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This note advocates a valuation theoretic point of view on Grothendieck’s section
conjecture in general, and for hyperbolic curves over p-adic fields in particular.

1. VALUATIVE POINT OF VIEW TOWARDS THE SECTION CONJECTURE

1.1. Packets of sections. Let X/k be a normal, geometrically irreducible variety
with function field K. Let Galg be the absolute Galois group of K, and view the
étale fundamental group 7 (X) as its maximal quotient unramified over X:

Galg — Gal(K/K) = m1(X).

Let w be a Krull k-valuation of K with residue field x(w) = k. The decomposi-
tion group D, € m1(X) determined by a prolongation w | w to K admits a nat-
ural projection Dy, — Gals(y) that always has a splitting o : Gal, () — Degjw-
We obtain a Galois section, i.e., a section of 71 (X) — Galg, as follows:

Sw : Galg = Galm(w) i) Dw‘w — 7T1(X).

The section s,, depends on the choice of splitting ¢ and on the choice of w. The
collection of all such s,, associated to w is the packet of sections at w.

1.2. The section conjecture. Recall that a hyperbolic curve is a smooth geo-
metrically connected curve with non-abelian geometric étale fundamental group.

Conjecture 1 (Grothendieck’s section conjecture [G83]). Let k be a number field
and X/k a hyperbolic curve. Then every Galois section s : Galy — m(X) is of
the form s, for a suitable choice of k-valuation w on the function field of X.

Remark 2. (1) Since the injectivity of the section map for hyperbolic curves
X (k) = {s: Galy — m1(X) ; Galois section}, a+ s,

is well known, Conjecture 1 is equivalent to the original version from [G83].

(2) In fact, the valuation theoretic formulation of Conjecture 1 takes care of the
necessary correction of the original statement, see already in [G83], due to cuspidal
sections coming from rational points from the boundary of the compactification.

(3) With Galg — Galy, instead of 7 (X) — Galy we obtain a birational version
of the section conjecture. This is in fact a theorem for the variant where k is a
finite extension of Q, due to Koenigsmann [K03].

2. VALUATIONS ON p-ADIC FIELDS

2.1. The main theorem. We are now concerned with the p-adic version of Con-
jecture 1. From now on, let k/Q, be a finite extension with p-adic valuation v,
ring of integers oy, and residue field F. The variety X/k will be a hyperbolic curve.
We define

Val, (K) = {w ; Krull valuation on K extending v on k}
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and similarly Val,(K). Then the main result of [PS09] is the following.

Theorem 3. Let k/Q, be a finite extension and X/k a hyperbolic curve with
function field K. Then for every Galois section s : Galp, — m(X) = Gal(K/K)

there is a valuation W € Val,(K) such that with w = 0|k

S(Galk) - D1I)|w c 7T1(X)'

Remark 4. (1) Theorem 3 confirms a p-adic version of Conjecture 1: every Galois
section is of the form s,, for a suitable valuation. Only the class of valuations has
to take into account also the more ”arithmetic” compactification by flat projective
og-models of X, see below for the description of Val,(K). For an assertion towards
the uniqueness of the valuation w in Theorem 3 we refer to [PS09].

(2) We set v, for the k-valuation of K corresponding to the k-rational point
a € X (k). The composition of valuations w, = v o v, yields a map

X(k) = Val,(K), aw— w,

such that D,,, = s,(Galy) up to conjugation. The p-adic section conjecture follows
from Theorem 3 if only valuations of the form w, admit sections of D |, — Galy.

(3) If the p-adic section conjecture turns out to be wrong, then Theorem 3 yields
the analogous correction with sections coming from valuations centered at infinity
as in the case for affine curves with Grothendieck’s original conjecture in [G83].

(4) There are conditional results due to Saidi to lift Galois sections at least par-
tially towards birational Galois sections, namely to the cuspidally abelian quotient
of Galg relative X, with the idea in mind to reduce the p-adic section conjecture to
Koenigsmann’s Theorem recalled above. Further weaker but unconditional lifting
results are obtained by Borne/Emsalem together with the author.

(5) Hoshi has shown that the geometrically pro-p version of the section conjec-
ture fails in explicit examples where non-geometric sections exist.

(6) Mochizuki deals with an analogue regarding Galois sections for the tempered
fundamental group of André, a group which is pro-discrete rather than pro-finite.

2.2. An application. Theorem 3 has the following consequence for Galois sec-
tions (trivial for Galois sections coming from k-rational points).

Theorem 5. Let k/Q,, be a finite extension and X/k a proper hyperbolic curve
with proper flat model 2" — Spec(oy). Let Y = Zp be the special fibre.

(1) If there is a Galois section s : Gal, — w1 (X), then the geometric speciali-
sation map 5p : T (X @ k*8) — 1, (Y @ F218) is surjective.

(2) Every Galois section s : Galy — m(X) specialises to a unique Galois
section t : Galp — 71 (Y), i.e., there is a commutative diagram

m(X) —= m(Y)
4 i ih
s it
Gal, —— Galy.
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2.3. The Riemann—Zariski space. The space of valuations Val,(K) can be
more geometrically understood as the Riemann—Zariski pro-space of (the closed
fibres of) all models. Let Xy — X be the finite étale cover corresponding to
an open subgroup H C m1(X), and let 2y be a proper flat 0g-model of Xp.
Any w € Val, (f( ) has a unique center in the special fibre 2y r by the valuative
criterion of properness, i.e., a point zy such that the valuation ring of w dominates
the local ring Og- ... In fact, the map assigning the compatible system of centers

(*) Valv(f() = m %H7Fa W — Zg
H,Zu

is a homeomorphism of pro-finite spaces (for the patch topology on the left and
the constructible topology on the right).

2.4. Fixed points. The map (%) is equivariant under = (X) = Gal(K/K) and
Dy is precisely the stabilizer of w. By the usual compactness argument with
projective limits it suffices for Theorem 3 to show that ¥ = s(Galy) C 71 (X) has
a fixed point (generic or closed)

(Zmr)® #0

for a cofinal set of open normal subgroups H <171 (X) and equivariant models 2y
on which ¥ acts via a finite subgroup of 71 (X)/H. Thus we first may assume 2
is a regular semistable model. The fibres of the projection to the stable model

X — ZH stable

are trees of projective lines. Since a tree is a CAT(0)-space, any action by a finite
group on a tree has fixed points. It follows that the fibre over a Y-fixed point of
(ZH stable)r again has a Y-fixed point. We may therefore restrict to stable models.

3. THE /-ADIC BRAUER GROUP METHOD

3.1. The locus of a Brauer class. Although it is counterintuitive that ¢-adic
methods actually are able to detect the arithmetic in a Galois section, we next fix
a prime ¢ # p. The Brauer group method going back to Neukirch in the study of
absolute Galois groups of number fields is here based on the following.

The relative Brauer group ker(Br(k) — Br(X)) is cyclic of order the index of
X due to Roquette and Lichtenbaum. By [S10] the presence of a section implies
that the index is in fact a power of p, so that the map on ¢-torsion

Br(k)[{] — Br(X)[{] C Br(K)[]

is injective. In the limit over all neighbourhoods of s, i.e., for the fixed field
M = K=, the map Br(k)[(] — Br(M)[{] remains injective. We now need a fine
local—global principle for the Brauer group due to Pop:

Theorem 6 ([P88] Thm 4.5). Let k/Q, be a finite extension and M/k a function
field of transcendence degree 1 over k. Then the restriction map
Br(M) <[] Br()
weVal, (M)
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is injective. Here MY denotes the henselisation of M in the valuation w.

It follows that there is a valuation wys € Val,(M) such that Br(k)[¢] survives
in Br(M} ). Let W be an extension of wy; to K. Since Gal(K/M) = ¥ ~ Galy,
all intermediate fields are composita with extensions k’/k of the same degree. It
follows that [(K N M} ) : M] is prime to ¢ since otherwise Br(k)[{] would not
survive. Therefore a suitable choice of ¢-Sylow subgroup ¥, C X is contained in

(%) S C Gal(K/K N M2.,) = Dajwy € Dijuo-

3.2. Inertia. Let © C X be the image under s of the inertia group I, C Galy and
let L)y € Dy denote the inertia group of w. Based on (xx) with considerable
more work for valuations w associated to generic points of components of the
special fibre one may show the following.

Proposition 7. [t is possible to choose w such that ©p C Iz, where Oy is a
choice of ¢-Sylow group of ©.

4. INDEPENDENCE OF {-ADIC RAMIFICATION

4.1. The kernel of specialisation. Let H < (X) be an open normal subgroup
such that X has a stable model Zx staple. We write Y = Ua Y., for the union of
irreducible components of its reduced special fibre and may further assume that
all Y, are smooth and have genus > 1. We consider the kernel of specialisation

Ny := ker (H =m(Xg) — 71'1(3[11))
which contains Iy, N H for every valuation w € Val, (K). We further set
Vi = NiP®Qq
and for each @ € Val,(K) we define a set of cardinality 1 or 2
Agp = {a; Y, contains the center of W on 2y stable }-

By f-adic étale cohomology computations and logarithmic geometry we show the
following statement on independence of {-adic inertia. For simplicity of notation
we denote the discrete rank 1 valuation of K associated to Y, by a.

Proposition 8. (1) For any choice of prolongation & € Val,(K) of each a,
the natural map

DI o Qs Vy
18 injective. ~
(2) For every w € Val,(K) the map Ly, N H — Ny — Vi factors as
IgwNH —» P I, © Q= Va.

aEAg
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4.2. Sketch of proof for the existence of fixed points. Let o € ¥ = s(Galy)
be arbitrary. Since © is a normal subgroup in X we obtain a commutative diagram

O,NH - Iﬁ,|wﬂH

T~ T

ONNg —— Vg

/

0O 'NH C Iy (wyjw N H

Because s is a Galois section, the composition
Ze(l) ~0,NH—Vyg — ]gb Q@ Qp ~ Qg(l)

is non-trivial. On the other hand, the image of ©® N Ny in Vg spans at most a
1-dimensional subspace, since any closed subgroup of I has pro-f completion of
rank at most 1. It follows from Proposition 8 that © N Ny maps to the subspace

U Zhe@ovy
AmﬂAa(@)

whence Ay N Ag(z) # 0. A combinatorial argument relying again on Proposition 8
shows that either an a € Ay is fixed by X, or Ay is fixed by ¥ as a set and consists
of two elements corresponding to components meeting in a unique node. In this
way we have found a fixed point under ¥ on 2 stable and the sketch of the proof
of Theorem 3 is complete.
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