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1. Anabelian varieties

The étale fundamental group of a geometrically connected variety X over a field
k sits in a short exact sequence

1 → π1Xk → π1X → Galk → 1.

Grothendieck conceived that for special varieties, this short exact sequence cap-
tures the geometry and arithmetic of the underlying (category of) varieties. Such
varieties are called anabelian and coincide in dimension 1 with hyperbolic curves,
whereas in higher dimensions the notion of anabelian varieties is unclear. The talk
focused on the geometric property of being an algebraic K(π, 1) space and derived
consequences for the geometry of such varieties1.

2. Algebraic K(π, 1) spaces

Let X/k be a connected variety. The finite étale site Xfét is by definition via a
choice of a base point isomorphic to the classifying site Bπ1X of π1X. The map

γ : Xét → Xfét
∼= Bπ1X

induces comparison maps H∗(π1X,A) → H∗ét(X, A ) for each finite continuous
π1X-module A with locally constant system A = γ∗A. An algebraic K(π, 1)
space is a variety, such that all comparison maps are isomorphisms. As cohomol-
ogy is always killed locally in the respective topology for which it is computed, the
Leray spectral sequence for γ∗ shows that being an algebraic K(π, 1) is equivalent
to the following: all Hq(X ′,Z/nZ) for finite étale covers X ′/X, n ∈ N and q > 0
are killed upon restriction to suitable finite étale covers. Hence, the K(π, 1) prop-
erty forces π1X to be sufficiently rich. The comparison map is always bijective for
H1 and injective for H2, as classes in H1 are étale torsors which kill themselves.

Examples for algebraic K(π, 1) spaces are: curves except for P1
k, abelian vari-

eties, and more generally varieties such that for all finite étale covers the cohomol-
ogy ring is generated by classes in H1. The latter implies for projective varieties
that the Albanese map is finite. Being an algebraic K(π, 1) space goes up and
down along finite étale covers and behaves well in fibrations in the following sense.
Let f : X → S be a smooth, projective map with f∗OX = OS and S is connected
of characteristic 0. Then one geometric fibre is K(π, 1) if and only if all geometric
fibres are K(π, 1). With Xs being the geometric fibre over s ∈ S the fibre sequence

1 → π1Xs → π1X → π1S → 1

is exact if the base S is K(π, 1) or X/S admits a section.
Then comparison of Hochschild–Serre and Leray spectral sequences yields: if

two out of fibre Xs, base S and total space X are K(π, 1) then also the third. For
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the exactness of the fibre sequence in case S is a K(π, 1) only the injectivity of
π1Xs → π1X needs a proof. For this we need to extend any connected G-torsor
ϕ : π1Xs ³ G of the fibre to a G-torsor ϕ̃ : π1X

′ → G, where X ′ = X ×S S′ with
a finite étale cover S′/S. As the nonabelian R1f∗G is locally constant, we may
choose, upon substitution of S by a finite étale cover, a global isomorphism class of
a G-torsor in H0(S, R1f∗G) that restricts to ϕ in the fibre above s. The obstruction
for this class to come from an actual torsor lies in H2(S, Z(G)) where Z(G) is the
center of G and the lien of the corresponding gerbe, because the G-torsor ϕ is
connected. This obstruction vanishes on a finite étale cover of S.

A smooth projective K(π, 1) space X of dimension dim X ≥ 2 is never a hyper-
plane section of a smooth projective variety Y . By Lefschetz, the inclusion induces
an isomorphism π1X

∼−→ π1Y which for an anabelian X would conjecturally lead
to an unlikely retraction for the inclusion. In the diagram

H2(π1Y,Z`(1))Ä _

²²

∼= // H2(π1X,Z`(1))
∼=

²²

H2(Y,Z`(1)) Â Ä // H2(X,Z`(1))

the Weak Lefschetz Theorem and comparison for H2 of Y imply the injections.
Hence all maps are bijective. In particular, the class h of a hyperplane of Y comes
from group cohomology, so that hdim Y can be computed in the cohomology ring
H∗(π1X) and hence vanishes, a contradiction.

3. Algebraic K(π, 1) spaces and the Minimal Model Program

By Zariski–Nagata purity π1X is a birational invariant of a smooth projective
variety. As birational maps have seldom retractions, a smooth projective anabelian
variety must be an absolutely minimal variety in its birational class. This is indeed
the case already for smooth projective K(π, 1) spaces.

Kollàr defines in [Ko93] Def 2.7 the notion of a variety X with large algebraic
fundamental group: the image of π1Z → π1X is infinite for all nonconstant
algebraic maps f : Z → X. Projective algebraic K(π, 1) spaces have large algebraic
fundamental group. Arguing by contradiction we may restrict to smooth projective
curves Z and finite maps f , such that π1f is trivial. The degree degZ f∗L for
an ample line bundle L on X must be positive. On the other hand, by the
commutativity of the following diagram

Pic(X)
c1 //

f∗
²²

H2(X,Z`(1))

H2(f)
²²

H2(π1X,Z`(1))

0
²²

∼=oo

Pic(Z)
c1 // H2(Z,Z`(1)) H2(π1Z,Z`(1))oo

and the formula degZ f∗L = c1(f∗L ) ∈ H2(Z,Z`(1)) = Z`, the degree vanishes.
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Having large fundamental group implies nonexistence of rational curves, which
tremendously restricts geometry. Mori’s bend and break technique inhibits non-
trivial families of pointed maps (C, c) → (X, x). Moreover, the canonical bundle
ωX is nef and X is already minimal in the sense of the Minimal Model Program.

4. An abelian fibration

Abelian varieties are not really anabelian. Hence it is desirable to get rid of
the abelian part of an algebraic K(π, 1) space. The following is inspired by its
birational version [Ko93] Thm 6.3. of Kollàr.

An almost regular fibration on X is a projective map f̃ : X̃ → Ỹ defined on
a projective birational modification σ : X̃ → X, such that for a dense open V ⊂ Ỹ

the preimage f̃−1(V ) is mapped isomorphically by σ onto an open subset U ⊂ X

and the restriction f̃ |U : U → V is smooth projective.

Theorem. Let X/k be a smooth projective algebraic K(π, 1) space in characteristic
0. Let f̃ be an almost regular fibration on X such that a general fibre admits a
finite étale cover by an abelian variety.

Then there exists a finite étale cover X ′/X and a map f ′ : X ′ → Y ′ that is
birational to the prolongation of f̃ such that X ′/Y ′ is an abelian scheme and Y ′

is a smooth projective K(π, 1) space.

Though for algebraic K(π, 1) spaces the proof is easier as in [Ko93] Thm 6.3, the
proof follows the strategy of loc. cit. adding a final fourth step. (I) Replacing X by
a finite étale cover, we may assume that a given fibre is an abelian variety. Hence
all smooth fibres are algebraic K(π, 1) spaces with abelian fundamental group, thus
are abelian varieties. (II) From Grothendiecks monodromy description of families
of abelian varieties [Gr66], we obtain good reduction of the relative Albanese family
over all of Ỹ . Here Kollàr uses a more involved argument via Hodge theory in order
to verify Grothendieck’s condition. (III) Again replacing X by a finite étale cover,
we may assume that X̃/Ỹ is itself a family of abelian varieties. (IV) in the final
step, we descend the family of abelian varieties using [Gr66] to the image under σ

of the zero section of X̃/Ỹ as an abelian scheme. It turns out, that the necessary
contraction of the total space is precisely the map σ, and the abelian fibration on
a cover of X is achieved.

Almost abelian fibrations on minimal models are given by: (A) the nef reduc-
tion of ωX as in [Nef01], (B) the Iitaka fibration under a conjecture on Kodaira
dimension 0 and numerically trivial ωX , (C) suitable pluricanonical maps under
the abundance conjecture. Conjecturally all three examples agree and lead to a
base Y ′ which is of general type. Following Kawamata Campana and Peternell
conclude that the canonical bundle is even ample, see [Ka92] Appendix.
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