelogram in the xy-plane, and

let r = 1. By Corollary 3.7, a parallelogram 
on�guration gives at most 8 real 
ommon

tangents.

As illustrated in Figure 3.8(a), the spe
ial 
ase a = 0 yields a square. Obviously, these

four spheres have two 
ommon tangents, namely the lines x = z = 0 and y = z = 0.



3.3. Realization questions 47

x

y

1

1




1




2




3




4

x

y

1

1




1




2




3




4

(a) a = 0 gives 2 real 
ommon tangents. (b) a = 1 gives 3 real 
ommon tangents.

Fig. 3.8: Initial 
on�gurations for 
onstru
tions with 5 and 8 real tangents. In the right �gure

the dotted line shows the two tangents with z-
oordinate

p

2 and �

p

2, respe
tively.

Now observe what happens for parameter values 0 < a < 1. For 0 < a < 1, there

exist exa
tly 5 tangents. As before, one of the tangents is the line de�ned by y = z = 0.

However, the tangent x = z = 0 from the 
ase a = 0 splits for a > 0 into four tangents.

More pre
isely, for 0 < a < 1 there are two tangents parallel to the xy-plane (see the

dotted line in Figure 3.8(b)); these two tangents are symmetri
 with respe
t to the xy-

plane.

For 0 < a < 1, there exist two tangents passing through the origin. These two tangents

are symmetri
 with respe
t to the xz-plane, too. Here, we have to 
ompute the lines whi
h

pass through the origin and whi
h are tangent to S(


3

; 1) and S(


4

; 1). For 0 < a < 1,

there exist two lines with this property. By symmetry, these lines are also tangent to

S(


1

; 1) and S(


2

; 1). For a = 1, these two lines 
ollapse to the line y = z = 0. Obviously,

if 0 < a < 1 then multiplying the y-
oordinates of all four 
enters by a fa
tor � slightly

larger than 1 yields a 
on�guration with 4 instead of 5 distin
t 
ommon tangents.

Now we turn towards a 
onstru
tion with 8 tangents. For 0 < a � 1=2, we multiply the

y-
oordinates of all four 
enters by some 0 < � � 1 su
h that jj


1

� 


3

jj = jj


2

� 


4

jj = 2.

Geometri
ally, the upper spheres \roll" on top of the lower spheres (see Figure 3.9(a)).

Elementary geometry yields � =

p

1� a

2

=2. Compared to the situation a = 0, for

0 < a < 1=2 the tangent y = z = 0 is split into 4 tangents in the same way as in the

transition from 2 to 5 tangents.

In parti
ular, sin
e 5

2

+ 12

2

= 13

2

, the 
hoi
e a = 5=13 yields the rational 
o-

ordinates 


1

= (�18;�12; 0)

T

=13, 


2

= (8;�12; 0)

T

=13, 


3

= (�8;�12; 0)

T

=13, 


4

=

(18;�12; 0)

T

=13. This 
on�guration is depi
ted in Figure 3.9(b). For a = 1=2 the 4

tangents passing through the origin 
ollapse to 2 tangents; hen
e, this yields another


on�guration with 6 real tangents.

Note that in the 
on�guration with 8 tangents there are 4 points whi
h belong to more

than one sphere. However, the radius 
an be slightly de
reased without altering the num-
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4

(a) Parallel proje
tion on the xz-plane (b) Three-dimensional view

Fig. 3.9: Constru
tion with 8 tangents. In the right pi
ture, tangents whi
h are parallel to the

xy-plane are drawn in grey 
olor.

ber of 
ommon tangents. After res
aling these disjoint spheres we obtain a 
on�guration

of 4 disjoint unit spheres with 8 
ommon tangents.

3.3.4 Constru
tions with 10 and 11 real tangents

In order to give 
onstru
tions with 10 and 11 distin
t real tangents, we start from the

initial regular tetrahedron in Se
tion 3.3.2 (see Figure 3.6(a)). However, for notational


onvenien
e, we ex
hange the 
enters 


3

and 


4

. By Lemma 3.8, the radius r = 3

p

2=8

leads to 6 
ommon tangents, whose dire
tions are the dire
tions of the six tetrahedron

edges. Figure 3.10 shows the proje
tion of this situation in the dire
tion of the edge 


2




4

.

Note that the lower left dis
 in this �gure refers to the spheres S(


2

; r) and S(


4

; r).

In this situation, we move the spheres S(


2

; r) and S(


4

; r) slightly in opposite di-

re
tions along the edge 
onne
ting their 
enters. This movement does not 
hange the

position of the tangent with dire
tion 


2




4

. However, the movement will give some \free-

dom" to any of the �ve other tangents, and hen
e any of these edges will split into two

edges. Intuitively, this situation leads to 11 tangents; by in
reasing the radius slightly the

tangent with dire
tion 


2




3

vanishes.

To formalize this idea, we 
onsider the four 
enters 


1

= (

p

3=3; 0; 0)

T

, 


2

= (�

p

3=6;

1=2 + a; 0)

T

, 


3

= (0; 0;

p

6=3)

T

, 


4

= (�

p

3=6;�1=2 � a; 0)

T

for some a > 0. In order

to apply the algebrai
 framework from Se
tion 3.3.1, we translate all 
enters by �


4

; this

translation moves 


4

into the origin. Sin
e the two fa
es 


1




2




3

and 


1




3




4

have the same

area, and the two fa
es 


1




2




4

and 


2




3




4

have the same area, we have A

1

= A

3

and

A

2

= A

4

. As already seen in (3.19), the 
ubi
 (3.11) spe
ializes to

(A

2

2

t

1

+ A

2

1

t

3

)(A

2

1

(t

1

t

2

+ t

2

2

+ t

2

t

3

) + A

2

2

t

1

t

3

) = 0 :

In parti
ular, the 
ubi
 is redu
ible. Using (3.20), the set of all real tangents to the four
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x

z




1




2

; 


4




3

Fig. 3.10: Parallel proje
tion of S(


1

; r); : : : ; S(


4

; r) in the xz-plane with r = 3

p

2=8. This is

the proje
tion along the edge with dire
tion 


2




4

. The position of the 
ommon tangent

in this dire
tion is marked by the 
ross.

spheres S(


i

; r) for some radius r > 0 
an be parametrized by the line

(t

1

; t

2

; t

3

)

T

= (A

2

1

; A

2

2

�;�A

2

1

)

T

; �1 < � � 1 (3.38)

and the 
oni
 se
tion

(t

1

; t

2

; t

3

)

T

= (�A

2

1

(�� 1)� A

2

2

; A

2

2

�;A

2

1

(�� 1)�)

T

; �1 < � � 1 : (3.39)

For a given radius, the linear fun
tion gives at most 4 
ommon tangents and the 
oni
 se
-

tion gives at most 8 
ommon tangents. Analogous to Se
tion 3.3.1, for both parametriza-

tions the square of the radius fun
tion r(�) is a rational fun
tion in �.

A suitable 
hoi
e of a whi
h will have the desired properties and whi
h leads to rational

values of A

2

1

, A

2

2

is a = (

p

112=100 � 1)=2. Then A

2

1

= 78=400, A

2

2

= 84=400, and the

parametrization of the linear fa
tor yields

r

2

(�) =

169(1764�

4

+ 2492�

2

+ 1521)

32(175�

2

+ 169)

2

:

The graph of r(�) is shown in Figure 3.11. The derivative of r

2

(�) is

�

r

2

(�)

�

0

=

1183�(11438�

2

� 7943)

8(169�

2

+ 175)

3

with nominator of degree 3 and stri
tly positive denominator. In parti
ular, r(0) =

3

p

2=8 � 0:5303 is a lo
al maximum, and

lim

�!�1

r(�) = lim

�!1

r(�) =

r

169 � 1764

32 � 175

2

> 0:54 :
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0:50
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p

2=8
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Fig. 3.11: In the parametrization of the linear fa
tor, the square of the radius fun
tion r(�) is a

rational fun
tion in �.

�
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2
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2

�(1=2)
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�1

�(3=2)

2

�2

2

0:50

3

p

2=8

0:54

Fig. 3.12: r(�) for the parametrization of the 
oni
 se
tion. For better illustration of the region

near � = 0 the �-axis is s
aled quadrati
ally.

Consequently, there exist exa
tly three di�erent real values of � with r(�) = 3

p

2=8; and

for slightly larger radii r than 3

p

2=8, say r

1

< r � r

2

with r

1

:= 3

p

2=8, r

2

:= 0:54, we

only obtain two su
h real values of �.

It remains to show: for a given radius r 2 [r

1

; r

2

℄, the parametrization of the 
oni


se
tion 
ontains exa
tly 8 real values of � with r(�) = r. Figure 3.12 illustrates the

fun
tion graph of r(�). By (3.39), the �-values �1, �A

2

2

=A

2

1

+ 1, 0, 1, 1 represent the

t-ve
tors (0; 0; 1)

T

, (0; 1;�1)

T

, (1; 0; 0)

T

, (1;�1; 0)

T

, and (0; 0; 1)

T

, respe
tively. For all

these �-values we obtain r(�) = 3

p

1378=206 > 0:54. These 5 values de
ompose the real

axis into 4 intervals. If any of these intervals 
ontains some value � with r(�) < 3

p

2=8,

then for a given r 2 [r

1

; r

2

℄, there are at least 8 solutions with r(�) = r. We 
an 
hoose,

e.g., the following values of �: �3=10, �5=100, 2=10, and 2. For any of these 4 values we

obtain r(�) < 0:52 whi
h implies the desired result. Sin
e there 
annot be more than 8

solutions, there are exa
tly 8 real solutions.

Finally, it 
an be easily 
he
ked that for A

2

> A

1

the line (3.38) and the 
oni
 se
-

tion (3.39) do not have real interse
tion points; so the tangents stemming from the line

and the tangents stemming from the 
oni
 se
tion are indeed di�erent. This 
ompletes

the proof of the 
onstru
tions with 10 and 11 tangents.
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3.3.5 Dis
ussion and open questions

In this se
tion, we have shown that for any k 2 f0; : : : ; 12g there exists a 
on�guration

with four unit spheres and exa
tly k distin
t real 
ommon tangents. Although we have

motivated every 
onstru
tion by purely geometri
 arguments, the rigorous proofs of some


onstru
tions (in parti
ular 10, 11 tangents) heavily depend on the algebrai
 framework

of the problem as developed in Se
tions 3.1 and 3.2. We interpret this observation as an

indi
ation why a purely geometri
 proof of the upper bound of 12 real 
ommon tangents

(Theorem 3.1) should be quite hard to establish.

Furthermore, observe that all 
onstru
tions with more than 8 tangents are based on

non-disjoint sphere 
on�gurations. Already in Se
tion 3.2.5 we have stated the open

question on the maximum number of distin
t real tangents for disjoint unit spheres. The

diÆ
ulty in treating this question is the same one as above. Namely, it seems to be diÆ
ult

to exploit the 
ondition of disjointness in the algebrai
 setting; but we do not know how

to handle these situations from a purely geometri
 point of view.

Finally, the following open problem plays an important role in the interplay between

the algebra and the geometry of the tangent problem. For some famous problems in

enumerative geometry (
exes and bitangents of plane 
urves, lines on 
ubi
 surfa
es,


oni
s tangent to �ve given 
oni
s), the resulting Galois groups in the generi
 
ase are

non-solvable [69℄. This situation re
e
ts the diÆ
ulty of purely geometri
 methods to

handle these problems. Using the 
omputer algebra system Gap [115℄ for the handling

of groups, we have 
he
ked for some spe
i�
 instan
es of tangents to four unit spheres

that the resulting Galois groups are non-solvable. It is an open problem to provide a

non-
omputer-algebrai
 proof of this non-solvability for generi
 instan
es.

3.4 Computing smallest 
ir
ums
ribing 
ylinders of a tetrahedron in R

3

We study the optimization aspe
t of the tangent problem. Given aÆnely independent 
en-

ters 


1

; : : : ; 


4

2 R

3

, �nding the minimal radius r > 0 su
h that the spheres S(


1

; r); : : : ;

S(


4

; r) have a real 
ommon tangent is equivalent to �nding the minimal radius of a 
ir
u-

lar 
ylinder 
ir
ums
ribing the tetrahedron with verti
es 


1

; : : : ; 


4

. In Se
tion 2.2.5, we

have seen that this problem is tightly 
onne
ted to the 
omputation of a smallest en
losing


ylinder for general polytopes in R

3

.

As mentioned in Se
tion 2.1.2, the 
omputational 
osts of solving a system of polyno-

mial equations are dominated by the B�ezout number and the mixed volume (the latter

will be
ome relevant in the n-dimensional 
ase treated in Se
tion 5.3). Hen
e, it is an

essential task to �nd the right algebrai
 formulations.

In Se
tion 3.4.1, we apply our framework of Se
tions 3.1 and 3.2 to provide a for-

mulation for the smallest 
ir
ums
ribing 
ylinder of a tetrahedron with B�ezout number

36.

Based on this formulation, we 
an investigate tetrahedron 
lasses for whi
h the degrees


an be further redu
ed. This is done in Se
tion 3.4.2.
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3

3.4.1 General tetrahedra in R

3

In the proof of [37, Theorem 6℄, a polynomial formulation is given to 
ompute a smallest

en
losing 
ylinder of a tetrahedron in R

3

. This formulation des
ribes the problem by three

equations in the dire
tion ve
tor v = (v

1

; v

2

; v

3

)

T

of the line, one of them normalizing the

dire
tion ve
tor v by

v

2

1

+ v

2

2

+ v

2

3

= 1 : (3.40)

The equations are of degree 10, 3, and 2, respe
tively, thus giving a B�ezout number of

60. However, as pointed out in that paper, some of the solutions to that system are

arti�
ially introdu
ed by the formulation and o

ur with higher multipli
ity, and there

are only 18 really di�erent solutions. Even more severely, in the experiments in that paper

(using Synaps, a state-of-the-art software for numeri
al polynomial 
omputations), the

numeri
al treatment of these multiple solutions needs mu
h time, roughly a fa
tor 100


ompared to similar systems without multiple solutions.

Here, we present an approa
h, whi
h re
e
ts the true algebrai
 bound of 18. Namely,

we give a polynomial formulation with B�ezout bound 36 in whi
h every solution generi
ally

has multipli
ity one. The additional fa
tor 2 just results from the fa
t that due to the

normalization 
ondition (3.40) every solution v also implies that �v is a solution as well.

Our framework is based on Se
tions 3.1 and 3.2. Here, we are interested in real lines.

As before, a line in R

3

is represented by a dire
tion ve
tor v 2 R

3

nf0g and a point p 2 R

3

lying on the line with p � v = 0. Moreover, we assume v

2

= 1.

Let 


1

; : : : ; 


4

be the aÆnely independent verti
es of the given tetrahedron, and assume




4

= 0. Further let M := (


1

; 


2

; 


3

)

T

. After substituting (3.5) into p � v = 0, we set

v

2

= 1 in the resulting denominator; this gives the homogeneous 
ubi
 equation whi
h we

denote by g

1

(v

1

; v

2

; v

3

) = 0. Hen
e, we arrive at the following polynomial optimization

formulation in terms of the variables v

1

, v

2

, and v

3

to 
ompute the square of the radius

of the minimal 
ir
ums
ribing 
ylinder.

min

0

�

1

2

M

�1

0

�

v

2

p

2

1

� (v � p

1

)

2

v

2

p

2

2

� (v � p

2

)

2

v

2

p

2

3

� (v � p

3

)

2

1

A

1

A

2

s.t. g

1

(v

1

; v

2

; v

3

) = 0 ;

g

2

(v

1

; v

2

; v

3

) := v

2

� 1 = 0 :

(3.41)

Rather than using v

2

= 1 to further simplify the obje
tive fun
tion, we prefer to keep the

homogeneous form, so that the obje
tive fun
tion is a homogeneous polynomial of degree

4. We denote this polynomial by f .

By the 
onsiderations in Se
tion 3.2, the edge dire
tions of the base tetrahedron are

admissible solutions; thus the set of admissible solutions is nonempty.

Using Lagrange multipliers �

1

and �

2

, a ne
essary lo
al optimality 
ondition is

grad f = �

1

grad g

1

+ �

2

grad g

2

: (3.42)
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By thinking of an additional fa
tor �

0

before grad f and 
onsidering (3.42) as a system

of linear equations in �

0

, �

1

, �

2

, we see that if (3.42) is satis�ed for some ve
tor v then

the determinant

det

0

B

�

�

�f

�v

1

�g

1

�v

1

�g

2

�v

1

�

�f

�v

2

�g

1

�v

2

�g

2

�v

2

�

�f

�v

3

�g

1

�v

3

�g

2

�v

3

1

C

A

(3.43)

vanishes.

Lemma 3.11. (a) For any normalized dire
tion ve
tor (v

1

; v

2

; v

3

)

T

2 R

3

of the axis of a

lo
ally extreme 
ir
ums
ribing 
ylinder, the determinant (3.43) vanishes. If there are only

�nitely many lo
ally extreme, normalized dire
tion ve
tors then that number is bounded

by 36.

(b) For a generi
 tetrahedron the number of solutions is indeed �nite, and all solutions

have multipli
ity one.

Proof. Let v be the dire
tion ve
tor of an axis of a lo
ally extreme 
ir
ums
ribing 
ylinder.

Then v satis�es the �rst 
onstraint of (3.41), and the determinant (3.43) vanishes. Sin
e

these are homogeneous equations of degree 3 and 6, respe
tively, B�ezout's Theorem implies

that in 
onne
tion with v

2

= 1 we obtain at most 36 isolated solutions.

For the se
ond statement it suÆ
es to 
he
k that for one spe
i�
 tetrahedron there

are only �nitely many solutions and that all solutions are pairwise distin
t.

3.4.2 Spe
ial tetrahedron 
lasses in R

3

We investigate 
onditions under whi
h the degree of the resulting equations de
reases.

Moreover, we show that for the equifa
ial tetrahedron, the minimal 
ir
ums
ribing radius


an be 
omputed quite easily.

In Se
tion 3.2.1, we have seen that the polynomial g

1

in the 
ubi
 equation fa
tors

into a linear polynomial and an irredu
ible quadrati
 polynomial if and only if the four

fa
es of the tetrahedron T 
an be partitioned into two pairs of fa
es fF

1

; F

2

g, fF

3

; F

4

g

with area(F

1

) = area(F

2

) 6= area(F

3

) = area(F

4

). Moreover, g

1

fa
tors into three linear

terms if and only if the areas of all four fa
es of T are equal.

First let us 
onsider the 
ase where g

1

de
omposes into a linear polynomial and an irre-

du
ible quadrati
 polynomial. By optimizing separately over the linear and the quadrati



onstraint, the degrees of our equations are smaller than for the general 
ase. Namely,

analogously to the derivation in Se
tion 3.4.1, for the quadrati
 
onstraint we obtain a

B�ezout bound of

(3 + 1 + 1) � 2 � 2 = 20 ;

and for the linear 
onstraint we obtain

(3 + 0 + 1) � 1 � 2 = 8 :

Thus, we 
an 
on
lude:
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Lemma 3.12. If the four fa
es of the tetrahedron 
an be partitioned into two pairs of

fa
es fF

1

; F

2

g, fF

3

; F

4

g with area(F

1

) = area(F

2

) 6= area(F

3

) = area(F

4

) then there are

at most 28 isolated lo
al extrema for the minimal 
ir
ums
ribing 
ylinder. They 
an be


omputed from two polynomial systems with B�ezout numbers 20 and 8, respe
tively.

Equifa
ial simpli
es. As des
ribed in Se
tion 3.2.2, for an equifa
ial tetrahedron the 
ubi


polynomial g

1

fa
tors into three linear terms. Hen
e, we obtain at most 3 � 8 = 24 lo
al

extrema. Somewhat surprisingly, it is even possible to 
ompute smallest 
ir
ums
ribing


ylinder of an equifa
ial tetrahedron essentially without any algebrai
 
omputation. We

follow the notation and reasoning in Se
tion 3.2.2. Thus we assume that the verti
es of

an equifa
ial tetrahedron have the form 


1

= (�

1

; �

2

; �

3

)

T

, 


2

= (�

1

;��

2

;��

3

)

T

, 


3

=

(��

1

; �

2

;��

3

)

T

, 


4

= (��

1

;��

2

; �

3

)

T

with �

1

; �

2

; �

3

> 0. For any radius r > 0, the

dire
tion ve
tor of any 
ommon tangent to the four spheres S(


1

; r); : : : ; S(


4

; r) satis�es

v

1

v

2

v

3

= 0. Considering without loss of generality the 
ase v

1

= 0, (3.22) yields

r

2

= �

�

2

2

�

2

3

�

2

1

v

4

2

�

�

�

2

2

� �

2

3

�

�

2

2

�

2

3

�

2

1

�

v

2

2

+ �

2

1

+ �

2

2

: (3.44)

Thus, by 
omputing the derivative of this expression r

2

= r

2

(v

2

) and taking into a

ount

the three 
ases v

i

= 0, we 
an redu
e the 
omputation of the minimal 
ir
ums
ribing


ylinder to solving three univariate equations of degree 3. However, we 
an still do better.

Substitute z

2

:= v

2

2

, and let � be the expression for r

2

in terms of z

2

,

�(z

2

) = �

�

2

2

�

2

3

�

2

1

z

2

2

�

�

�

2

2

� �

2

3

�

�

2

2

�

2

3

�

2

1

�

z

2

+ �

2

1

+ �

2

2

:

Sin
e the se
ond derivative of that quadrati
 fun
tion is negative, �(z

2

) is a 
on
ave

fun
tion. Hen
e, within the interval z

2

2 [0; 1℄, the minimum is attained at one of the

boundary values z

2

2 f0; 1g. Consequently, two of the 
omponents of (v

1

; v

2

; v

3

)

T

must

be zero and therefore v is perpendi
ular to two opposite edges. Sin
e the latter geometri



hara
terization is independent of our spe
i�
 
hoi
e of 
oordinates, we 
an 
on
lude:

Theorem 3.13. If all four fa
es of the tetrahedron T have the same area then the axis

of a minimum 
ir
ums
ribing 
ylinder is perpendi
ular to two opposite edges.

Hen
e, for an equifa
ial tetrahedron it suÆ
es to investigate the 
ross produ
ts of the

three pairs of opposite edges (equipped with an orientation), and we do not need to solve

a system of polynomial equations at all.

In order to illustrate how these three solutions relate to the 18 solutions of the general

approa
h above, we 
onsider the regular tetrahedron in R

3

. In the general approa
h,

as already pointed out in [37℄, the six edge dire
tions 


i




j

(1 � i < j � 4) all have

multipli
ity 1, and ea
h of the three dire
tions in Theorem 3.13, 


1




2

� 


3




4

, 


1




3

� 


2




4

,




1




4

� 


2




3

, have multipli
ity 4.
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3.5 Dynami
 visualization aspe
ts

As illustrated within the 
onstru
tions in Se
tion 3.3, many properties and 
onstru
tions

of the tangent problem 
an best be understood in terms of dynami
 
on�gurations. For a

dynami
 visualization of our algebrai
 problem of degree 12, we do not only have to solve

a single system, but instead have to solve several systems per se
ond. In this se
tion, we

brie
y des
ribe a prototype of a homotopy-based visualization tool, whi
h demonstrates

that visualization of algebrai
-geometri
 problems of this degree in real time is indeed

possible. For a demonstration video of these visualizations see the video review tape of

the Symposium on Computational Geometry 2002 [85℄.

General framework. In the last years, homotopy 
ontinuation te
hniques te
hniques have

been very fruitfully applied to build state-of-the-art numeri
al solvers of polynomial equa-

tions (see [32, 143℄). The goal is to �nd all solutions of a zero-dimensional system of

polynomial equations

f

1

(x

1

; : : : ; x

n

) = : : : = f

n

(x

1

; : : : ; x

n

) = 0 ;

abbreviated f(x) = 0. The idea of the homotopy te
hnique is to start from a se
ond

system g(x) = 0 whose solutions are known a priori. Then we 
onsider the family of

systems of equations

0 = h(x; �) := (1� �)g(x) + �f(x)

for 0 � � � 1. By su

essively in
reasing � in small steps from 0 to 1 we 
an use either

Newton's method to �nd the solutions for the next step, or solvers of ordinary di�erential

equations. The latter approa
h is based on the equation

J(x(�); �)

dx(�)

d�

= �

�h

��

(x(�); �); J(x; �) :=

�

�h

i

�x

j

(x; �)

�

;

whi
h is implied by the Impli
it Fun
tion Theorem.

Homotopy methods for the tangents to spheres. If the starting system g(x) = 0 of a

homotopy solver has more solutions than the system f(x) = 0, some paths ne
essarily

diverge as � ! 1. Therefore a main 
on
ern in the design of homotopy solvers is to

�nd an appropriate starting system of polynomials g(x), whi
h is expe
ted to have the

same number of zeroes as f(x). By Bernstein's Theorem, this means that the starting

polynomials g(x) should have the same Newton polytope as f(x) (see, e.g., [32, 137℄).

For two reasons, homotopy te
hniques seem to be parti
ularly suitable for visualizing


on�gurations of the tangents to spheres. Firstly, for the given polynomial formulation

the B�ezout number agrees with the number of expe
ted zeroes. Se
ondly, as exhibited in

Se
tion 3.3, geometri
 understanding of 
on�gurations suggests also to inspe
t topologi-


ally neighboring 
on�gurations. For two-dimensional geometri
 problems, the latter issue

is treated 
omprehensively in dynami
 geometry software su
h as Cinderella [108℄.
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Implementation aspe
ts. The homotopy-based visualization of dynami
 tangent 
on�gu-

rations has been prototypi
ally implemented in Visual C++. The input to the program

is a des
ription of the dynami
 
on�gurations. For 
omputing and visualizing the tan-

gents of the initial 
on�gurations, the homotopy method starts from a standard starting

system. For the subsequent 
on�gurations, it starts from the pre
eding 
on�guration.

Both Newton's method and numeri
al methods for solving the di�erential equation are

implemented.

The 3D graphi
s have been implemented using the Open GL-based Coin 3D graphi
s

library. This library provides an appli
ation programming interfa
e based on the widely

distributed Open Inventor graphi
s library.

Frontiers of the implementation. Despite an automati
 adaption of the step size, numeri
al

problems of 
ourse arise whenever we rea
h too 
lose to a 
on�guration in whi
h the

Ja
obian matrix J is singular. If this 
on�guration is only an intermediate 
on�guration

on a homotopy path, this 
an be avoided by 
hoosing a long way round the singularity.

However, if the singular 
on�guration is our destination, then this strategy obviously does

not work. Experimental data on the numeri
al behavior 
an be found in the Diplom thesis

of D. Kotzor [84℄.



4. COMMON TANGENTS TO FOUR QUADRICS IN P

3

AND R

3

In this 
hapter, we study the problem of 
ommon tangents to four quadri
s in P

3

and

relate it to the sphere problem dis
ussed in Chapter 3.

Using Pl

�

u
ker 
oordinates, ea
h of the tangent 
onditions gives a quadrati
 equation in

P

5

. In 
onne
tion with the single Pl

�

u
ker relation (2.2), we obtain �ve quadrati
 equations

in P

5

. By B�ezout's Theorem, if this system has only �nitely 
omplex solutions, then this

number is bounded by 32. The dis
repan
y between this upper bound and the number

of 12 for spheres is 
aused by the fa
t that for spheres, the 
ommon zeroes of the Pl

�

u
ker

formulation in P

5

in
lude a one-dimensional ex
ess 
omponent at in�nity (a

ounting for

the \missing" 2

5

� 12 = 20 solutions [1℄). This observation 
an also be seen as the main

argument why we used an elementary des
ription of lines in Chapter 3.

In Se
tion 4.1, we solve the real enumerative question for quadri
s by showing that 32

is the true upper bound for quadri
s, even over the real numbers.

In Se
tion 4.2, we propose some 
omputer-algebrai
 methods to relate the enumerative

geometry problem for general quadri
s to the enumerative geometry problem for spheres.

In order to resolve the one-dimensional 
omponent of solutions at in�nity, the algebrai
-

geometri
 te
hnique of blow-ups 
an be used. In most examples 
oming from geometry, a

single blow-up suÆ
es to resolve an ex
ess 
omponent. However, for the tangent problem

after one blow-up the ex
ess 
omponent is still not resolved, and a se
ond blow-up is

ne
essary. Thus the tangent problem is an outstanding example of a natural geometri


problem whose analysis requires a double blow-up. The aim of this se
tion is to use


omputer-algebrai
 methods to show the ne
essity of a se
ond blow-up.

4.1 Real lines

Re
all from Se
tion 2.1.1 that we 
all a quadrati
 hypersurfa
e real if it 
an be des
ribed

by a quadrati
 form with real 
oeÆ
ients. Here, we show the following result.

Theorem 4.1. There exists a 
on�guration of four real quadri
s in P

3

with 32 distin
t

real 
ommon tangent lines.

Before going into the te
hni
al details, let us illustrate the geometri
 idea underlying

our 
onstru
tion. We start from the well-known fa
t that four lines in P

3

have at most two

or in�nitely many 
ommon transversals (see, e.g., [75, xXIV.7℄). In order to demonstrate

the geometry behind this number of two, 
onsider a tetrahedron � 2 R

3

, where we �x two

opposite edges e

1

and e

2

. Let `

1

; : : : ; `

4

be the lines underlying the other four edges. These
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four lines interse
t pairwise in the verti
es of �. Hen
e, the two 
ommon transversals are

the lines underlying the two edges e

1

and e

2

. See Figure 4.1.

`

1

`

2

`

3

`

4

e

1

e

2

Fig. 4.1: Tetrahedron 
on�guration of four lines in R

3

with two real tangents.

Consider the lines `

1

; : : : ; `

4

as (degenerate) in�nite 
ir
ular 
ylinders with radius

r = 0. If we in
rease the radius slightly, then the 
ylinders interse
t pairwise in the regions

(
ombinatorially) given by the four verti
es of �. Intuitively, after this perturbation

pro
ess, the 
ommon tangents roughly have the dire
tion of e

1

and e

2

. However, due to the

interse
tion of the 
ylinders every of these interse
tion points de�nes four 
ombinatorial

types. Therefore, there are 4 � 4 tangents 
lose to the dire
tion of e

1

and 4 � 4 tangents


lose to the dire
tion of e

2

. Figure 4.2 illustrates this situation for the 
ase of a regular

tetrahedron.

While this demonstration of Theorem 4.1 is visually appealing and is easily veri�ed

numeri
ally, its proof requires more work. Namely, perturbing the given lines into 
ylinders

transforms a problem of degree 2 into one of degree 32. In order to make this idea pre
ise,

we des
ribe a family of proje
tive 
on�gurations ea
h of whi
h is equivalent to that of

Figure 4.1. Exploiting symmetries, we are able to determine 
on�gurations in the family

having all 
ommon transversals real. This provides a 
onstru
tive proof of Theorem 4.1.

We realize the tetrahedral 
on�guration of Figure 4.1 in proje
tive 3-spa
e, using the


oordinates (x

0

; x

1

; x

2

; x

3

)

T

for P

3

. For the lines `

1

; : : : ; `

4

, we we give a des
ription in

terms of equations, as well as a parametrization using the 
oordinates [s; t℄ for P

1

.

`

1

: x

0

= x

3

= 0 ; i:e:; (0; s; t; 0)

T

;

`

2

: x

1

= x

0

= 0 ; i:e:; (0; 0; s; t)

T

;

`

3

: x

1

= x

2

= 0 ; i:e:; (t; 0; 0; s)

T

;

`

4

: x

2

= x

3

= 0 ; i:e:; (s; t; 0; 0)

T

:

(4.1)

Then the lines underlying e

1

and e

2

are (s; 0; t; 0)

T

and (0; s; t; 0)

T

, respe
tively.
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Fig. 4.2: Con�guration of 4 quadri
s with 32 real tangents.

Now, for some parameters �; � 2 R, 
onsider the four quadri
s

Q

1

: x

2

1

+ x

2

2

� �(x

2

3

+ x

2

0

) = 0 ;

Q

2

: x

2

2

+ x

2

3

� �(x

2

0

+ x

2

1

) = 0 ;

Q

3

: x

2

3

+ x

2

0

� �(x

2

1

+ x

2

2

) = 0 ;

Q

4

: x

2

0

+ x

2

1

� �(x

2

2

+ x

2

3

) = 0 :

For � = � = 0, these quadri
s be
ome the 
orresponding lines, and for small �; � >

0, these quadri
s are deformations of the lines. Re
all that the signature of a quadri


denotes the number of positive eigenvalues of its representation matrix minus the number

of negative eigenvalues. Sin
e for �; � > 0 ea
h quadri
 Q

i

has rank 4 and signature 0,

we see that all four quadri
s are ruled surfa
es.

Theorem 4.2. Let (�; �) 2 R

2

satisfy

��(1� ��)(1 + �)(1 + �)

�

(1� �)

2

(1� �)

2

� 16��

�

6= 0 :

Then there are 32 distin
t (possibly 
omplex) 
ommon tangent lines to Q

1

; : : : ; Q

4

. More-

over, if 0 < �; � < 3� 2

p

2, then all these 32 distin
t tangent lines are real.

Proof. We work in the Pl

�

u
ker 
oordinates for the spa
e of lines in P

3

. Sin
e the quadri
s

only 
ontain monomials of the form x

2

i

, the four tangent equations (2.5) of Q

1

; : : : ; Q

4
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only 
ontain monomials of the form p

2

ij

. More pre
isely, the four tangent equations give

the following system of linear equations in p

2

01

; : : : ; p

2

23

:

0

B

B

�

�� �� �

2

1 �� ��

�

2

�� �� �� �� 1

�� �� 1 �

2

�� ��

1 �� �� �� �� �

2

1

C

C

A

0

B

B

B

B

B

B

�

p

2

01

p

2

02

p

2

03

p

2

12

p

2

13

p

2

23

1

C

C

C

C

C

C

A

= 0 :

We permute the variables into the order (p

02

; p

13

; p

03

; p

12

; p

01

; p

23

). Then, for �; � satisfying

��(1� ��)(1 + �)(1 + �) 6= 0 ; (4.2)

Gaussian elimination yields the following system:

0

B

B

�

�� �� (1� �)(1� �) 0 0 0

0 0 � �� 0 0

0 0 0 �� � 0

0 0 0 0 � ��

1

C

C

A

0

B

B

B

B

B

B

�

p

2

02

p

2

13

p

2

03

p

2

12

p

2

01

p

2

23

1

C

C

C

C

C

C

A

= 0 :

Hen
e, in 
onne
tion with the single Pl

�

u
ker equation (2.2), we have the following system

of equations:

��p

2

02

� �p

2

13

+ (1� �)(1� �)p

2

03

= 0 ; (4.3)

p

01

p

23

� p

02

p

13

+ p

03

p

12

= 0 ; (4.4)

�p

2

01

= �p

2

03

= �p

2

12

= �p

2

23

: (4.5)

We analyze this system for �; � satisfying (4.2) by 
onsidering the following three disjoint


ases.

Case 1: p

02

= 0.

Sin
e p

13

= 0 would imply that all 
omponents are zero and hen
e 
ontradi
t (p

01

; : : : ; p

23

)

T

2 P

5

, we 
an assume p

13

= 1. Then (4.3) and (4.5) imply

�p

2

01

= �p

2

03

= �p

2

12

= �p

2

23

=

��

(1� �)(1� �)

6= 0 :

Sin
e (4.4) implies sgn(p

01

p

23

) = �sgn(p

03

p

12

), only 8 of the 2

4

= 16 sign 
ombinations

for p

01

; p

03

; p

12

; p

23

are possible. More pre
isely, the 8 (possibly 
omplex) solutions for

p

01

; p

03

; p

12

; p

23

are

(p

01

; p

03

; p

12

; p

23

)

T

=

1

p

(1� �)(1� �)

(


01

�; 


03

�; 


12

�;�sgn(


01




03




12

)�)

T

(4.6)
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with 


01

; 


03

; 


12

2 f�1; 1g. Hen
e, for �; � 2 R

2

satisfying (4.2), this 
ase gives 8 distin
t


ommon tangents.

Case 2: p

13

= 0.

This 
ase is symmetri
 to 
ase 1. Setting p

13

= 1, the resulting 8 solutions for the variables

p

01

; p

03

; p

12

; p

23

are the same ones as in (4.6).

Case 3: p

02

p

13

6= 0.

Without loss of generality, we 
an assume p

02

= 1. Solving (4.4) for p

13

and substituting

this expression into (4:3) yields

�� � �p

2

01

p

2

23

� �p

2

03

p

2

12

� 2�p

01

p

03

p

12

p

23

+ (1� �)(1� �)p

2

03

= 0 :

We next use (4.5) to write this in terms of p

01

. This is straightforward for the squared

terms, but for the other terms, we observe that, by (4.5), p

01

p

23

= �p

03

p

12

and sin
e

p

02

p

13

6= 0, the Pl

�

u
ker equation (4.4) implies these have the same sign. This gives the

quarti
 equation in p

01

�� + (1� �)(1� �)p

2

01

� 4�p

4

01

= 0 :

Considering this equation as a quadrati
 equation in p

2

01

, the dis
riminant is

(1� �)

2

(1� �)

2

� 16�� : (4.7)

Hen
e, for �; � 2 R

2

satisfying (4.2), and for whi
h this dis
riminant does not vanish,

there are two di�erent solutions for p

2

01

. For ea
h of these two solutions for p

2

01

, there are

8 distin
t solutions for p

01

; p

03

; p

12

; p

23

, namely

(p

01

; p

03

; p

12

; p

23

)

T

=

q

p

2

01

(


01

; 


03

; 


12

; sgn(


01




03




12

))

T

(4.8)

with 


01

; 


03

; 


12

2 f�1; 1g. Sin
e p

13

is uniquely determined by p

01

, p

02

, p

03

, p

12

, 
ase 3

gives 16 distin
t 
ommon tangents.

With this solution, we 
an easily determine when all solutions are real. First, suppose

that � = �. Then the dis
riminant (4.7) be
omes (�

2

� 6�+ 1)(�+ 1)

2

, and its smallest

positive root is �

0

:= 3� 2

p

2 � 0:17157. In parti
ular, for 0 < � < �

0

, the dis
riminant

in 
ase 3 is positive and both solutions for p

2

01

are positive. Thus, for 0 < � = � < �

0

,

the solutions of all three 
ases are distin
t and real. Next, �x 0 < � < �

0

and suppose

that 0 < � < �. Then the dis
riminant (4.7) is positive. To see this, note that for �xed

0 < � < �

0

, the dis
riminant (4.7) is de
reasing in � for 0 < � < � and positive when

� = �. This 
on
ludes the proof of Theorem 4.2.

Figure 4.3 illustrates the 
onstru
tion and the 32 tangents for � = 1=10 and � = 1=20.
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Fig. 4.3: The 
on�guration of quadri
s from Theorem 4.2.

4.2 Computer-algebrai
 aspe
ts

Let four spheres in R

3

be given by 
enters 


1

; : : : ; 


4

2 R

3

and radii r

1

; : : : ; r

4

> 0.

By (2.6), ea
h of the tangent 
onditions gives a quadrati
 equation in Pl

�

u
ker 
oordinates,

and additionally we have to 
onsider the single Pl

�

u
ker equation (2.2). So we obtain a

system with B�ezout number 2

5

= 32 in the proje
tive spa
e P

5

of Pl

�

u
ker 
oordinates p

ij

,

0 � i < j � 3.

Besides the isolated solutions there is an ex
ess 
omponent of tangents lo
ated in the

plane at in�nity. Namely, any ve
tor p 2 P

5

whi
h satis�es

p

01

= p

02

= p

03

= p

2

12

+ p

2

13

+ p

2

23

= 0 (4.9)

both ful�ls the algebrai
 tangent 
ondition given by (2.6) and the Pl

�

u
ker 
ondition (2.2).

Due to the 
onditions p

01

= p

02

= p

03

= 0, the geometri
 lines des
ribed by the Pl

�

u
ker

ve
tors in this variety are lo
ated in the plane at in�nity.

A fundamental te
hnique in algebrai
 geometry is to resolve singularities of a variety

by means of a blow-up. Here, we use this te
hnique to remove the ex
ess 
omponent of

our variety of tangents. Intuitively, we 
an think of lifting our variety into a spa
e of

larger dimension, there having the freedom to add further information whi
h then allows

to distinguish the points we do not want to 
ount.



4.2. Computer-algebrai
 aspe
ts 63
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(a) Plane 
urve (b) After the blow-up

Fig. 4.4: The nodal 
ubi
.

In most examples 
oming from geometry, a single blow-up suÆ
es to resolve an ex
ess


omponent. However, for the tangent problem to spheres it has originally been observed

by P. AluÆ and W. Fulton [1℄ that after one blow-up the ex
ess 
omponent is still not

resolved and that a se
ond blow-up is ne
essary.

4.2.1 Algebrai
-geometri
 ba
kground

Before providing the 
omputer-algebrai
 details, let us shortly review the geometri
 idea

of the blow-up te
hnique (see [55, 71℄). For an illustration, 
onsider the nodal 
ubi
 
urve

in R

2

de�ned by y

2

= x

2

(x + 1) (see Figure 4.4(a)). The origin is a singular point of the


urve. In order to determine the exa
t multipli
ity of the origin, we resolve the singularity

by means of a blow-up. Namely, we embed the two-dimensional 
urve C appropriately

into R

2

� P

1

R

. For ea
h point (x; y) 2 R

2

we en
ode its tangent dire
tion x=y in the third


omponent. Formally, we 
onsider the 
urve in R

2

� P

1

R

de�ned by the two equations in

the variables (x; y; [t

0

; t

1

℄),

y

2

= x

2

(x + 1); t

0

x = t

1

y: (4.10)

The latter equation expresses that the tangent dire
tion x=y 
oin
ides with t

1

=t

0

. The

illustration in Figure 4.4(b) shows that this 
urve 
onsists of two bran
hes: on the one

hand we have the bran
h E := (0; 0) � P

1

R

, 
alled the ex
eptional divisor, and on the

other hand we have the \stret
hed" 
urve

~

C whi
h we wanted to a
hieve. Figure 4.4(b)

illustrates that

~

C does not 
ontain a singular point anymore.

The 
on
ept 
an be generalized to resolve not only single singular points but also


ommon 
omponents (see [55, 71℄). Our ex
ess 
omponent E is given by (4.9) in P

5

. The
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underlying theory requires to start from an aÆne spa
e. Therefore we set p

23

= 1 (sin
e

we want to analyze the ex
ess 
omponent, we 
hoose a variable here whi
h does not a�e
t

the existen
e of our ex
ess 
omponent itself).

The ideal I

E

generated by the polynomials in (4.9) is a radi
al ideal, i.e., whenever

I

E


ontains some positive power of a polynomial f then it also 
ontains f itself. For that

reason we 
an blow up R

n

along the subvariety E (see [125, p. 111℄). (In 
ase I

E

is not

radi
al, this leads to the more general notion of a blow-up along the subs
heme de�ned

by an ideal I

E

.)

4.2.2 Simulating the double blow-up

Using the 
omputer-algebra system Singular [62℄, we 
an simulate the blow-up as fol-

lows. First we de�ne a polynomial ring R in the variables p

01

; p

02

; p

03

; p

12

; p

13

over a �eld

with 
hara
teristi
 zero (i.e., the base �eld is Q). Moreover, we 
hoose a degree reverse

lexi
ographi
al ordering (dp). The option redSB for
es Singular to work with redu
ed

Gr

�

obner (standard) bases.

option(redSB);

ring R = 0, (p01,p02,p03,p12,p13), (dp);

The following pro
edure 
omputes the tangent equation of a sphere. Sin
e the Singular

implementation of the wedge fun
tion works in a di�erent basis (namely, with regard to

our notation ^

2

Q 2 R

(

n

2

)

;

(

n

2

)

, Singular 
omputes (�1)

i+j

(^

2

Q)

ij

, 1 � i; j �

�

n

2

�

), we


ompensate these di�eren
es in signs by using a modi�ed Pl

�

u
ker ve
tor.

pro
 tangenteq(int 
1, int 
2, int 
3, int rr)

{

matrix sphereeq[4℄[4℄ = 
1^2+
2^2+
3^2-rr^2, -
1, -
2, -
3,

-
1, 1, 0, 0,

-
2, 0, 1, 0,

-
3, 0, 0, 1;

matrix plue
kermod[6℄[1℄ = p01, -p02, p03, -p12, p13, -1;

return(transpose(plue
kermod) * wedge(sphereeq,2) * plue
kermod);

}

We 
onsider the four spheres with 
enters (0; 0; 0)

T

, (1;�2; 3)

T

, (1; 0; 1)

T

, and (0;�1; 0)

T

and 
ommon radius 1. For these spheres, we de�ne our ideal of 
ommon tangent lines, with

p

23

set to 1. We 
ompute a Gr

�

obner (standard) basis of I and 
ompute the dimension and

degree (multipli
ity) of I. Adapting the 
onvention in [49℄, we use 
omment lines starting

with // to display the output of a Singular 
omputation.

ideal I1 = tangenteq(0,0,0,1);

ideal I2 = tangenteq(1,-2,3,1);

ideal I3 = tangenteq(1,0,1,1);
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ideal I4 = tangenteq(0,-1,0,1);

ideal IPlu = p01*1 - p02*p13 + p03*p12; // Plue
ker relation

ideal I = std(I1 + I2 + I3 + I4 + IPlu);

dim(I), mult(I);

// 1 4

The variety V(I) 
ontains a one-dimensional ex
ess 
omponent, whose radi
al ideal is

generated by the polynomials in (4.9).

// ex
eptional divisor of I

ideal IE = p01, p02, p03, p12^2 + p13^2 + 1;

Let f

1

; : : : ; f

4

denote these polynomials. Sin
e f

1

; : : : ; f

4

form a regular sequen
e, the

blow-up ideal is generated by the polynomials

v

i

f

j

� v

j

f

i

; 1 � i < j � 4 ; (4.11)

where v

1

; : : : ; v

4

denote new variables (see [55, p. 12℄; for the non-regular 
ase see [124℄).

This 
onstru
tion naturally generalizes the blow-up with respe
t to a single point in

Se
tion 4.2.1. The following pro
edure 
omputes the blow-up for any regular sequen
e

f

1

; : : : ; f

k

of polynomials. In this pro
edure, the parameter I denotes the list of poly-

nomials of the ex
ess 
omponent, and NewVars denotes the 
orresponding list of new

variables.

pro
 
omputeblowup(ideal I, ideal NewVars)

{

int i, j;

ideal A, B;

for (i = 1; i <= size(I); i++) {

for (j = 1; j <= size(NewVars); j++) {

if (i != j) {

B = I[i℄ * NewVars[j℄ - I[j℄ * NewVars[i℄;

A = A + B;

}

}

}

return(A);

}

We extend the polynomial ring R by adjoining new variables t

01

, t

02

, t

03

, q to the ring R.

Sin
e we will work in the 
oordinate pat
h where t

03

6= 0, we 
an set t

03

= 1. We 
ompute

the blow-up ideal whi
h has dimension 5 and degree 6.
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ring S = 0, (p01,p02,p03,p12,p13,t01,t02,q), (dp);

ideal NewVars1 = t01, t02, 1, q;

ideal BlowUp1 = 
omputeblowup(imap(R,IE), NewVars1);

// 5 6

Taking the union of the generators of the blow-up ideal and the generators of I

k

, we

obtain an ideal whose variety 
orresponds to the one illustrated in Figure 4.4(b). In

order to remove the ex
eptional divisor, we 
ompute the ideal quotient of the ideal in the

larger spa
e divided by the ex
eptional divisor. The resulting ideal J

k

is 
alled the proper

transform of I

k

. Here, the proper transform is an ideal in C [p

01

; p

02

; p

03

; p

12

; p

13

; t

01

; t

02

; q℄.

We 
ompute the ideal of the proper transforms and see that there is still a one-dimensional

ex
ess 
omponent of degree 4.

// 
ompute equations after the blow-up

ideal J1 = std(quotient(BlowUp1 + imap(R,I1), imap(R,IE)));

ideal J2 = std(quotient(BlowUp1 + imap(R,I2), imap(R,IE)));

ideal J3 = std(quotient(BlowUp1 + imap(R,I3), imap(R,IE)));

ideal J4 = std(quotient(BlowUp1 + imap(R,I4), imap(R,IE)));

ideal JPlu = std(quotient(BlowUp1 + imap(R,IPlu), imap(R,IE)));

ideal J = std(J1 + J2 + J3 + J4 + JPlu);

dim(J), mult(J);

// 1 4

In order to explain this observation, we analyze the blow-up by hand. In the 
oordinate

pat
h t

03

6= 0, we 
an set t

03

= 1. Hen
e, the blow-up equations (4.11) yield p

01

= p

03

t

01

,

p

02

= p

03

t

02

, and p

2

12

+p

2

13

+1 = p

03

q. The tangent equation (2.5) after the blow-up results

in

0 = p

T

^

2

Q p

= p

03

�

2

4

(t

01

; t

02

; 1)

0

�




2

2

+ 


2

3

� r

2

�


1




2

�


1




3

�


1




2




2

1

+ 


2

3

� r

2

�


2




3

�


1




3

�


2




3




2

1

+ 


2

2

� r

2

1

A

0

�

p

01

p

02

p

03

1

A

+ � + q

3

5

with

� := 2 (t

01

; t

02

; 1)

0

�




2




3

0

�


1

0 


3

0 �


1

�


2

1

A

0

�

p

12

p

13

1

1

A

:

The fa
tor p

03

des
ribes the ex
eptional divisor, whi
h we want to remove. Let V

E

denote

the aÆne variety satisfying (4.9) as well as p

23

= 1. For elements in V

E

�R

4

, the tangent

equation after the blow-up simpli�es to

� + q = 0 : (4.12)
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The equation of the Pl

�

u
ker relation (2.2) after the blow-up results in

p

03

� (t

01

� t

02

p

13

+ p

12

) = 0 :

Hen
e, the proper transform of the Pl

�

u
ker equation is given by

t

01

� t

02

p

13

+ p

12

= 0 : (4.13)

Now we 
an state the ex
ess 
omponent of the proper transforms.

Lemma 4.3. Let (p

01

; p

02

; p

03

; p

12

; p

13

; 1)

T

2 V

E

and (t

01

; t

02

; 1; q)

T

2 R

4

. If q = 0 and

the matrix

�

p

12

p

13

1

1 �t

02

t

01

�

(4.14)

has rank 1 then for any 
enter 
 = (


1

; 


2

; 


3

)

T

and any radius r the equations (4.12)

and (4.13) are satis�ed.

Proof. First we 
onsider the tangent equation (4.12). Expanding the expression � yields

�


1

(p

12

t

02

+ p

13

) + 


2

(p

12

t

01

� 1) + 


3

(p

13

t

01

+ t

02

) :

Hen
e, if the matrix (4.14) has rank 1 then all its 2 � 2-subdeterminants vanish, and


onsequently � = 0. In 
onjun
tion with q = 0, we see that (4.12) is satis�ed.

The ideal des
ribed by the vanishing of the 2 � 2-subdeterminants is generated by

g

1

:= p

12

t

02

+ p

13

and g

2

:= p

12

t

01

� 1. To see this, just observe that g

3

:= p

13

t

01

+ t

02


an

be expressed by g

3

= �t

01

g

1

+ t

02

g

2

.

In order to see that (4.13) is satis�ed, observe that the left-hand side of (4.13) is


ontained in the ideal generated by g

1

, g

2

and q,

t

01

� t

02

p

13

+ p

12

= �p

12

g

2

� p

13

g

3

+ t

01

q :

Hen
e, if the matrix (4.14) has rank 1 and q = 0 then this expression evaluates to zero.

We implement the se
ond blow-up. The variety of the following radi
al ideal J

E

is the

new ex
eptional divisor.

ideal JE = p01, p02, p03, p12^2 + p13^2 + 1, q, p12*t02 + p13,

p12*t01 - 1;

We de�ne a ring extension, 
reating new variables u

01

; u

02

; u

03

; u

04

; v; w

1

; w

2

for the poly-

nomials de�ning the ex
ess 
omponent. One of the new auxiliary variable has to be �xed,

sin
e we work lo
ally in one pat
h. Thus we set u

03

= 1. Sin
e the generators of J

E

form a

regular sequen
e, we 
an use our pro
edure to 
ompute the blow-up ideal. The dimension

of that ideal is 8, and its degree is 26.
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ring T = 0, (p01,p02,p03,p12,p13,t01,t02,q,u01,u02,u04,v,w1,w2), (dp);

ideal NewVars2 = u01, u02, 1, u04, v, w1, w2;

ideal BlowUp2 = std(
omputeblowup(imap(S,JE), NewVars2));

dim(BlowUp2), mult(BlowUp2);

// 8 26

Now we 
ompute the proper transforms of the se
ond blow-up.

ideal K1 = std(quotient(BlowUp2 + imap(S,J1), imap(S,JE)));

ideal K2 = std(quotient(BlowUp2 + imap(S,J2), imap(S,JE)));

ideal K3 = std(quotient(BlowUp2 + imap(S,J3), imap(S,JE)));

ideal K4 = std(quotient(BlowUp2 + imap(S,J4), imap(S,JE)));

ideal KPlu = std(quotient(BlowUp2 + imap(S,JPlu), imap(S,JE)));

ideal K = std(quotient(K1 + K2 + K3 + K4 + KPlu, imap(S,JE)));

dim(K), mult(K);

// 0 12

We see that after this se
ond blow-up the ideal has be
ome zero-dimensional. The degree

of 12 
orresponds to the 12 solutions in Se
tion 3.1.



5. TANGENT PROBLEMS TO QUADRICS IN N -DIMENSIONAL

SPACE

We 
onsider the natural (real) enumerative generalization of the tangent problem to

spheres and quadri
s to n-dimensional spa
e.

In Se
tion 5.1, we dis
uss the 
ommon tangents to 2n�2 spheres in R

n

. The main

result of this se
tion 
an be stated as follows.

Theorem 5.1. Suppose n � 3.

(a) Let 


1

; : : : ; 


2n�2

2 R

n

aÆnely span R

n

, and let r

1

; : : : ; r

2n�2

> 0. If the 2n�2

spheres with 
enters 


i

and radii r

i

have only a �nite number of 
ommon tangent

lines in C

3

, then that number is bounded by 3 � 2

n�1

.

(b) There exists a 
on�guration with 3 �2

n�1

di�erent real 
ommon tangent lines. More-

over, this 
on�guration 
an be a
hieved with unit spheres.

We also dis
uss 
on�gurations of spheres whose 
enters have aÆne dimension less than

n. In parti
ular, we show that there are 
on�gurations of su
h spheres having 3 � 2

n�1


omplex 
ommon tangents; thus, the upper bound of Theorem 5.1 also holds for spheres

in this spe
ial position.

In Se
tion 5.2 we prove the following result on the lines tangent to 2n�2 quadri
s in

P

n

.

Theorem 5.2. Given 2n�2 general quadrati
 hypersurfa
es in P

n

there are

d

n

:= 2

2n�2

�

1

n

�

2n� 2

n� 1

�


omplex lines that are simultaneously tangent to all 2n�2 hypersurfa
es (n � 2). Further-

more, there is a 
hoi
e of quadrati
 hypersurfa
es in R

n

for whi
h all the lines are real

and lie in aÆne spa
e R

n

.

Table 5.1 exhibits the amazingly large di�eren
e between the number of (real) tangent

lines for spheres and the number of (real) tangent lines for general quadri
s.

We also dis
uss the 
ase of 2n�2 quadri
s in P

n

when the quadri
s all 
ontain the

same (smooth) quadri
 in a given hyperplane.

In Se
tion 5.3, we dis
uss the problem of �nding minimal 
ir
ums
ribing 
ylinders of

a given simplex with verti
es 


1

; 


2

; : : : ; 


n+1

in R

n

. This problem is equivalent to �nding
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n 3 4 5 6 7 8 9

3 � 2

n�1

12 24 48 96 192 384 768

d

n

32 320 3584 43008 540672 7028736 93716480

Tab. 5.1: Maximum number of tangents to 2n�2 spheres in R

n

and to 2n�2 quadri
s in P

n

the smallest radius r su
h that the spheres S(


1

; r); : : : ; S(


n+1

; r) have a real 
ommon

tangent line. Using the framework of Se
tion 5.1, we provide bounds on the number of

lo
al extrema. Moreover, for regular simpli
es we prove stru
tural results for the dire
tion

ve
tors of any lo
ally extreme 
ir
ums
ribing 
ylinder.

5.1 Common tangents to 2n�2 spheres in R

n

In this se
tion we prove Theorem 5.1. First, in Se
tion 5.1.1, we prove part (a) of that

Theorem. Then, in Se
tion 5.1.2, we prove part (b) by expli
itly des
ribing 
on�gurations

with 3 � 2

n�1


ommon real tangents.

In Se
tion 5.1.3, we dis
uss 
on�gurations of spheres whose 
enters do not aÆnely

span R

n

.

5.1.1 Polynomial formulation for 
enters aÆnely spanning R

n

Analogous to Se
tion 3.1, we represent a line in C

n

by a point p 2 C

n

and a dire
tion

ve
tor v 2 P

n�1

. (For notational 
onvenien
e we typi
ally work with a representative

of the dire
tion ve
tor in C

n

n f0g.) If v

2

6= 0 we 
an make p unique by requiring that

p � v = 0.

First note that for v

2

6= 0, the tangent 
ondition (3.1) of a line (p; v) to a sphere with


enter 
 and radius r also holds in general dimension n,

v

2

p

2

� 2v

2

p � 
 + v

2




2

� (v � 
)

2

� r

2

v

2

= 0 : (5.1)

To prove part (a) of Theorem 5.1, let 


1

; : : : ; 


2n�2

2 R

n


ontain n + 1 aÆnely inde-

pendent points and let r

1

; : : : ; r

2n�2

> 0. We 
an 
hoose 


2n�2

to be the origin and set

r := r

2n�2

. Then the remaining 
enters span R

n

. Subtra
ting the equation for the sphere


entered at the origin from the equations for the spheres 1; : : : ; 2n�3 gives the system

p � v = 0 ;

p

2

= r

2

; and

2v

2

p � 


i

= v

2




2

i

� (v � 


i

)

2

� v

2

(r

2

i

� r

2

) ; i = 1; 2; : : : ; 2n�3 :

(5.2)

Remark 5.3. In generalization of Remark 3.3 for the three-dimensional 
ase, this system

of equations does not have a solution with v

2

= 0. Namely, if we had v

2

= 0, then v �


i

= 0
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for all i 2 f1; : : : ; 2n�3g. Sin
e the 
enters span R

n

, this would imply v = 0, 
ontradi
ting

v 2 P

n�1

. This validates our assumption that v

2

6= 0 prior to (5.1).

Sin
e n � 3, the bottom line of (5.2) 
ontains at least n equations. We 
an assume

that 


1

; : : : ; 


n

are linearly independent. Then the matrixM := (


1

; : : : ; 


n

)

T

is invertible,

and we 
an solve the equations with indi
es 1; : : : ; n for p:

p =

1

2v

2

M

�1

0

B

�

v

2




2

1

� (v � 


1

)

2

� v

2

(r

2

1

� r

2

)

.

.

.

v

2




2

n

� (v � 


n

)

2

� v

2

(r

2

n

� r

2

)

1

C

A

: (5.3)

Now substitute this expression for p into the �rst and se
ond equation of the system (5.2),

as well as into the equations for i = n + 1; : : : ; 2n� 3, and then 
lear the denominators.

This gives n�1 homogeneous equations in the 
oordinate v, namely one 
ubi
, one quarti
,

and n� 3 quadri
s. By B�ezout's Theorem, this means that if the system has only �nitely

many solutions, then the number of solutions is bounded by 3 �4 �2

n�3

= 3 �2

n�1

, for n � 3.

For small values of n, these values are shown in Table 5.1. The values for n = 4; 5; 6 were


omputed experimentally in [129℄.

We simplify the 
ubi
 equation obtained by substituting (5.3) into the equation p�v = 0

by expressing it in the basis 


1

; : : : ; 


n

. Let the representation of v in the basis 


1

; : : : ; 


n

be

v =

n

X

i=1

t

i




i

with homogeneous 
oordinates t

1

; : : : ; t

n

. Further, let 


0

1

; : : : ; 


0

n

be a dual basis to




1

; : : : ; 


n

; i.e., let 


0

1

; : : : ; 


0

n

be de�ned by 


0

i

� 


j

= Æ

ij

, where Æ

ij

denotes Krone
ker's

delta fun
tion. By elementary linear algebra, we have t

i

= 


0

i

� v.

When expressing p in this dual basis, p =

P

p

0

i




0

i

, the third equation of (5.2) gives

p

0

i

=

1

v

2

�

v

2




2

i

� (v � 


i

)

2

� v

2

(r

2

i

� r

2

)

�

:

Substituting this representation of p into the equation

0 = 2v

2

(p � v) = 2v

2

 

n

X

i=1

p

0

i




0

i

!

� v = 2v

2

n

X

i=1

p

0

i

t

i

;

we obtain the 
ubi
 equation

n

X

i=1

(v

2




2

i

� (v � 


i

)

2

� v

2

(r

2

i

� r

2

))t

i

= 0 :

In the 
ase that all radii are equal, expressing v in terms of the t-variables yields

X

1�i 6=j�n

�

ij

t

2

i

t

j

+

X

1�i<j<k�n

2�

ijk

t

i

t

j

t

k

= 0 ; (5.4)
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where

�

ij

= (vol

2

(


i

; 


j

))

2

= det

�




i

� 


i




i

� 


j




j

� 


i




j

� 


j

�

;

�

ijk

= det

�




i

� 


j




i

� 


k




k

� 


j




k

� 


k

�

+ det

�




i

� 


k




i

� 


j




j

� 


k




j

� 


j

�

+det

�




j

� 


k




j

� 


i




i

� 


k




i

� 


i

�

;

and vol

2

(


i

; 


j

) denotes the oriented area of the parallelogram spanned by 


i

and 


j

. In

parti
ular, if 0


1

: : : 


n


onstitutes a regular simplex in R

n

, then we obtain the following


hara
terization.

Theorem 5.4. Let n � 3. If 0


1

: : : 


n

is a regular simplex and all spheres have the same

radius, then the 
ubi
 equation expressed in the basis 


1

; : : : ; 


n

is equivalent to

X

1�i 6=j�n

t

2

i

t

j

+ 2

X

1�i<j<k�n

t

i

t

j

t

k

= 0 : (5.5)

For n = 3, this 
ubi
 equation fa
tors into three linear terms; for n � 4 it is irredu
ible.

Proof. Let e denote the edge length of the regular simplex. Then the form of the 
ubi


equation follows from 
omputing �

ij

= e

2

(1 � 1� 1=2 � 1=2) = 3e

2

=4, �

ijk

= 3e

2

(1=2 � 1�

1=2 � 1=2) = 3e

2

=4.

As dis
ussed in Se
tion 3.2, for n = 3 the 
ubi
 polynomial fa
tors into (t

1

+ t

2

)(t

1

+

t

3

)(t

2

+ t

3

). For n � 4, assume that there exists a fa
torization of the form

 

t

1

+

n

X

i=2

�

i

t

i

! 

X

1�i�j�n

�

ij

t

i

t

j

!

with �

12

= 1. Sin
e (5.5) does not 
ontain a monomial t

3

i

, we have either �

i

= 0 or �

ii

= 0

for 1 � i � n.

If there were more than one vanishing 
oeÆ
ient �

i

, say �

i

= �

j

= 0, then the mono-

mials t

2

i

t

j


ould not be generated. So only two 
ases have to be investigated.

Case 1 : �

i

6= 0 for 2 � i � n. Then �

ii

= 0 for 1 � i � n. Furthermore, �

ij

= 1

for i 6= j and �

i

= 1 for all i. Hen
e, the 
oeÆ
ient of the monomial t

1

t

2

t

3

is 3, whi
h


ontradi
ts (5.5).

Case 2 : There exists exa
tly one 
oeÆ
ient �

i

= 0, say, �

4

= 0. Then �

11

= �

22

= �

33

= 0,

�

44

= 1. Further, �

ij

= 1 for 1 � i < j � 3 and �

i

= 1 for 1 � i � 3. Hen
e, the 
oeÆ
ient

of the monomial t

1

t

2

t

3

is 3, whi
h is again a 
ontradi
tion.
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5.1.2 Real lines

In Se
tion 5.1.1, we have given the upper bound of 3 � 2

n�1

for the number of 
omplex

solutions to the tangent problem. Now we 
omplement this result by providing a 
lass of


on�gurations leading to 3 � 2

n�1

real 
ommon tangents. Hen
e, the upper bound is tight,

and is a
hieved by real tangents.

Our 
onstru
tion is based on the following geometri
 idea. For four spheres with

radius r in R

3


entered at the verti
es (1; 1; 1)

T

, (1;�1;�1)

T

, (�1; 1;�1)

T

, (�1;�1; 1)

T

of a regular tetrahedron, Lemma 3.8 implies that there are

� 3 di�erent real tangents (of multipli
ity 4) for radius r =

p

2;

� 12 di�erent real tangents for

p

2 < r < 3=2;

� 6 di�erent real tangents (of multipli
ity 2) for r = 3=2.

Furthermore, from the expli
it 
al
ulations in Se
tion 3.2.2, it 
an be easily seen that the

symmetry group of the tetrahedron a
ts transitively on the tangents. By this symmetry

argument, all 12 tangents have the same distan
e d from the origin. In order to 
onstru
t

a 
on�guration of spheres with many 
ommon tangents, say, in R

4

, we embed the 
enters

via

(x

1

; x

2

; x

3

)

T

7�! (x

1

; x

2

; x

3

; 0)

T

into R

4

and pla
e additional spheres with radius r at (0; 0; 0; a)

T

and (0; 0; 0;�a)

T

for

some appropriate value of a. If a is 
hosen in su
h a way that the 
enters of the two

additional spheres have distan
e r from the above tangents, then, intuitively, all 
ommon

tangents to the six four-dimensional spheres are lo
ated in the hyperplane x

4

= 0 and

have multipli
ity 2 (be
ause of the two di�erent possibilities of signs when perturbing the

situation). By perturbing this 
on�guration slightly, the tangents are no longer lo
ated

in the hyperplane x

4

= 0, and therefore the double tangents are for
ed to split. The idea

also generalizes to dimension n � 5.

Formally, suppose that the 2n�2 spheres in R

n

all have the same radius, r, and the

�rst four have 
enters




1

:= ( 1; 1; 1; 0; : : : ; 0)

T

;




2

:= ( 1;�1;�1; 0; : : : ; 0)

T

;




3

:= (�1; 1;�1; 0; : : : ; 0)

T

; and




4

:= (�1;�1; 1; 0; : : : ; 0)

T

at the verti
es of a regular tetrahedron ins
ribed in the 3-
ube (�1;�1;�1; 0; : : : ; 0)

T

.

We pla
e the subsequent 
enters at the points �ae

j

for j = 4; 5; : : : ; n, where e

1

; : : : ; e

n

are the standard unit ve
tors in R

n

.
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Theorem 5.5. Let n � 4, r > 0, a > 0, and 
 := a

2

(n� 1)=(a

2

+ n� 3). If

(r

2

� 3) (3� 
) (a

2

� 2) (r

2

� 
)

�

(3� 
)

2

+ 4
 � 4r

2

�

6= 0 ; (5.6)

then there are exa
tly 3 � 2

n�1

di�erent lines tangent to the 2n�2 spheres. If

a

2

> 2; 
 < 3; and 
 < r

2

< 
 +

1

4

(3� 
)

2

; (5.7)

then all these 3 � 2

n�1

lines are real. Furthermore, this system of inequalities de�nes a

nonempty subset of the (a; r)-plane.

Given values of a and r satisfying (5.7), we may s
ale the 
enters and parameters by

1=r to obtain a 
on�guration with unit spheres, proving Theorem 5.1(b).

Remark 5.6. The set of values of a and r whi
h give all solutions real is nonempty. To

show this, we 
al
ulate


 =

a

2

(n� 1)

a

2

+ n� 3

= (n� 1)

�

1�

n� 3

a

2

+ n� 3

�

; (5.8)

whi
h implies that 
 is an in
reasing fun
tion of a

2

. Similarly, set Æ := 
+(3�
)

2

=4, the

upper bound for r

2

. Then

d

d


Æ =

d

d


�


 + (3� 
)

2

4

�

p = 1 +


 � 3

2

;

and so Æ is an in
reasing fun
tion of 
 when 
 > 1. When a

2

= 2, we have 
 = 2; so Æ is

an in
reasing fun
tion of a in the region a

2

> 2. Sin
e when a =

p

2, we have Æ =

9

4

> 
,

the region de�ned by (5.7) is nonempty.

Moreover, we remark that the region is qualitatively di�erent in the 
ases n = 4 and

n � 5. For n = 4, 
 satis�es 
 < 3 for any a >

p

2. Hen
e, Æ < 3 and r <

p

3. Thus the

maximum value of 24 real lines may be obtained for arbitrarily large a. In parti
ular, we

may 
hoose the two spheres with 
enters �ae

4

disjoint from the �rst four spheres. Note,

however, that the �rst four spheres do meet, sin
e we have

p

2 < r <

p

3.

For n � 5, there is an upper bound to a. The upper and lower bounds for r

2


oin
ide

when 
 = 3; so we always have r

2

< 3. Solving 
 = 3 for a

2

, we obtain a

2

< 3(n�3)=(n�4).

When n = 5, Figure 5.1 displays the dis
riminant lo
us (de�ned by (5.6)) and shades the

region 
onsisting of values of a and r for whi
h all solutions are real.

Proof of Theorem 5.5. We prove Theorem 5.5 by treating a and r as parameters and

expli
itly solving the resulting system of polynomials in the 
oordinates (p; v) 2 C

n

�P

n�1

for lines in C

n

. This shows that there are 3�2

n�1


omplex lines tangent to the given spheres,

for the values of the parameters (a; r) given in Theorem 5.5. The inequalities (5.7) des
ribe

the parameters for whi
h all solutions are real.
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a

r

0

1

1 2 3

r =

p

3

r =

p

Æ

r =

p




a =

p

2


 = 3

(a =

p

6)

all solutions real

Fig. 5.1: Dis
riminant lo
us and values of a; r giving all solutions real

First 
onsider the equations (5.1) for the line to be tangent to the spheres with 
enters

�ae

j

and radius r:

v

2

p

2

� 2av

2

p

j

+ a

2

v

2

� a

2

v

2

j

� r

2

v

2

= 0 ;

v

2

p

2

+ 2av

2

p

j

+ a

2

v

2

� a

2

v

2

j

� r

2

v

2

= 0 :

Taking their sum and di�eren
e (and using av

2

6= 0), we obtain

p

j

= 0 ; 4 � j � n ; (5.9)

a

2

v

2

j

= (p

2

+ a

2

� r

2

)v

2

; 4 � j � n : (5.10)

Subtra
ting the equations (5.1) for the 
enters 


1

; : : : ; 


4

pairwise gives

4v

2

(p

2

+ p

3

) = �4(v

1

v

3

+ v

1

v

2

)

(for indi
es 1,2) and analogous equations. Hen
e,

p

1

= �

v

2

v

3

v

2

; p

2

= �

v

1

v

3

v

2

; p

3

= �

v

1

v

2

v

2

:

Further, p � v = 0 implies v

1

v

2

v

3

= 0. Thus we have three symmetri
 
ases. We treat one,

assuming that v

1

= 0. Then we obtain

p

1

= �

v

2

v

3

v

2

; p

2

= p

3

= 0 :

Hen
e, the tangent equation (5.1) for the �rst sphere be
omes

v

2

p

2

1

� 2v

2

p

1

+ 3v

2

� (v

2

+ v

3

)

2

� r

2

v

2

= 0 :
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Using 0 = v

2

p

1

+ v

2

v

3

, we obtain

v

2

2

+ v

2

3

= v

2

(p

2

1

+ 3� r

2

) : (5.11)

The 
ase j = 4 of (5.10) gives a

2

v

2

4

= v

2

(p

2

1

+ a

2

� r

2

), sin
e p

2

= p

3

= 0. Combining

these, we obtain

v

2

2

+ v

2

3

= a

2

v

2

4

+ v

2

(3� a

2

) :

Using v

2

= v

2

2

+ v

2

3

+ (n� 3)v

2

4

yields

(a

2

� 2)(v

2

2

+ v

2

3

) = v

2

4

(3(a

2

+ n� 3)� a

2

(n� 1)) :

We obtain

(a

2

� 2)(v

2

2

+ v

2

3

) = v

2

4

(a

2

+ n� 3)(3� 
) ; (5.12)

where 
 = a

2

(n� 1)=(a

2

+ n� 3).

Note that a

2

+ n � 3 > 0 sin
e n > 3. If neither 3 � 
 nor a

2

� 2 are zero, then we

may use this to 
ompute

(a

2

+ n� 3)(3� 
)v

2

=

�

(a

2

+ n� 3)(3� 
) + (n� 3)(a

2

� 2)

�

(v

2

2

+ v

2

3

)

= (a

2

+ n� 3)(v

2

2

+ v

2

3

) ;

and so

(3� 
)v

2

= v

2

2

+ v

2

3

: (5.13)

Substituting (5.13) into (5.11) and dividing by v

2

gives

p

2

1

= r

2

� 
 : (5.14)

Combining this with v

2

p

1

+ v

2

v

3

= 0, we obtain

p

1

(v

2

2

+ v

2

3

) + (3� 
)v

2

v

3

= 0 : (5.15)

Summarizing, we have n linear equations

v

1

= p

2

= p

3

= p

4

= � � � = p

n

= 0 ;

and n� 4 simple quadrati
 equations

v

2

4

= v

2

5

= � � � = v

2

n

;

and the three more 
ompli
ated quadrati
 equations, (5.12), (5.14), and (5.15).

We now solve these last three equations. We solve (5.14) for p

1

, obtaining

p

1

= �

p

r

2

� 
 :
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Then we solve (5.15) for v

2

and use (5.14), obtaining

v

2

= �

3� 
 �

p

(3� 
)

2

� 4(r

2

� 
)

2p

1

v

3

:

Finally, (5.12) gives

v

4

p

a

2

+ n� 3 = �

s

a

2

� 2

3� 


(v

2

2

+ v

2

3

) :

Sin
e v

3

= 0 would imply v = 0 and hen
e 
ontradi
t v 2 P

n�1

, we see that v

3

6= 0. Thus

we 
an 
on
lude that when none of the following expressions

r

2

� 3 ; 3� 
 ; a

2

� 2 ; r

2

� 
 ; (3� 
)

2

+ 4
 � 4r

2

vanish, there are 8 = 2

3

di�erent solutions to the last 3 equations. For ea
h of these, the

simple quadrati
 equations give 2

n�4

solutions; so we see that the 
ase v

1

= 0 
ontributes

2

n�1

di�erent solutions, ea
h of them satisfying v

2

6= 0, v

3

6= 0. Sin
e there are three

symmetri
 
ases, we obtain 3 � 2

n�1

solutions in all, as 
laimed.

We 
omplete the proof of Theorem 5.5 and determine whi
h values of the parameters

a and r give all these lines real. We see that

(1) p

1

is real if r

2

� 
 > 0.

(2) Given that p

1

is real, v

2

=v

3

is real if (3� 
)

2

+ 4
 � 4r

2

> 0.

(3) Given this, v

4

=v

3

is real if (a

2

� 2)=(3� 
) > 0.

Suppose the three inequalities above are satis�ed. Then all solutions are real, and (5.13)

implies that 3� 
 > 0, and so we also have a

2

� 2 > 0. This 
ompletes the proof of The-

orem 5.5.

5.1.3 The lower-dimensional 
ase

In our derivation of the B�ezout number 3 � 2

n�1

of 
ommon tangents for Theorem 5.1, it

was 
ru
ial that the 
enters of the spheres aÆnely spanned R

n

. Also, the 
onstru
tion

in Se
tion 5.1.2 of 
on�gurations with 3 � 2

n�1

real 
ommon tangents had 
enters aÆnely

spanning R

n

. When the 
enters do not aÆnely span R

n

, we prove the following result.

Theorem 5.7. For n � 4, there are 3 � 2

n�1


omplex 
ommon tangent lines to 2n�2

spheres whose 
enters have aÆne dimension less than n, but otherwise general. There

is a 
hoi
e of unit spheres whose 
enters have aÆne dimension less than n and 2

n

real


ommon tangent lines.
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Remark 5.8. Theorem 5.7 extends the results of Se
tion 3.2.1, whi
h say that when

n = 3, there are 12 
omplex 
ommon tangents. Megyesi [93℄ has shown that there is a


on�guration of four spheres in R

3

with aÆnely dependent 
enters and 12 real 
ommon

tangents, but that the number of tangents is bounded by 8 for the 
ase of unit spheres.

For n � 4, we are unable either to �nd a 
on�guration of unit spheres whose 
enters

do not aÆnely span R

n

having more than 2

n

real 
ommon tangents, or to show that the

maximum number of real 
ommon tangents is less than 3 �2

n�1

. Similar to the 
ase n = 3,

it might be possible that the 
ase of unit spheres and the 
ase of spheres with general radii

might give di�erent maximum numbers. Megyesi [94℄ showed that there are 2n�2 spheres

whose 
enters have aÆne dimension less than n having all 3 � 2

n�1


ommon tangents real.

Furthermore, all but one of the spheres in his 
onstru
tion have equal radii.

By Theorem 5.1, 3 � 2

n�1

is the upper bound for the number of 
omplex 
ommon

tangents to spheres whose 
enters do not aÆnely span R

n

. Indeed, if there were a 
on�g-

uration with more 
ommon tangents, then|sin
e the system is a 
omplete interse
tion|

perturbing the 
enters would give a 
on�guration whose 
enters aÆnely span R

n

and more


ommon tangent lines than allowed by Theorem 5.1.

By this dis
ussion, to prove Theorem 5.7 it suÆ
es to give 2n�2 spheres, whose 
enters

have aÆne dimension less than n, having 3 �2

n�1


omplex 
ommon tangents and also su
h

a 
on�guration of 2n�2 unit spheres with 2

n

real 
ommon tangents. For this, we use

spheres with equal radii whose 
enters are the verti
es of a perturbed 
ross polytope in a

hyperplane. We work with the notation of Se
tions 5.1.1 and 5.1.2.

Let a 6= �1 and suppose we have spheres with equal radii r and 
enters at the points

ae

2

; �e

2

; and � e

j

; for 3 � j � n :

Then we have the equations

p � v = 0 ; (5.16)

f := v

2

(p

2

� 2ap

2

+ a

2

� r

2

)� a

2

v

2

2

= 0 ; (5.17)

g := v

2

(p

2

+ 2p

2

+ 1� r

2

)� v

2

2

= 0 ; (5.18)

v

2

(p

2

� 2p

j

+ 1� r

2

)� v

2

j

= 0 ; 3 � j � n : (5.19)

As in Se
tion 5.1.2, the sum and di�eren
e of the equations (5.19) for the spheres with


enters �e

j

give

p

j

= 0 ;

v

2

(p

2

+ 1� r

2

) = v

2

j

:

3 � j � n :

Thus we have the equations

p

3

= p

4

= � � � = p

n

= 0 ;

v

2

3

= v

2

4

= � � � = v

2

n

:

(5.20)
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Similarly, we have

f + ag = (1 + a)

�

v

2

(p

2

� r

2

+ a)� av

2

2

�

= 0 ;

f � a

2

g = (1 + a)v

2

�

(1� a)(p

2

� r

2

) + 2ap

2

�

= 0 :

As before, v

2

6= 0: If v

2

= 0, then (5.18) and (5.19) imply that v

2

= � � � = v

n

= 0. With

v

2

= 0, this implies that v

1

= 0 and hen
e v = 0, 
ontradi
ting v 2 P

n�1

. By (5.20), we

have p

2

= p

2

1

+p

2

2

, and so we obtain the system of equations in the variables p

1

; p

2

; v

1

; v

2

; v

3

:

p

1

v

1

+ p

2

v

2

= 0 ;

(1� a)(p

2

1

+ p

2

2

� r

2

) + 2ap

2

= 0 ;

v

2

(p

2

1

+ p

2

2

� r

2

+ a)� av

2

2

= 0 ;

v

2

(p

2

1

+ p

2

2

� r

2

+ 1)� v

2

3

= 0 :

(5.21)

(For notational sanity, we do not yet make the substitution v

2

= v

2

1

+ v

2

2

+ (n� 2)v

2

3

.)

We assume that a 6= 1 and will treat the 
ase a = 1 at the end of this se
tion. Using

the se
ond equation of (5.21) to 
an
el the terms v

2

(p

2

1

+ p

2

2

) from the third equation and

dividing the result by a, we 
an solve for p

2

:

p

2

=

(1� a)(v

2

� v

2

2

)

2v

2

:

If we substitute this into the �rst equation of (5.21), we may solve for p

1

:

p

1

= �

(1� a)(v

2

� v

2

2

)v

2

2v

2

v

1

:

Substitute these into the se
ond equation of (5.21), 
lear the denominator (4v

2

1

v

4

), and

remove the 
ommon fa
tor (1� a) to obtain the sexti


(1� a)

2

(v

2

1

+ v

2

2

)(v

2

� v

2

2

)

2

� 4r

2

v

2

1

v

4

+ 4av

2

1

v

2

(v

2

� v

2

2

) = 0 : (5.22)

Subtra
ting the third equation of (5.21) from the fourth equation and re
alling that v

2

=

v

2

1

+ v

2

2

+ (n� 2)v

2

3

, we obtain the quadrati
 equation

(1� a)v

2

1

+ v

2

2

+ ((n� 3)� a(n� 2)) v

2

3

= 0 : (5.23)

Consider the system 
onsisting of the two equations (5.22) and (5.23) in the homogeneous


oordinates v

1

; v

2

; v

3

. Any solution to this system gives a solution to the system (5.21),

and thus gives 2

n�3

solutions to the original system (5.16){(5.19).

These last two equations (5.22) and (5.23) are polynomials in the squares of the vari-

ables v

2

1

; v

2

2

; v

2

3

. If we substitute � = v

2

1

; � = v

2

2

, and 
 = v

2

3

, then we have a 
ubi
 and a

linear equation, and any solution �; �; 
 to these with non-vanishing 
oordinates gives 4

solutions to the system (5.22) and (5.23): (v

1

; v

2

; v

3

)

T

:= (�

1=2

;��

1=2

;�


1=2

)

T

, as v

1

; v

2

; v

3

are homogeneous 
oordinates.
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Solving the linear equation in �; �; 
 for � and substituting into the 
ubi
 equation

gives a homogeneous 
ubi
 in � and 
 whose 
oeÆ
ients are polynomials in a; n; r. The

dis
riminant of this 
ubi
 is a polynomial with integral 
oeÆ
ients of degree 16 in the

variables a; n; r having 116 terms. Using a 
omputer algebra system, it 
an be veri�ed

that this dis
riminant is irredu
ible over the rational numbers. Thus, for any �xed integer

n � 3, the dis
riminant is a non-zero polynomial in a; r. This implies that the 
ubi
 has 3

solutions for general a, r, and any integer n. Sin
e the 
oeÆ
ients of this 
ubi
 similarly

are non-zero polynomials for any n, the solutions �; �; 
 will be non-zero for general a, r,

and any n. We 
on
lude:

For any integer n � 3 and general a; r, there will be 3 � 2

n�1


omplex 
ommon tangents to spheres of radius r with 
enters

ae

2

; �e

2

; and � e

j

; for 3 � j � n :

We return to the 
ase when a = 1, i.e., the 
enters are the verti
es of the 
ross polytope

�e

j

for j = 2; : : : ; n. Then our equations (5.20) and (5.21) be
ome

p

2

= p

3

= � � � = p

n

= 0 ;

v

2

2

= v

2

3

= � � � = v

2

n

;

p

1

v

1

= 0 ;

v

2

(p

2

1

� r

2

+ 1)� v

2

2

= 0 :

(5.24)

As before, v

2

= v

2

1

+ (n� 1)v

2

2

. We solve the last two equations. Any solution they have

(in C

1

� P

1

) gives rise to 2

n�2

solutions, by the se
ond list of equations v

2

3

= � � � = v

2

n

.

By the penultimate equation p

1

v

1

= 0, one of p

1

or v

1

vanishes. If v

1

= 0, then the last

equation be
omes

(n� 1)v

2

2

(p

2

1

� r

2

+ 1) = v

2

2

:

Sin
e v

2

= 0 implies v

2

= 0, we have v

2

6= 0 and so we may divide by v

2

2

and solve for p

1

to obtain

p

1

= �

r

r

2

� 1 +

1

n� 1

:

If instead p

1

= 0, then we solve the last equation to obtain

v

1

v

2

= �

r

1

1� r

2

+ 1� n :

Thus for general r, there will be 2

n


ommon tangents to the spheres with radius r and


enters �e

j

for j = 2; : : : ; n. We investigate when these are real.

We will have p

1

real when r

2

> 1 � 1=(n � 1). Similarly, v

1

=v

2

will be real when

1=(1� r

2

) > n� 1. In parti
ular, 1� r

2

> 0 and so 1 > r

2

. Using this we get

1� r

2

<

1

n� 1

so that r

2

> 1�

1

n� 1

;
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whi
h we previously obtained.

We 
on
lude that there will be 2

n

real 
ommon tangents to the spheres with 
enters

�e

j

for j = 2; : : : ; n and radius r when

r

1�

1

n� 1

< r < 1 :

This 
on
ludes the proof of Theorem 5.7.

5.2 Common tangents to 2n�2 quadri
s in P

n

and R

n

In this se
tion, we study the 
ommon tangent lines to 2n�2 quadri
s in P

n

(or R

n

,

respe
tively). In Se
tion 5.2.1, we prove Theorem 5.2 stated at the beginning of this


hapter on the maximum number of real lines tangent to 2n�2 quadri
s in P

n

. Here, we


ombine re
ent results in the real S
hubert 
al
ulus with 
lassi
al perturbation arguments

adapted to the real numbers.

In Se
tion 5.2.2, we put the tangent problem to spheres into the perspe
tive of 
ommon

tangents to general quadri
s. We dis
uss the ex
ess 
omponent at in�nity for the problem

of spheres. In this setting, Theorem 5.1(a) implies that there will be at most 3 � 2

n�1

isolated 
ommon tangents to 2n�2 quadri
s in P

n

, when the quadri
s all 
ontain the

same (smooth) quadri
 in a given hyperplane. In parti
ular, the problem of the spheres


an be seen as the 
ase when the 
ommon quadri
 is at in�nity and 
ontains no real points.

5.2.1 Real lines

In Se
tion 4.1, we have given a 
onstru
tion of four real quadri
s in P

3

with 32 real


ommon tangent lines. The main idea of that 
onstru
tion was en
apsulated by the

visually appealing transition from Figure 4.1 to Figure 4.2. Here, we generalize this

idea to the n-dimensional 
ase. However, in 
ontrast to the symboli
 
onstru
tion of

Se
tion 4.1, the proof of the n-dimensional 
ase is only existential.

Re
all that the (n�1)-st Catalan number is C

n�1

:=

1

n

�

2n�2

n�1

�

, whi
h is the number

of lines in P

n

simultaneously transversal to 2n�2 general (n�2)-planes [81, 118℄. We

begin with a 
on�guration of 2n�2 real (n�2)-planes in R

n

having C

n�1


ommon real

transversal lines. (Su
h 
on�gurations exist, see below.) We then argue that we 
an

repla
e ea
h of these (n�2)-planes by a real quadrati
 hypersurfa
e su
h that for ea
h of

the original transversal lines, there are 2

2n�2

nearby real lines tangent to ea
h quadri
.

Proposition 5.9. There exists a 
on�guration of 2n�2 real (n�2)-planes in R

n

having

exa
tly C

n�1


ommon real transversals.

Proof. The 
orresponding statement for real proje
tive spa
e P

n

R

was proven in [127, The-

orem C℄. We dedu
e the aÆne 
ounterpart above simply by removing a real hyperplane

that 
ontains none of the (n�2)-planes or any of the transversal lines.
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Remark 5.10. The purely existential statement in [127℄ was strongly improved by Ere-

menko and Gabrielov [52℄ who gave the following expli
it 
onstru
tion of su
h a 
olle
tion

of (n�2)-planes. Let


(s) := (1; s; s

2

; : : : ; s

n�1

)

T

be the moment 
urve in R

n

. For ea
h s 2 R, set �(s) to be

�(s) := linear span

�


(s); 


0

(s); : : : ; 


(n�3)

(s)

�

:

Geometri
ally, �(s) is the kissing, or os
ulating (n�2)-plane to the moment 
urve at the

point 
(s). Eremenko and Gabrielov showed that for any distin
t numbers s

1

; : : : ; s

2n�2

2

R, the (n�2)-planes �(s

1

);�(s

2

); : : : ;�(s

2n�2

) have exa
tly C

n�1


ommon real transver-

sals.

De�nition 5.11. Let � � R

n

be an (n�2)-plane and r be a positive real number. Then

we de�ne the (n�2)-
ylinder Cy(�; r) to be the set of points having Eu
lidean distan
e r

from �. This is a singular quadrati
 hypersurfa
e in P

n

, but smooth in R

n

.

A real line ` is tangent to Cy(�; r) if and only if the Eu
lidean distan
e d(`;�) between

` and � is r. We use the following notation to 
hara
terize the Eu
lidean distan
e between

a line ` and an (n�2)-plane �. For ve
tors v

1

; : : : ; v

n�1

2 R

n

, let [v

1

; : : : ; v

n�1

℄ 2 R

n

denote their n-dimensional ve
tor produ
t (see, e.g., [16, 58℄):

[v

1

; : : : ; v

n�1

℄

j

=

X

i

1

;::: ;i

n�1

"

i

1

;::: ;i

n�1

;j

v

1;i

1

� � � v

n�1;i

n�1

; 1 � j � n;

where "

i

1

;::: ;i

n

is the Levi-Civita symbol, whi
h is zero unless the indi
es are distin
t, and

when they are distin
t, it is the sign of the resulting permutation:

"

i

1

;::: ;i

n

=

8

>

>

>

>

>

<

>

>

>

>

>

:

0 if at least two of the indi
es i

1

; : : : ; i

n

are equal,

1 if the indi
es are pairwise di�erent

and the permutation i

1

; : : : ; i

n

is even,

�1 if the indi
es are pairwise di�erent

and the permutation i

1

; : : : ; i

n

is odd.

The ve
tor [v

1

; : : : ; v

n�1

℄ is perpendi
ular to v

1

; : : : ; v

n�1

and its length is the volume of

the parallelotope spanned by v

1

; : : : ; v

n�1

.

Lemma 5.12. Let ` = fa+ �b : � 2 Rg with a 2 R

n

, b 2 R

n

n f0g and

� = fp+

n�2

X

i=1

�

i

q

i

: �

1

; : : : ; �

n�2

2 Rg

with p 2 R

n

and linearly independent ve
tors q

1

; : : : ; q

n�2

2 R

n

. If b 62 spanfq

1

; : : : ; q

n�2

g

then the Eu
lidean distan
e d(`;�) is

d(`;�) =

j[b; q

1

; : : : ; q

n�2

℄ � (a� p)j

jj[b; q

1

; : : : ; q

n�2

℄jj

:
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Proof. Sin
e b 62 spanfq

1

; : : : ; q

n�2

g, the ve
tors b; q

1

; : : : ; q

n�2

; [b; q

1

; : : : ; q

n�2

℄ form a

basis of R

n

. Hen
e, there exist unique real numbers �; �; 


1

; : : : ; 


n�2

su
h that

a� p = �[b; q

1

; : : : ; q

n�2

℄ + �b+

n�2

X

i=1




i

q

i

:

Suppose x and y are points on ` and �, respe
tively. Then there exist �; �

1

; : : : ; �

n�2

su
h that

x� y = (a� p) + �b�

n�2

X

i=1

�

i

q

i

= �[b; q

1

; : : : ; q

n�2

℄ + (� + �)b +

n�2

X

i=1

(


i

� �

i

) q

i

:

Hen
e, the distan
e of ` and � is jj�[b; q

1

; : : : ; q

n�2

℄jj. Sin
e

�jj[b; q

1

; : : : ; q

n�2

℄jj

2

= �[b; q

1

; : : : ; q

n�2

℄ � [b; q

1

; : : : ; q

n�2

℄ = [b; q

1

; : : : ; q

n�2

℄ � (a� p) ;

the lemma follows.

We re
ord the following useful and basi
 property of interse
tion multipli
ities [55,

p. 1℄, whi
h we will use.

Proposition 5.13. Let A be an algebrai
 
urve in 
omplex proje
tive spa
e P

n

, and let x

be a singular point on A. For any hyperplane H � P

n

su
h that x is an isolated point in

A \H, the interse
tion multipli
ity of A and H in x is greater than 1.

Theorem 5.14. Let �

1

;�

2

; : : : ;�

2n�2

be (n�2)-planes in R

n

having exa
tly C

n�1


om-

mon real transversals. For ea
h k = 0; 1; : : : ; 2n�2, there exist positive real numbers

r

1

; : : : ; r

k

su
h that there are exa
tly 2

k

C

n�1

real lines that are simultaneously tangent to

ea
h of the (n�2)-
ylinders Cy(�

j

; r

j

), j = 1; : : : ; k, and transversal to the (n�2)-planes

�

k+1

; : : : ;�

2n�2

.

The 
ase of k = 2n�2 implies Theorem 5.2; sin
e the number of real lines will not


hange under a small perturbation of the 
ylinders Cy(�

j

; r

j

), we may repla
e them by

quadrati
 hypersurfa
es whi
h are even smooth in P

n

, without altering the 
on
lusion of

the theorem.

In the proof of Theorem 5.14, we identify the lines we are looking for with the Pl

�

u
ker

ve
tors satisfying the relevant transversal 
onditions (2.3), tangent 
onditions (2.5) and

the Pl

�

u
ker 
onditions (2.2).

Proof. We indu
t on k, with the 
ase of k = 0 being the hypothesis of the theorem.

Suppose that k � 2n�2 and that there exist r

1

; : : : ; r

k�1

> 0 and distin
t real lines

`

1

; : : : ; `

2

k�1

C

n

that are simultaneously tangent to Cy(�

j

; r

j

), for ea
h j = 1; : : : ; k � 1,

and transversal to �

k

; : : : ;�

2n�2

.
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Dropping the 
ondition that the lines meet �

k

, we obtain a one-dimensional family

of lines that are tangent to the 
ylinders Cy(�

j

; r

j

) for j = 1; : : : ; k�1 and that are also

transversal to the (n�2)-planes �

k+1

; : : : ;�

2n�2

. We 
onsider this one-dimensional family

of lines as a 
urve in Pl

�

u
ker spa
e G

1;n

� P

N

, denoted by A. In parti
ular, the 
urve A


ontains the Pl

�

u
ker 
oordinates of all the lines `

1

; : : : ; `

2

k�1

C

n

.

Let ` be one of the lines `

1

; : : : ; `

2

k�1

C

n

, and denote its Pl

�

u
ker 
oordinate by p. Then

p is a smooth point on A (the tangent spa
e of A at p is one-dimensional). Namely, oth-

erwise Proposition 5.13 would imply a 
ontradi
tion to the number of solutions (
ounting

multipli
ity) in the indu
tion hypothesis. Consequently, by the 
omplex Impli
it Fun
-

tion Theorem (see e.g., [80, Theorem 3.5℄), there exist neighborhoods U � C

n

of 0 2 C ,

V � P

N

of p, and a 
omplex-analyti
 map ' : U ! G

1;n

� P

N

su
h that '(0) = p

and in V the 
urve A is given by the parametrization '(t), t 2 U . By 
hoosing V small

enough, we 
an assume that A \ V does not 
ontain the Pl

�

u
ker 
oordinate of another

line f`

1

; : : : ; `

2

k�1

C

n

gnf`g, and that none of the points in A\V is the Pl

�

u
ker 
oordinate

of a line at in�nity.

Now the 
ru
ial point is that the restri
tion '

jR

maps to real lines. Namely, assume

that the image of any real neighborhood U

0

of p (or of any other real point '(t) for

some real t) 
ontains a non-real point q 2 G

1;n

� P

N

. Sin
e '(U

0

) also 
ontains the


omplex-
onjugated point q, this would imply that p is singular.

Hen
e, we 
an assume that '

jR

is a fun
tion (�Æ; Æ)! G

1;n

\ P

N

R

for some Æ > 0. For

a parameter value t 2 (�Æ; Æ) let d('(t);�

k

) be the distan
e of the real line with Pl

�

u
ker


oordinate '(t) from �

k

. If the dire
tion ve
tor of '(t) is not parallel to �

k

then d is

given by Lemma 5.12. Otherwise, the problem redu
es to a lower-dimensional problem.

However, d('(t);�

k

) is a 
ontinuous fun
tion in t; and we have d('(t);�

k

) = 0 if t = 0

and d('(t);�

k

) > 0 if t 2 (�Æ; Æ) n f0g. Let � := minfd('(�Æ=2);�

k

); d('(Æ=2);�

k

)g.

Then there are at least two distin
t real lines whose Pl

�

u
ker 
oordinate is 
ontained in

A \ V and whose Eu
lidean distan
e to �

k

is �.

We 
an assume that the 2

k�1

C

n�1

lo
al parts of A obtained in this way are disjoint.

Moreover, let r

k

be the minimum value of � whi
h has been 
omputed for all the lines

`

1

; : : : ; `

2

k�1

C

n�1

. Then there are at least 2

k

C

n�1

distin
t real lines whose Pl

�

u
ker 
o-

ordinate is 
ontained in A and whose Eu
lidean distan
e to �

k

is r

k

. Sin
e 2

k

C

n�1

is

the maximum number of lines with this property, there are exa
tly distin
t 2

k

C

n

lines

tangent to Cy(�

j

; r

j

) for j = 1; : : : ; k and that are also transversal to the (n�2)-planes

�

k+1

; : : : ;�

2n�2

.

5.2.2 Quadri
s versus spheres

In the spirit of Se
tion 4.2 for the three-dimensional 
ase, we 
an also relate the tangent

problem to spheres to the tangent problem to quadri
s in n-dimensional spa
e.

Consider a sphere in aÆne n-spa
e

(x

1

� 


1

)

2

+ (x

2

� 


2

)

2

+ � � �+ (x

n

� 


n

)

2

= r

2

:
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n
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n
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Homogenizing this with respe
t to the new variable x

0

, we obtain

(x

1

� 


1

x

0

)

2

+ (x

2

� 


2

x

0

)

2

+ � � �+ (x

n

� 


n

x

0

)

2

= r

2

x

2

0

:

If we restri
t this sphere to the hyperplane at in�nity, setting x

0

= 0, we obtain

x

2

1

+ x

2

2

+ � � �+ x

2

n

= 0 ; (5.25)

the equation for an imaginary quadri
 at in�nity. It turns out that every line at in�nity

tangent to this quadri
 satis�es the algebrai
 tangent 
ondition (2.5); we will 
ome ba
k

to this in Se
tion 6.1 (see Lemma 6.6). In generalization of (4.9), the resulting ex
ess


omponent in the n-dimensional 
ase is de�ned by the following equations.

p

0i

= 0 ; 1 � i � n ;

P

1�i<j�n

p

2

ij

= 0 ;

p

ij

p

kl

� p

ik

p

jl

+ p

il

p

jk

= 0 ; 1 � i < j < k < l � n :

It would be interesting to understand the algebrai
-geometri
 and 
omputer-algebrai


aspe
ts from Se
tion 4.2 also for general dimension n > 3. For example, how many blow-

ups are needed to resolve the ex
ess 
omponent? From the 
omputer-algebrai
 point of

view, we have not even been able to simulate the multiple blow-up for n = 4. Here, the

initial ex
ess 
omponent is of dimension 3 and is generated by the polynomials

p

01

; p

02

; p

03

; p

04

; p

2

12

+ p

2

13

+ p

2

14

+ p

2

23

+ p

2

24

+ p

2

34

; p

14

p

23

� p

13

p

24

+ p

12

p

34

:

After one blow-up there is still an ex
ess 
omponent of dimension 3. However, sin
e every

blow-up introdu
es several new variables, already the 
omputation of the se
ond blow-up

ex
eeds 1 GB of available memory (even when using 
omputer-algebrai
 standard tri
ks

su
h as performing the 
omputation over a �nite �eld).

Now let us look at another relationship between tangents to spheres and tangents to

general quadri
s. Namely, sin
e all smooth quadri
s are proje
tively equivalent, Theo-

rem 5.1 has the following impli
ation for this problem of 
ommon tangents to proje
tive

quadri
s.

Corollary 5.15. Given 2n�2 quadri
s in P

n

whose interse
tion with a �xed hyperplane

is a given smooth quadri
 Q, but are otherwise general, there will be at most 3 � 2

n�1

isolated lines in P

n

tangent to ea
h quadri
.

We would like 
lose this se
tion by pointing out some re
ent results on the following

reality question of Corollary 5.15. When all the quadri
s are real, how many of the

3 �2

n�1


ommon isolated tangents 
an be real? This question is only partially answered by

Theorem 5.1. The point is that proje
tive real quadri
s are 
lassi�ed up to real proje
tive

transformations by the absolute value of the signature of the quadrati
 forms on R

n+1
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de�ning them. Theorem 5.1 implies that all lines 
an be real when the shared quadri
 Q

has no real points (signature is �n).

For n = 3, it was shown in [129℄ that ea
h of the �ve additional 
ases 
on
erning

nonempty quadri
s 
an have all 12 lines real. For general dimension, the question has

largely been answered in [94℄. Namely, for any non-zero real numbers �

3

; : : : ; �

n

, there

are 2n�2 quadri
s of the form

(x

1

� 


1

)

2

+ (x

2

� 


2

)

2

+

n

X

j=3

�

j

(x

j

� 


j

)

2

= R

having all 3 � 2

n�1

tangents real. These all share the same quadri
 at in�nity

x

2

1

+ x

2

2

+ �

3

x

2

3

+ � � �+ �

n

x

2

n

= 0 ;

and thus the upper bound of Theorem 5.15 is attained, when the shared quadri
 is this

quadri
.

5.3 Smallest 
ir
ums
ribing 
ylinders of simpli
es in general dimension

In Se
tion 3.4, we have given polynomial formulations with small B�ezout number for


omputing smallest 
ir
ums
ribing 
ylinders of a tetrahedron in R

3

. Based on the 
har-

a
terization in Se
tion 5.1, we generalize these formulations to smallest 
ir
ums
ribing


ylinders of a simplex in R

n

, n � 3.

In Se
tion 5.3.1, we deal with general simpli
es. Then, in Se
tion 5.3.2, we study the

regular simplex in detail.

As a byprodu
t of our 
omputational studies, we dis
overed a subtle but severe mistake

in the paper [148℄ on the expli
it determination of the outer (n�1)-radius for a regular

simplex in R

n

, thus 
ompletely invalidating the proof given there. In Se
tion 5.3.3, serving

as an appendix to the se
tion, we give a des
ription of that 
aw, in
luding some 
omputer-

algebrai
 
al
ulations illustrating it.

5.3.1 General simpli
es

Let 


1

; : : : ; 


n+1

be the aÆnely independent verti
es of the simplex in R

n

, and let 


n+1

be

lo
ated in the origin.

Using (5.3), we 
an generalize the optimization formulation (3.41) for the three-

dimensional 
ase and obtain the program

min

0

B

�

1

2

M

�1

0

B

�

v

2




2

1

� (v � 


1

)

2

.

.

.

v

2




2

n

� (v � 


n

)

2

1

C

A

1

C

A

2

s.t. g

1

(v

1

; : : : ; v

n

) = 0 ;

g

2

(v

1

; : : : ; v

n

) := v

2

� 1 = 0 :

(5.26)
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Here, M := (


1

; : : : ; 


n

)

T

, and g

1

denotes the 
ubi
 equation whi
h results from substi-

tuting (5.3) for a 
ommon radius into p � v and setting v

2

= 1 in the denominator.

In order to show that set of admissible solutions for our optimization problem is

nonempty, we re
ord the following result.

Lemma 5.16. For any simplex in R

n

the

�

n+1

2

�

edge dire
tions of the simplex are dire
tion

ve
tors of 
ir
ums
ribing 
ylinders.

Proof. Sin
e the edge dire
tions 


i

� 


j

have a simple des
ription in the basis 


1

; : : : ; 


n

,

we use the representation (5.4) of the 
ubi
 equation g

1

(v) = 0 in that basis. In terms of

the t-
oordinates, the

�

n+1

2

�

edges of the simplex are t = e

i

, 1 � i � n, and t = e

i

� e

j

,

1 � i < j � n, where e

i

denotes the i-th standard unit ve
tor. For all these edges, the


ubi
 equation is satis�ed.

Considering Lagrange multipliers �

1

and �

2

yields the following ne
essary optimality


ondition.

grad f = �

1

grad g

1

+ �

2

grad g

2

;

g

1

(v

1

; : : : ; v

n

) = 0 ; (5.27)

g

2

(v

1

; : : : ; v

n

) = 0 :

Sin
e the B�ezout bound of this system is 3

n

� 3 � 2 = 2 � 3

n+1

, we have:

Lemma 5.17. For n � 2, the number of isolated lo
al extrema for the minimal 
ir
um-

s
ribing 
ylinder is bounded by 2 � 3

n+1

.

This bound is not tight. Trying to redu
e this upper bound of isolated solutions like

in the three-dimensional 
ase, we 
an eliminate the linear o

urren
es of the Lagrange

variables �

1

and �

2

. Generalizing (3.43), we have to 
onsider the vanishing of all 3 � 3-

subdeterminants of the matrix

0

B

B

B

�

�

�f

�v

1

�g

1

�v

1

�g

2

�v

1

�

�f

�v

2

�g

1

�v

2

�g

2

�v

2

.

.

.

.

.

.

.

.

.

�

�f

�v

n

�g

1

�v

n

�g

2

�v

n

1

C

C

C

A

: (5.28)

Thus, for n � 4 we arrive at a non-
omplete interse
tion of equations where we have more

equations than variables. Hen
e, we 
annot apply our B�ezout bound on these systems.

However, for small dimensions we 
an improve Lemma 5.17 by dire
tly working on the

formulation (5.27). In order to provide better bounds, we use well-known 
hara
terizations

of the number of zeroes of a polynomial equation by the mixed volume of a Minkowski

sum of polytopes (for an easily a

essible introdu
tion into this topi
 we refer to [32℄).

Here, let C

�

:= C n f0g.
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Lemma 5.18. For 2 � n � 7, the number of solutions of the system (5.27) in (v

1

; : : : ; v

n

;

�

1

; �

2

) 2 (C

�

)

n+2

is bounded by

6

�

n + 1

3

�

;

where

�

n

k

	

denotes the Stirling number of the se
ond kind (see, e.g., [60, 134℄).

The sequen
e 6

�

n+1

3

	

starts as follows.

n 2 3 4 5 6 7

6

�

n+1

3

	

6 36 150 540 1806 5796

Proof. For a polynomial h =

P

�2N

n

0




�

x

�

2 C [x

1

; : : : ; x

n

℄, let

NP(h) := 
onvf� 2 N

n

0

: 


�

6= 0g

denote the Newton polytope of h (see, e.g., [32, x7.1℄). Let h

1

; : : : ; h

n

be the polynomials

of the gradient equation in (5.27). Further let P

1

; : : : ; P

n

; Q

1

; Q

2

be the Newton polytopes

of h

1

; : : : ; h

n

; g

1

; g

2

for generi
 instan
es of these equations.

Re
all that the mixed volumeMV(P

1

; : : : ; P

n

; Q

1

; Q

2

) is the 
oeÆ
ient of the monomial

�

1

��

2

� � ��

n

��

1

��

2

in the (n+2)-dimensional volume Vol

n+2

(�

1

P

1

+: : :+�

n

P

n

+�

1

Q

1

+�

2

Q

2

)

(whi
h is a polynomial expression in �

1

; : : : ; �

n

; �

1

; �

2

). By Bernstein's Theorem, the

number of isolated 
ommon zeroes in (C

�

)

n+2

of the set of polynomials h

1

; : : : ; h

n

; g

1

; g

2

is bounded above by

MV(P

1

; : : : ; P

n

; Q

1

; Q

2

)

(see [32, Theorem 5.4 in Chapter 8℄). For every given n this volume 
an be 
omputed

using software for 
omputing mixed volumes (see, e.g, [51, 143℄).

We 
onje
ture that for any n � 2, the number of isolated solutions in (C

�

)

n+2

is

bounded by 6

�

n+1

3

	

.

5.3.2 The regular simplex in R

n

Here, we analyze the lo
al extrema of 
ir
ums
ribing 
ylinders for the regular simplex.

Our aim is both to illustrate the algebrai
 formulations given before and to relate our

investigations to 
lassi
al investigations on the regular simplex in 
onvex geometry. In

order to a
hieve many symmetries in the algebrai
 formulation, we use a slightly modi�ed


oordinate system that is parti
ularly suited for the regular simplex; these 
oordinates

have also been used in [18, 147℄.

The equation x

1

+ : : : + x

n+1

= 1 de�nes an n-dimensional aÆne subspa
e in R

n+1

.

Now let the regular simplex in this n-dimensional subspa
e be given by the n+1 verti
es
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i

= e

i

, where e

i

denotes the i-th standard unit ve
tor, 1 � i � n + 1. We 
onsider the

tangen
y equation (5.1) for the point 


n+1

,

v

2

p

2

� 2v

2

p

n+1

+ v

2

� v

2

n+1

� r

2

v

2

= 0 :

Subtra
ting this equation from the equation for 


i

, 1 � i � n, yields

2v

2

(p

i

� p

n+1

) = �(v

2

i

� v

2

n+1

) ; 1 � i � n :

Moreover, the embedding into the hyperplane

P

n+1

i=1

x

i

= 1 implies

P

n+1

i=1

p

i

= 1. In order

to solve these n+1 equations for p, let M be the (n+1)� (n+1)-matrix whose i-th row


ontains the ve
tor e

T

i

� e

T

n+1

and whose n-th row is (1; 1; : : : ; 1). Sin
e M is invertible,

we obtain

p =

1

2v

2

M

�1

0

B

B

B

�

�(v

2

1

� v

2

n+1

)

.

.

.

�(v

2

n

� v

2

n+1

)

2v

2

1

C

C

C

A

: (5.29)

As before, substituting this expression into p �v = 0 and setting v

2

= 1 in the denominator

gives a 
ubi
 equation g

1

(v) = 0. Hen
e, we obtain the following optimization problem.

Here, the obje
tive fun
tion f stems from the 
ondition for the vertex 


n+1

, and the


ondition

P

n+1

i=1

v

i

= 0 
omes from the embedding.

min p

2

� 2p

n+1

+ 1� v

2

n+1

s.t. g

1

(v

1

; : : : ; v

n+1

) = 0 ;

n+1

P

i=1

v

i

= 0 ;

v

2

= 1 :

(5.30)

First we re
ord that the fun
tions f and g

1

are symmetri
 polynomials in the variables

v

1

; : : : ; v

n+1

. In order to show this, let �

1

; : : : ; �

n+1

be the elementary symmetri
 fun
tions

in v

1

; : : : ; v

n+1

,

�

1

= v

1

+ : : :+ v

n+1

;

.

.

.

�

k

=

X

1�i

1

<:::<i

k

�n+1

v

i

1

v

i

2

� � � v

i

k

;

.

.

.

�

n+1

= v

1

v

2

� � � v

n+1

(see, e.g., [31, 138℄). By providing expli
it expressions for f and g

1

as polynomials in the

elementary symmetri
 polynomials �

1

; : : : ; �

n+1

, the symmetry of f and g

1

follows. More

pre
isely, we obtain:
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Lemma 5.19. The quarti
 polynomial f(v

1

; : : : ; v

n+1

) and the 
ubi
 polynomial g

1

(v

1

;

: : : ; v

n+1

) are symmetri
 polynomials in the variables v

1

; : : : ; v

n+1

. In terms of the ele-

mentary symmetri
 fun
tions, f results in

f =

1

4(n+ 1)

�

n�

4

1

� 4n�

2

1

�

2

+ 2(n� 1)�

2

2

� 4�

2

1

+ 8�

2

+ 4n

�

+ �

1

�

3

� �

4

;

and the homogeneous polynomial g

1

results in

g

1

=

1

2(n+ 1)

�

�(n� 2)�

3

1

+ 3(n� 1)�

1

�

2

�

�

3

2

�

3

:

Sin
e �

1

= 0 and

P

n+1

i=1

v

i

2

= �

2

1

� 2�

2

, we 
an also dedu
e the following formulation

of our optimization problem:

Corollary 5.20. Finding the 
riti
al values of the minimization problem (5.30) is equiv-

alent to �nding the 
riti
al values (v

1

; : : : ; v

n+1

)

T

2 R

n+1

of the maximization problem

max �

4

s.t. �

1

= 0 ;

�

2

= �

1

2

; (5.31)

�

3

= 0 ;

where �

i

are the elementary symmetri
 fun
tions in v

1

; : : : ; v

n+1

.

Theorem 5.21. The dire
tion ve
tor (v

1

; : : : ; v

n+1

)

T

of any lo
ally extreme 
ir
ums
rib-

ing 
ylinder satis�es jfv

1

; : : : ; v

n+1

gj � 3, i.e., for ea
h solution ve
tor the 
omponents

take at most three distin
t values.

Proof. For n � 2, the statement is trivial, so we 
an assume n � 3. Let v be the dire
tion

ve
tor of a lo
ally extreme 
ir
ums
ribing 
ylinder with v

2

= 1. Using Corollary 5.20, let

f(v) := ��

4

(v), g

1

(v) := �

3

(v), g

2

(v) := �

2

(v)� 1=2, and g

3

(v) := �

1

(v). As a ne
essary


ondition for a lo
al extremum, for any pairwise di�erent indi
es a; b; 
; d 2 f1; : : : ; n+1g

the determinant

det

0

B

B

B

�

�

�f

�v

a

�g

1

�v

a

�g

2

�v

a

�g

3

�v

a

�

�f

�v

b

�g

1

�v

b

�g

2

�v

b

�g

3

�v

b

�

�f

�v




�g

1

�v




�g

2

�v




�g

3

�v




�

�f

�v

d

�g

1

�v

d

�g

2

�v

d

�g

3

�v

d

1

C

C

C

A

(5.32)

vanishes. Sin
e f , g

1

, g

2

, and g

3

are symmetri
 fun
tions in the variables v

1

; : : : ; v

n+1

,

we 
an assume without loss of generality a = 1, b = 2, 
 = 3, and d = 4. Setting
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�

n

:=

P

n+1

i=5

v

i

and �

n

=

P

n+1

i=5

v

2

i

, we 
an write

�g

3

�v

i

= 1 ;

�g

2

�v

i

=

4

X

j=1

j 6=i

v

j

+ �

n

;

�g

1

�v

i

=

X

1�j<k�4

j;k 6=i

v

j

v

k

+ �

n

4

X

j=1

j 6=i

v

j

+

1

2

�

�

2

n

� �

n

�

(1 � i � 4). Moreover, sin
e �

3

(v) = 0, we 
an 
onsider �

3

+

�f

�v

i

instead of

�f

�v

i

. This

allows to express the resulting expression easily in terms of �

n

and �

n

. More pre
isely, we

obtain

�

3

+

�f

�v

i

= v

i

0

B

�

X

1�j<k�4

j;k 6=i

v

j

v

k

+ �

n

4

X

j=1

j 6=i

v

j

+

1

2

(�

2

n

� �

n

)

1

C

A

:

Thus we 
an 
onsider the determinant (5.32) as a polynomial in v

1

; v

2

; v

3

; v

4

; �

n

; �

n

.

Evaluating this 4 � 4-determinant � shows that it is independent of �

n

, �

n

and that

it fa
tors as

� = (v

1

� v

2

)(v

1

� v

3

)(v

1

� v

4

)(v

2

� v

3

)(v

2

� v

4

)(v

3

� v

4

) :

Hen
e, jfv

1

; v

2

; v

3

; v

4

gj � 3, and this holds true for any quadruple (a; b; 
; d) of indi
es.

Using this result, we illustrate the o

urren
e of the Stirling numbers in Lemma 5.18

for the 
ase of a regular simplex. There are

�

n+1

3

	

ways to partition the set V :=

fv

1

; : : : ; v

n+1

g into three nonempty subsets V

1

, V

2

, V

3

. We assume that v

i

2 V

i

, 1 � i � 3,

and that all variables within the same set take the same value. Setting k := jV

1

j and

l := jV

2

j, the formulation in Corollary 5.20 yields the system of equations

kv

1

+ lv

2

+ (n + 1� k � l)v

3

= 0 ;

kv

2

1

+ lv

2

2

+ (n+ 1� k � l)v

2

3

= 1 ; (5.33)

X

0�i

1

<i

2

<i

3

�3

i

1

+i

2

+i

3

=3

�

k

i

1

��

l

i

2

��

n+ 1� k � l

i

3

�

v

i

1

1

v

i

2

2

v

i

3

3

= 0 :

If one of the indi
es k, l, or n + 1 � k � l is zero then this system 
onsists of three

equations in two variables, so we do not expe
t any solutions. For every 
hoi
e of k, l


orresponding to a partition into nonempty subsets, we obtain a system of equations with

B�ezout number 6. Thus, whenever the values of v

1

, v

2

, and v

3

in the solutions to (5.33)

are distin
t, then this re
e
ts the bound in Lemma 5.18.

In parti
ular, in the 
ase n = 4 we obtain the following 150 solutions.
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k = 1, l = 1: The six solutions for (v

1

; v

2

; v

3

)

T

of the system (5.33) are

�

1

p

2

;�

1

p

2

; 0

�

T

;

�

1

20

q

110� 30i

p

15;

1

20

q

110 + 30i

p

15;�

1

10

p

15

�

T

;

and the solutions obtained by permuting the �rst two 
omponents of the �rst solution

and by 
hanging the signs and/or permuting the �rst two 
omponents in the se
ond

solution.

For the program (5.31) in the variables (v

1

; : : : ; v

5

)

T

, this gives

�

5

2

��

2

1

�

= 20 
riti
al

positions of the form (i.e., up to variable permutations)

�

1

p

2

;�

1

p

2

; 0; 0; 0

�

T

;

20 
omplex solutions of the form

�

�

1

20

q

110� 30i

p

15;�

1

20

q

110 + 30i

p

15;

1

10

p

15;

1

10

p

15;

1

10

p

15

�

T

;

and 20 
omplex solutions of the form

�

1

20

q

110� 30i

p

15;

1

20

q

110 + 30i

p

15;�

1

10

p

15;�

1

10

p

15;�

1

10

p

15

�

T

:

k = 1, l = 2: Here, we obtain 30 solutions of the form

�

0;

1

2

;

1

2

;�

1

2

;�

1

2

�

T

;

30 solutions of the form

�

1

5

p

10;

1

4

p

2�

1

20

p

10;

1

4

p

2�

1

20

p

10;�

1

4

p

2�

1

20

p

10;�

1

4

p

2�

1

20

p

10

�

T

;

and 30 solutions of the form

�

�

1

5

p

10;

1

4

p

2 +

1

20

p

10;

1

4

p

2 +

1

20

p

10;�

1

4

p

2 +

1

20

p

10;�

1

4

p

2 +

1

20

p

10

�

T

:

The global minimum is attained for the ve
tor

�

0;

1

2

;

1

2

;�

1

2

;�

1

2

�

T

, and the obje
tive

value of the global optimum is 49/80. Hen
e, the radius of the smallest 
ir
ums
ribing


ylinder for a regular simplex in R

4

with edge length

p

2 is

p

49=80 = 7

p

5=20 � 0:7826 .
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5.3.3 Appendix: An error in the results of Wei�ba
h

In the 
ourse of our investigations, we dis
overed a subtle but severe mistake in the paper

[148℄ on the expli
it determination of the radius of a smallest en
losing 
ylinder for a

regular simplex S � R

n

. In the notation of Se
tion 2.2.2, this value is the outer (n� 1)-

radius of S. Sin
e this error 
ompletely invalidates the proof given there

1

, we give a

des
ription of that 
aw, in
luding some 
omputer-algebrai
 
al
ulations illustrating it.

In that paper, the 
omputation of the outer (n�1)-radius of a regular simplex (with

edge length

p

2) is redu
ed to the analysis of the following optimization problem.

min

n+1

P

i=1

u

4

i

s.t.

n+1

P

i=1

u

2

i

= 1 ;

n+1

P

i=1

u

i

= 0 :

(5.34)

For any lo
al optimum (u

1

; : : : ; u

n+1

)

T

there exist Lagrange multipliers �

1

, �

2

2 R

su
h that

4u

3

i

+ 2�

1

u

i

+ �

2

= 0 ; 1 � i � n+ 1 ;

n+1

X

i=1

u

2

i

= 1 ; (5.35)

n+1

X

i=1

u

i

= 0 :

Erroneously, in [148℄ it is argued that symmetry arguments imply that �

2

= 0 in any

solution. The following 
al
ulation in the 
omputer algebra system Singular [62℄ shows

that for n = 3 this system has 26 solutions (
ounting multipli
ity) over C .

ring R = 0, (u1,u2,u3,u4,la1,la2), (dp);

ideal I =

4*u1^3 + 2*la1*u1 + la2,

4*u2^3 + 2*la1*u2 + la2,

4*u3^3 + 2*la1*u3 + la2,

4*u4^3 + 2*la1*u4 + la2,

u1^2 + u2^2 + u3^2 + u4^2 - 1,

u1 + u2 + u3 + u4;

degree(std(I));

1

In a personal 
ommuni
ation this has been 
on�rmed by B. Wei�ba
h.
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This program �rst de�nes a polynomial ring in the variables u

1

; : : : ; u

4

; �

1

; �

2

over a

�eld of 
hara
teristi
 zero. We then use the degree 
ommand to 
ompute the dimension

and the degree of the ideal de�ned by our equations. The output of that 
ommand is

// 
odimension = 6

// dimension = 0

// degree = 26

Hen
e, there are �nitely many solutions (sin
e the dimension of the ideal is zero), and the

degree of the ideal (the sum of the multipli
ities of the solutions) is 26.

18 of these solutions refer to the 
ase �

2

= 0 (and those were the ones 
omputed in

[148℄). Namely, if �

2

= 0 then the �rst row of (5.35) simpli�es to

u

i

(2u

2

i

+ �

1

) = 0 ; 1 � i � n+ 1 :

If we are only interested in the real solutions to this system, then setting �

1

= �2�

2

for

some � � 0 gives

u

i

(u

2

i

� �

2

) = 0 ; 1 � i � n + 1 :

Sin
e the ve
tor (u

1

; : : : ; u

n+1

)

T

= (0; : : : ; 0)

T

does not satisfy the se
ond row in (5.35),

the solutions with �

2

= 0 are

u

i

= �; i 2 fi

1

; : : : ; i

h

g ;

u

i

= ��; i 2 fi

h+1

; : : : ; i

2h

g ;

u

i

= 0 ; i 2 f1; : : : ; n+ 1g n fi

1

; : : : ; i

2h

g

for some h � 1, some set fi

1

; : : : ; i

2h

g of pairwise di�erent indi
es, and � = (2h)

�1=2

. In

the 
ase n = 3, there are 12 possibilities to 
hoose the indi
es and the signs for jhj = 1 and

6 possibilities to 
hoose the indi
es and the signs for jhj = 2, giving 18 solutions to (5.35).

However, there are 8 additional solutions, whi
h in fa
t are also real! Namely, these

are the solutions

(u

1

; : : : ; u

4

)

T

=

1

2

p

3

(1;�3; 1; 1)

T

; �

1

= �

7

6

; �

2

=

1

p

3

;

(u

1

; : : : ; u

4

)

T

=

1

2

p

3

(�1; 3;�1;�1)

T

; �

1

= �

7

6

; �

2

= �

1

p

3

;

as well as the six distin
t solutions obtained from these two by permuting the variables

u

1

; : : : ; u

4

. These additional solutions invalidate the subsequent arguments in [148℄.

The omissions get even worse in the higher-dimensional 
ase. E.g., for n = 4, besides

the

�

5

2

��

2

1

�

+

�

5

4

��

4

2

�

= 20 + 30 = 50 solutions des
ribed in [148℄, we obtain the following
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solutions:

(u

1

; : : : ; u

5

)

T

=

1

p

30

(�2;�2;�2; 3; 3)

T

; �

1

= �

7

15

; �

2

= �

2

75

p

30 ;

(u

1

; : : : ; u

5

)

T

=

1

p

30

(2; 2; 2;�3;�3)

T

; �

1

= �

7

15

; �

2

=

2

75

p

30 ;

(u

1

; : : : ; u

5

)

T

=

1

2

p

5

(1;�4; 1; 1; 1)

T

; �

1

= �

13

10

; �

2

=

6

25

p

5 ;

(u

1

; : : : ; u

5

)

T

=

1

2

p

5

(�1; 4;�1;�1;�1)

T

; �

1

= �

13

10

; �

2

= �

6

25

p

5 ;

as well as those solutions obtained by permuting the variables. Altogether, we have

10 + 10 + 5 + 5 = 30 solutions with �

2

6= 0, and thus a total number of 80 solutions.

Finally, we remark that the paper [147℄, whi
h 
omputes the outer (n�1)-radius of a

regular simplex in odd dimension n, is 
orre
t.
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6. COMMON TRANSVERSALS AND TANGENTS

We study the lines simultaneously tangent to k given spheres and transversal to 4�k given

lines, k 2 f0; : : : ; 4g. In Se
tion 6.1, we prove the following result.

Theorem 6.1. Given 4�k lines and k spheres in R

3

, 0 � k � 4. If there exist only

�nitely many lines in R

3

simultaneously tangent to the spheres and transversal to the

lines then the number of these lines is bounded by

8

>

>

>

<

>

>

>

:

2 if k = 0 ;

4 if k = 1 ;

8 if k = 2 ;

12 if k 2 f3; 4g :

These bounds are tight, i.e., for ea
h k there exists a 
on�guration where the number of

distin
t real solutions mat
hes the stated number. The bounds are tight even if the spheres

are unit spheres.

Table 6.1 summarizes the results. Even if we are primarily interested in the real

solutions, the upper bounds are in fa
t 
omplex bounds in C

3

, whi
h are given in the

�rst main 
olumn. The se
ond 
olumn 
ontains the mat
hing numbers of real solutions

in our 
onstru
tions. The last 
olumn shows that in some 
ases, we are able to expli
itly


hara
terize the 
on�gurations with an in�nite number of real 
ommon tangents. In

the entries with a \{" we do not know su
h a 
hara
terization (
f. the dis
ussion in

Se
tion 3.3.5).

For k 2 f1; 2g, the upper bounds immediately follow from B�ezout's Theorem. Whereas

for k = 1 it is easy to give a 
onstru
tion mat
hing this bound, the 
onstru
tion for k = 2 is

quite involved. In parti
ular, for k = 2 we use a 
omputation of interse
tion multipli
ities

based on standard bases in lo
al rings to prove 
orre
tness of the 
onstru
tion. For k = 3,

the B�ezout bound in the Pl

�

u
ker formulation is 16 instead of 12. Here, it turns out that

there are two solutions with multipli
ity at least two in the plane at in�nity.

Besides the tight upper bounds, we 
hara
terize the 
on�gurations with in�nitely

many 
ommon tangents for k = 1 and k = 2. For three lines and one sphere, our proof is

based on 
lassi
al line-geometri
 te
hniques. In order to 
hara
terize the situations where

two lines and two spheres have in�nitely many real 
ommon tangent lines, we study the

fas
inating geometry behind that degree 8 problem in Se
tion 6.2. A se
ond purpose of

this se
tion is to develop a variety of 
omputer-algebrai
 te
hniques for ta
kling problems
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upper bound # real solutions of 
hara
terization of

# solutions our 
onstru
tion degenerate instan
es

4 lines 2 (well-known) 2 (well-known) yes (well-known)

3 lines, 1 sphere 4 4 yes

2 lines, 2 spheres 8 8 yes

1 line, 3 spheres 12 12 {

4 unit spheres 12 (see Chapter 3) 12 (see Chapter 3) yes (see Chapter 3)

4 spheres 12 (see Chapter 3) 12 (see Chapter 3) {

Tab. 6.1: Summary of results

of this kind. For that reason, we �rst deal with the more general problem where we

repla
e the spheres in R

3

by general quadri
s in P

3

. In order to study the geometry of

this problem, we �x two lines and a quadri
 in general position, and des
ribe the set of

(se
ond) quadri
s for whi
h there are in�nitely many 
ommon transversals/tangents in

terms of an algebrai
 
urve. It turns out that this set is an algebrai
 
urve of degree 24

in the spa
e P

9

of quadri
s. Fa
toring the ideal of this 
urve shows that it is remarkably

redu
ible:

Theorem 6.2. Fix two skew lines `

1

and `

2

and a general quadri
 Q in P

3

. The 
losure of

the set of quadri
s Q

0

for whi
h there are in�nitely many lines simultaneously transversal

to `

1

and `

2

and tangent to both Q and to Q

0

is a 
urve of degree 24 in the P

9

of quadri
s.

This 
urve 
onsists of 12 plane 
oni
s.

We prove this theorem by investigating the ideal de�ning the algebrai
 
urve des
rib-

ing the set of (se
ond) quadri
s. Based on this, we prove the theorem with the aid of a


omputer 
al
ulation in the 
omputer algebra system Singular. As explained in Se
-

tion 6.2.3, the su

ess of that 
omputation depends 
ru
ially on the pre
eding analysis of

the 
urve. Quite interestingly, there are real lines `

1

and `

2

and real quadri
s Q su
h that

all 12 
omponents of the 
urve of se
ond quadri
s are real. In general, given real lines `

1

,

`

2

, and a real quadri
 Q, not all of the 12 
omponents are de�ned over the real numbers.

Based on the dis
ussion of lines and general quadri
s, we give a 
omplete 
hara
teriza-

tion of 
on�gurations of two lines and two spheres having in�nitely many lines transversal

to the lines and tangent to the spheres.

6.1 Enumerative results

We show Theorem 6.1. For brevity, we denote the maximum numbers of lines in R

3

simul-

taneously tangent to 4�k lines and k spheres (in the �nite 
ase) by N

k

, k 2 f0; : : : ; 4g.
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0

l1

l2

l3

Fig. 6.1: The �gure shows a 
on�guration with three lines `

1

, `

2

, `

3

, and one sphere of radius

11/10, leading to 4 
ommon tangent lines. The two tangent lines in the x

1

x

2

-plane are

drawn in light grey, whereas the two tangent lines in the x

2

x

3

-plane are drawn in dark

grey.

6.1.1 Proofs and 
onstru
tions

Note that the upper bounds N

0

� 2, N

1

� 4, N

2

� 8 immediately follow from B�ezout's

Theorem. Namely, sin
e the 
ommon tangent lines to three lines and one sphere 
an be

formulated by three linear equations of the form (2.4), one equation of the form (2.5) as

well as the Pl

�

u
ker relation (2.2) in the six homogeneous variables p

01

; : : : ; p

23

, we obtain

N

1

� 4. Analogously, we obtain N

0

� 2, N

2

� 8.

As mentioned earlier, the 
ommon transversals to four given lines in 3-dimensional

spa
e are a well-studied problem in enumerative geometry, and it is well-known that the

upper bound of 2 
an be a
tually a
hieved in real spa
e R

3

(see, e.g., [75, xXIV.7℄); hen
e

N

0

= 2. The number of 
ommon transversals is �nite if and only if the Pl

�

u
ker ve
tors of

the four given lines are linearly independent.

Lemma 6.3. N

1

= 4 :

Proof. Sin
e N

1

� 4, it suÆ
es to give a 
onstru
tion with 3 lines and 1 sphere, leading

to 4 
ommon tangents. Denoting the three 
oordinate axes in R

3

by x

1

, x

2

, and x

3

, let

`

1

be the x

1

-axis, `

2

be the x

2

-axis, and `

3

be parallel to the x

3

-axis and passing through

(0; 2; 0)

T

(see Figure 6.1); hen
e `

1

\ `

2

= f(0; 0; 0)

T

g and `

2

\ `

3

= f(0; 2; 0)

T

g.

Ea
h line interse
ting the three lines `

1

, `

2

, and `

3

is lo
ated in the x

1

x

2

-plane (in

whi
h 
ase it passes through (0; 2; 0)

T

) or is lo
ated in the x

2

x

3

-plane (in whi
h 
ase it

passes through the origin). For 1 < r <

p

2 the sphere S((1; 1; 1)

T

; r) interse
ts both

the x

1

x

2

-plane and the x

2

x

3

-plane, but does not interse
t with any of the lines `

1

, `

2

, `

3

.

Hen
e, sin
e there are two tangents to the sphere passing through the origin and lying in
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the x

1

x

2

-plane, and sin
e there are two tangents to the sphere passing through (0; 2; 0)

T

and lying in the x

1

x

3

-plane, there are 4 
ommon tangents altogether. Figure 6.1 shows

a 
on�guration with 1 < r = 11=10 <

p

2. We remark that by appropriate s
aling, the

sphere 
an be transformed into a unit sphere. Furthermore, by slightly perturbing the


on�guration, the lines 
an be made pairwise skew.

To 
omplete the entries for 3 lines and 1 sphere in Table 6.1, it remains to 
hara
terize

the 
on�gurations with in�nitely many real solutions. If the three lines are not pairwise

skew, then all real 
ommon transversals lie in the same plane or pass through a point of

interse
tion. Sin
e the resulting 
hara
terization 
an be easily established, we 
an assume

that the three lines are pairwise skew.

It is well-known that the 
ommon transversals of three pairwise skew lines de�ne a

hyperboloid of one sheet (see, e.g., [11℄). By applying a translation and a rotation, the

hyperboloid 
an be transformed into

x

2

1

�

2

+

x

2

2

�

2

�

x

2

3




2

= 1 with �; �; 
 > 0 : (6.1)

This transformation 
hanges the 
enter of the sphere into some new 
enter 
 = (


1

; 


2

; 


3

)

T

2 R

3

. Now the 
hara
terization of in�nitely many solutions is given by the following

statement.

Theorem 6.4. Let `

1

; `

2

; `

3

be three pairwise skew lines whose 
ommon transversals gen-

erate a hyperboloid of the form (6.1), and let S

4

be a sphere with 
enter 
 2 R

3

and

radius r > 0. Then there exist in�nitely many lines simultaneously transversal to `

1

; `

2

; `

3

and tangent to S

4

if and only if 


1

= 


2

= 0, � = �, and in the x

1

x

3

-plane the 
ir
le

x

2

1

+(x

3

�


3

)

2

= r

2

is a tangent 
ir
le to both bran
hes of the hyperbola x

2

1

=�

2

�x

2

3

=


2

= 1 :

Proof. The hyperboloid (6.1) 
an be parametrized by one of the two sets of generating

lines. In parti
ular, this hyperboloid is generated by the set of lines

(

(x

1

; x

2

; 0)

T

+ �

�

�

�

�


x

2

;

�

�


x

1

; 1

�

T

: � 2 R

)

; where

x

2

1

�

2

+

x

2

2

�

2

= 1 (6.2)

(see, e.g., [82℄). By the upper bound of 4 in Lemma 6.3, we see that either this parametriza-

tion 
ontains at most 4 tangents to the sphere or all lines in the parametrization are

tangent to the sphere.

First assume that there are in�nitely many lines transversal to the three lines and

tangent to the sphere; thus all lines in the parametrization are tangents. Spe
i�
ally, we
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onsider the following lines in the parametrization:

g

1

=

(

�

�; �

�




; �

�

T

: � 2 R

)

(i:e:; (x

1

; x

2

) = (�; 0)) ;

g

2

=

(

�

��;��

�




; �

�

T

: � 2 R

)

(i:e:; (x

1

; x

2

) = (��; 0)) ;

g

3

=

(

�

��

�




; �; �

�

T

: � 2 R

)

(i:e:; (x

1

; x

2

) = (0; �)) ;

g

4

=

(

�

�

�




;��; �

�

T

: � 2 R

)

(i:e:; (x

1

; x

2

) = (0;��)) :

The 
ondition that the 
enter 
 must have the same distan
e from g

1

and g

2

gives the

equation

�(�

2

+ 


2

)


1

+ �



2




3

= 0 ;

and the equality of distan
es from g

3

and g

4

gives the distan
es

�(�

2

+ 


2

)


2

� �



1




3

= 0 :

Sin
e �; �; 
 > 0, the 
ommon solutions of these equations have 


1

= 


2

= 0. Using this

information, the equality of the distan
es from the �rst and third lines gives � = �, or




3

= �

p

(�

2

+ 


2

)(�

2

+ 


2

)=
. To eliminate this se
ond possibility, 
onsider two more

lines in the ruling of the hyperboloid

g

5

=

(

�

�

p

2

�

1�

�




�

;

�

p

2

�

1 +

�




�

; �

�

T

: � 2 R

)

�

i:e:; (x

1

; x

2

) =

�

�

p

2

;

�

p

2

��

;

g

6

=

(

�

�

p

2

�

1 +

�




�

;

�

p

2

�

�1 +

�




�

; �

�

T

: � 2 R

)

�

i:e:; (x

1

; x

2

) =

�

�

p

2

;

��

p

2

��

:

The equality of distan
es from these two lines together with 


1

= 


2

= 0 gives � = � or




3

= 0. Therefore the only 
ase when 
 
an be at the same distan
e from all lines in the

ruling (6.2) is when � = �. Hen
e, sin
e 


1

= 


2

= 0 and � = �, both the hyperboloid and

the sphere are rotational symmetri
 with respe
t to the x

3

-axis, and it suÆ
es to 
onsider

the se
tion through the x

1

x

3

-plane. In this se
tion, the 
ir
le x

2

1

+ (x

3

� 


3

)

2

= r

2

must

be a tangent 
ir
le to both bran
hes of the hyperbola x

2

1

=�

2

� x

2

3

=


2

= 1 :

If, 
onversely, 


1

= 


2

= 0, � = �, and in the x

1

x

3

-plane, the 
ir
le x

2

1

+(x

3

� 


3

)

2

= r

2

is a tangent 
ir
le to the hyperbola x

2

1

=�

2

� x

2

3

=


2

= 1, then the rotational symmetry

implies that every line in the hyperboloid x

2

1

=�

2

+ x

2

2

=�

2

� x

2

3

=


2

= 1 is tangent to the

sphere S

4

. Hen
e, there are in�nitely many 
ommon tangents.
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x
 1

l
 1

l
 2

Fig. 6.2: The �gure shows a 
onstru
tion with 2 lines and 2 spheres, leading to 6 distin
t solu-

tions. The two tangents lying in the plane x

2

= � and passing through (0; �; 0)

T

are

drawn in light grey. The other four tangents are drawn in dark grey.

Lemma 6.5. N

2

= 8 :

Proof. Sin
eN

2

� 8, it suÆ
es to give a 
onstru
tion with 2 lines and 2 spheres of the same

radius, leading to 8 solutions. We start from the following 
on�guration with 6 distin
t

solutions. The two spheres are symmetri
ally lo
ated on the x

1

-axis: 


3

= (
; 0; 0)

T

,




4

= (�
; 0; 0)

T

; the radius r will be spe
i�ed below. The lines `

1

and `

2

are 
hosen in

a plane x

2

= � for some � > 0 su
h that the lines interse
t in (0; �; 0)

T

. Hen
e, every


ommon transversal of the two lines either lies in the plane x

2

= � or passes through the

point (0; �; 0)

T

. If the two spheres interse
t with ea
h other, and � < r, and (0; �; 0)

T

is not 
ontained in the union of the spheres S(


3

; r), S(


4

; r), then there are exa
tly 6

distin
t lines whi
h are tangents to the spheres and transversal to the given lines and

tangent to the given spheres (see Figure 6.2): two tangents pass through (0; �; 0)

T

and lie

in the plane x

1

= 0; two tangents lie in the plane x

2

= � and are parallel to the x

1

-axis;

and two tangents lie in the plane x

2

= � and pass through (0; �; 0)

T

. For the following


onsiderations it is quite useful to have a su

in
t des
ription of the last two tangents

and also to work with integer 
oeÆ
ients for �, 
, and r. In parti
ular, we will for
e

the two tangents in the plane x

2

= � and passing through (0; �; 0)

T

to be of the form

(0; �; 0)

T

+ �(1; 0;�1)

T

. In order to obtain these tangents, �, 
 and r have to satisfy

�

2

+ 


2

=2 = r

2

and r > 
. An appropriate 
hoi
e is � = 7, 
 = 8, and r = 9, so that the

tangents of the last type are

t

1

:=

�

(0; 7; 0)

T

+ �(1; 0; 1)

T

: � 2 R

	

and t

2

:=

�

(0; 7; 0)

T

+ �(1; 0;�1)

T

: � 2 R

	

:

Now the key observation is that these two tangents have multipli
ity 2. In order to

prove this we 
onsider the system of equations in Pl

�

u
ker 
oordinates stemming from (2.4)
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and (2.6). Independent of the spe
i�
 
hoi
e of lines `

1

, `

2

with the above properties, the


ommon transversals of `

1

and `

2

are given by the 
ommon zeroes of the two linear,

homogeneous polynomials

f

1

= �7p

03

+ p

23

;

f

2

= 7p

01

+ p

12

:

The quadrati
 equations resulting from the spheres S(


3

; r) and S(


4

; r) are

f

3

= �81p

2

01

� 17p

2

02

� 17p

2

03

� 16p

02

p

12

+ p

2

12

� 16p

03

p

13

+ p

2

13

+ p

2

23

;

f

4

= �81p

2

01

� 17p

2

02

� 17p

2

03

+ 16p

02

p

12

+ p

2

12

+ 16p

03

p

13

+ p

2

13

+ p

2

23

:

Furthermore let f

5

= p

01

p

23

�p

02

p

13

+p

03

p

12

be the polynomial of the Pl

�

u
ker relation (2.2).

The tangent t

1

has Pl

�

u
ker 
oordinate (1; 0; 1;�7; 0; 7)

T

. In order to 
ompute the

multipli
ity of this solution, we follow the method and the notation in [32, x4.4℄. First

we pass to an aÆne version of the polynomials by adding the polynomial f

6

= p

01

� 1;

this for
es p

01

= 1 in any 
ommon zero of the system. Then we move the point t

1

to the

origin by applying the linear variable transformation

(p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

= (q

01

; q

02

; q

03

; q

12

; q

13

; q

23

)

T

+ (1; 0; 1;�7; 0; 7)

T

:

The lo
al interse
tion multipli
ity � 
an be 
omputed as the ve
tor spa
e dimension of

the quotient ring

� = dimR

l

=I

l

;

where R

l

:= C [q

01

; : : : ; q

23

℄

hq

01

;::: ;q

23

i

is the lo
al ring whose elements are the rational

fun
tions in q

01

; : : : ; q

23

with non-vanishing denominator at 0. I

l

is the ideal de�ned by

f

1

; : : : ; f

6

in the lo
al ring R

l

.

In order to 
ompute �, we use the fa
t that in 
ase of �nite dimension

dimR

l

=I

l

= dimR

l

=hLT(I

l

)i;

where hLT(I

l

)i denotes the ideal generated by the leading terms of I

l

(see, e.g., [32,

Corollary 4.5 in Chapter 4℄). This dimension 
an be easily extra
ted from a standard

basis of I

l

(For the 
onvenien
e of the reader, a short review of standard bases 
an be

found in Se
tion 6.1.2). Sin
e by our 
hoi
e of �, 
, and r, all 
oeÆ
ients are integers, we


an apply a 
omputer algebra pa
kage (su
h as Singular [62℄), to 
ompute a standard

basis fh

1

; : : : ; h

6

g of the ideal I

l

with respe
t to anti-graded reverse lexi
ographi
al order:

h

1

= q

01

;

h

2

= 112q

02

+ 34q

03

+ 14q

12

� 16q

13

;

h

3

= 14q

03

+ q

12

;

h

4

= q

12

;

h

5

= 64q

23

;

h

6

= 112q

2

13

:



104 6. Common transversals and tangents

x
 1

Fig. 6.3: Constru
tion with 2 lines and 2 spheres, leading to 8 distin
t solutions

Hen
e, the leading monomials of h

1

; : : : ; h

6

with respe
t to anti-graded reverse lexi
o-

graphi
al order are q

01

, q

02

, q

03

, q

12

, q

23

, q

2

13

. The desired multipli
ity � is the 
ardinality

of the set of 
osets f1 + I

l

; q

13

+ I

l

g, whi
h implies � = 2. By symmetry, the tangent t

2

has multipli
ity 2 as well.

Now we 
hoose one parti
ular 
on�guration of the presented 
lass, namely the one

with `

1

:= t

1

and `

2

:= t

2

. By perturbing this 
on�guration, the two double solutions

will split into four distin
t solutions: �rst, we slightly in
rease the x

2

-
oordinate of the

line `

2

, so that the resulting line `

0

2

be
omes (0; �

0

; 0)

T

+ �(1; 0;�1)

T

for some �

0

> �. In

this pro
ess, the double tangent t

1

splits into two tangents t

a

1

and t

b

1

interse
ting `

1

and

`

0

2

in di�erent orders; i.e., one of the tangents t

a

1

, t

b

1

tou
hes `

1

, `

2

, S

3

, and S

4

in the order

(S

3

; `

1

; `

2

; S

4

), and one of them in the order (S

3

; `

2

; `

1

; S

4

). However, the tangent t

2

is still

a double zero of the system of polynomials, sin
e the parallel lines t

2

and `

0

2

interse
t in

the plane at in�nity of P

3

R

.

Similarly, we 
an make the double tangent t

2

split into two tangents by slightly de-


reasing the x

2

-
oordinate of the line `

1

; denote the resulting line by `

0

1

. Figure 6.3 shows

the 
on�guration for `

0

1

passing through the points (0; 6:5; 0)

T

, (2; 6:5; 2)

T

, and `

0

2

passing

through the points (0; 7:5; 0)

T

, (2; 7:5;�2)

T

.

For N

3

the situation is more involved. The B�ezout bound gives 16, but in fa
t, the

number of solutions in C

3

is bounded by 12. As in the dis
ussion of the 
ommon tangents

to four spheres in Se
tion 4.2, the remaining solutions are lo
ated in the plane at in�nity.

Spe
i�
ally, we will show that there are always two solutions at in�nity with multipli
ity

at least 2.

Let us re
all the framework from Se
tion 4.2. The sphere with 
enter (


1

; 


2

; 


3

)

T

2 R

3

and radius r has the homogeneous equation in P

3

:

(x

1

� 


1

x

0

)

2

+ (x

2

� 


2

x

0

)

2

+ (x

3

� 


3

x

0

)

2

= r

2

x

2

0

:



6.1. Enumerative results 105

In the plane at in�nity x

0

= 0, this gives the equation

x

2

1

+ x

2

2

+ x

2

3

= 0;

whi
h is independent of the 
enter and the radius. Let ! denote this 
oni
 se
tion in the

plane at in�nity. Later in the proof, we will work in the spa
e of lines in P

3

. In that

situation, we will have to 
onsider those tangents through any point z 2 ! in the plane

at in�nity rather than z itself. For this reason, we provide a 
hara
terization of these

tangents:

Lemma 6.6. Let z = (0; z

1

; z

2

; z

3

)

T

2 !. The tangent to the 
oni
 ! at z whi
h lies in

the plane at in�nity has Pl

�

u
ker 
oordinate

(p

01

; p

02

; p

03

; p

12

; p

13

; p

23

)

T

= (0; 0; 0; z

3

;�z

2

; z

1

)

T

:

In parti
ular, the tangent 
ontains the points (0;�z

2

; z

1

; 0)

T

, (0; z

3

; 0;�z

1

)

T

, and (0; 0;

�z

3

; z

2

)

T

.

Proof. Sin
e z

0

= 0 we 
an 
ompute in proje
tive plane P

2

; so let z = (z

1

; z

2

; z

3

)

T

. The


oni
 se
tion

x

T

Ax = 0 with A =

0

�

1 0 0

0 1 0

0 0 1

1

A

is regular in z with tangent fy = (y

1

; y

2

; y

3

)

T

2 P

2

: z

T

Ay = 0g. In parti
ular,

(�z

2

; z

1

; 0)

T

, (z

3

; 0;�z

1

)

T

, (0;�z

3

; z

2

)

T

, and z itself lie on this tangent. Now any two

of these points 
an be used to 
ompute the Pl

�

u
ker 
oordinate of the tangent line.

Consider a 
on�guration with a line `

1

and three spheres in R

3

. Sin
e we 
onsider

the spheres as quadri
s, we denote them by Q

2

, Q

3

, and Q

4

. The idea to prove the

double solutions at in�nity is to transfer the geometry of ! to the spa
e of lines in P

3

.

More pre
isely, let t be a tangent to ! at z in the plane at in�nity. Sin
e the quadri
s

^

2

Q

2

;^

2

Q

3

;^

2

Q

4

2 P

5


hara
terize the tangents to Q

2

; Q

3

; Q

4

, the Pl

�

u
ker ve
tor p

t

of

t is 
ontained in ^

2

Q

2

, ^

2

Q

3

, and ^

2

Q

4

. Let 
 denote the quadri
 in P

5

de�ned by the

Pl

�

u
ker equation (2.2). Sin
e t is a line in P

3

, t is also 
ontained in 
. We will show that

the tangent hyperplanes to the quadri
s ^

2

Q

2

, ^

2

Q

3

, ^

2

Q

4

, 
 at p

t


ontain a 
ommon

subspa
e of dimension 2. In 
onne
tion with the linear form de�ned by the transversals

of the line `

1

, this will prove the multipli
ity of at least 2.

Let us investigate the spheres Q

2

, Q

3

, Q

4

�rst. For i 2 f2; 3; 4g, we are looking for

lines whose Pl

�

u
ker ve
tors lie in the tangent hyperplane of ^

2

Q

i

at p

t

. The geometri



on
ept behind this relation is polarity. Re
all that the polar plane of a point a 2 P

n

with

respe
t to an arbitrary quadri
 Q is de�ned by

fy 2 P

n

: a

T

Qy = 0g :
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If a 2 Q then the polar hyperplane is a tangent hyperplane. The polar line of a line ` 2 P

3

is de�ned by

fy 2 P

3

: a

T

Qy = 0 for all a 2 `g :

The following lemma establishes a 
onne
tion between the tangent hyperplanes to ^

2

Q

and the 
on
ept of polarity for a quadri
 Q.

Lemma 6.7. Let t be a tangent line to a quadri
 Q � P

3

, and let the point a 2 P

3

be


ontained in the polar line of t. Then, for any line ` 
ontaining a, the Pl

�

u
ker ve
tor p

`

of ` is 
ontained in the tangent hyperplane to ^

2

Q at p

t

, i.e., p

T

t

(^

2

Q)p

`

= 0.

Proof. Let T be a representation of t by a 4 � 2-matrix as des
ribed in the Se
tion 2.3.

Further let b be a point on ` with b 6= a, and let L = (a; b) be a representation of ` by a

4� 2-matrix. Sin
e a is 
ontained in the polar line of t, we have T

T

Qa = (0; 0)

T

. Hen
e,

by reasoning as in Lemma 2.11, we 
an 
on
lude

p

T

t

(^

2

Q)p

`

= det(T

T

QL) = 0 :

In parti
ular, the following version of a well-known relationship (see, e.g., [100℄) shows

that the pre
ondition of Lemma 6.7 is satis�ed if a = t \Q :

Lemma 6.8. If t is tangent to a quadri
 Q at some point a, then a is 
ontained in the

polar line of t.

Proof. Let y 6= a be a point on t. Sin
e t lies on the polar plane (namely, the tangent

plane) of a with respe
t to Q, we have a

T

Qy = 0. Sin
e also a

T

Qa = 0, a lies on the polar

line of t with respe
t to Q.

Finally, we are ready to prove the upper bound for N

3

.

Lemma 6.9. N

3

� 12 :

Proof. Let L

1

be the hyperplane (2.4) in P

5


hara
terizing the transversals of the line `

1

,

that is, any point on L

1

whi
h satis�es the Pl

�

u
ker relation is the Pl

�

u
ker 
oordinate of a

transversal to `

1

. Let ^

2

Q

2

;^

2

Q

3

;^

2

Q

4

be the quadri
s (2.6) 
hara
terizing the tangents

to the three spheres. Further let z = (0; z

1

; z

2

; z

3

)

T

2 !, and let � � 
 � P

5

be the set of

Pl

�

u
ker ve
tors whose 
orresponding lines in P

3

pass through z. � 
an be written as the

image of the proje
tive mapping h : P

3

! 
 � P

5

,

h(y

0

; y

1

; y

2

; y

3

) = ^

2

0

B

B

�

0 y

0

z

1

y

1

z

2

y

2

z

3

y

3

1

C

C

A

:
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Sin
e h is linear, it follows that � is a two-dimensional plane in P

5

with � � 
.

Let t be the tangent to ! at z in the plane at in�nity. By Lemmas 6.8 and 6.7, � is


ontained in the tangent hyperplane to ^

2

Q

i

at p

t

, 2 � i � 4.

In order to show that � is also 
ontained in the tangent hyperplane to 
 at p

t

, let y

be a point di�erent from z, and let ` be a line through z and y. Then, by Lemma 6.6, the

Pl

�

u
ker ve
tors p

t

and p

`

satisfy

p

T

t


p

`

= (0; 0; 0; z

3

;�z

2

; z

1

) �

1

2

0

B

B

B

B

B

B

�

0 0 0 0 0 1

0 0 0 0 �1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 �1 0 0 0 0

1 0 0 0 0 0

1

C

C

C

C

C

C

A

�

0

B

B

B

B

B

B

�

�z

1

y

0

�z

2

y

0

�z

3

y

0

z

1

y

2

� z

2

y

1

z

1

y

3

� z

3

y

1

z

2

y

3

� z

3

y

2

1

C

C

C

C

C

C

A

= �

1

2

y

0

(z

2

1

+ z

2

2

+ z

2

3

)

= 0 :

Hen
e, the four tangent hyperplanes of ^

2

Q

2

, ^

2

Q

3

, ^

2

Q

4

, 
 at p

t


ontain a 
ommon

subspa
e of dimension at least 2. By Lemma 6.6, the tangents to the 
oni
 ! lie on a


oni
 !, namely on

p

2

12

+ p

2

13

+ p

2

23

= 0 ;

in the two-dimensional subspa
e of P

5

given by p

01

= p

02

= p

03

= 0. The restri
tion of the

hyperplane L

1

to the subspa
e p

01

= p

02

= p

03

= 0 de�nes a one-dimensional subspa
e

L

1

. Sin
e L

1

is one-dimensional, it interse
ts with ! at two points b

1

; b

2

2 P

5

in the plane

p

01

= p

02

= p

03

= 0. Further, sin
e b

1

and b

2

satisfy the Pl

�

u
ker relation, they are Pl

�

u
ker

ve
tors of some tangents t

1

and t

2

to !. Altogether, the �ve tangent hyperplanes of ^

2

Q

2

,

^

2

Q

3

, ^

2

Q

4

, 
, L

1

at b

1

and b

2


ontain a 
ommon subspa
e of dimension at least 1.

Hen
e, the tangent hyperplanes are not independent, whi
h implies that the multipli
ity

of interse
tion in b

1

and b

2

is at least 2 (see, e.g., [97, p. 115℄).

In order to show that N

3

= 12 it remains to give a 
onstru
tion with one line `

1

and

three spheres S

2

, S

3

, S

4

of the same radius r, leading to 12 real solutions. Let `

1

be

the x

3

-axis, and let the 
enters 


2

, 


3

, 


4

of the spheres 
onstitute an equilateral triangle

with edge length 1 in the x

1

x

2

-plane, say 


2

= (

p

3=3; 0; 0)

T

, 


3

= (�

p

3=6; 1=2; 0)

T

,




4

= (�

p

3=6;�1=2; 0)

T

(see Figure 6.4). For 1=2 < r <

p

3=3, the spheres are non-

disjoint, and none of them 
ontains the origin.

Let t be a line whi
h interse
ts `

1

, and let H be the plane 
ontaining t and `

1

. The

three 
uts H \ 
onv(S

1

), H \ 
onv(S

2

), and H \ 
onv(S

3

) are dis
s (maybe degenerated

to single points or empty sets). Unless H is equidistant to two of the 
enters, one of these

dis
s is stri
tly 
ontained in one of the other two. Hen
e, any line transversal to the line

and tangent to the spheres lies in one of the three planes whi
h 
ontain the x

3

-axis and

whi
h are equidistant to two of the 
enters.
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l1

Fig. 6.4: Constru
tion with one line and 3 spheres, leading to 12 solutions

For example, one of these planes is the x

1

x

3

-plane, whi
h is equidistant to 


2

and 


3

.

The se
tion through this plane 
ontains two disjoint dis
s: one representing the (identi
al)

interse
tions of the plane with 
onv(S

2

) and 
onv(S

3

), and the se
ond one be
ause of


onv(B

1

). These two dis
s are separated by the line `

1

. Hen
e, in this plane there are

4 
ommon tangents. Altogether, sin
e there are three planes of this kind, we have 12


ommon tangents.

6.1.2 Appendix: Standard bases

In Se
tion 6.1.1, we have applied standard bases in lo
al rings. In this appendix to that

se
tion, we review the de�nitions of a standard basis, starting from Gr

�

obner basis theory

(see [32℄). The theory of Gr

�

obner bases provides 
omputational methods to �nd \ni
e"

generators for an ideal I in a polynomial ring C [x

1

; : : : ; x

n

℄. The theory of standard bases

extends this theory for ideals in lo
al rings. More pre
isely, let R

l

:= C [x

1

; : : : ; x

n

℄

hx

1

;::: ;x

n

i

be the set of rational fun
tions f=g in x

1

; : : : ; x

n

with g(0; : : : ; 0) 6= 0. R

l

de�nes a lo
al

ring, i.e., it 
ontains exa
tly one maximal ideal. Sin
e the algebrai
-geometri
 de�nitions

of interse
tion multipli
ities are related to the 
on
ept of lo
al rings, standard bases

provide a powerful tool to e�e
tively 
ompute interse
tion multipli
ities.

From the various possible term orders, we restri
t ourselves to 
onsider the anti-graded

reverse lexi
ographi
al order (arevlex). For �; � 2 N

n

0

, We have x

�

>

arevlex

x

�

if and only

if

n

X

i=1

�

i

<

n

X

i=1

�

i

;
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or

n

X

i=1

�

i

=

n

X

i=1

�

i

and x

�

>

revlex

x

�

;

where >

revlex

denotes the reverse lexi
ographi
al order of Gr

�

obner basis theory. For any

polynomial f , the leading term of f , denoted LT(f), is the maximal term of f with regard

to the arevlex-order.

For an ideal I in R

l

, the set of leading terms of I, abbreviated LT(I), is the set of

leading terms of elements of I.

A standard basis of I is a set fg

1

; : : : ; g

t

g � I su
h that hLT(I)i = hLT(g

1

); : : : ;

LT(g

t

)i. Given a set of polynomial generators of I, a standard basis of I 
an be e�e
tively


omputed by variants of the Bu
hberger algorithm.

6.2 Two lines and two quadri
s

Here, we prove Theorem 6.2 and provide the 
hara
terization of two lines and two spheres

with in�nitely many real 
ommon tangent lines.

The se
tion is stru
tured as follows. In Se
tion 6.2.1, we 
hara
terize the set of lines

transversal to two skew lines and tangent to a quadri
 in terms of algebrai
 
urves; we

study and 
lassify these so-
alled (2; 2)-
urves. In Se
tion 6.2.2, we dis
uss a normal

form for the sub
lass of generi
 
urves, whi
h we 
all asymmetri
 smooth (2; 2)-
urves.

Then, in Se
tion 6.2.3, we study the set of quadri
s whi
h (for pres
ribed lines `

1

and

`

2

) lead to most (2; 2)-
urves. This in
ludes 
omputer-algebrai
 
al
ulations, based on

whi
h we establish the proof of Theorem 6.2. In Se
tion 6.2.4, we give some detailed

examples illustrating the geometry des
ribed by Theorem 6.2, and 
omplete its proof.

Finally, in Se
tion 6.2.5, we solve the original question of spheres and give the 
omplete


hara
terization of 
on�gurations of two lines and two spheres having in�nitely many

lines transversal to the lines and tangent to the spheres. For a pre
ise statement of that


hara
terization see Theorems 6.21 and 6.25. Se
tion 6.2.6 serves an appendix to the


urrent se
tion and 
ontains annotated 
omputer 
ode used in the proof of Theorem 6.2.

6.2.1 Lines in P

3

meeting 2 lines and tangent to a quadri


We work here over the ground �eld C . First suppose that `

1

and `

2

are lines in P

3

that

meet at a point p and thus span a plane �. Then the 
ommon transversals to `

1

and `

2

either 
ontain p or they lie in the plane �. This redu
es any problem involving 
ommon

transversals to `

1

and `

2

to a planar problem in P

2

(or R

2

), and so we shall always assume

that `

1

and `

2

are skew. Su
h lines have the form

`

1

= fwa+ xb : [w; x℄ 2 P

1

g ;

`

2

= fy
+ zd : [y; z℄ 2 P

1

g

(6.3)
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where the points a; b; 
; d 2 P

3

are aÆnely independent. We des
ribe the set of lines

meeting `

1

and `

2

that are also tangent to a smooth quadri
 Q. We will refer to this set

as the envelope of 
ommon transversals and tangents, or (when `

1

and `

2

are understood)

simply as the envelope of Q.

The parametrization of (6.3) allows us to identify ea
h of `

1

and `

2

with P

1

; the point

wa+ xb 2 `

1

is identi�ed with the parameter value [w; x℄ 2 P

1

, and the same for `

2

. We

will use these identi�
ations throughout this se
tion. In this way, any line meeting `

1

and

`

2


an be identi�ed with the pair ([w; x℄; [y; z℄) 2 P

1

�P

1


orresponding to its interse
tions

with `

1

and `

2

. By (2.4), the Pl

�

u
ker 
oordinates p

`

= p

`

(w; x; y; z) of the transversal `

passing through the points wa+xb and y
+zd are separately homogeneous of degree 1 in

ea
h set of variables fw; xg and fy; zg, 
alled bihomogeneous of bidegree (1,1) (see, e.g.,

[31, x8.5℄).

By Lemma 2.11, the envelope of 
ommon transversals to `

1

and `

2

that are also tangent

to Q is given by the 
ommon transversals ` of `

1

and `

2

whose Pl

�

u
ker 
oordinates p

`

additionally satisfy p

`

�

^

2

Q

�

p

`

= 0. This yields a homogeneous equation

F (w; x; y; z) := p

`

(w; x; y; z)

T

�

^

2

Q

�

p

`

(w; x; y; z) = 0 (6.4)

of degree four in the variables w; x; y; z. More pre
isely, F has the form

F (w; x; y; z) =

2

X

i;j=0




ij

w

i

x

2�i

y

j

z

2�j

(6.5)

with 
oeÆ
ients 


ij

, that is F is bihomogeneous with bidegree (2; 2). The zero set of a (non-

zero) bihomogeneous polynomial de�nes an algebrai
 
urve in P

1

� P

1

(see the treatment

of proje
tive elimination theory in [31, x8.5℄). In 
orresponden
e with its bidegree, the


urve de�ned by F is 
alled a (2; 2)-
urve. The nine 
oeÆ
ients of this polynomial identify

the set of (2; 2)-
urves with P

8

.

It is well-known that the Cartesian produ
t P

1

�P

1

is isomorphi
 to a smooth quadri


surfa
e in P

3

[31, Proposition 10 in x 8.6℄. Thus the set of lines meeting `

1

and `

2

and

tangent to the quadri
 Q is des
ribed as the interse
tion of two quadri
s in a proje
tive 3-

spa
e. When it is smooth, this set is a genus 1 
urve [71, Exer. I.7.2(d) and Exer. II.8.4(g)℄.

This set of lines 
annot be parametrized by polynomials|only genus 0 
urves (also 
alled

rational 
urves) admit su
h parametrizations (see, e.g., [123, Corollary 2 on p.268℄). This

observation is the starting point for our study of 
ommon transversals and tangents.

Let C be a (2; 2)-
urve in P

1

� P

1

de�ned by a bihomogeneous polynomial F of bide-

gree 2. The 
omponents of C 
orrespond to the irredu
ible fa
tors of F , whi
h are

bihomogeneous of bidegree at most (2; 2). Thus any fa
tors of F must have bidegree

one of (2; 2), (2; 1), (1; 1), (1; 0), or (0; 1). (Sin
e we are working over C , a homogeneous

quadrati
 of bidegree (2; 0) fa
tors into two linear fa
tors of bidegree (1; 0).) Re
all (for

example, [31℄) a point ([w

0

; x

0

℄; [y

0

; z

0

℄) 2 C � P

1

� P

1

is singular if the gradient rF

vanishes at that point, rF ([w

0

; x

0

℄; [y

0

; z

0

℄) = 0. The 
urve C is smooth if it does not


ontain a singular point; otherwise C is singular. We 
lassify (2; 2)-
urves, up to 
hange



6.2. Two lines and two quadri
s 111

of 
oordinates on `

1

� `

2

, and inter
hange of `

1

and `

2

. Note that an (a; b)-
urve and a

(
; d)-
urve meet if either ad 6= 0 or b
 6= 0, and the interse
tion points are singular on

the union of the two 
urves.

Lemma 6.10. Let C be a (2; 2)-
urve on P

1

� P

1

. Then, up to inter
hanging the fa
tors

of P

1

� P

1

, C is either

1. smooth and irredu
ible,

2. singular and irredu
ible,

3. the union of a (1; 0)-
urve and an irredu
ible (1; 2)-
urve,

4. the union of two distin
t irredu
ible (1; 1)-
urves,

5. a single irredu
ible (1; 1)-
urve, of multipli
ity two,

6. the union of one irredu
ible (1; 1)-
urve, one (1; 0)-
urve, and one (0; 1)-
urve,

7. the union of two distin
t (1; 0)-
urves, and two distin
t (0; 1)-
urves,

8. the union of two distin
t (1; 0)-
urves, and one (0; 1)-
urve of multipli
ity two,

9. the union of one (1; 0)-
urve, and one (0; 1)-
urve, both of multipli
ity two.

In parti
ular, when C is smooth it is also irredu
ible.

When the polynomial F has repeated fa
tors, we are in 
ases (5), (8), or (9). We study

the form F when the quadri
 is redu
ible, that is either when Q has rank 1, so that it

de�nes a double plane, or when Q has rank 2 so that it de�nes the union of two planes.

Lemma 6.11. Suppose Q is a redu
ible quadri
.

(1) If Q has rank 1, then ^

2

Q = 0, and so the form F in (6.4) is identi
ally zero.

(2) Suppose Q has rank 2, so that it de�nes the union of two planes meeting in a line

`. If ` is one of `

1

or `

2

, then the form F in (6.4) is identi
ally zero. Otherwise

the form F is the square of a (1; 1)-form, and hen
e we are in 
ases (5) or (9) of

Lemma 6.10.

Proof. The �rst statement is immediate. For the se
ond, let `

0

be a line in P

3

with

Pl

�

u
ker 
oordinates p

`

0

. From the algebrai
 
hara
terization of tangen
y of Lemma 2.11,

p

T

`

0

�

^

2

Q

�

p

`

0

= 0 implies that the restri
tion of the quadrati
 form to `

0

either has a zero

of multipli
ity two, or it vanishes identi
ally. In either 
ase, this implies that `

0

meets the

line ` 
ommon to the two planes. Conversely, if `

0

meets the line `, then p

T

`

0

�

^

2

Q

�

p

`

0

= 0.

Thus if ` equals one of `

1

or `

2

, then p

T

`

0

�

^

2

Q

�

p

`

0

= 0 for every 
ommon transversal `

0

to `

1

and `

2

, and so the form F is identi
ally zero. Suppose that ` is distin
t from both

`

1

and `

2

. We observed earlier that the set of lines transversal to `

1

and `

2

that also meet

` is de�ned by a (1; 1)-form G. Sin
e the (2; 2)-form F de�nes the same set as does the

(1; 1)-form G, we must have that F = G

2

, up to a 
onstant fa
tor.
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As above, let C be de�ned by the polynomial F . For a �xed point [w; x℄, the restri
tion

of the polynomial F to [w; x℄� P

1

is a homogeneous quadrati
 polynomial in y; z. A line

passing through [w; x℄ 2 `

1

and the point of `

2


orresponding to any zero of this restri
tion

is tangent to Q. This 
onstru
tion gives all lines tangent to Q that 
ontain the point [w; x℄.

We 
all the zeroes of this restri
tion the �ber over [w; x℄ of the proje
tion of C to `

1

.

We investigate these �bers. Consider the polynomial F as a polynomial in the variables

y; z with 
oeÆ
ients polynomials in w; x. The resulting quadrati
 polynomial in y; z has

dis
riminant

 

2

X

i=0




i1

w

i

x

2�i

!

2

� 4

 

2

X

i=0




i0

w

i

x

2�i

! 

2

X

i=0




i2

w

i

x

2�i

!

: (6.6)

Lemma 6.12. If this dis
riminant vanishes identi
ally, then the polynomial F has a re-

peated fa
tor.

Proof. Let �; �; 
 be the 
oeÆ
ients of y

2

; yz; z

2

in the polynomial F , respe
tively. Then

we have �

2

= 4�
, as the dis
riminant vanishes. Sin
e the ring of polynomials in w; x is

a unique fa
torization domain, either � di�ers from 
 by a 
onstant fa
tor, or else both

� and 
 are squares. If � and 
 di�er by a 
onstant fa
tor, then so do � and �. Writing

� = 2d� for some d 2 C , we have

F = �y

2

+ 2d�yz + d

2

�z

2

= �(y + dz)

2

:

If we have � = Æ

2

and 
 = �

2

for some linear polynomials Æ and �, then

F = Æ

2

y � 2Æ�yz + �

2

z

2

= (Æy � �z)

2

:

When F does not have repeated fa
tors, the dis
riminant does not vanish identi
ally.

Then the �ber of C over the point [w; x℄ of `

1


onsists of two distin
t points exa
tly when

the dis
riminant does not vanish at [w; x℄. Sin
e the dis
riminant has degree 4, there are

at most four �bers of C 
onsisting of a double point rather than two distin
t points. We


all the points [w; x℄ of `

1

whose �bers 
onsist of su
h double points rami�
ation points

of the proje
tion from C to `

1

.

This dis
ussion shows how we may parametrize the 
urve C, at least lo
ally. Suppose

that we have a point [w; x℄ 2 P

1

where the dis
riminant (6.6) does not vanish. Then we

may solve for [y; z℄ in the polynomial F in terms of [w; x℄. The di�erent bran
hes of the

square root fun
tion give lo
al parametrizations of the 
urve C.

6.2.2 A normal form for asymmetri
 smooth (2; 2)-
urves

Re
all that for any distin
t points a

1

; a

2

; a

3

2 P

1

and any distin
t points b

1

; b

2

; b

3

2 P

1

,

there exists a proje
tive linear transformation (given by a regular 2 � 2-matrix) whi
h

maps a

i

to b

i

, 1 � i � 3 [31, 106℄.
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Lemma 6.13. If the (2; 2)-
urve is smooth then the proje
tion of C to `

1

has four di�erent

rami�
ation points.

Proof. Changing 
oordinates on `

1

and `

2

by a proje
tive linear transformation if ne
es-

sary, we may assume that this proje
tion to `

1

is rami�ed over [w; x℄ = [1; 0℄, and the

double root of the �ber is at [y; z℄ = [1; 0℄. Restri
ting the polynomial F (6.5) to the �ber

over [w; x℄ = [1; 0℄ gives the equation




22

y

2

+ 


21

yz + 


20

z

2

= 0 :

Sin
e we assumed that this has a double root at [y; z℄ = [1; 0℄, we have 


21

= 


22

= 0.

Suppose now that the proje
tion from C to `

1

is rami�ed at fewer than four points. We

may assume that [w; x℄ = [1; 0℄ is a double root of the dis
riminant (6.6), whi
h implies

that the 
oeÆ
ients of w

4

and w

3

x in (6.6) vanish. The previously derived 
ondition




21

= 


22

= 0 implies that the 
oeÆ
ient of w

4

vanishes and the 
oeÆ
ient of w

3

x be
omes

�4


20




12

. If 


20

= 0, then every non-vanishing term of (6.5) depends on x; hen
e, x divides

F , and so C is redu
ible, and hen
e not smooth. If 


12

= 0 then the gradient rF vanishes

at the point ([1; 0℄; [1; 0℄), and so C is not smooth.

Suppose that C is a smooth (2; 2)-
urve. Then its proje
tion to `

1

is rami�ed at four

di�erent points. We further assume that the double points in the rami�ed �bers proje
t

to at least 3 distin
t points in `

2

. We 
all su
h a smooth (2; 2)-
urve asymmetri
. The


hoi
e of this terminology will be
ome 
lear in Se
tion 6.2.4. We will give a normal form

for su
h asymmetri
 smooth 
urves.

Hen
e, we may assume that three of the rami�
ation points are [w; x℄ = [0; 1℄, [1; 0℄,

and [1; 1℄, and the double points in these rami�
ation �bers o

ur at [y; z℄ = [0; 1℄, [1; 0℄,

and [1; 1℄, respe
tively. As in the proof of Lemma 6.13, the double point at [y; z℄ = [1; 0℄

in the �ber over [w; x℄ = [1; 0℄ implies that 


21

= 


22

= 0. Similarly, the double point

at [y; z℄ = [0; 1℄ in the �ber over [w; x℄ = [0; 1℄ implies that 


00

= 


01

= 0. Thus the

polynomial F (6.5) be
omes




20

w

2

z

2

+ 


10

wxz

2

+ 


11

wxyz + 


12

wxy

2

+ 


02

x

2

y

2

Restri
ting F to the �ber of [w; x℄ = [1; 1℄ gives




10

z

2

+ 


20

z

2

+ 


11

yz + 


02

y

2

+ 


12

y

2

:

Sin
e this has a double root at [y; z℄ = [1; 1℄, we must have

�

1

2




11

= 


10

+ 


20

= 


02

+ 


12

:

Dehomogenizing (setting 


11

= �2) and letting 


20

:= s and 


02

:= t for some s; t 2 C , we

obtain the following theorem.
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Theorem 6.14. After proje
tive linear transformations in `

1

and `

2

, an asymmetri


smooth (2; 2)-
urve is the zero set of a polynomial

sw

2

z

2

+ (1�s)wxz

2

� 2wxyz + (1�t)wxy

2

+ tx

2

y

2

; (6.7)

for some (s; t) 2 C

2

satisfying

st(s�1)(t�1)(s�t) 6= 0 : (6.8)

We 
omplete the proof of Theorem 6.14. The dis
riminant (6.6) of the polynomial (6.7)

is

4wx(w�x) (s(t�1)w � t(s�1)x) ;

whi
h has roots at [w; x℄ = [0; 1℄; [1; 0℄; [1; 1℄, and � = [t(s�1); s(t�1)℄. Sin
e we assumed

that these are distin
t, the fourth point � must di�er from the �rst three, whi
h implies

that (s; t) satis�es (6.8). The double point in the �ber over � o

urs at [y; z℄ = [s�1; t�1℄.

This equals a double point in another rami�
ation �ber only for values of the parameters

not allowed by (6.8).

Remark 6.15. These 
al
ulations show that smooth (2; 2)-
urves exhibit the following

di
hotomy. Either the double points in the rami�
ation �bers proje
t to four distin
t

points in `

2

or to two distin
t points. They must proje
t to at least two points, as there

are at most two points in ea
h �ber of the proje
tion to `

2

. We showed that if they proje
t

to at least three, then they proje
t to four.

We 
ompute the parameters s and t from the intrinsi
 geometry of the 
urve C. Re
all

the following de�nition of the 
ross ratio (see, for example [106, x1.1.4℄).

De�nition 6.16. For four points a

1

; : : : ; a

4

2 P

1

with a

i

= [�

i

; �

i

℄, the 
ross ratio of

a

1

; : : : ; a

4

is the point of P

1

de�ned by

2

6

6

4

det

�

�

1

�

4

�

1

�

4

�

det

�

�

1

�

3

�

1

�

3

�

;

det

�

�

2

�

4

�

2

�

4

�

det

�

�

2

�

3

�

2

�

3

�

3

7

7

5

:

If the points are of the form a

i

= [1; �

i

℄, this simpli�es to

�

�

4

� �

1

�

3

� �

1

;

�

4

� �

2

�

3

� �

2

�

:

The 
ross ratio of four points a

1

; a

2

; a

3

; a

4

2 P

1

remains invariant under any proje
tive

linear transformation.
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The proje
tion of C to `

1

is rami�ed over the points [w; x℄ = [0; 1℄; [1; 0℄; [1; 1℄ and

� = [t(s � 1); s(t � 1)℄. The 
ross ratio of these four (ordered) rami�
ation points is

[t(s�1); s(t�1)℄. Similarly, the 
ross ratio of the four (ordered) double points in the

rami�
ation �bers is [s�1; t�1℄.

This 
omputation of 
ross ratios allows us to 
ompute the normal form of an asymmet-

ri
 smooth (2; 2)-
urve. Namely, let a

1

; a

2

; a

3

, and a

4

be the four rami�
ation points of the

proje
tion of C to `

1

and b

1

; b

2

; b

3

, and b

4

be the images in `

2

of the 
orresponding double

points. Let 


1

be the 
ross ratio of the four points a

1

; a

2

; a

3

, and a

4

(this is well-de�ned,

as 
ross ratios are invariant under proje
tive linear transformation). Similarly, let 


2

be

the 
ross ratio of the points b

1

; b

2

; b

3

, and b

4

. For four distin
t points, the 
ross ratio is

an element of C n f0; 1g, so we express 


1

; 


2

as 
omplex numbers. The invarian
e of the


ross ratios yields the 
onditions on s and t

s(t�1)

t(s�1)

= 


1

and

t�1

s�1

= 


2

:

Again, sin
e 


1

; 


2

2 C n f0; 1g, these two equations have the unique solution

s =




1

(


2

� 1)




2

(


1

� 1)

and t =




2

� 1




1

� 1

:

6.2.3 Proof of the 12 families of 
oni
s

We 
hara
terize the quadri
s Q whi
h generate the same envelope of tangents as a given

quadri
. A symmetri
 4� 4 matrix has 10 independent entries whi
h identi�es the spa
e

of quadri
s with P

9

. Central to our analysis is a map ' de�ned for almost all quadri
s

Q. For a quadri
 Q (
onsidered as a point in P

9

) whose asso
iated (2; 2)-form (6.4) is not

identi
ally zero, we let '(Q) be this (2; 2)-form, 
onsidered as a point in P

8

. With this

de�nition, we see that the Theorem 6.2 is 
on
erned with the �ber '

�1

(C), where C is

the (2; 2)-
urve asso
iated to a general quadri
 Q. Sin
e the domain of ' is 9-dimensional

while its range is 8-dimensional, we expe
t ea
h �ber to be 1-dimensional.

We will show that every smooth (2; 2) 
urve arises as '(Q) for some quadri
 Q. It is

these quadri
s that we meant by general quadri
s in the statement of Theorem 6.2. This

implies that Theorem 6.2 is a 
onsequen
e of the following theorem.

Theorem 6.17. Let C 2 P

8

be a smooth (2; 2)-
urve. Then the 
losure '

�1

(C) in P

9

of

the �ber of ' is a 
urve of degree 24 that is the union of 12 plane 
oni
s.

We prove Theorem 6.17 by 
omputing the ideal J of the �ber '

�1

(C). Then we fa
tor

J into several ideals, whi
h 
orresponds to de
omposing the 
urve of degree 24 into the

union of several 
urves. Finally, we analyze the output of these 
omputations by hand to

prove the desired result.

Our initial formulation of the problem gives an ideal I that not only de�nes the �ber

of ', but also the subset of P

9

where ' is not de�ned. We identify and remove this subset
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from I in several 
ostly auxiliary 
omputations that are performed in the 
omputer algebra

system Singular [62℄. It is only after removing the ex
ess 
omponents that we obtain

the ideal J of the �ber '

�1

(C).

Sin
e we want to analyze this de
omposition for every smooth (2; 2)-
urve, we must

treat the representation of C as symboli
 parameters. This leads to additional diÆ
ulties,

whi
h we 
ir
umvent. It is quite remarkable that the 
omputer-algebrai
 
al
ulation

su

eeds and that it is still possible to analyze its result.

In the following, we denote the 
oordinates in R

3

and C

3

(� P

3

) by x; y; z and assume

that `

1

is the x-axis. Furthermore, we may apply a proje
tive linear transformation and

assume without loss of generality that `

2

is the yz-line at in�nity. Thus we have

`

1

= f(w; x; 0; 0)

T

2 P

3

: [w; x℄ 2 P

1

g ;

`

2

= f(0; 0; y; z)

T

2 P

3

: [y; z℄ 2 P

1

g :

Hen
e, in Pl

�

u
ker 
oordinates, the lines interse
ting `

1

and `

2

are given by

f(0; wy; wz; xy; xz; 0)

T

2 P

5

: [w; x℄; [y; z℄ 2 P

1

g : (6.9)

By Lemma 2.11, the envelope of 
ommon transversals to `

1

and `

2

that are also tangent

to Q is given by those lines in (6.9) whi
h additionally satisfy

(0; wy; wz; xy; xz; 0)

�

^

2

Q

�

(0; wy; wz; xy; xz; 0)

T

= 0 : (6.10)

A quadri
 Q in P

3

is given by the quadrati
 form asso
iated to a symmetri
 4� 4-matrix

Q :=

0

B

B

�

a b 
 d

b e f g


 f h k

d g k l

1

C

C

A

: (6.11)

In a straightforward approa
h the ideal I of quadri
s giving a general (2; 2)-
urve C is

obtained by �rst expanding the left hand side of (6.10) into

(el�g

2

)x

2

z

2

+ 2(bl�dg)wxz

2

+ (al�d

2

)w

2

z

2

+ 2(ek�gf)x

2

yz + 2(2bk�
g�df)wxyz + 2(ak�d
)w

2

yz

+ (eh�f

2

)x

2

y

2

+ 2(bh�
f)wxy

2

+ (ah�


2

)w

2

y

2

:

(6.12)

We equate this (2; 2)-form with the general (2; 2)-form (6.5), as points in P

8

. This is

a

omplished by requiring that they are proportional, or rather that the 2� 9 matrix of

their 
oeÆ
ients

�




00




10




20




01




11

: : : 


22

el � g

2

2(bl � dg) al � d

2

2(ek � gf) 2(2bk � 
g � df) : : : ah� 


2

�

has rank 1. Thus the ideal I is generated by the

�

9

2

�

minors of this 
oeÆ
ient matrix.



6.2. Two lines and two quadri
s 117

With this formulation, the ideal I will de�ne the �ber '

�1

(C) as well as additional,

ex
ess 
omponents that we wish to ex
lude. For example, the variety in P

9

de�ned by the

vanishing of the entries in the se
ond row of this matrix will lie in the variety I, but these

points are not those that we seek. Geometri
ally, these ex
ess 
omponents are pre
isely

where the map ' is not de�ned. By Lemma 6.11, we 
an identify three of these ex
ess


omponents, those points of P

9


orresponding to rank 1 quadri
s, and those 
orresponding

to rank 2 quadri
s 
onsisting of the union of two planes meeting in either `

1

or in `

2

. The

rank one quadri
s have ideal E

1

generated by the entries of the matrix ^

2

Q, the rank 2

quadri
s whose planes meet in `

1

have ideal E

2

generated by a; b; 
; d; e; f; g, and those

whose plane meets in `

2

have ideal E

3

generated by 
; d; f; g; h; k; l.

We remove these ex
ess 
omponents from our ideal I to obtain an ideal J whose set

of zeroes 
ontain the �ber '

�1

(C). After fa
toring J into its irredu
ible 
omponents, we

will observe that ' does not vanish identi
ally on any 
omponent of J , 
ompleting the

proof that J is the ideal of '

�1

(C), and also the proof of Theorem 6.17.

Sin
e 


00

; 


10

; : : : ; 


22

have to be treated as parameters, the 
omputation should be


arried out over the fun
tion �eld Q(


00

; 


10

; : : : ; 


22

). That 
omputation is infeasible.

Even the initial 
omputation of a Gr

�

obner basis for the ideal I (a ne
essary prerequisite)

did not terminate in two days. In 
ontrast, the 
omputation we �nally des
ribe termi-

nates in 7 minutes on the same 
omputer. This is be
ause the original 
omputation in

Q(


00

; 


10

; : : : ; 


22

)[a; b; : : : ; l℄ involved too many parameters.

We instead use the 2-parameter normal form (6.7) for asymmetri
 smooth (2; 2)-
urves.

This will prove Theorem 6.17 in the 
ase when C is an asymmetri
 smooth (2; 2)-
urve. We

treat the remaining 
ases of symmetri
 smooth (2; 2)-
urves in Se
tion 6.2.4. As des
ribed

in Se
tion 6.2.2, by 
hanging the 
oordinates on `

1

and `

2

, every asymmetri
 smooth (2; 2)-


urve 
an be transformed into one de�ned by a polynomial in the family (6.7). Equating

the (2; 2)-form (6.12) with the form (6.7) gives the ideal I generated by the following

polynomials:

el � g

2

; ek � gf ; ak � d
 ; ah� 


2

; (6.13)

and the ten 2� 2 minors of the 
oeÆ
ient matrix:

M :=

�

s 1� s �2 1� t t

al � d

2

2(bl � dg) 2(2bk � 
g � df) 2(bh� 
f) eh� f

2

�

: (6.14)

This ideal I de�nes the same three ex
ess 
omponents as before, and we must remove

them to obtain the desired ideal J . Although the ideal I should be treated in the ring

S := Q (s; t)[a; b; 
; d; e; f; g; h; k; l℄, the ne
essary 
al
ulations are infeasible even in this

ring, and we instead work in subring R := Q [a; b; 
; d; e; f; g; h; k; l℄[s; t℄. In the ring R,

the ideal I is homogeneous in the set of variables a; b; : : : ; l, thus de�ning a subvariety

of P

9

� C

2

. The ideals E

1

, E

2

, and E

3

des
ribing the ex
ess 
omponents satisfy E

j

� I,

1 � j � 3.



118 6. Common transversals and tangents

A Singular 
omputation shows that I is a �ve-dimensional subvariety of P

9

� C

2

(see Se
tion 6.2.6 for details). Moreover, the dimensions of the three ex
ess 
omponents

are 5, 4, and 4, respe
tively. In fa
t, it is quite easy to see that dim E

2

= dim E

3

= 4 as

both ideals are de�ned by 7 independent linear equations.

We are fa
ed with a geometri
 situation of the following form. We have an ideal I

whose variety 
ontains an ex
ess 
omponent de�ned by an ideal E and we want to 
ompute

the ideal of the di�eren
e

V(I)� V(E) ;

here, V(K) is the variety of an ideal K. Computational algebrai
 geometry gives us an

e�e
tive method to a

omplish this, namely saturation. The elementary notion is that of

the ideal quotient (I : E), whi
h is de�ned by

(I : E) := ff 2 R j fg 2 I for all g 2 Eg :

Then the saturation of I with respe
t to E is

(I : E

1

) :=

1

[

n=1

(I : E

n

) :

The least number n su
h that (I : E

1

) = (I : E

n

) is 
alled the saturation exponent.

Proposition 6.18. ([31, x4.4℄ or [48, x15.10℄ or the referen
e manual for Singular).

Over an algebrai
ally 
losed �eld,

V(I : E

1

) = V(I)� V(E) :

A Singular 
omputation shows that the saturation exponent of the �rst ex
ess ideal

E

1

in I is 1, and so the ideal quotient suÆ
es to remove the ex
ess 
omponent V(E

1

) from

V(I). Set I

0

:= (I : E

1

), an ideal of dimension 4. The ex
ess ideals E

2

and E

3

ea
h have

saturation exponent 4 in I

1

, and so we saturate I

0

with respe
t to ea
h to obtain an ideal

J := ( (I

0

: E

1

2

) : E

1

3

), whi
h has dimension 3 in P

9

� C

2

.

To study the 
omponents of V(J), we �rst apply the fa
torization Gr

�

obner basis al-

gorithm to J , as implemented in the Singular 
ommand fa
std (see [98℄ or the refer-

en
e manual of Singular). This algorithm takes two arguments, an ideal I and a list

L = f

1

; : : : ; f

n

of polynomials. It pro
eeds as in the usual Bu
hberger algorithm to 
om-

pute a Gr

�

obner basis for I, ex
ept that whenever it 
omputes a Gr

�

obner basis element G

that it 
an fa
tor, it splits the 
al
ulation into sub
al
ulations, one for ea
h fa
tor of G

that is not in the list L, adding that fa
tor to the Gr

�

obner basis for the 
orresponding

sub
al
ulation. The output of fa
std is a list I

1

; I

2

; : : : ; I

m

of ideals with the property

that

m

[

j=1

V(I

j

) � V(f

1

� � � f

n

) = V(I)� V(f

1

� � � f

n

) :
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Thus, the zero set of I 
oin
ides with the union of zero sets of the fa
tors I

j

, in the region

where none of the polynomials in the list L vanish. In terms of saturation, this is

rad(I

1

� � � I

m

: (f

1

f

2

� � � f

n

)

1

) = rad(I : (f

1

f

2

� � � f

n

)

1

) (6.15)

where rad(K) denotes the radi
al of an ideal K. Some of the ideals I

j

may be spurious

in that V(I

j

) is already 
ontained in the union of the other V(I

i

).

We run fa
std on the ideal J with the list of polynomials s, t, s�1, t�1, and s�t, and

obtain seven 
omponents J

0

; J

1

; : : : ; J

6

. The 
omponents J

1

; : : : ; J

6

ea
h have dimension

3, while the 
omponent J

0

has dimension 2. Sin
e V(J

0

) is 
ontained in the union of the

V(J

1

); : : : ;V(J

6

), it is spurious and so we disregard it.

We now, �nally, 
hange from the base ring R to the base ring S, and 
ompute with

the parameters s; t. There, J de�nes an ideal of dimension 1 and degree 24 in the 9-

dimensional proje
tive spa
e over the �eld Q (s; t). As we remarked before, we have that

V(J) � '

�1

(C). The fa
torization of J into J

1

; : : : ; J

6

remains valid over S. The reason

we did not 
ompute the fa
torization over S is that fa
std and the saturations were

infeasible over S, and the arguments from 
omputational algebrai
 geometry we have

given show that it suÆ
es to 
ompute without parameters, as long as 
are is taken when

interpreting the output.

Ea
h of the fa
tors J

i

has dimension 1 and degree 4. Moreover, ea
h ideal 
ontains

a homogeneous quadrati
 polynomial in the variables k; l whi
h must fa
tor over some

�eld extension of Q(s; t). In fa
t, these six quadrati
 polynomials all fa
tor over the �eld

Q(

p

s;

p

t). For example, two of the J

i


ontain the polynomial (s� 1)k

2

� 2kl� l

2

, whi
h

is the produ
t

�

(

p

s+1)k + l

� �

(

p

s�1)k � l

�

:

For ea
h ideal J

i

, the fa
torization of the quadrati
 polynomial indu
es a fa
torization of

J

i

into two ideals J

i1

and J

i2

. Inspe
ting a Gr

�

obner basis for ea
h ideal shows that ea
h

de�nes a plane 
oni
 in P

9

. Thus, over the �eld Q (

p

s;

p

t), J de�nes 12 plane 
oni
s.

Theorem 6.17 is a 
onsequen
e of the following two observations.

(1) The fa
torization of J gives 12 distin
t 
omponents for all values of the parameters

s; t satisfying (6.8).

(2) The map ' does not vanish identi
ally on any of the 
omponents V(J

ij

) for values

of the parameters s; t satisfying (6.8).

By (1), no 
omponent of J is empty for any s; t satisfying (6.8) and thus, for every

asymmetri
 (2; 2)-
urve C, there is a quadri
 Q with '(Q) = C. Also by (1), J has

exa
tly 12 
omponents with ea
h a plane 
oni
, for any s; t satisfying (6.8), and by (2),

V(J) = '

�1

(C).
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6.2.4 Symmetri
 smooth (2; 2)-
urves

We investigate smooth 
urves C whose double points in the rami�ed �bers over `

1

have

only two distin
t proje
tions to `

2

. Assume that the rami�
ation is at the points [w; x℄ =

[1; 1℄; [1;�1℄; [1; s℄, and at [1;�s℄, for some s 2 C n f0;�1g with the double points in the

�bers at [y; z℄ = [1; 0℄ for the �rst two and at [0; 1℄ for the se
ond two. Sin
e the points

[1; 1℄; [1;�1℄; [1; s℄, and [1;�s℄ have 
ross ratio

�

1 + s

1� s

;

1� s

1 + s

�

=

�

1;

(1� s)

2

(1 + s)

2

�

;

we see that all 
ross ratios in P

1

nf[1; 0℄; [0; 1℄; [1; 1℄g are obtained for some s 2 C nf0;�1g.

Thus our 
hoi
e of rami�
ation results in no loss of generality.

As in Se
tion 6.2.1, these 
onditions give equations on the 
oeÆ
ients 


ij

of the general

(2; 2)-
urve (6.5):




00

+ 


10

+ 


20

= 0 ; 


01

+ 


11

+ 


21

= 0 ; 


00

� 


10

+ 


20

= 0 ;




01

� 


11

+ 


21

= 0 ; 


02

+ 


12

s + 


22

s

2

= 0 ; 


01

+ 


11

s+ 


21

s

2

= 0 ;




02

� 


12

s+ 


22

s

2

= 0 ; 


01

� 


11

s + 


21

s

2

= 0 :

These equations have the following 
onsequen
es

0 = 


21

= 


01

= 


12

= 


11

= 


10

= 


02

+ 


22

s

2

= 


00

+ 


20

:

Hen
e after normalizing by setting 


20

= 1, the (2; 2)-form (6.5) be
omes

(x

2

� w

2

)y

2

+ 


22

(x

2

� s

2

w

2

)z

2

:

While the 
hoi
e of rami�
ation points [1; 1℄; [1;�1℄; [1; s℄; [1;�s℄ �xes the parametrization

of `

1

, the double points in the �bers of [1; 0℄ and [0; 1℄ do not �x the parametrization of

`

2

. Thus we are still free to s
ale the z-
oordinate. We normalize this equation setting




22

= �1. We do not simply set 


22

= 1 be
ause that misses an important real form of

the polynomial. This normalization gives

(x

2

� w

2

)y

2

� (x

2

� s

2

w

2

)z

2

= (y

2

� z

2

)x

2

� (y

2

� s

2

z

2

)w

2

: (6.16)

This shows the equation to be symmetri
 under the involution [w; x℄ $ [

p

�1z; y℄. This

symmetry is the sour
e of our terminology for the two 
lasses of (2; 2)-
urves. Also, if

s 62 f�1; 0g, then this is the equation of a smooth (2; 2)-
urve. With the 
hoi
e of sign

(�), whi
h we 
all the 
urve C(s).

Note that (6.16) is real if s either is real or is purely imaginary (s 2 R

p

�1 ). We


omplete the proof of Theorem 6.2 with the following result for symmetri
 (2; 2)-
urves.
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Theorem 6.19. For ea
h s 2 C n f�1; 0g, the 
losure of the �ber '

�1

(C(s)) 
onsists of

12 distin
t plane 
oni
s. When s 2 R or s 2 R

p

�1 and we use the real form of (6.16)

with the plus sign (+), then exa
tly 4 of these 12 
omponents will be real. If we use the

real form of (6.16) with the minus sign (�), then if s 2 R, all 12 
omponents will be real,

but if s 2 R

p

�1, then exa
tly 4 of these 12 
omponents will be real.

Proof. Our proof follows the proof of Theorem 6.17 almost exa
tly, but with signi�
ant

simpli�
ations and a 
ase analysis. The outline is as before, ex
ept that we work over the

ring of parameters Q (s), and �nd no extraneous 
omponents when we fa
tor the ideal into


omponents. We formulate this as a system of equations, remove the same three ex
ess


omponents, and then fa
tor the resulting ideal. We do this 
al
ulation four times, on
e

for ea
h 
hoi
e of sign (�) in (6.16), and for s 2 R and s 2 R

p

�1. Using Singular


omputations similar to (but substantially simpler than) the one explained in detail in

Se
tion 6.2.6, we 
an a
tually 
arry out these 
omputations. Examining the output proves

the result.

We 
onsider in some detail four 
ases of the geometry studied in Se
tion 6.2.1, whi
h


orrespond to the four real 
ases of Theorem 6.19. As in Se
tion 6.2.1, let `

1

be the x-axis

and `

2

be the yz-line at in�nity. Viewed in R

3

, lines transversal to `

1

and `

2

are the set

of lines perpendi
ular to the x-axis. For a transversal line `, the 
oordinates [y; z℄ of the

point ` \ `

2


an be interpreted as the slope of ` in the two-dimensional plane orthogonal

to the x-axis.

Consider real quadri
s given by an equation of the form

x

2

+ (y � y

0

)

2

� z

2

= 1 : (6.17)

The quadri
s with the plus (+) sign are spheres with 
enter (0; y

0

; 0)

T

and radius 1,

and those with the minus (�) sign are hyperboloids of one sheet. When jy

0

j > 1 the

quadri
 does not meet the x-axis. We look at four families of su
h quadri
s: spheres and

hyperboloids that meet and do not meet the x-axis. We remark that quadri
s whi
h are

tangent to the x-axis give singular (2; 2)-
urves.

First, 
onsider the resulting (2; 2)-
urve

(x

2

� w

2

)y

2

� (x

2

� (1 � y

2

0

)w

2

)z

2

:

Thus we see that these 
orrespond to the 
ase s =

p

1� y

2

0

in the parametrization of

symmetri
 (2; 2)-
urves given above (6.16), while in (6.17) and (6.16) the signs (�) 
or-

respond.

Figures 6.5 and 6.6 display pi
tures of these four quadri
s, together with the x-axis,

some tangents perpendi
ular to the x-axis, and the 
urve on the quadri
 where the lines

are tangent.

Remark 6.20. For ea
h of the spheres, there is another sphere of radius r whi
h leads

to the same envelope, namely the one with 
enter (0;�y

0

; 0)

T

.
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(a) (b)

Fig. 6.5: Real quadri
s not meeting the x-axis.

(a) (b)

Fig. 6.6: Real quadri
s meeting the x-axis.

The rami�
ation of the (2; 2)-
urve of tangents perpendi
ular to the x-axis is evident

from Figures 6.5 and 6.6. When x = �1, there is a single tangent line; this line has slope

[y; z℄ = [1; 0℄, i.e., it is a horizontal line. When x = �

p

1� y

2

0

, there is a single tangent

line, whi
h is verti
al (i.e., whi
h has slope [y; z℄ = [0; 1℄). Figures 6.5 and 6.6 depi
t these

lines in 
ase they are real. In Figure 6.5 we have jy

0

j > 1, and hen
e the verti
al tangent

lines are 
omplex. All other values of x give two lines perpendi
ular to the x-axis and

tangent to the quadri
, but some have imaginary slope.

The di�eren
e in the number of real 
omponents of the �ber '

�1

(C(s)) noted in The-

orem 6.19 is evident in these examples. The spheres and hyperboloid displayed together

are isomorphi
 under the 
hange of 
oordinates z 7!

p

�1 � z, whi
h inter
hanges the

transversal tangents of purely imaginary slope for one quadri
 with the real transversal

tangents of the other and 
orresponds to the di�erent signs � in (6.17) and (6.16).

For the sphere of Figure 6.5, only 4 of the 12 families are real. One 
onsists of ellipsoids,

in
luding the original sphere, one of hyperboloids of two sheets, and two of hyperboloids of

one sheet. Sin
e a hyperboloid of two sheets 
an be seen as an ellipsoid meeting the plane

at in�nity in a 
oni
, we see there are two families of ellipsoids and two of hyperboloids.



6.2. Two lines and two quadri
s 123

In Figure 6.7, we display one quadri
 from ea
h family (ex
ept the family of the sphere),

together with the original sphere, the x-axis, and the 
urve on the quadri
 where the lines

perpendi
ular to the x-axis are tangent to the quadri
.

Fig. 6.7: The other three families.

Similarly, the hyperboloid of Figure 6.5 has only 4 of its 12 families real with two

families of ellipsoids and two of hyperboloids. The sphere of Figure 6.6 has only 4 of its

12 families real, and all 4 
ontain ellipsoids. In 
ontrast, the hyperboloid of Figure 6.6

has all 12 of its families real, and they 
ontain only hyperboloids of one sheet.

6.2.5 Transversals to two lines and tangents to two spheres

We solve the original question of 
on�gurations of two lines and two spheres for whi
h

there are in�nitely many real transversals to the two lines that are also tangent to both

spheres. While general quadri
s are naturally studied in proje
tive spa
e P

3

, spheres

naturally live in (the slightly more restri
ted) aÆne spa
e R

3

. As noted in Se
tion 6.2.1,

we treat only skew lines. There are two 
ases to 
onsider. Either the two lines are in R

3

or one lies in the plane at in�nity. We work throughout over the real numbers.

Lines in aÆne spa
e R

3

.

The 
omplete geometri
 
hara
terization of 
on�gurations where the lines lie in R

3

is

stated in the following theorem and illustrated in Figure 6.8.

Theorem 6.21. Let S

1

and S

2

be two distin
t spheres and let `

1

and `

2

be two skew lines

in R

3

. There are in�nitely many lines in R

3

that meet `

1

and `

2

and are tangent to S

1

and S

2

in exa
tly the following 
ases.

(1) The spheres S

1

and S

2

are tangent to ea
h other at a point p whi
h lies on one line,

and the se
ond line lies in the 
ommon tangent plane to the spheres at the point

p. The pen
il of lines through p that also meet the se
ond line is exa
tly the set of


ommon transversals to `

1

and `

2

that are also tangent to S

1

and S

2

.
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(2) The lines `

1

and `

2

are ea
h tangent to both S

1

and S

2

, and they are images of

ea
h other under a rotation about the line 
onne
ting the 
enters of S

1

and S

2

. If

we rotate `

1

about the line 
onne
ting the 
enters of the spheres, it sweeps out a

hyperboloid of one sheet. One of its rulings 
ontains `

1

and `

2

, and the lines in the

other ruling are tangent to S

1

and S

2

and meet `

1

and `

2

, ex
ept for those that are

parallel to one of them.

(1) (2)

Fig. 6.8: Examples from Theorem 6.21.

Let `

1

and `

2

be two skew lines. The 
lass of spheres is not invariant under the set

of proje
tive linear transformations, but rather under the group generated by rotations,

translations, and s
aling the 
oordinates. Thus we 
an assume that

`

1

=

8

<

:

0

�

0

0

1

1

A

+ x

0

�

1

Æ

0

1

A

: x 2 R

9

=

;

; `

2

=

8

<

:

0

�

0

0

�1

1

A

+ z

0

�

�1

�Æ

0

1

A

: z 2 R

9

=

;

for some Æ 2 R n f0g. As before, there is a one-to-one 
orresponden
e between lines

meeting `

1

and `

2

and pairs (x; z) 2 R

2

. The transversal 
orresponding to a pair (x; z)

passes through the points (x; Æx; 1)

T

and (z;�Æz;�1)

T

, and has Pl

�

u
ker 
oordinates

(z � x;�Æ(x + z);�2;�2Æxz;�(x + z); Æ(z � x))

T

:

Let S

1

have 
enter (a; b; 
)

T

and radius r. By Lemma 2.11 and (2.6), the transversals

tangent to S

1

are parametrized by a 
urve C

1

of degree 4 with equation

0 = 4Æ

2

x

2

z

2

+ 4Æ(b�aÆ)x

2

z +

�

(b�aÆ)

2

+ (1+Æ

2

)((1+
)

2

� r

2

)

�

x

2

� 4Æ(b+ aÆ)xz

2

+ 2

�

(r

2

�


2

)(1�Æ

2

) + (1�b

2

) + Æ

2

(a

2

�1)

�

xz (6.18)

� 4(1+
)(a+bÆ)x +

�

(b+aÆ)

2

+ (1+Æ

2

)((1�
)

2

�r

2

)

�

z

2

+4(
�1)(a�bÆ)z + 4(a

2

+ b

2

� r

2

) :

This is a dehomogenized version of the bihomogeneous equation (6.5) of bidegree (2; 2).

Note also that the 
urve C

1

is de�ned over our ground �eld R. The transversals to `

1

and `

2

tangent to S

2

are parametrized by a similar 
urve C

2

. There are in�nitely many
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lines whi
h meet `

1

and `

2

and are tangent to S

1

and S

2

if and only if the 
urves C

1

and

C

2

have a 
ommon 
omponent. That is, if and only if the asso
iated polynomials share a


ommon fa
tor. We �rst rule out the 
ase when the 
urves are irredu
ible.

Lemma 6.22. The 
urve C

1

in (6.18) determines the sphere S

1

uniquely.

Proof. Given the 
urve (6.18), we 
an res
ale the equation su
h that the 
oeÆ
ient of

x

2

z

2

is 4Æ

2

. From the 
oeÆ
ients of x

2

z and xz

2

we 
an determine a and b, and then from

the 
oeÆ
ients of x

2

and z

2

we 
an determine 
 and r.

Remark 6.23. By Remark 6.20, Lemma 6.22 does not hold if the lines are allowed to

live in proje
tive spa
e P

3

R

. We 
ome ba
k to this in Se
tion 6.2.5.

By Lemma 6.22, there 
an be in�nitely many 
ommon transversals to `

1

and `

2

that

are tangent to two spheres only if the 
urves C

1

and C

2

are redu
ible. In parti
ular, this

rules out 
ases (1) and (2) of Lemma 6.10. Our 
lassi�
ation of fa
tors of (2; 2)-forms in

Lemma 6.10 gives the following possibilities for the 
ommon irredu
ible fa
tors (over R) of

C

1

and C

2

, up to inter
hanging x and z. Either the fa
tor is a 
ubi
 (the dehomogenization

of a (2; 1)-form), or it is linear in x and z (the dehomogenization of a (1; 1)-form), or it is

linear in x alone (the dehomogenization of a (1; 0)-form). There is the possibility that the


ommon fa
tor will be an irredu
ible (over R) quadrati
 polynomial in x (
oming from a

(2; 0)-form), but then this 
omponent will have no real points, and thus 
ontributes no


ommon real tangents.

We rule out the possibility of a 
ommon 
ubi
 fa
tor, showing that if C

1

fa
tors

as x � x

0

and a 
ubi
, then the 
ubi
 still determines S

1

. The ve
tor (�Æ;�1; Æx

0

)

T

is perpendi
ular to the plane through (x

0

; Æx

0

; 1)

T

and `

2

, so the 
enter of S

1

will be

(x

0

; Æx

0

; 1)

T

+ �(�Æ;�1; Æx

0

)

T

for some non-zero � 2 R. Thus r

2

= �

2

(1 + Æ

2

+ Æ

2

x

2

0

).

Substituting this into (6.18) and dividing by (x�x

0

) we obtain the equation of the 
ubi
:

0 = Æ

2

xz

2

+ Æ(Æ

2

�1)�xz + (1+Æ

2

(1��

2

) + Æ�(1+Æ

2

)x

0

)x

+ Æ(�(1+Æ

2

)� Æx

0

)z

2

+ Æ(Æ

2

�1)�x

0

z + 4Æ�+ (Æ

2

�

2

� Æ

2

� 1)x

0

:

(6.19)

Given only this 
urve, we 
an res
ale its equation so that the 
oeÆ
ient of xz

2

is Æ

2

, then

if Æ 6= �1, we 
an uniquely determine �, x

0

and therefore S

1

, too, from the 
oeÆ
ients of

xz and x.

The uniqueness is still true if Æ = �1. Assume that Æ = 1. Then (6.19) redu
es to

xz

2

+ (2�� x

0

)z

2

+ (2� �

2

+ 2�x

0

)x + 4�+ (�

2

� 2)x

0

= 0 :

Set � := 2�� x

0

, � := 2� �

2

+ 2�x

0

, and 
 := 4� + (�

2

� 2)x

0

. We 
an solve for � and

x

0

in terms of � and �,

� =

��

p

�

2

+ 3� � 6

3

; x

0

=

��� 2

p

�

2

+ 3� � 6

3

:
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(We take the same sign of the square root in both 
ases). If we substitute these values

into the formula for 
, we see that the two possible values of 
 
oin
ide if and only if

�

2

+ 3� � 6 = 0, in whi
h 
ase there is only one solution for � and x

0

, so �, �, and 


always determine � and x

0

uniquely and hen
e S

1

uniquely. The 
ase Æ = �1 is similar.

We now are left only with the 
ases when C

1

and C

2


ontain a 
ommon fa
tor of the

form x � x

0

or xz + sx + tz + u. Suppose the 
ommon fa
tor is x � x

0

. Then any line

through p := (x

0

; Æx

0

; 1)

T

and a point of `

2

is tangent to S

1

. This is only possible if the

sphere S

1

is tangent to the plane through p and `

2

at the point p. We 
on
lude that if C

1

and C

2

have the 
ommon fa
tor x � x

0

, then the spheres S

1

and S

2

are tangent to ea
h

other at the point p = (x

0

; Æx

0

; 1)

T

lying on `

1

and `

2

lies in the 
ommon tangent plane

to the spheres at the point p. This is 
ase (1) of Theorem 6.21.

Suppose now that C

1

and C

2

have a 
ommon irredu
ible fa
tor xz + sx+ tz + u. We


an solve the equation xz+ sx+ tz +u = 0 uniquely for z in terms of x for general values

of x, or for x in terms of z for general values of z, this gives rise to an isomorphism �

between the proje
tivizations of `

1

and `

2

. The lines 
onne
ting q and �(q) as q runs

through the points of `

1

sweep out a hyperboloid of one sheet. The lines `

1

and `

2

are


ontained in one ruling, and the lines meeting both of them and tangent to S

1

are the

lines in the other ruling.

We need the following geometri
 statement, whi
h is an immediate 
onsequen
e of

Theorem 6.4.

Corollary 6.24. Let H � R

3

be a hyperboloid of one sheet. If all lines in one of its

rulings are tangent to a sphere S, then H is a hyperboloid of revolution, the 
enter of the

sphere S is on the axis of rotation and S is tangent to H.

By this 
orollary, the hyperboloid swept out by the lines meeting `

1

and `

2

and tangent

to S

1

is a hyperboloid of revolution with the 
enter of S

1

on the axis of rotation. Further-

more, `

1

and `

2

are lines in one the rulings of the hyperboloid, therefore they are images

of ea
h other under suitable rotation about the axis, the images of `

1

sweep out the whole

hyperboloid, and `

1

, `

2

are both tangent to S

1

. Applying the lemma to S

2

shows that the


enter of S

2

is also on the axis of rotation and `

1

, `

2

are both tangent to S

2

. We 
annot

have S

1

and S

2


on
entri
, therefore the axis of rotation is the line through their 
enters.

This is exa
tly 
ase (2) of Theorem 6.21, and we have 
ompleted its proof.

Lines in proje
tive spa
e.

We give the 
omplete geometri
 
hara
terization of 
on�gurations in real proje
tive spa
e

where the line `

2

lies in the plane at in�nity.

Theorem 6.25. Let S

1

and S

2

be two distin
t spheres and let `

1

lie in R

3

with `

2

a line

at in�nity skew to `

1

. There are in�nitely many lines that meet `

1

and `

2

and are tangent

to S

1

and S

2

in exa
tly the following 
ases.
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(1) The spheres S

1

and S

2

are tangent to ea
h other at a point p whi
h lies on `

1

, and

`

2

is the line at in�nity in the 
ommon tangent plane to the spheres at the point p.

The pen
il of lines through p that lie in this tangent plane are exa
tly the 
ommon

transversals to `

1

and `

2

that are also tangent to S

1

and S

2

.

(2) Any line meeting `

1

and `

2

is perpendi
ular to `

1

and S

1

and S

2

are related to ea
h

other by multipli
ation by �1 in the dire
tions perpendi
ular to `

1

. Thus we are in

exa
tly the situation of Remark 6.20 of Se
tion 6.2.4 as shown in Figures 6.5(a)

and 6.6(a).

Proof. Let � be any plane passing through a point of `

1

and 
ontaining `

2

. Then 
ommon

transversals to `

1

and `

2

are lines meeting `

1

that are parallel to �. Choose a Cartesian


oordinate system in R

3

su
h that `

1

is the x-axis. Suppose that S

1

has 
enter (a; b; 
)

T

and radius r. Let u = (u

1

; u

2

; 0)

T

and v = (v

1

; 0; v

3

)

T

be ve
tors with u

2

6= 0 and v

3

6= 0

parallel to �. Su
h ve
tors exist as `

1

and `

2

are skew. A 
ommon transversal to `

1

and `

2

is determined by the interse
tion point (x; 0; 0)

T

with `

1

and a dire
tion ve
tor


orresponding to the interse
tion point with `

2

, whi
h 
an be written as u+ zv for some

z 2 R, unless it is parallel to v. Sin
e S

1

has at most two tangent lines whi
h meet `

1

that are parallel to v, so by omitting these we are not losing an in�nite family of 
ommon

transversals/tangents.

The transversals that are tangent to S

1

are parametrized by a 
urve C

1

in the xz-plane

with equation

0 = v

2

3

x

2

z

2

+ u

2

2

x

2

+ 2v

3

(
v

1

� av

3

)xz

2

+ 2(bu

2

v

1

+ 
u

1

v

3

)xz

+2u

2

(bu

1

�au

2

)x+ ((b

2

+ 


2

�r

2

)v

2

1

�2a
v

1

v

3

+ (a

2

+ b

2

�r

2

)v

2

3

)z

2

(6.20)

+2((b

2

+ 


2

� r

2

)u

1

v

1

� a
u

1

v

3

� bu

2

(av

1

+ 
v

3

))z

+((b

2

+ 


2

� r

2

)u

2

1

� 2abu

1

u

2

+ (a

2

+ 


2

� r

2

)u

2

2

)

The transversals tangent to S

2

are parametrized by a similar 
urve C

2

. There are in�nitely

many lines that meet `

1

and `

2

and are tangent to S

1

and S

2

if and only if C

1

and C

2

have a 
ommon nonempty real 
omponent.

It is easy to see from the 
oeÆ
ients of xz

2

, xz and x and the 
onstant term that

if u

1

6= 0 or v

1

6= 0, then C

1

determines a, b, 
 and r

2

and therefore S

1

uniquely, so if

C

1

is irredu
ible and u

1

6= 0 or v

1

6= 0, then there 
annot be in�nitely many 
ommon

transversals that are tangent to S

1

and S

2

.

Assume now that u

1

= v

1

= 0, this is equivalent to the plane � being perpendi
ular to

`

1

. From the 
oeÆ
ient of x we 
an determine a, and then from the 
oeÆ
ients of z

2

, z,

and the 
onstant term we 
an 
al
ulate the quantities � = 


2

�r

2

, � = b
, and 
 = b

2

�r

2

.

The equation (� + r

2

)(
 + r

2

)� �

2

= 0 is a quadrati
 equation for r

2

with solutions

r

2

=

1

2

�

��� 
 �

p

(�� 
)

2

+ 4�

2

�

:

Only the larger root is feasible, even when both are positive, sin
e both � + r

2

= 


2

and


 + r

2

= b

2

must be non-negative. Hen
e r

2

, and thus b

2

and 


2

are uniquely determined.
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The values of b

2

, b
, and 


2

determine two possible pairs (b; 
) whi
h are negatives of

ea
h other. This is exa
tly 
ase (2) of the theorem. In fa
t, this 
ase is illustrated by

Figures 6.5(a) and 6.6(b).

Let us now 
onsider the 
ases when C

1

is redu
ible. As in the proof of Theorem 6.21,

we need only 
onsider 
ubi
s and fa
tors of the form xz + sx+ tz + u, x� x

0

, and z� z

0

.

Assume that C

1

has a 
omponent with equation xz + sx+ tz + u. As des
ribed in the

proof of Theorem 6.21, this establishes an isomorphism between the proje
tivizations of

`

1

and `

2

. The lines 
onne
ting the 
orresponding points of the proje
tivizations of `

1

and

`

2

sweep out a hyperboli
 paraboloid. However, the lines in one ruling of the hyperboli


paraboloid 
annot all be tangent to a sphere, therefore this 
ase 
annot o

ur.

Likewise, the fa
tor z�z

0


annot appear, sin
e it would mean that all the lines through

a point of `

1

parallel to a 
ertain dire
tion are tangent to S

1

, whi
h is 
learly impossible.

Consider the 
ase where the equation of C

1

has a fa
tor of x � x

0

. As we saw in the

proof of Theorem 6.21, `

1

meets the sphere S

1

at the point p := (x

0

; 0; 0)

T

, and `

2

lies in

the tangent plane to S

1

at p, and so this tangent plane is parallel to �.

If x � x

0

is a fa
tor of C

2

, too, then C

2

passes through p and its tangent plane there

is also parallel to �, so we have 
ase (1) of the theorem.

To �nish the proof we investigate what happens if the 
ommon 
omponent of C

1

and

C

2

is the 
ubi
 obtained from C

1

after removing the line x� x

0

= 0.

The 
enter of S

1

has 
oordinates (x

0

+�u

2

v

3

;��u

1

v

3

;��u

2

v

1

)

T

for some � 2 R, sin
e

S

1

passes through (x

0

; 0; 0)

T

and its tangent plane there is parallel to �, and we have

r

2

= �

2

(u

2

1

v

2

3

+ u

2

2

v

2

1

+ u

2

2

v

2

3

). Substituting this into (6.20) we obtain the equation of the

remaining 
ubi
,

v

2

3

xz

2

+ u

2

2

x� v

3

(x

0

v

3

+ 2�u

2

(v

2

1

+ v

2

3

))z

2

�4�u

1

u

2

v

1

v

3

z � u

2

(x

0

u

2

+ 2�v

3

(u

2

1

+ u

2

2

)) = 0:

If u

1

6= 0 or v

1

6= 0 then from the 
oeÆ
ients of this 
urve we 
an determine x

0

and �,

hen
e S

1

uniquely, so C

1

and C

2


annot have a 
ommon 
ubi
 
omponent. If u

1

= v

1

= 0

then the above equation fa
torizes as

(x� (2�u

2

v

3

+ x

0

))(v

2

3

z

2

+ u

2

2

) = 0;

so if C

2


ontains the 
urve de�ned by this equation, then the line x� (2�u

2

v

3

+x

0

) = 0 is

a 
ommon 
omponent of both C

1

and C

2

, whi
h is a 
ase we have already dealt with.

6.2.6 Appendix: Cal
ulations from Se
tion 6.2.3

We des
ribe the 
omputation of Se
tion 6.2.3 in mu
h more detail, giving a 
ommen-

tary on the Singular �le that a

omplishes the 
omputation and displaying its output.

In our des
ription of the Singular 
omputation, we follow Se
tion 4.2.2. The library

primde
.lib 
ontains the fun
tion sat for saturating ideals.
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LIB "primde
.lib";

option(redSB);

We initialize our ring.

ring R = 0, (s,t,a,b,
,d,e,f,g,h,k,l), (dp(2), dp(10));

The underlying 
oeÆ
ient �eld has 
hara
teristi
 0 (so it is Q) and variables s; t; a; : : : ; k; l,

with a produ
t term order 
hosen to simplify our analysis of the proje
tion to C

2

, the

spa
e of parameters.

We 
onsider the ideal generated by (6.13)

ideal I = el-g^2, ek-gf, ak-d
, ah-
^2;

and by the 2� 2 minors of the 
oeÆ
ient matrix (6.14).

matrix M[2℄[5℄ = s , 1-s , -2 , 1-t , t ,

al-d^2, 2*(bl-dg), 2*(2bk-
g-df), 2*(bh-
f), eh-f^2;

I = I + minor(M,2);

We 
he
k the dimension and degree of the variety V(I), �rst 
omputing a Gr

�

obner basis

for I.

I = std(I); dim(I), mult(I);

// 6 8

Singular gives the dimension of V(I) in aÆne spa
e C

12

. Sin
e I is homogeneous in the

variables a; b; : : : ; h; k; l, we 
onsider V(I) to be a subvariety of P

9

� C

2

. Its dimension

is one less than that of the 
orresponding aÆne variety. Thus V(I) has dimension 5 and

degree 8.

In Se
tion 6.2.3, we identi�ed three spurious 
omponents of V(I) whi
h we remove.

The �rst and largest is the ideal of rank 1 quadri
s, given by the 2 � 2-minors of the

4� 4-symmetri
 matrix (6.11).

matrix Q[4℄[4℄ = a , b , 
 , d ,

b , e , f , g ,


 , f , h , k ,

d , g , k , l ;

ideal E1 = std(minor(Q,2));

We remove this spurious 
omponent, 
omputing the quotient ideal (I : E

1

).

I = std(quotient(I,E1)); dim(I), mult(I);

// 5 20

The other two spurious 
omponents des
ribe rank 2 quadri
s whi
h are unions of two

planes with interse
tion line `

1

or `

2

.
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ideal E2 = g, f, e, d, 
, b, a; // interse
tion line l1

ideal E3 = l, k, h, g, f, d, 
; // interse
tion line l2

The 
orresponding 
omponents are not redu
ed; rather than take ideal quotients, we

saturate the ideal I with respe
t to these spurious ideals. The Singular 
ommand sat

for saturation returns a pair whose �rst 
omponent is a Gr

�

obner basis of the saturation

and the se
ond is the saturation exponent. Here, both saturations have exponent 4. We

saturate I with respe
t to E

2

,

I = sat(I,E2)[1℄; dim(I), mult(I);

// 5 10

and then with respe
t to E

3

.

ideal J = sat(I,E3)[1℄; dim(J), mult(J);

// 4 120

Thus we now have a variety V(J) of dimension 3 in P

9

� C

2

. We 
he
k that it proje
ts

onto the spa
e C

2

of parameters by eliminating the variables a; b; : : : ; h; k; l from J .

eliminate(J, ab
defghkl);

// _[1℄=0

Sin
e we obtain the zero ideal, the image of V(J) is Zariski dense in C

2

[31, Chapter 4,

x4℄. However, the proje
tion P

9

� C

2

� C

2

is a 
losed map, so the image of V(J) is

C

2

. Thus, for every smooth (2; 2)-
urve C de�ned by (6.7), there is a quadri
 whose

transversal tangents are des
ribed by the 
urve C.

We now apply the fa
torization Gr

�

obner basis algorithm fa
std to J . The se
ond

argument of fa
std is the list of non-zero 
onstraints whi
h are given by Theorem 6.14.

ideal L = s, t, t-1, s-1, s-t;

list F = fa
std(J,L);

Singular 
omputes seven fa
tors

size(F);

// 7

Sin
e J and the seven fa
tors L

1

; : : : ; L

7

are radi
al ideals, this fa
torization 
an be veri�ed

by 
he
king that that the following ideals V

1

and V

2


oin
ide.

int i;

ideal FF = 1;

for (i = 1; i <= 7; i++) { FF = interse
t(FF,F[i℄); }

ideal V1, V2;

V1 = std(sat(sat(sat(sat(sat(FF,t)[1℄,s)[1℄,t-1)[1℄,s-1)[1℄,s-t)[1℄);

V2 = std(sat(sat(sat(sat(sat(J ,t)[1℄,s)[1℄,t-1)[1℄,s-1)[1℄,s-t)[1℄);
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Note, in parti
ular, that for any given expli
it values of s; t satisfying the non-zero


onditions, the parametri
 fa
torization (in s; t) produ
ed by fa
std 
an be spe
ialized

to an expli
it fa
torization.

We examine the ideals in the list F , working over the ring with parameters.

ring S = (0,s,t), (a,b,
,d,e,f,g,h,k,l), lp; short = 0;

First, the ideal J has dimension 1 and degree 24 over this ring, as 
laimed.

ideal JS = std(imap(R,J)); dim(JS), mult(JS);

// 2 24

The �rst ideal in the list L has dimension 0.

setring R; FR = F[1℄; setring S;

FS = std(imap(R,FR)); dim(FS), mult(FS);

// 1 4

This ideal is a spurious 
omponent from the fa
torization. It is 
ontained in the spurious

ideal E

2

.

FS[5℄, FS[6℄, FS[7℄, FS[8℄, FS[9℄, FS[10℄, FS[11℄;

// g f e d 
 b a

The other six 
omponents ea
h have dimension 1 and degree 4, and ea
h 
ontains a

homogeneous quadrati
 polynomial in the variables x and y.

for (i = 2; i <= 7; i++) {

setring R; FR = F[i℄; setring S;

FS = std(imap(R,FR)); dim(FS), mult(FS);

FS[1℄;

print("--------------------------------");

}

// 2 4

// (-s^2+2*s-1)*k^2+(2*s-2)*k*l+(s*t-1)*l^2

// --------------------------------

// 2 4

// (s-1)*k^2-2*k*l-l^2

// --------------------------------

// 2 4

// (s^2-2*s+1)*k^2+(-2*s+2)*k*l+(-t+1)*l^2

// --------------------------------

// 2 4

// (s^2-2*s+1)*k^2+(-2*s+2)*k*l+(-t+1)*l^2

// --------------------------------
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// 2 4

// (s-1)*k^2-2*k*l-l^2

// --------------------------------

// 2 4

// (-s^2+2*s-1)*k^2+(2*s-2)*k*l+(s*t-1)*l^2

// --------------------------------

The whole 
omputation takes 7 minutes CPU time on an 800 Mhz Pentium III pro-


essor, and 3 minutes of that time are spent on the fa
std operation.

Ea
h of these homogeneous quadrati
 polynomials fa
tors over Q(

p

s;

p

t), and indu
es

a fa
torization of the 
orresponding ideal. We des
ribe this fa
torization|whi
h is 
arried

out by hand|in detail for the se
ond 
omponent F

2

. We start from the Gr

�

obner basis of

the ideal F

2


omputed in the program above,

(s� 1)k

2

� 2kl � l

2

; (s� 1)h+ (2t� 2)k + (t� 1)l; f l � gk;

el � g

2

; d+ f + g; 
; 2b+ e; a;

(s� 1)fk � 2gk � gl; (s� 1)f

2

� 2fg � g

2

; ek � fg :

(6.21)

Over Q (

p

s;

p

t), the �rst polynomial fa
tors into

�

(

p

s + 1)k + l

� �

(

p

s� 1)k � l

�

:

We 
onsider the �rst fa
tor; the se
ond one 
an be treated similarly. Substituting l =

�(

p

s+ 1)k into the generator fl � gk, that one fa
tors into

�k

�

(

p

s+ 1)f + g

�

:

Sin
e any zero of F

2

with k = 0 would imply a = 
 = d = f = g = h = k = l = 0 and thus

be 
ontained in V(E

3

), we 
an divide by k and obtain a linear polynomial. Altogether,

the �rst two rows of (6.21) be
ome a set of seven independent linear polynomials and one

quadrati
 polynomial el� g

2

. For any pair (s; t) satisfying (6.8) they de�ne a plane 
oni
.

It 
an be veri�ed that the three polynomials in the third row are 
ontained in the ideal

generated by the �rst two rows.

In order to show that for none of the parameters s, t satisfying (6.8) the map ' vanishes

identi
ally on this 
oni
, 
onsider the following point p on it:

(0; �(

p

s+ 1)(s� 1); 0; �2

p

s(s� 1); 2(

p

s+ 1)(s� 1); �2(s� 1);

2(

p

s+ 1)(s� 1); 4(t� 1)� 2(t� 1)(

p

s+ 1); �2(s� 1); 2(

p

s+ 1)(s� 1))

2

:

The 
oeÆ
ient of w

2

z

2

in '(C) is

�4s(

p

s� 1)

2

(

p

s+ 1)

2

;

so '(C) does not not vanish identi
ally.
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In order to show that for all parameters s, t satisfying (6.8) the 12 
oni
s are distin
t,


onsider the quadrati
 polynomials in k and l in the Singular output above. In the

fa
torization over Q (

p

s;

p

t), the ideal of ea
h of the 12 
oni
s 
ontains a generator whi
h

is linear in k and l and independent of a; : : : ; h. To show the distin
tness of two 
oni
s,

we distinguish two 
ases.

If these linear homogeneous polynomials are distin
t (over Q (s; t)), then it 
an be


he
ked that for every given pair (s; t) they de�ne subspa
es whose restri
tions to (k; l) 6=

(0; 0) are disjoint.

In 
ase that the linear homogeneous polynomials 
oin
ide then it 
an be expli
itly


he
ked that both 
oni
s are distin
t. For example, both F

2

and F

5


ontain the fa
tor

(

p

s + 1)k + l in the �rst polynomial. As seen above, the 
orresponding 
oni
 of F

2

is


ontained in the subspa
e a = 
 = 0. Similarly, the 
orresponding 
oni
 of F

5

is 
ontained

in e = g = 0. Assuming that the two 
oni
s are equal for some pair (s; t), the equations

of the ideals 
an be used to show further a = b = 
 = � � � = h = 0. However, due to the

saturation with the ex
ess 
omponent E

2

this is not possible, and hen
e the two 
oni
s

are distin
t.

The same 
al
ulations 
an be 
arried out for the other 
omponents.
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7. ALGORITHMIC COMPLEXITY OF VISIBILITY

COMPUTATIONS WITH MOVING VIEWPOINTS

We investigate the 
omputational 
omplexity of visibility problems with moving view-

points. The results 
omplement our results from the previous se
tions on the underlying

algebrai
 
omplexity of these algorithmi
 problems.

Before stating our main results pre
isely, we review the ne
essary 
omplexity-theoreti-


al framework in Se
tion 7.1. After formally introdu
ing the 
omplexity-theoreti
al prob-

lems in Se
tion 7.2, we state our main results in Se
tion 7.3.

In Se
tion 7.4, we determine the 
omputational 
omplexity of the 
onsidered visibility

problems for variable dimension. Then, in Se
tion 7.5, we use the real algebrai
-geometri


te
hnique of real quanti�er elimination to establish polynomial solvability results for �xed

dimension. In Se
tion 7.6, we establish 
onne
tions between our 
omplexity-theoreti
al

results and the algebrai
-geometri
 results from the earlier se
tions. Finally, in Se
tion 7.7,

we dis
uss the relationship between our hardness results and the number-theoreti
al view

obstru
tion problem.

7.1 Geometri
 obje
ts and the model of 
omputation

The geometri
 obje
ts relevant for the 
omplexity-theoreti
al investigations are 
onvex

bodies as introdu
ed in Se
tion 2.1.1. Whereas in earlier se
tions, we used well-known


lassi
al geometri
 frameworks, for our 
urrent 
omplexity-theoreti
al investigations we

would like to re
all the underlying geometri
 
omputation models.

Our model of 
omputation is the binary Turing ma
hine: all relevant 
onvex bodies


an be presented by 
ertain rational numbers, and the size of the input is de�ned as the

length of the binary en
oding of the input data (see, e.g., [57, 65, 67℄).

Spe
i�
ally, a B-presentation of a `rational' ball B is a triple (n; 
; �) with n 2 N , 
 2

Q

n

, and � 2 (0;1)\Q . B and (n; 
; �) are then related via B = fx 2 R

n

: jjx�
jj

2

� �g.

Let B

n

2

denote the 
lass of all B-balls in R

n

, and set B

2

=

S

n2N

B

n

2

.

Remark 7.1. In a more restri
tive model of balls we might require that the radius itself is

rational. Although we will not dis
uss that model further, we remark that our 
omplexity

results hold in that model in the same way.

For rational polytopes we distinguish between H- and V-presentations [65℄. A V-

polytope is a polytope P that is represented by integers n, k, and points v

1

; : : : ; v

k

2 Q

n
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su
h that P = 
onv(fv

1

; : : : ; v

k

g), i.e., P is the 
onvex hull of v

1

; : : : ; v

k

. An H-polytope

is a polytope P that is represented by integers n, k, a rational k � n-matrix A, and a

ve
tor b 2 Q

k

su
h that P = fx 2 R

n

: Ax � bg.

Let P

n

H

and P

n

V

denote the 
lasses of H- and V-polytopes in R

n

, respe
tively, and

set P

H

=

S

n2N

P

n

H

, P

V

=

S

n2N

P

n

V

. For �xed dimension H- and V-presentations of a

polytope 
an be 
onverted into ea
h other in polynomial time. If, however, the dimension

is part of the input then the size of one presentation may be exponential in the size of the

other [92℄.

In some problems under 
onsideration, we will 
onsider single points instead of balls

or polytopes. In this 
ase we speak of a degenerated body.

7.2 Partial visibility and quadrant visibility

We 
onsider the fundamental visibility problem with moving viewpoints as introdu
ed in

Se
tion 2.2.1. Here, we 
onsider a s
ene in n-dimensional spa
e 
onsisting of m+1 
onvex

bodies B

0

; B

1

; : : : ; B

m

from a 
lass X , where X 2 fB

2

;P

H

;P

V

g.

For the 
omplexity-theoreti
al investigations it is quite 
ru
ial whi
h information is

part of the input of the problem. Thus let us re
all the formal de�nition of the main

problem PARTIAL VISIBILITY with respe
t to a given body 
lass X . Note that the

dimension is part of the input.

Problem PARTIAL VISIBILITY

X

:

Instan
e: m, n, bodies B

0

; B

1

; : : : ; B

m

� R

n

from the 
lass X .

Question: De
ide whether B

0

is partially visible with respe
t to B

1

; : : : ; B

m

.

Our hardness results for this problem will exploit the property that in the de�nition of

partial visibility every viewpoint outside of 
onv(

S

m

i=1

B

i

) is allowed. In order to show that

similar hardness results also hold for visibility problems with more restri
ted viewpoint

regions we also investigate the following problem QUADRANT VISIBILITY.

We 
all B

0

partially visible from the positive orthant (with respe
t to B

1

; : : : ; B

m

) if

there exists a viewpoint v 2 (0;1)

n

n 
onv([

m

i=1

B

i

) su
h that B

0

is partially visible from

v.

Problem QUADRANT VISIBILITY

X

:

Instan
e: m, n, bodies B

0

; B

1

; : : : ; B

m

� R

n

from the 
lass X .

Question: De
ide whether B

0

is partially visible from the positive orthant with

respe
t to B

1

; : : : ; B

m

.

We add the index ; if the input bodies B

0

; : : : ; B

m

are required to be disjoint. Fur-

thermore we add the index � if B

0

is a degenerated body that 
onsists of a single point

in the origin (e.g., PARTIAL VISIBILITY

B

2

;�;;

). If X = P

H

or X = P

V

, we will usually

denote the bodies by P

0

; : : : ; P

m

.
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Ray sets. In the next se
tions, the following notation will be 
onvenient. A ray whi
h

issues from the origin is 
alled a 
entral ray. For a set A � R

n

let pos A = f

P

k

i=1

�

i

x

i

:

fx

1

; : : : ; x

k

g � A; �

1

; : : : ; �

k

� 0; k 2 Ng denote the positive hull of A. For a set

A � R

n

nf0g let the 
entral ray set of A be the set of 
entral rays de�ned by the elements

of A. A 
entral ray set R 
overs a set B � R

n

nf0g if the 
entral ray set of B is 
ontained

in R.

7.3 Main 
omplexity results

We analyze the binary Turing ma
hine 
omplexity of the visibility problems for the 
ase

of variable dimension. Our main intra
tability results are summarized in the following

theorem.

Theorem 7.2. (a) For X 2 fB

2

;P

H

;P

V

g the problems PARTIAL VISIBILITY

X

and

QUADRANT VISIBILITY

X

are NP-hard. This statement remains true if the bodies are

disjoint and/or if B

0

(or P

0

, respe
tively) is a single point lo
ated in the origin.

(b) For X 2 fP

H

;P

V

g the problems PARTIAL VISIBILITY

X ;�

and QUADRANT VIS-

IBILITY

X

are NP-
omplete.

These hardness results are 
ontrasted by the following positive results for �xed dimen-

sion.

Theorem 7.3. Let the dimension n be a �xed 
onstant. For X 2 fB

2

;P

H

;P

V

g, the prob-

lems PARTIAL VISIBILITY

X

and QUADRANT VISIBILITY

X


an be solved in polyno-

mial time.

7.4 Complexity results for variable dimension

7.4.1 Idea of the hardness proofs

Let us 
onsider the 
ase where the body B

0

is a degenerated body lo
ated in the origin.

In order to show NP-hardness, we provide redu
tions from the well-known NP-
omplete

3-satis�ability (3-SAT) problem [57℄. Let C = C

1

^ : : : ^ C

k

denote a 3-SAT formula with


lauses C

1

; : : : ; C

k

in the variables y

1

; : : : ; y

n

. Further, let y

i

denote the 
omplement of a

variable y

i

, and let the literals y

1

i

and y

0

i

be de�ned by y

1

i

= y

i

, y

0

i

= y

i

. Let the 
lause C

i

be of the form

C

i

= y

e

i

1

i

1

_ y

e

i

2

i

2

_ y

e

i

3

i

3

; (7.1)

where e

i

1

; e

i

2

; e

i

3

2 f0; 1g and 1 � i

1

; i

2

; i

3

� n are pairwise di�erent indi
es.

Ea
h of the redu
tions 
onsists of two ingredients. First we enfor
e that any 
entral

visibility ray has a dire
tion whi
h is 
lose to a dire
tion in the set f�1; 1g

n

. For this

purpose, 
onsider the 
ube [�1; 1℄

n

. For ea
h of the 2n fa
ets of the 
ube we 
onstru
t
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x1x1 x1

(a) Pla
ing stru
tural bodies (b) Vertex simpli
es

Fig. 7.1: Imposing dis
rete stru
ture

a suitable body (a ball or a polytope) whose positive hull 
overs the whole fa
et with

the ex
eption of \regions near the verti
es". We 
all these bodies stru
tural bodies. Fig-

ure 7.1(a) shows the situation for the 3-dimensional 
ase of a ball. Any 
entral visibility

ray 
an then be naturally asso
iated with a 
entral ray in one of the dire
tions f�1; 1g

n

;

this imposes a dis
rete stru
ture on the problem. The 2n stru
tural bodies are always

part of the 
onstru
tion, independent of the spe
i�
 3-SAT formula. The positions of

ea
h of these 2n bodies will depend linearly on some positive parameter 
. In fa
t, all

bodies 
an be moved radially and their size be appropriately adjusted so that the 
ru
ial


overing properties persist. The parameters will be used later to make the bodies disjoint.

In order to de�ne the \region near a vertex" we 
onsider Figure 7.1(b). For every vertex

v of [�1; 1℄

n

let the vertex simplex of v be de�ned as the 
onvex hull of v and those n

points whi
h result by dividing exa
tly one 
omponent of v by 2. The 
onstru
tion will

be su
h that any point in the boundary of [�1; 1℄

n

that is not 
overed by the 
entral ray

set of a stru
tural body will be 
ontained in some vertex simplex.

In the se
ond step, we relate satisfying assignments of a 
lause (7.1) to 
ertain 
en-

tral visibility rays. Let t : fTrue;Falseg ! f�1; 1g be de�ned by t(True) = 1 and

t(False) = �1. Then, more pre
isely, we establish a 
orresponden
e between a truth as-

signment a = (a

1

; : : : ; a

n

)

T

2 fTrue;Falseg

n

to the variables y

1

; : : : ; y

n

and the 
entral

ray with dire
tion (t(a

1

); : : : ; t(a

n

))

T

.

For this purpose, let us 
onsider the 
lause (7.1), and without loss of generality let

e

i

1

= 0, e

i

2

= 1, e

i

3

= 0. Then we want to ensure that neither one of the 2

n�3


entral rays

in fx 2 f�1; 1g

n

: x

i

1

= 1; x

i

2

= �1; x

i

3

= 1g nor a ray de�ned by the 
orresponding

vertex simplex 
an be a visibility ray. Hen
e, we 
onstru
t a body whose 
entral ray set


ompletely 
overs an (n � 3)-dimensional fa
e of the 
ube [�1; 1℄

n

but whi
h does not


over any vertex not belonging to this fa
e. Similar to the stru
tural bodies, the positions

of ea
h body depends linearly on some positive parameter Æ. Again, the parameters will

be spe
i�ed later so as to a
hieve disjointness of the bodies. The bodies whi
h represent

the 
lauses are 
alled 
lause bodies.

The 
onstru
tion will guarantee that a truth assignment a is a satisfying assignment
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for the 3-SAT formula C if and only there exists a visibility ray for B

0

.

7.4.2 The 
ase of balls

For p 2 R

n

, q 2 R

n

n f0g, let d(p; [0;1)q) denote the Eu
lidean distan
e of p 2 R

n

from

the 
entral ray [0;1)q. In the �rst lemma we 
ompute some distan
es needed within the


onstru
tion.

Lemma 7.4. (a) Let n � 3, 
 > 0, 0 � � � 1, p = 
 � (1; 0; : : : ; 0)

T

, and q =

(1; : : : ; 1; �)

T

2 R

n

. Then

d(p; [0;1)q)

2

= 


2

�

1�

1

n� 1 + �

2

�

:

(b) Let n � 4, Æ > 0, �1 � � � 1, p = Æ � (1;�1; 1; 0; : : : ; 0)

T

, and q = (1;�1; �; 1; : : : ;

1)

T

2 R

n

. Then

d(p; [0;1)q)

2

= Æ

2

�

3�

(2 + �)

2

n� 1 + �

2

�

:

Proof. (a) For � 2 R, let q

�

:= � � q. The parameter � for whi
h the minimum distan
e of

Rq to p is attained satis�es q

�

� (p� q

�

) = 0. Hen
e,

�(
 � �)� (n� 2)�

2

� �

2

�

2

= 0 ;

whose nontrivial solution is � = 
=(n� 1 + �

2

) > 0. For this value of � we obtain

d(p; [0;1)q)

2

= 


2

 

�

1

n� 1 + �

2

� 1

�

2

+ (n� 2)

�

1

n� 1 + �

2

�

2

+

�

�

n� 1 + �

2

�

2

!

= 


2

�

1�

1

n� 1 + �

2

�

:

(b) Here,

2�(�� Æ) + ��(��� Æ) + (n� 3)�

2

= 0

has the nontrivial solution � = Æ(2 + �)=(n� 1 + �

2

) > 0. Hen
e,

d(p; [0;1)q)

2

= Æ

2

 

2

�

2 + �

n� 1 + �

2

� 1

�

2

+

�

(2 + �)�

n� 1 + �

2

� 1

�

2

+ (n� 3)

�

2 + �

n� 1 + �

2

�

2

!

= Æ

2

�

3�

(2 + �)

2

n� 1 + �

2

�

:
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x1
s1 x1
s1 x1
s1

Fig. 7.2: Computing the distan
e from the diagonal rays

Lemma 7.5. PARTIAL VISIBILITY

B

2

;�;;

is NP-hard.

Proof. We 
omplete the 
onstru
tion outlined so as to provide a polynomial time redu
tion

from 3-SAT to PARTIAL VISIBILITY

B

2

;�;;

. Without loss of generality let n � 4.

Let us 
onsider the 2n stru
tural balls S

i

(


i

) = (n; s

i

(


i

); �

i

(


i

)), 1 � i � 2n, where

s

i

(


i

) 2 R

n

and �

i

(


i

) > 0 are the 
enter and the square of the radius of S

i

, and 


i

is the

s
aling parameter of S

i

as des
ribed above. Naturally, we pla
e these balls symmetri
ally

so that so that their 
enters lie on 
oordinate axes, i.e., let

s

i

(


i

) = 


i

e

i

and s

n+i

(


n+i

) = �


n+i

e

i

;

where e

i

denotes the i-th standard unit ve
tor, 1 � i � n.

In order to spe
ify the squares of the radii �

i

(


i

) of the stru
tural balls, let us 
onsider

S

1

(


1

). For 
onvenien
e of notation, we omit to state the index 1 and the dependen
e on


 = 


1

, and shortly write S = (n; s; �). See also Figure 7.1(a). The 
onstru
tion of the

other balls is done analogously.

In order to impose the dis
rete stru
ture we will satisfy the following two 
onditions.

Firstly, pos(S) must not 
ontain the verti
es f1g�f�1; 1g

n

. Se
ondly, pos(S) must 
over

those points whi
h result from the verti
es of the fa
et f1g � [�1; 1℄

n�1

after dividing

exa
tly one of the last n � 1 
omponents by 2. The two 
onditions will yield an upper

and a lower bound for �.

We start with the �rst 
ondition. Sin
e any of the 
entral rays f1g�f�1; 1g

n�1

has the

same distan
e from the 
enter s, it suÆ
es to 
onsider q = (1; 1; : : : ; 1)

T

(see Figure 7.2).

Hen
e, by 
hoosing � = 1 in Lemma 7.4(a),

d(s; [0;1)q)

2

= 


2

n� 1

n

:

Consequently, we have to 
hoose � < 


2

(n� 1)=n. For the se
ond 
ondition, 
onsider the

point q = (1; : : : ; 1; 1=2)

T

. Then, 
hoosing � = 1=2 in Lemma 7.4(a) yields

d(s; [0;1)q)

2

= 


2

4n� 7

4n� 3

:
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Therefore, a ball 
entered in s with square of the radius � satisfying




2

4n� 7

4n� 3

< � < 


2

n� 1

n

guarantees the two 
onditions. The 
onstru
tion of stru
tural balls for all 2n fa
ets guar-

antees that any point in a fa
et of [�1; 1℄

n

that is not 
overed by the 
entral ray set of a

stru
tural ball is 
ontained in a fa
et of some vertex simplex.

Now we 
an turn towards 
onstru
ting the balls C

i

(Æ

i

) = (


i

(Æ

i

); �

i

(Æ

i

)), 1 � i � k,

representing the k 
lauses. For notational 
onvenien
e we assume that the 
lause is

given by y

0

1

_ y

1

2

_ y

0

3

, and abbreviate the ball for this 
lause by C = (n; 
; �) (assum-

ing impli
itly the dependen
e on the parameter Æ := Æ

i

in this notation). By setting


 = Æ(1;�1; 1; 0; : : : ; 0)

T

, all the Boolean variables y

4

; : : : ; y

n

are treated in a uniform

way. The rotation axis of the resulting 
entral ray set is the 
entral ray spanned by

(1;�1; 1; 0; : : : ; 0)

T

.

In order to represent the given 
lause by the ballC we guarantee the following two prop-

erties. First, none of the ve
tors in f�1; 1g

n

n(1;�1; 1)�f�1; 1g

n�3

must be 
overed by the


entral ray set of the ball. Among this set of ve
tors, the ve
tor q = (1;�1;�1; 1; : : : ; 1)

T

leads to the smallest distan
e. Choosing � = �1 in Lemma 7.4(b) implies

d(
; [0;1)q)

2

= Æ

2

3n� 1

n

whi
h yields the 
ondition � < Æ

2

(3n� 1)=n.

Moreover, we guarantee the following se
ond property. The 
entral ray set of C

must 
over all the points in (1;�1; 1) � f�1; 1g

n�3

as well as their vertex simpli
es.

Among all these points and among the verti
es of the vertex simpli
es, the ve
tor q =

(1;�1; 1=2; 1; : : : ; 1)

T

has largest distan
e from 
. Lemma 7.4(b) with � = 1=2 implies

d(
; [0;1)q)

2

= Æ

2

12n� 34

4n� 3

:

Hen
e, a ball 
entered in 
 with square of the radius � satisfying

Æ

2

12n� 34

4n� 3

< � < Æ

2

3n� 1

n

guarantees the two 
onditions for the 
lause ball. Note that the upper bound implies that

the origin is not 
ontained in the ball.

As yet, the de�nitions of the 2n stru
tural balls and the k 
lause balls depend on the

positive parameters 


1

; : : : ; 


2n

and Æ

1

; : : : ; Æ

k

, respe
tively. Finally, by 
hoosing these

parameters appropriately, we make the balls disjoint. Sin
e �

i

< 


2

i

(n � 1)=n for the

stru
tural balls, we 
hoose the parameter 


i

of the i-th stru
tural ball su

essively so that




i

� 


i

r

n� 1

n

> 


i�1

+ 


i�1

r

n� 1

n

:
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Setting 


0

= 1, this leads to




i

>

0

�

1 +

q

n�1

n

1�

q

n�1

n

1

A

i

=

�

2n� 1 + 2

p

n � (n� 1)

�

i

:

Hen
e, 
hoosing 


i

= (4n � 1)

i

for 1 � i � 2n guarantees that the stru
tural balls are

pairwise disjoint. The binary logarithm of these numbers grows only polynomially in the

number of balls. Hen
e, indu
tively, we 
an 
hoose the 
enters and the squares of the

radii of the stru
tural balls as rational numbers of polynomial size. The same method

applies to the parameters Æ

1

; : : : ; Æ

k

of the 
lause balls. In parti
ular, when also 
hoosing

Æ

1

suÆ
iently large, then the 
lause balls are disjoint from the stru
tural balls.

Now we show that the given 3-SAT formula C 
an be satis�ed if and only if B

0

is

partially visible. Let a = (a

1

; : : : ; a

n

)

T

be a satisfying assignment of C. Then there does

not exist any ball B in the 
onstru
tion whose 
entral ray set interse
ts with the 
entral

ray in dire
tion (t(a

1

); : : : ; t(a

n

))

T

. Hen
e, B

0

is partially visible. Conversely, let b be a

visibility ray for B

0

. Due to the stru
tural balls the ray b interse
ts with the vertex simplex

of some ve
tor v 2 f�1; 1g

n

. Consequently, the truth assignment (t

�1

(v

1

); : : : ; t

�1

(v

n

))

T

is a satisfying assignment be
ause otherwise the 
entral ray set of some 
lause ball would


ontain the vertex simplex of v. Hen
e, C 
an be satis�ed.

Corollary 7.6. PARTIAL VISIBILITY

B

2

;;

is NP-hard.

Proof. The proof for the 
ase that B

0

is a single point generalizes to the 
ase of a non-

degenerated ball 
entered in 0 with some square of the radius �

0

> 0 by the following


onsideration. Let 0 < �

0

< minf�

1

; : : : ; �

2n

; �

1

; : : : �

k

g, where S

i

= (n; s

i

; �

i

) and C

j

=

(n; 


j

; �

j

) are the stru
tural balls and the 
lause balls in the proof of Lemma 7.5. Further,

let B

0

0

= (n; 0; �

0

). If b is a visibility ray for B

0

then b is in parti
ular a visibility ray

for B

0

0

. Conversely, 
onsider the situation where all the squares of the radii �

i

of the

stru
tural balls S

i

, 1 � i � 2n, and all the squares of the radii �

j

of the 
lause balls C

j

,

1 � j � k, in the proof of Lemma 7.5 are de
reased by �

0

. If b

0

is a visibility ray for B

0

0

in the new situation, then there exists a visibility ray b parallel to b

0

for the single point

B

0

. Hen
e, if the given inequalities in the proofs of Lemma 7.5 hold for both �

i

, �

j

and

for �

0

i

:= �

i

� �

0

, �

0

j

:= �

j

� �

0

, 1 � i � 2n, 1 � j � k, then the redu
tion from 3-SAT

also holds for the non-degenerated ball B

0

0

. The given bounds show that it is possible to


hoose �

0

both in polynomial size and at the same time suÆ
iently small in its value.

7.4.3 The 
ase of V-polytopes

Lemma 7.7. PARTIAL VISIBILITY

P

V

;�;;

is NP-hard. This result persists if the in-

stan
es are restri
ted to those 
onsisting of 
ross polytopes.
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x

1

Fig. 7.3: Imposing dis
rete stru
ture with 
ross polytopes

Proof. We establish a polynomial time redu
tion from 3-SAT to the problem PARTIAL

VISIBILITY

P

V

;�;;

based on the framework in Se
tion 7.4.1.

This time, we 
hoose the 2n stru
tural bodies as 
ross polytopes of the form S

i

(


i

) =


onv(fs

i

(


i

) + �

ij

(


i

)e

j

: 1 � j � ng) with rational 
oeÆ
ients s

i

(


i

), �

ij

(


i

) depending

on the s
aling parameter 


i

. The 
enters of the 
ross polytopes are de�ned by

s

i

(


i

) = 


i

e

i

and s

n+i

(


n+i

) = �


n+i

e

i

; 1 � i � 2n :

Now we spe
ify the 
oeÆ
ients �

ij

. By symmetry, similar to the proof of Lemma 7.5, it

suÆ
es to 
onsider the 
ross polytope S

1

(


1

) whi
h we abbreviate by S = 
onv(fs+�

j

e

j

:

1 � j � ng) impli
itly assuming the dependen
e on 
 := 


1

; see Figure 7.3.

For any 
hoi
e of the parameters �

2

; : : : ; �

n

> 0, the (n�1)-dimensional 
ross polytope

S

0

= 
onv(fs + �

j

e

j

: 2 � j � ng) is 
ontained in the hyperplane x

1

= 
. Similar to

the 
ase of the balls, two 
onditions are imposed on the 
hoi
e of �

2

; : : : ; �

n

. Firstly, the


entral ray set of S

0

must not 
ontain the verti
es f1g�f�1; 1g

n

. Se
ondly, the 
entral ray

set of S

0

must 
over those points resulting from the verti
es of the fa
et f1g � [�1; 1℄

n�1

by dividing exa
tly one of the last n� 1 
omponents by 2.

We 
hoose �

2

= : : : = �

n

. The ne
essary upper and lower bounds for �

2

result as

follows. Without loss of generality we 
onsider the 
entral ray (1; : : : ; 1)

T

. The vertex


(1; : : : ; 1)

T

of 
[�1; 1℄

n

is 
ontained in a fa
et of the (n� 1)-dimensional 
ross polytope


onv(fs� 
(n� 1)e

j

: 2 � j � ng). On the other hand, the point 
(1; 1; 1; : : : ; 1; 1=2)

T

is 
ontained in a fa
et of the (n� 1)-dimensional 
ross polytope with verti
es 
onv(fs�


(n� 3=2)e

j

g), 2 � j � n. Hen
e, if �

2

satis�es




�

n�

3

2

�

< �

2

< 
 (n� 1)

then the two 
onditions enfor
ing the dis
rete stru
ture are satis�ed.

In order to make the (n � 1)-dimensional polytope S

0

full-dimensional we 
onsider

some " with 0 < " < 
. Then s� "e

1

2 pos S

0

. Hen
e, by adding the verti
es s� "e

1

we

obtain an n-dimensional 
ross polytope S having the same 
entral ray set as S

0

.

Now we show how to represent a 
lause by a 
ross polytope. On
e more, we assume

that the 
lause is given by y

1

1

_ y

0

2

_ y

1

3

. Let C be the 
ross polytope C = 
onv(f
� �

j

e

j

:



144 7. Algorithmi
 
omplexity of visibility 
omputations with moving viewpoints

2 � j � ng) with 
 = Æ(1;�1; 1; 0; : : : ; 0)

T

and 
oeÆ
ients �

j

(also depending on the

parameter Æ) as de�ned in the following.

For any 
hoi
e of parameters �

4

; : : : ; �

n

> 0, the (n � 3)-dimensional 
ross polytope

C

0

= 
onv(f
� �

j

e

j

: 2 � j � ng) is 
ontained in the (n� 3)-dimensional plane x

1

= Æ,

x

2

= �Æ, x

3

= Æ. We 
hoose �

4

= : : : = �

n

. Moreover, we make the (n � 3)-dimensional


ross polytope C

0

full-dimensional by adding the verti
es 
 � "e

j

, 1 � j � 3, for some

parameter 0 < " < Æ. If �

4

= 2(n� 3) then the point Æ(1;�1; 1=2; 1; : : : ; 1)

T

is 
ontained

in the n-dimensional 
ross polytope. Hen
e, by 
hoosing �

4

> 2(n � 3) the 
entral ray

set of C 
overs all the points in (1;�1; 1)� f�1; 1g

n�3

as well as their vertex simpli
es.

Moreover, sin
e the whole 
entral ray set of the 
ross polytope is lo
ated in the orthant

de�ned by x

1

� 0, x

2

� 0, x

3

� 0, none of the ve
tors in f�1; 1g

n

n (1;�1; 1)�f�1; 1g

n�3

is 
overed by the 
entral ray set of the ball.

Similar to the proof of Lemma 7.5, we 
an 
hoose the parameters 


1

; : : : ; 


2n

, Æ

1

; : : : ; Æ

k

,

and " (for making the bodies n-dimensional) in su
h a way that the bodies are pairwise

disjoint and that their en
oding lengths remain polynomially bounded. Hen
e, the polyno-

mial time redu
tion from 3-SAT follows in the same way as in the proof of Theorem 7.5.

Using an in
lusion te
hnique like in Lemma 7.6 we obtain the following 
orollary.

Corollary 7.8. PARTIAL VISIBILITY

P

V

;;

is NP-hard. This result remains true if the

instan
es are restri
ted to those 
onsisting of 
ross polytopes.

Lemma 7.9. PARTIAL VISIBILITY

P

V

;�

is 
ontained in NP.

Proof. Let (m;n;P

0

; : : : ; P

m

) be an instan
e of PARTIAL VISIBILITY

P

V

;�

with P

0

= f0g

and V-polytopes P

1

; : : : ; P

m

, and let F

n�2

(P

i

) denote the set of all (n � 2)-dimensional

fa
es of P

i

, 1 � i � m. Further let lin F denote the linear hull of a set F . The set of all

linear subspa
es lin F , F 2 F

n�2

(P

i

), naturally de
omposes the unit sphere S

n�1

:= fx 2

R

n

: jjxjj = 1g into (n � 1)-dimensional se
tors. For two 
entral rays belonging to the

same se
tor either both of them are visibility rays or none of them.

We show: if the single point P

0

is partially visible then there exists a 
erti�
ate of

polynomial size. Let [0;1)q be a visibility ray for P

0

spanned by some ve
tor q 2 R

n

nf0g.

By the de
omposition of S

n�1

into equivalen
e 
lasses we 
an assume that the linear

subspa
e Rq is the interse
tion of (at most) n � 1 linear subspa
es lin F

1

; : : : ; lin F

n�1

with F

1

; : : : ; F

n�1

2

S

m

i=1

F

n�2

(P

i

).

Of 
ourse, the number of 
ombinatorial 
hoi
es for F

1

; : : : ; F

n�1

might grow expo-

nentially in the input size. However, the following 
onsiderations show that the witness

ve
tor q 
an be represented in polynomial size nevertheless. For any subspa
e lin F

i

the

V-presentation of F

i

immediately gives a generating system of polynomial size. Sin
e Rq

is the interse
tion of at most n � 1 of these subspa
es, we 
an �nd a witness ve
tor of

polynomial size.

It remains to show: one 
an verify in polynomial time that a given witness ray does

not interse
t with the interior of any of the polytopes P

i

. Sin
e the number of polytopes
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x

1

x

2

(a) Initial obje
t (b) After de
omposition

Fig. 7.4: Representing a 2-
lause

is bounded by the input length of the instan
e, it suÆ
es to explain this polynomial

veri�
ation method for a single polytope P 2 fP

1

; : : : ; P

m

g. Let the V-presentation of P

be P = 
onv(fv

1

; : : : ; v

k

g) with ve
tors v

1

; : : : ; v

k

2 R

n

. P does not interse
t with the

ray [0;1)q if and only if the system

P

k

i=1

�

i

v

i

= �q ;

P

k

i=1

�

i

= 1 ;

�

i

� 0 ; 1 � i � k ;

� � 0

does not have a solution. This 
an be 
he
ked in polynomial time by linear programming.

However, if P \ [0;1)q 6= ; then we still have to 
he
k whether int(P ) \ [0;1)q 6= ;.

Let �

1

:= min� and �

2

:= max� under the linear 
onstraints stated before. Obviously,

int(P ) \ [0;1)q 6= ; if and only if the point p :=

1

2

(�

1

+ �

2

)q is 
ontained in int(P ). By


onsidering the k linear programs

max�

j

P

k

i=1

�

i

v

i

= p ;

P

k

i=1

�

i

= 1 ;

�

i

� 0 ; 1 � i � k ;

(1 � j � k) we 
an 
ompute whi
h of the ve
tors v

j

o

urs with non-zero 
oeÆ
ient in

some 
onvex 
ombination p =

P

k

i=1

�

i

v

i

. Now p 2 int(P ) if and only if this set of ve
tors

has aÆne dimension n. Altogether, veri�
ation of a witness ray 
an be done in polynomial

time.

7.4.4 The 
ase of H-polytopes

Lemma 7.10. PARTIAL VISIBILITY

P

H

;;

is NP-hard. This statement persists if we

restri
t the polytopes to be n-dimensional boxes.
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Proof. We give a polynomial time redu
tion from 3-SAT. This time the proof di�ers from

the given framework. We begin with the 
ase where P

0

is a single point lo
ated in the

origin.

For notational 
onvenien
e, 
onsider the 
lause y

1

1

_ y

0

2

_ y

1

3

. We 
onstru
t a set of

polytopes ensuring that 
entral rays spanned by some ve
tor b 2 R

n

with b

1

� 0, b

2

� 0,

b

3

� 0 
annot be visibility rays. Figure 7.4 depi
ts the idea of the 
onstru
tion for two

variables y

1

, y

2

, and the 2-
lause y

1

1

_ y

0

2

: the polytopes will originate from a \big" n-

dimensional box in whi
h a small n-dimensional 
ube is 
ut o� (see Figure 7.4(a)) and

whi
h is then de
omposed to re-establish boxes (see Figure 7.4(b))

When representing the 
lause, we have to take 
are that in the visibility problem only

the interior points of the boxes P

1

; : : : ; P

m

are 
onsidered. As a 
onsequen
e, we have

to extend the boxes blo
king P

0

slightly a
ross the 
oordinate hyperplanes. For some

parameters ", Æ with 0 < " < Æ we de�ne the box Q by

�Æ � x

1

� " ; �" � x

2

� Æ ; �Æ � x

3

� " ; �Æ � x

j

� Æ ; 4 � j � n : (7.2)

Sin
eQ 
ontains the origin, we 
onsider Qn[�"; "℄

n

instead. In order to re-establish 
onvex

bodies, we de
ompose Q n [�"; "℄ into smaller boxes Q

1

; : : : ; Q

r

. This de
omposition will

satisfy the following 
onditions.

(a) int(Q

1

); : : : ; int(Q

r

) are disjoint and do not 
ontain the origin.

(b) For any ve
tor a 2 fTrue;Falseg

n

one of the boxes Q

1

; : : : ; Q

r

interse
ts the


entral ray in dire
tion (t(a

1

); : : : ; t(a

n

))

T

if and only if t(a

1

) = �1, t(a

2

) = 1,

t(a

3

) = �1.

Let E = f(x

1

; x

2

; x

3

)

T

: �Æ � x

1

� "; �" � x

2

� Æ; �Æ � x

3

� "g. For 1 � i � n� 3,

de�ne the boxes Q

2i�1

, Q

2i

by the following 
onditions.

Q

2i�1

: (x

1

; x

2

; x

3

)

T

2 E ;

�Æ � x

j

� Æ; 4 � j < n� i+ 1 ;

�Æ � x

n�i+1

� �" ;

�" � x

j

� "; n� i+ 1 < j � n ;

Q

2i

: (x

1

; x

2

; x

3

)

T

2 E ;

�Æ � x

j

� Æ; 4 � j < n� i+ 1 ;

" � x

n�i+1

� Æ ;

�" � x

j

� "; n� i+ 1 < j � n :

These boxes su

essively 
ut o� parts of Q. In parti
ular, Q n

S

k

i=1

(Q

2i�1

[Q

2i

), 1 � k �

n� 3, results in the subset of R

n

satisfying

(x

1

; x

2

; x

3

)

T

2 E ;

�Æ � x

j

� Æ ; 4 � j < n� k + 1 ;

�" � x

j

� " ; n� k + 1 � j � n :



7.4. Complexity results for variable dimension 147

Further let Q

2n�5

, Q

2n�4

, Q

2n�3

serve to 
ut o� the parts referring to the variables

x

1

; x

2

; x

3

:

Q

2n�5

: �Æ � x

1

� " ; �" � x

2

� Æ ; �Æ � x

3

� �" ;

�" � x

j

� " ; 4 < j � n ;

Q

2n�4

: �Æ � x

1

� " ; " � x

2

� Æ ; �" � x

3

� " ;

�" � x

j

� " ; 4 < j � n ;

Q

2n�3

: �Æ � x

1

� �" ; �" � x

2

� " ; �" � x

3

� " ;

�" � x

j

� " ; 4 < j � n :

Then Q n

S

2n�3

i=1

Q

i

results to

�" � x

j

� " ; 1 � j � n :

In other words: the union of Q

1

; : : : ; Q

2n�3

results to Q with the ex
eption of a small 
ube


ontaining the origin. Note that the interior parts of Q

1

; : : : ; Q

2n�3

are pairwise disjoint.

Now we show that 
ondition (b) is satis�ed. First let a 2 fTrue;Falseg

n

with

t(a

1

) = �1, t(a

2

) = 1, t(a

3

) = �1. Sin
e Q n

S

2n�3

i=1

Q

i

= [�"; "℄

n

and by (7.2), one of the

open boxes int(Q

i

) interse
ts with the 
entral ray spanned by (t(a

1

); : : : ; t(a

n

))

T

. Namely,

the points �(t(a

1

); : : : ; t(a

n

))

T

with � 2 ("; Æ) are 
ontained in Q but not in [�"; "℄.

Conversely, let a 2 fTrue;Falseg

n

and for some j 2 f1; : : : ; 2n�3g let int(Q

j

) interse
t

with the 
entral ray spanned by (t(a

1

); : : : ; t(a

n

))

T

. Sin
e all entries of this ve
tor are

of absolute value 1, there exists some � 2 ("; Æ) su
h that �(t(a

1

); : : : ; t(a

n

))

T

2 int(Q

j

).

Hen
e, the de�nitions of Q;Q

1

; : : : ; Q

2n�3

imply t(a

1

) = �1, t(a

2

) = 1, t(a

3

) = �1.

The essential reason why it suÆ
es to 
onsider the interior parts of Q

j

, 1 � j � 2n�3,

for the interse
tions is that none of their fa
ets is 
ontained in one of the 
oordinate

hyperplanes x

i

= 0. For exa
tly the same reason it is possible to make every box slightly

smaller and therefore properly disjoint.

For di�erent 
lauses C

i

and C

j

, i < j, of the 3-SAT formula C we have to ensure that

the resulting 
ubes are all disjoint. This 
an be a
hieved by suitably setting "

i

; Æ

i

and

"

j

; Æ

j

for the 
lauses C

i

and C

j

. If "

j

> Æ

i

then the boxes of C

i

and C

j

do not interse
t with

ea
h other.

Finally, we show that the 3-SAT formula C is satis�able if and only if B

0

is partially

visible. First let a 2 fTrue;Falseg

n

be a satisfying assignment for C. Sin
e a is a satis-

fying assignment for every 3-
lause C

j

, 
ondition (b) guarantees that (t(a

1

); : : : ; t(a

n

))

T

is

a visibility ray for B

0

. Conversely, let [0;1)b be a visibility ray for B

0

spanned by some

ve
tor b 2 R

n

. De�ne the modi�ed sign fun
tion sg : R ! f�1; 1g by

sg(x) =

(

1 if x � 0 ;

�1 if x < 0 :

Hen
e, by de�nition of the boxes, the ve
tor (sg(b

1

); : : : ; sg(b

n

))

T

is a visibility ray. By 
on-

dition (b), a := (t

�1

(sg(b

1

)); : : : ; t

�1

(sg(b

n

)))

T

satis�es every 3-
lause C

j

. Consequently,

C is satis�able.
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Finally, we remark that the single point P

0


an be repla
ed by a suÆ
iently small


ube, sin
e none of the fa
ets of the boxes lies in a hyperplane 
ontaining the origin.

Lemma 7.11. PARTIAL VISIBILITY

P

H

;�

is 
ontained in NP.

Proof. Similar to the proof of Lemma 7.9 we show: if the single point P

0

is partially visible

then there exists a 
erti�
ate of polynomial size. On
e more, it suÆ
es to 
onsider the rays

[0;1)b resulting from the interse
tion of at most n�1 subspa
es lin F

1

; : : : ; lin F

n�1

with

F

1

; : : : ; F

n�1

2 [

m

i=1

F

n�2

(P

i

). The H-presentations of F

1

; : : : ; F

n�1

immediately give an

H-presentation of the one-dimensional subspa
e Rb. Hen
e, there exists a witness ve
tor b

of polynomial size. Finally, it 
an be 
he
ked in polynomial time, whether a given witness

ray [0;1)b interse
ts with the interior of at least one of the H-polytopes P

1

; : : : ; P

m

.

7.4.5 Quadrant visibility

In Se
tions 7.4.1{7.4.4 our hardness results for PARTIAL VISIBILITY were based on

redu
tions from 3-SAT in whi
h any assignment a 2 fTrue;Falseg

n

was identi�ed with

one of the 2

n

quadrants in R

n

. For that reason, the question arises whether the hardness

results still hold for more restri
ted viewpoint areas, say, for those viewpoint areas whi
h

are 
ontained in a single quadrant.

In the following we prove the part of Theorem 7.2 whi
h says that the hardness results

also hold QUADRANT VISIBILITY.

Lemma 7.12. QUADRANT VISIBILITY

B

2

;�;;

is NP-hard.

Proof. On
e more, we provide a redu
tion from 3-SAT, and therefore 
onsider a 3-SAT

formula in the variables y

1

; : : : ; y

n

. The essential idea of the redu
tion is to 
onstru
t an

instan
e of QUADRANT VISIBILITY in (n + 1)-dimensional spa
e R

n+1

. The 
entral

ray with dire
tion v := (1; : : : ; 1)

T

is 
ontained in the positive orthant Q of R

n+1

. By


onsidering a hyperplane whi
h is orthogonal to v and whi
h interse
ts (0;1)v, we transfer

the proof ideas of PARTIAL VISIBILITY to QUADRANT VISIBILITY.

In order to simplify notation, we apply an orthogonal transformation to transform

the diagonal ray [0;1)v into [0;1)e

n+1

, the non-negative part of the x

n+1

-axis. By this

operation, Q is transformed into a 
one Q

0

. Similar to the proof of Lemma 7.5, we impose

a dis
rete stru
ture on the visibility problem. Namely, for some positive parameter � > 0

spe
i�ed below, we asso
iate the 2

n

truth assignments fTrue;Falseg

n

with the 
entral

rays spanned by the ve
tors f��; �g

n

� f1g. Note that the set [��; � ℄

n

� f1g is an n-

dimensional 
ube in R

n+1

.

In order to a
hieve this dis
rete stru
ture, we pla
e 2n+ 1 stru
tural balls S

i

(


i

; �) =

(n; s

i

(


i

; �); �

i

(


i

; �)), 0 � i � 2n, at the 
enters 


0

= 


0

e

n+1

, 


i

= 


i

(e

n+1

+ �e

i

), 


n+i

=




n+i

(e

n+1

� �e

i

), 1 � i � n. In 
ontrast to the proofs for PARTIAL VISIBILITY, the


enters of the stru
tural balls do not only depend on positive parameters 


i

, but also on

the global positive parameter � . Figure 7.5 shows this situation for the 
ase n = 2. The

parameter � is 
hosen su
h that the n-dimensional 
ube [��; � ℄

n

�f1g is 
ontained in Q

0

.
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xn+1 = x3

x1

x2

c1

xn+1 = x3

x1

x2

c1

xn+1 = x3

x1

x2

c1

xn+1 = x3

x1

x2

c1

xn+1 = x3

x1

x2

c1

xn+1 = x3

x1

x2

c1

Fig. 7.5: Imposing dis
rete stru
ture on QUADRANT VISIBILITY in 
ase n = 2 and 


0

=

: : : = 


2n

=: 
 (so all the 
enters of the stru
tural balls are 
ontained in the hyperplane

x

n+1

= 
). The positive hull of the triangle represents Q

0

, the positive orthant after

the orthogonal transformation.

The squares of the radii s

i

(


i

; �), 1 � i � n, of the stru
tural balls 
an be 
hosen su
h

that any visibility ray must be 
lose to a vertex of the n-dimensional 
ube; this establishes

the dis
rete stru
ture. In a se
ond step, the parameters 


i


an be used to s
ale the balls

in order to make them disjoint.

Then, similar to the proof of Lemma 7.6, we 
an 
onstru
t balls representing the 
lauses

of the 3-SAT formula in order to 
omplete the desired polynomial time redu
tion.

Similar to proof of Lemma 7.6, we 
an extend this result to the 
ase QUADRANT

VISIBILITY

B

2

;;

, where B

0

is a proper ball. Moreover, by 
ombining the proofs of Lemmas

and Corollaries 7.7{7.11 with a lifting into R

n+1

, the hardness results 
an also be estab-

lished for the 
ase of V- and H-polytopes. Note that the proof te
hnique of Lemma 7.12


an also be generalized to establish hardness results for other 
lasses of viewpoint areas.

7.5 Polynomial solvability results for �xed dimension

In order to prove the polynomial solvability results for �xed dimension, we use the fa
t

that for �xed dimension the theory of real 
losed �elds 
an be de
ided in polynomial

time [7, 29℄. More pre
isely, for rational polynomials p

1

(x

1

; : : : ; x

n

); : : : ; p

l

(x

1

; : : : ; x

n

)

in the variables x

1

; : : : ; x

n

, a Boolean formula over p

1

; : : : ; p

l

is de�ned as a Boolean


ombination (allowing the operators ^, _, NOT) of polynomial equations and inequalities

of the type p

i

(x

1

; : : : ; x

n

) = 0 or p

i

(x

1

; : : : ; x

n

) � 0. We 
onsider the following de
ision

problem for quanti�ed Boolean formulas over the real numbers.
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Problem REAL QUANTIFIER ELIMINATION:

Instan
e: n, l, rational polynomials p

1

(x

1

; : : : ; x

n

); : : : ; p

l

(x

1

; : : : ; x

n

), a

Boolean formula '(x

1

; : : : ; x

n

) over p

1

; : : : ; p

l

, and quanti�ers

Q

1

; : : : ; Q

n

2 f8 ; 9 g.

Question: De
ide the truth of the statement

Q

1

(x

1

2 R) : : : Q

n

(x

n

2 R) '(x

1

; : : : ; x

n

) :

In [7, 29℄ it was shown:

Proposition 7.13. For �xed dimension n, REAL QUANTIFIER ELIMINATION 
an

be de
ided in polynomial time.

Remark 7.14. In spite of this polynomial solvability result for �xed dimension, 
urrent

implementations are only 
apable of dealing with very small dimensions. Generally, there

are two approa
hes towards pra
ti
al solutions of de
ision problems over the reals. One

is based on Collins' 
ylindri
al algebrai
 de
omposition (CAD) [29℄, and the other is the


riti
al point method ([61℄; for the state of the art see [5℄).

In order to prove polynomial solvability of PARTIAL VISIBILITY

B

2

for �xed dimen-

sion, we formulate the problem algebrai
ally. We represent a ray p+ [0;1)q by its initial

ve
tor p 2 R

n

and a dire
tion ve
tor q 2 R

n

with jjqjj = 1. B

0

is partially visible with

respe
t to B

0

= (n; 


0

; �

0

); : : : ; B

m

= (n; 


m

; �

m

) if and only if there exist p; q 2 R

n

su
h

that for all � 2 R the following formula holds:

jjqjj

2

= 1 ;

and jjp� 


0

jj

2

� �

0

;

and (� < 0 _ jjp+ �q � 


i

jj

2

� �

i

) ; 1 � i � m :

Hen
e, we have to de
ide the truth of the following statement:

9p 2 R

n

9q 2 R

n

8� 2 R

jjqjj

2

= 1 ^ jjp� 


0

jj

2

� �

0

^

�

(� < 0 _ jjp+ �q � 


i

jj

2

� �

i

) ; 1 � i � m

�

:

After expanding the Eu
lidean norm and applying some trivial transformations (su
h as

establishing the mentioned normal form p

i

(x

1

; : : : ; x

n

) � 0 for the polynomial inequali-

ties), this is a quanti�ed Boolean formula of the required form. Hen
e, Proposition 7.13

implies the following statement.

Lemma 7.15. For �xed dimension n, PARTIAL VISIBILITY

B

2


an be solved in polyno-

mial time.
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For the 
ase of H-polytopes, let P

i

= fx 2 R

n

: A

i

x � b

i

g with A

i

2 Q

k

i

�n

, b

i

2 Q

k

i

,

0 � i � m. P

0

is partially visible if and only if there exist p; q 2 R

n

su
h that for all

� 2 R we have

jjqjj

2

= 1 ;

and A

0

p � b

0

;

and (� < 0 _ NOT(A

i

(p+ �q) < b

i

)) ; 1 � i � m :

Applying Proposition 7.13 on this formulation we 
an 
on
lude:

Lemma 7.16. For �xed dimension n, PARTIAL VISIBILITY

P

H


an be solved in poly-

nomial time.

Sin
e for �xed dimension n, a V-polytope 
an be transformed into a H-polytope in

polynomial time [44℄, this also implies

Corollary 7.17. For �xed dimension n, PARTIAL VISIBILITY

P

V


an be solved in poly-

nomial time.

Similarly, by small modi�
ations of the proofs, the polynomial time solvability results

for PARTIAL VISIBILITY 
an also be transferred to QUADRANT VISIBILITY.

7.6 On the frontiers of Theorems 7.2 and 7.3

Theorems 7.2 and 7.3 do not guarantee membership of PARTIAL VISIBILITY

B

2

or PAR-

TIAL VISIBILITY

B

2

;�

in NP. Let us illuminate this situation from the algebrai
 point of

view. First note that even though quanti�er elimination methods 
an de
ide PARTIAL

VISIBILITY

B

2

for �xed dimension in polynomial time (see Lemma 7.15), it is not known

how to 
ompute a short witness of a positive solution with these methods (see [7℄).

Combining the algorithmi
, the algebrai
, and the 
omplexity-theoreti
al viewpoint,

the situation looks as follows. For PARTIAL VISIBILITY

B

2

or PARTIAL VISIBIL-

ITY

B

2

;�

, we 
an 
onstru
t instan
es in R

n

whi
h have exa
tly a single visibility ray.

This visibility ray 
an be seen as a 
ommon tangent line to several spheres. Hen
e, the

question of membership in NP is tightly 
onne
ted to the algebrai
 
hara
terization of the


ommon tangent lines to a given set of spheres in R

n

from Se
tion 5.1.

Similarly, Theorems 7.2 and 7.3 do not guarantee membership of PARTIAL VISIBIL-

ITY

P

H

or PARTIAL VISIBILITY

P

V

in NP. These questions are tightly 
onne
ted to

the 
ommon transversals to 2n�2 given (n�2)-dimensional planes in R

n

. For algebrai



hara
terizations of this problem see Se
tion 5.2.1.

In both 
ases (balls and polytopes), the algebrai
 degree statements in the ora
le model

are re
e
ted by our hardness results in the Turing ma
hine model. However, we do not

know in how far the algebrai
 
hara
terizations for balls or polytopes 
an be exploited for

proving a short witness visibility ray.
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Con
erning NP-hardness, Theorem 7.2 does not in
lude a statement for PARTIAL

VISIBILITY

B

2

;;

or PARTIAL VISIBILITY

B

2

;�;;

if the balls are restri
ted to be unit

balls. However, the following statement shows that in \Yes"-instan
es of PARTIAL

VISIBILITY

B

2

;;

the number of balls ne
essarily grows exponentially in the input dimen-

sion n. Even if this does not rule out the existen
e of a polynomial time algorithm (sin
e

the running time of the algorithm is not measured in terms of the dimension n but in the

overall length of the input size), it might give a useful suÆ
ient 
riterion for large input

dimensions.

Lemma 7.18. Let n � 6, m 2 N, and let B

0

; B

1

; : : : ; B

m

be a set of n + 1 disjoint unit

balls in R

n

. If m <

p

3n e

3

8

(n�1)

then B

0

is partially visible with respe
t to B

1

; : : : ; B

m

.

Proof. Without loss of generality we 
an assume that B

0

is the unit ball 
entered in the

origin. Let 0 < r < 1 and H be a hyperplane in R

n

at distan
e r from the origin. Then

the set of points on the unit sphere separated from the origin by H is 
alled an r-
ap.

Sin
e any ball B

i

, 1 � i � m, is disjoint from B

0

, an elementary geometri
 inspe
tion

shows that pos(B

i

) interse
ts the unit sphere in an r-
ap with

p

3=2 < r < 1. A ne
essary


ondition for B

0

being not partially visible is that these r-
aps 
over the unit sphere. Let

�(n; r) denote the minimum number of r-
aps 
overing the unit sphere. By Lemma 5.2

in [20℄, for r > 2=

p

n we have

�(n; r) � 2r

p

ne

r

2

(n�1)=2

:

Substituting the value r =

p

3=2 into this formula implies the desired estimation.

7.7 Partial visibility and view obstru
tion

Throughout this thesis, we have investigated the hardness of visibility 
omputations with

moving viewpoints with regard to the underlying algebrai
 
omplexity and with regard

to 
omputational 
omplexity. In this �nal se
tion, we would like to mention a related

number-theoreti
al aspe
t.

In 1968, Wills investigated the following problem of diophantine approximation [150℄.

Let jjxjj

I

denote the distan
e of a real number x to the nearest integer. For any n 2 N

and v

1

; : : : ; v

n

2 N , let

d(v

1

; : : : ; v

n

) = sup

�2[0;1℄

min

1�i�n

jj�v

i

jj

I

;

and

�(n) = inf

v

1

;::: ;v

n

2N

d(v

1

; : : : ; v

n

)

= inf

v

1

;::: ;v

n

2N

sup

�2[0;1℄

min

1�i�n

jj�v

i

jj

I

:
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x

1

x

2

1

1

Fig. 7.6: The pi
ture shows the situation of the view obstru
tion problem in R

2

. In parti
ular,

�(2) =

1

3

.

Based on the pigeonhole prin
iple, Wills showed

1

2n

� �(n) �

1

n+1

and 
onje
tured

�(n) =

1

n+1

. This 
onje
ture was later restated by Cusi
k [34℄ who interpreted it as a

visibility problem 
alled view obstru
tion. Let C = [�

1

2

;

1

2

℄

n

. For some fa
tor � > 0,


onsider the in�nite set of 
ubes

(

�




1

+

1

2

; : : : ; 


n

+

1

2

�

T

+ �C : 


1

; : : : ; 


n

2 N

0

)

: (7.3)

Now the problem is to determine the supremum of � > 0 su
h that there exists a visibility

ray in the stri
tly positive orthant (see Figure 7.6). This supremum, 
alled �(n), 
an be

written as

�(n) = 2 sup

!

1

;::: ;!

n

2(0;1)

inf

x2(0;1)

max

1�i�n

jj!

i

x�

1

2

jj

I

:

The following statement from [34, 150℄ establishes the 
onne
tion between Wills' prob-

lem and the view obstru
tion problem.

Proposition 7.19. For n � 2 we have �(n) = 1� 2�(n) :

Yet another approa
h to the same 
ore problem 
alled lonely runner has been given

in [12℄. In spite of many resear
h e�orts during the last 30 years, the exa
t value of �(n)

is known only for values up to 5 ([13℄). For n � 6, only upper and lower bounds have

been determined. If one 
onsiders balls instead of 
ubes [35℄, then the exa
t values for

the view obstru
tion problem are also known up to dimension 5 ([39℄).

Let us 
lose the present thesis by dis
ussing some tight 
onne
tions between our 
om-

plexity results and the view obstru
tion problem. First of all, the number-theoreti
al
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papers do not give any real eviden
e why determining �(n) is hard. Although, of 
ourse,

the view obstru
tion problem involves an in�nite number of bodies, our 
omplexity re-

sults for �nite instan
es 
an be seen as a 
ertain 
omplexity-theoreti
al indi
ation for

the hardness of this evaluation. Namely, by Theorem 7.3, for �xed dimension PARTIAL

VISIBILITY or QUADRANT VISIBILITY 
an be solved in polynomial time. However,

if the dimension is part of the input, then the problem be
omes NP-hard by Theorem 7.2.

In a non-rigorous sense, this 
an be seen as a quanti�
ation of the strong in
uen
e of the

dimension 
ompared to the other input parameters.

Another 
onne
tion whi
h we would like to point out refers to 
hara
terizing some easy

instan
es of PARTIAL VISIBILITY or QUADRANT VISIBILITY. Namely, 
onsider the

view obstru
tion problem in R

n

. If the edge length � of the 
ubes in (7.3) satis�es

� � �(n) then there exists a visibility ray [0;1)q in the stri
tly positive orthant for

this visibility problem with in�nitely many 
ubes. Fix this ray, and 
onsider now the

following 
lass of n-dimensional instan
es of QUADRANT VISIBILITY. The bodies are


ubes whose 
enters are 
ontained in the grid (

1

2

; : : : ;

1

2

)

T

+ N

n

0

, and every 
ube has an

edge length at most �(n). Additionally, let there be bodies whi
h do not interse
t the ray

[0;1)q and whi
h guarantee that there 
annot be a visibility ray whi
h has a dire
tion

\quite 
lose" to one of the 
oordinate hyperplanes. By the de�nition of �(n) we know

that in this instan
e the answer is \VISIBLE". So the 
hara
terization of that 
lass might

be seen as a suÆ
ient 
riterion for QUADRANT VISIBILITY (or similarly for PARTIAL

VISIBILITY), and progress on the evaluation of �(n) might { at least theoreti
ally {

improve the 
hara
terization of that 
lass.
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DEUTSCHSPRACHIGE ZUSAMMENFASSUNG

New algebrai
 methods in 
omputational geometry {

Neue algebrais
he Methoden in der algorithmis
hen Geometrie

Gegenstand der Arbeit sind fundamentale algebrais
h-geometris
he Probleme in der

ni
htlinearen algorithmis
hen Geometrie, die beispielsweise bei Si
htbarkeitsproblemen

mit bewegten Kamerapunkten oder der Bere
hnung minimal eins
hlie�ender Kreiszylinder

von Punktmengen im R

n

(n � 3) auftreten.

Im dreidimensionalen Fall f

�

uhren die algorithmis
hen Probleme auf Anzahl- und End-

li
hkeitsfragen der Form: Wie viele Geraden gibt es (im Endli
hkeitsfall) im R

3

, die glei
h-

zeitig Transversale zu k vorgegebenen Geraden und Tangente an 4�k vorgegebene Sph

�

aren

im R

3

sind (0 � k � 3) ? Unter wel
hen Bedingungen gibt es unendli
h viele sol
her Gera-

den? Bereits f

�

ur den Fall von Einheitssph

�

aren stellte die Anzahlfrage ein von D. Larman

im Jahr 1990 aufgeworfenes o�enes Problem dar.

Vom algebrais
hen Standpunkt sind hierzu die reellen L

�

osungen polynomialer Glei-


hungssysteme zu studieren. Ausgehend von Fragen des obigen Typs werden in der Arbeit

algebrais
he Methoden zur L

�

osung dieser reell-enumerativen Fragen f

�

ur wi
htige Klas-

sen geometris
her Tangentenprobleme im dreidimensionalen sowie n-dimensionalen Raum

entwi
kelt.

In Kapitel 2 der Arbeit werden die zugrundeliegenden geometris
hen und algorithmi-

s
hen Grundlagen zusammengestellt. Insbesondere wird ein sweep-basierter Algorithmus

zur L

�

osung des zweidimensionalen Si
htbarkeitproblems vorgestellt sowie gezeigt, wie im

dreidimensionalen Fall die algorithmis
hen Probleme auf die algebrais
h-geometris
hen

Kernprobleme zur

�

u
kgef

�

uhrt werden k

�

onnen. Ferner werden Tangentialbedingungen in li-

niengeometris
hen Pl

�

u
kerkoordinaten formuliert, die in den weiteren Kapiteln von grund-

legender Bedeutung sind.

In Kapitel 3 wird das Problem der gemeinsamen Tangenten an vier Sph

�

aren studiert.

F

�

ur den Fall aÆn unabh

�

angiger Mittelpunkte wird eine Formulierung des Problems als

S
hnittpunkte einer kubis
hen sowie einer quartis
hen Kurve in der projektiven Ebene P

2

angegeben. Ans
hlie�end wird der Fall von Einheitssph

�

aren betra
htet. Es wird folgender

Satz gezeigt, der das Problem von D. Larman vollst

�

andig l

�

ost:

Satz. Vier Einheitssph

�

aren im R

3

mit ni
ht-kollinearen Mittelpunkten haben h

�

o
hstens

12 gemeinsame Tangenten im R

3

. Diese S
hranke ist s
harf.
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Die Tatsa
he, da� f

�

ur das algebrais
he Problem vom Grad 12 eine exakte Charakteri-

sierung der F

�

alle mit unendli
h vielen gemeinsamen Tangenten angegeben werden kann,

ist besonders bemerkenswert.

Der Beweis der Aussage unters
heidet zwis
hen mehreren F

�

allen. F

�

ur den Fall aÆn

unabh

�

angiger Mittelpunkte sowie einer irreduziblen, kubis
hen Kurve werden die se
hs

Kantenri
htungen des Grundtetraeders untersu
ht, die se
hs ausgezei
hnete Punkte auf

der kubis
hen Kurve de�nieren. Eine genaue Analyse dieser Punkte zeigt, da� die kubi-

s
he Kurve ni
ht in der quartis
hen Kurve enthalten sein kann. Ist die kubis
he Kurve

reduzibel, dann liefern die algebrais
hen Zerfallsbedingungen geometris
he Bedingungen

an das Grundtetraeder, auf deren Grundlage in jedem der zu untersu
henden Unterf

�

alle

ein Endli
hkeitsbeweis gelingt. Der Beweis f

�

ur den Fall aÆn abh

�

angiger Mittelpunkte be-

ruht auf einer direkten Betra
htung der Ellipsen mit vorgegebener kleinerer Halba
hse

dur
h die vier gegebenen Mittelpunkte.

Hinsi
htli
h der Realisierbarkeit von Kon�gurationen wird gezeigt, da� f

�

ur alle Zahlen

k 2 f0; : : : ; 12g eine Kon�guration von vier Einheitssph

�

aren existiert, die auf k vers
hie-

dene, relle, gemeinsame Tangentialgeraden f

�

uhrt.

Ferner wird die Bere
hnung des minimal ums
hreibenden Kreiszylinders eines vor-

gegebenen (ni
ht notwendigerweise regul

�

aren) Tetraeders im R

3

untersu
ht. F

�

ur diese

Optimierungsvariante des Tangentenproblems haben Devillers, Mourrain, Preparata und

Tr�ebu
het polynomiale Formulierungen mit B�ezout-Zahl 60 angegeben. Die Glei
hungen

enthalten einige zus

�

atzli
he L

�

osungen mit Vielfa
hheit 4, und als Folge dieser Vielfa
hhei-

ten sind die Re
henzeiten (mittels aktueller numeris
her L

�

oser polynomialer Glei
hungssy-

steme) um etwa einen Faktor 100 gr

�

o�er als die Re
henzeiten f

�

ur verglei
hbare Probleme,

in denen nur einfa
he L

�

osungen auftreten. Wir verbessern diese Ergebnisse, indem wir eine

polynomiale Formulierung f

�

ur die lokal extremen Zylinder mit B�ezout-Zahl 36 angeben,

bei der jede L

�

osung generis
h die Vielfa
hheit 1 hat. Dar

�

uber hinaus werden Teilklas-

sen von Tetraedern studiert, in denen die Grade der algebrais
hen Formulierungen weiter

verringert werden k

�

onnen.

Wir s
hlie�en Kapitel 3 mit einer kurzen Diskussion dynamis
her Visualisierungsa-

spekte des Tangentenproblems.

Vom algebrais
h-geometris
hen Standpunkt ist das Tangentenproblem an Sph

�

aren aus

folgendem Grund von besonderem Interesse. Die Formulierung des Problems in liniengeo-

metris
hen Pl

�

u
kerkoordinaten ergibt f

�

unf quadratis
he Glei
hungen im reellen projek-

tiven Raum P

5

R

, deren gemeinsame L

�

osungen im komplexen projektiven Raum P

5

eine

gemeinsame Komponente im Unendli
hen enthalten (die f

�

ur die

"

fehlenden\ 2

5

� 12 = 20

L

�

osungen z

�

ahlt). Diese gemeinsame Komponente kann ni
ht dur
h einen einzigen Blow-up

aufgel

�

ost werden.

In Kapitel 4 wird das Problem der gemeinsamen Tangenten an vier allgemeine Qua-

driken im R

3

und P

3

studiert. Zun

�

a
hst wird gezeigt, da� vier reelle Quadriken im dreidi-

mensionalen Raum 32 reelle gemeinsame Tangenten haben k

�

onnen. Hierzu wird f

�

ur dieses

Problem vom Grad 32 konstruktiv eine Familie von Kon�gurationen angegeben, deren

Symmetrien die explizite Untersu
hung der rellen L

�

osungen erm

�

ogli
ht.
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Dar

�

uber hinaus werden 
omputeralgebrais
he Methoden entwi
kelt, um den doppel-

ten Blow-up des Tangentenproblems an Sph

�

aren zu studieren. Hierzu bes
hreiben wir

das Ideal der eindimensionalen Komponente. Dur
h Erweiterung des Polynomrings sowie

Hinzuf

�

ugen geeigneter Polynome simulieren wir den Blow-up im Computeralgebra-System

Singular und studieren das resultierende Ideal sowie den zweiten Blow-up.

In Kapitel 5 werden die verallgemeinerten Probleme der gemeinsamen Tangenten an

2n�2 Sph

�

aren bzw. allgemeine Quadriken im R

n

studiert, insbesondere unter Gesi
hts-

punkten der reellen, abz

�

ahlenden Geometrie. In den algorithmis
hen Anwendungen treten

diese Probleme etwa beim Bere
hnen minimal eins
hlie�ender Zylinder im R

n

auf. F

�

ur den

Fall der Sph

�

aren wird folgende Aussage gezeigt:

Satz. Sei n � 3.

(a) Seien 


1

; : : : ; 


2n�2

2 R

n

von der aÆnen Dimension n, und seien r

1

; : : : ; r

2n�2

> 0.

Haben die 2n�2 Sph

�

aren mit Mittelpunkten 


i

und Radien r

i

nur eine endli
he

Anzahl gemeinsamer Tangentialgeraden in C

n

, dann ist diese Anzahl h

�

o
hstens 3 �

2

n�1

.

(b) Es existiert eine Kon�gurationen mit 3 � 2

n�1

vers
hiedenen, reellen, gemeinsamen

Tangentialgeraden. Dar

�

uber hinaus k

�

onnen sol
he Kon�gurationen mit Einheits-

sph

�

aren erzielt werden.

Ferner werden Kon�guration von Sph

�

aren studiert, deren Mittelpunkte eine aÆne

Dimension kleiner als n haben.

F

�

ur die gemeinsamen Tangenten an 2n�2 Quadriken in P

n

wird gezeigt:

Satz. Zu 2n�2 allgemeinen quadratis
hen Hyper


�

a
hen im P

n

gibt es

d

n

:= 2

2n�2

�

1

n

�

2n� 2

n� 1

�

komplexe gemeinsame Tangentialgeraden an die 2n�2 Hyper


�

a
hen (n � 2). Dar

�

uber

hinaus gibt es eine Kon�guration von quadratis
hen Hyper


�

a
hen im R

n

, f

�

ur die alle

diese Tangentialgeraden reell sind und im aÆnen Raum R

n

liegen.

Der Beweis dieser Aussage beruht auf der Kombination sehr junger Resultate des

reellen S
hubert-Kalk

�

uls und auf die reelle Situation angepa�ten, klassis
hen Perturbati-

onste
hniken. Im Gegensatz zum dreidimensionalen Fall ist der Beweis im n-dimensionalen

Fall ledigli
h existentiell.

Die folgende Tabelle verans
hauli
ht die gro�e Di�erenz zwis
hen der maximalen An-

zahl der (reellen) Tangentialgeraden f

�

ur Sph

�

aren und f

�

ur allgemeine Quadriken.

n 3 4 5 6 7 8 9

3 � 2

n�1

12 24 48 96 192 384 768

d

n

32 320 3584 43008 540672 7028736 93716480
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Dar

�

uber hinaus wird der Fall von 2n�2 Quadriken in P

n

betra
htet, die alle die glei
he

glatte Quadrik in einer vorgegeben Hyperebene enthalten.

Mit Hilfe der Charakterisierungen der Tangenten an 2n�2 Sph

�

aren werden zudem

eÆziente polynomiale Formulierungen zur Bere
hnung minimal ums
hreibender Zylinder

von Simplexen im R

n

vorgestellt und analysiert. Die B�ezout-Zahlen dieser Formulierungen

liefern obere S
hranken f

�

ur die Anzahl lokal extremer Zylinder. Da diese S
hranken ni
ht

s
harf sind, werden f

�

ur kleine Dimensionen bessere S
hranken auf der Grundlage gemis
h-

ter Volumina und dem Satz von Bernstein bestimmt. F

�

ur den Fall regul

�

arer Simplexe wird

mittels elementarer Invariantentheorie gezeigt, da� in einem geeigneten Koordinatensy-

stem der Ri
htungsvektor jedes lokal extremen ums
hreibenden Zylinders h

�

o
hstens drei

vers
hiedene Eintr

�

age enth

�

alt.

Kapitel 6 behandelt die Geraden, die glei
hzeitig tangential an k Sph

�

aren und trans-

versal zu 4�k Geraden im R

3

sind, k 2 f0; : : : ; 4g. Vom algorithmis
hen Standpunkt tre-

ten diese Probleme in den genannten Anwendungen auf, wenn die Klasse der zul

�

assigen

K

�

orpern aus Kugeln und Polytopen besteht. Es werden die s
harfen oberen S
hranken f

�

ur

die Anzahl der gesu
hten Geraden (im Endli
hkeitsfall) im R

3

bestimmt. Zum Na
hweis

der Korrektheit der angegebenen Konstruktionen mit der Maximalzahl an reellen Gera-

den werden teilweise 
omputeralgebrais
he Methoden (Standardbasen in lokalen Ringen)

verwendet. Die Anzahlergebnisse sind in der na
hstehenden Tabelle zusammengefa�t.

S
harfe obere Charakterisierung der

S
hranke 1-Kon�gurationen

4 Geraden 2 (wohlbekannt) ja (wohlbekannt)

3 Geraden, 1 Sph

�

are 4 ja

2 Geraden, 2 Sph

�

aren 8 ja

1 Gerade, 3 Sph

�

aren 12 {

4 Einheitssph

�

aren 12 ja

4 Sph

�

aren 12 {

Wie in der Tabelle angegeben, k

�

onnen f

�

ur den Fall von drei Geraden und einer Sph

�

are

sowie zwei Geraden und zwei Sph

�

aren die F

�

alle mit unendli
h vielen reellen gemeinsa-

men Tangenten exakt 
harakterisiert werden. In den Eintr

�

agen mit einem

"

{\ sind diese

Charakterisierungen o�ene Probleme.

Die Charakterisierung der degenerierten Situationen im Fall dreier Geraden und einer

Sph

�

are erfolgt mittels klassis
her Methoden der Geometrie.

F

�

ur den Fall zweier Geraden und zweier Sph

�

aren sind die degenerierten Situationen von

algebrais
hen Problemen a
hten Grades zu untersu
hen. Zur Untersu
hung der Geometrie

dieser Probleme werden 
omputeralgebrais
he Methoden entwi
kelt und mit klassis
hen

Methoden der Klassi�kation algebrais
her Kurven kombiniert. Zun

�

a
hst wird das allge-

meinere Problem behandelt, bei dem die Sph

�

aren im R

3

dur
h allgemeine Quadriken in

P

3

ersetzt werden. Um die Geometrie dieses Problem zu studieren, werden zwei Geraden

und eine Quadrik in allgemeiner Lage �xiert, und die Menge der (zweiten) Quadriken,
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f

�

ur die es unendli
h viele gemeinsame Transversalen/Tangenten gibt, dur
h eine algebrai-

s
he Kurve bes
hrieben. Diese Kurve ist vom Grad 24 im Raum P

9

der Quadriken. Das

Faktorisieren des Ideals dieser Kurve zeigt, da� sie erstaunli
h reduzibel ist:

Satz. Gegeben seien zwei winds
hiefe Geraden `

1

und `

2

sowie eine allgemeine Quadrik Q

in P

3

. Der Abs
hlu� der Menge der Quadriken Q

0

, f

�

ur wel
he es unendli
h viele Geraden

gibt, die transversal zu `

1

und `

2

sowie Tangente an Q und Q

0

sind, ist eine Kurve vom

Grad 24 im Raum P

9

der Quadriken. Diese Kurve besteht aus 12 ebenen Kegels
hnitten.

Der Beweis dieser Aussage erfolgt dur
h eine genaue Analyse des Ideals, das die al-

gebrais
he Kurve der (zweiten) Quadriken de�niert. Darauf aufbauend wird der Satz mit

Hilfe einer Computerbere
hnung im Computeralgebra-System Singular ausgef

�

uhrt. Der

Erfolg der Bere
hnung h

�

angt ma�gebli
h von der vorangehenden Klassi�kation der Kurve

sowie der

�

Uberf

�

uhrung in Normalformen ab. Ferner wird gezeigt, da� es reelle Geraden

`

1

und `

2

und eine Quadrik Q gibt, f

�

ur die alle 12 Komponenten der Kurve der zweiten

Quadriken reell sind.

Aufbauend auf diesen strukturgeometris
hen Untersu
hungen wird die folgende Cha-

rakterisierung der gemeinsamen Transversalen/Tangenten an zwei Geraden und zwei Sph

�

a-

ren bewiesen.

Satz. Seien S

1

6= S

2

Sph

�

aren, und seien `

1

und `

2

winds
hiefe Geraden im R

3

. Es gibt

unendli
h viele reelle transversale Tangenten zu `

1

, `

2

, S

1

und S

2

in genau den folgenden

F

�

allen:

(1) Die Sph

�

aren S

1

und S

2

ber

�

uhren si
h an einem Punkt p, der auf einer der Geraden

liegt, und die zweite Gerade liegt in der gemeinsamen Tangentialebene der Sph

�

aren

am Punkt p.

(2) `

1

und `

2

sind beide Tangenten sowohl von S

1

als au
h von S

2

, und sie gehen dur
h

eine Rotation um eine die Mittelpunkte von S

1

und S

2

verbindende Gerade hervor.

In Kapitel 7 werden die algebrais
hen Ergebnisse dur
h komplexit

�

atstheoretis
he Un-

tersu
hungen von Si
htbarkeitsproblemen mit bewegten Kamerapunkten re
ektiert. Es

wird die Turingmas
hinen-Komplexit

�

at dieser Si
htbarkeitsprobleme in R

�

aumen variabler

und fester Dimension untersu
ht. Die hierbei betra
hteten Klassen geometris
her K

�

orper

sind die Klasse der Kugeln, der als konvexe H

�

ulle endli
h vieler Punkte dargestellten Po-

lytope (

"

V-Polytope\) sowie der als Dur
hs
hnitt endli
h vieler Halbr

�

aume dargestellten

Polytope (

"

H-Polytope\).

Es werden die folgenden Resultate gezeigt, die die komplexit

�

atstheoretis
he Grenzlinie

zwis
hen eÆzient l

�

osbaren und s
hwierigen Problemen 
harakterisiert. Falls die Dimensi-

on des Raumes Teil der Eingabe ist, dann ist das

�

Uberpr

�

ufen der partiellen Si
htbarkeit

eines gegebenen K

�

orpers NP-s
hwer. Falls die Dimension fest ist, dann wird das Si
ht-

barkeitsproblem f

�

ur alle drei Klassen in polynomialer Zeit l

�

osbar. Der Na
hweis der NP-

S
hwierigkeitsresultate beruht auf geometris
hen Konstruktionen, dur
h die den Si
htbar-

keitsproblemen eine kombinatoris
he Struktur induziert wird. In einem zweiten S
hritt
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werden diese Probleme auf das aussagenlogis
he 3-SAT-Problem reduziert. Einige der

Polynomialit

�

atsaussagen beruhen auf der algebrais
h-geometris
hen Te
hnik der reellen

Quantorenelimination.

S
hlie�li
h wird eine Verbindung zwis
hen den Komplexit

�

atsresultaten und dem

"

view

obstru
tion\ Problem aus der diophantis
hen Approximation hergestellt.


