Birational Galois sections with local conditions for hyperbolic curves $$_{\rm JAKOB}\ {\rm Stix}$$

The section conjecture in anabelian geometry describes rational points of anabelian varieties in terms of profinite groups. We report on progress made in [Sx12].

1. The section conjecture of anabelian geometry

1.1. The conjecture. Let k be a number field and $\operatorname{Gal}_k = \operatorname{Gal}(k/k)$ its absolute Galois group. A rational point $a \in X(k)$ of a geometrically connected variety X/k yields by functoriality a section

$$s_a : \operatorname{Gal}_k = \pi_1(\operatorname{Spec}(k)) \to \pi_1(X)$$

of the projection map $\operatorname{pr}_* : \pi_1(X) \to \operatorname{Gal}_k$, which, due to neglecting base points, is only well defined up to conjugation by elements of $\pi_1(X_{\bar{k}}) \subset \pi_1(X)$.

A section s is **cuspidal** if X has a smooth completion $X \subset \overline{X}$ and a k-rational point $a \in (\overline{X} \setminus X)(k)$ such that s factors over the corresponding decomposition subgroup $D_a \subset \pi_1(X)$, well defined up to $\pi_1(X_{\overline{k}})$ -conjugacy.

Conjecture 1 (Grothendieck [Gr83]). Let k be a number field and X/k a smooth, geometrically connected curve with non-abelian $\pi_1(X_{\bar{k}})$. Then the map $a \mapsto s_a$

 $X(k) \to \mathscr{S}_{\pi_1(X/k)} = \{ \text{sections } s : \operatorname{Gal}_k \to \pi_1(X) \text{ of } \operatorname{pr}_* \} / \pi_1(X_{\bar{k}}) \text{-conjugacy} \}$

is a bijection onto the complement of the set of cuspidal sections $\mathscr{S}_{\pi_1(X/k)}^{\mathrm{cusp}}$.

2. Local conditions for Galois sections

2.1. A hierarchy of sections. We introduce local conditions on sections that are shared by sections s_a coming from rational points. For a place v of the number field k we denote by $k \hookrightarrow k_v$ its completion and consider $\operatorname{Gal}_{k_v} \subset \operatorname{Gal}_k$ as a subgroup by fixing a choice of a prolongation of v to \bar{k} .

A **Selmer** section is a section s that locally comes from a point, i.e., such that for all v we have $a_v \in \overline{X}(k_v)$ and

$$s|_{\operatorname{Gal}_{k_v}} = s_{a_v} : \operatorname{Gal}_{k_v} \to \pi_1(X_{k_v}) \subset \pi_1(X).$$

Since the map $a \mapsto s_a$ is injective over number fields as well as over local fields when X is a curve, we obtain a well defined map: the **associated adele**

$$\underline{a}:\mathscr{S}_{\pi_1(X/k)}^{\text{Selmer}} = \{s \in \mathscr{S}_{\pi_1(X/k)} ; \text{ Selmer section}\} \to \overline{X}(\mathbb{A}_k)_{\bullet}$$

where \mathbb{A}_k denotes the ring of k-adeles and $(-)_{\bullet}$ means that we have replaced the archimedian components by their connected components.

Let K be the function field of X/k. Then a **birationally liftable** section is a section s that lifts to a section $\tilde{s} : \operatorname{Gal}_k \to \operatorname{Gal}_K$ along the natural surjection $\operatorname{Gal}_K \twoheadrightarrow \pi_1(X)$. It follows from Koenigsmann's lemma [Ko05] §2.4, see also [Sx12] Prop. 1, that birationally liftable sections are Selmer sections.

An **adelic** section is a Selmer section $s : \operatorname{Gal}_k \to \pi_1(X)$ such that $\underline{a}(s) \in X(\mathbb{A}_k)_{\bullet}$ is even an adelic point of X. Finally, a **birationally adelic** section is a section

s that admits a lift $\tilde{s}:\mathrm{Gal}_k\to\mathrm{Gal}_K$ such that for all open $U\subset X$ the induced section

$$s_U: \operatorname{Gal}_k \xrightarrow{\tilde{s}} \operatorname{Gal}_K \twoheadrightarrow \pi_1(U)$$

yields an adelic or cuspidal section of U. Clearly we obtain a hierarchy of sections:

$$X(k) \amalg \mathscr{S}^{\mathrm{cusp}}_{\pi_1(X/k)} \subseteq \{ s \in \mathscr{S}_{\pi_1(X/k)} ; \text{ birationally adelic} \} \subseteq \mathscr{S}^{\mathrm{Selmer}}_{\pi_1(X/k)}.$$

2.2. The support. The support of a Selmer section $s : \operatorname{Gal}_k \to \pi_1(X)$ with adele $\underline{a}(s) = (a_v(s))_v$ is the Zariski closure

$$Z(s) = \overline{\bigcup_{v} \operatorname{im}(a_{v}(s) : \operatorname{Spec}(k_{v}) \to \overline{X})} \subseteq \overline{X}.$$

We say that a Selmer section s has **finite support** if Z(s) is finite over k. If Z = Z(s) is finite and the genus of \overline{X} is ≥ 1 , then by Stoll [St07] Theorem 8.2,

$$Z(k) = \left\{ (a_v) \in \overline{X}(\mathbb{A}_k)_{\bullet}^{\text{f-desc}} ; a_v \in Z(k_v) \text{ for a set of places } v \text{ of density } 1 \right\}$$

where $(-)^{f-\text{desc}}$ means that we require (a_v) to survive all descent obstructions imposed by torsors over \overline{X} under finite groups G/k.

Since for a Selmer section s the adele $\underline{a}(s)$ survives all finite descent obstructions, we conclude by the usual limit argument with the tower of all neighbourhoods of s, that the image of the map

$$X(k) \amalg \mathscr{S}^{\mathrm{cusp}}_{\pi_1(X/k)} \hookrightarrow \mathscr{S}^{\mathrm{Selmer}}_{\pi_1(X/k)}$$

consists precisely of the Selmer sections with finite support.

Theorem 2. Let k be a totally real number field or an imaginary quadratic number field. Then we have

$$X(k) \amalg \mathscr{S}^{\mathrm{cusp}}_{\pi_1(X/k)} = \{ s \in \mathscr{S}_{\pi_1(X/k)} ; \text{ birationally adelic} \}$$

for X/k a smooth, geometrically connected curve with non-abelian $\pi_1(X_{\bar{k}})$.

Proof: It suffices to find an open $U \subseteq X$ and a quasi-finite map $f: U \to \mathbb{T}$ to a torus \mathbb{T} such that all adelic sections $\operatorname{Gal}_k \to \pi_1(\mathbb{T})$ come from rational points, because if $\pi_1(f) \circ s = s_t$ for $t \in \mathbb{T}(k)$, then $Z(s) \subseteq f^{-1}(t)$ will be finite. If k/\mathbb{Q} is imaginary quadratic, then $\mathbb{T} = \mathbb{G}_m$ suffices since \mathfrak{o}_k^* is finite. When k is totally real, we can use for \mathbb{T} the norm 1 torus of a totally imaginary quadratic extension of k. For details we refer to [Sx12] §3+4.

3. Almost compatible systems of ℓ -adic representations

3.1. The representations. Let $f : E \to X$ be a family of elliptic curves. Any section $s : \operatorname{Gal}_k \to \pi_1(X)$ leads to a system of ℓ -adic representations

$$\rho_s = (\rho_{s,\ell}) = \left(\rho_{E/X,s,\ell} : \operatorname{Gal}_k \xrightarrow{s} \pi_1(X,\bar{x}) \xrightarrow{\rho_{E/X,\ell}} \operatorname{GL}_2(\mathbb{Z}_\ell)\right)_{\ell}$$

where $\rho_{E/X,\ell}$ is the monodromy representation on the fibre $T_{\ell}(E_{\bar{x}}) \cong \mathbb{Z}_{\ell}^2$ corresponding to $\mathbb{R}^1 f_* \mathbb{Z}_{\ell}(1)$. If s is a Selmer section, and E/X has bad semistable reduction, then

- (i) $det(\rho_s) = \varepsilon$ is the cyclotomic character,
- (ii) for all finite places v of k the local representation $\rho_{s,\ell}|_{\operatorname{Gal}_{k_v}}$ for $v \nmid \ell$ has a semisimplification $\rho_{s,v,\ell}^{\mathrm{ss}}$ with

 $\det(\mathbf{1} - \operatorname{Frob}_{v} \cdot T | \rho_{s,v,\ell}^{\mathrm{ss}}) = 1 - a_{v}(\rho)T + N(v)T^{2} \in \mathbb{Z}[T]$

and the trace of Frobenius $a_v(\rho)$ is independent of ℓ ,

(iii) moreover, the semisimplification $\rho_{s,v,\ell}^{ss}$ has weight -1 or weights 0 and -2.

3.2. Integrality. Let $G_{\ell} \subseteq \operatorname{GL}_2(\mathbb{F}_{\ell})$ be the image of $\rho_{s,\ell} \mod \ell$, and let $M_{\ell} \subseteq G_{\ell}$ be the subset of elements with one eigenvalue ± 1 . Then either $\rho_{s,\ell}$ is reducible for all $\ell \gg 0$ or otherwise $\#M_{\ell}/\#G_{\ell} \to 0$ when $\ell \to \infty$. Combining this argument with Chebotarev's density theorem and the description of monodromy of the Legendre family of elliptic curves allows to prove the following, see [Sx12] §5+6.

Theorem 3. Let s: $\operatorname{Gal}_k \to \pi_1(X)$ be a birationally liftable section of a smooth, geometrically connected curve X/k with non-abelian $\pi_1(X_{\overline{k}})$ over a number field kand with smooth completion \overline{X} . Then the associated adele $\underline{a}(s) \in \overline{X}(\mathbb{A}_k)_{\bullet}$ is either integral for a set of places v of Dirichlet density 1, or the section s is cuspidal.

Note that the statement on integrality in Theorem 3 is well defined although integrality depends on the chosen model of X over $\text{Spec}(\mathfrak{o}_k)$.

3.3. Modularity. The following result, see [Sx12] §7, requires $k = \mathbb{Q}$ since it relies on the arithmetic of the Eisenstein quotient of the modular jacobians $J_0(\ell)$ and on Serre's modularity conjecture proven by Khare and Wintenberger.

Theorem 4. Let X/\mathbb{Q} be a smooth, geometrically connected curve with nonabelian $\pi_1(X_{\overline{\mathbb{Q}}})$. A section $s : \operatorname{Gal}_{\mathbb{Q}} \to \pi_1(X)$ comes from a rational point or is cuspidal, if and only if s is birationally liftable (to say \tilde{s}) and for every open $U \subseteq X$ and every family E/U of elliptic curves the associated family of ℓ -adic representations $\rho_{E/U,\tilde{s}}$ has one of the following properties:

- (i) Finite conductor: There exists a finite set of places S independent of ℓ such that ρ_{E/U,š,ℓ} is unramified outside ℓ and the places in S.
- (ii) **Reducible:** There is a character δ : $\operatorname{Gal}_{\mathbb{Q}} \to \{\pm 1\}$ such that for all ℓ we have an exact sequence $0 \to \delta \varepsilon \to \rho_{E/U,\tilde{s},\ell} \to \delta \to 0$, where ε is the ℓ -adic cyclotomic character.

The two cases in Theorem 4 reflect the dichotomy of the section s being associated to a rational point $a \in U(k)$ or to being already cuspidal for U/k.

References

- [Gr83] A. Grothendieck, Brief an Faltings (27/06/1983), in: Geometric Galois Action 1 (ed. L. Schneps, P. Lochak), LMS Lecture Notes 242 (1997), 49–58.
- [K005] J. Koenigsmann, On the 'section conjecture' in anabelian geometry, J. Reine Angew. Math. 588 (2005), 221–235.
- [St07] M. Stoll, Finite descent obstructions and rational points on curves, Algebra & Number Theory 1 (2007), 349–391.
- [Sx12] J. Stix, On the birational section conjecture with local conditions, arXiv: 1203.3236v2 [math.AG], April 2012.