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Abstract

A smooth, proper family of curves creates a monodromy action of the fundamental
group of the base on the H1 of a fibre. The geometric condition of T. Saito for the
action of the wild inertia of a boundary point to be trivial is transformed to the
condition of logarithmic smooth reduction. The proof emphasizes methods and results
from logarithmic geometry. It applies to quasi–projective smooth curves with étale
boundary divisor.

1 Introduction

The potential geometry of the degenerate fibres of a proper, generically smooth curve
f : X → S is very much controlled by the monodromy action on `-adic cohomology. More
precisely, let U ⊂ S be the smooth locus of f and u ∈ U a geometric point. The sheaf
R1f∗,étQ` is an étale local system above U , hence corresponds to an action of π1(U, u) on
the cohomology H1

(
Xu,Q`

)
of the fibre Xu. Let s be a point in the degeneration locus

S − U that is a normal point of codimension 1 in S, such that X|U does not extend as
a proper smooth curve into s ∈ S. Then the monodromy action of the respective inertia
subgroup Is ⊂ π1(U, u), defined up to conjugation, is nontrivial but quasi-unipotent. It is
unipotent if and only if X|U admits semistable reduction in s.

Nevertheless, trivial action of inertia corresponds to good reduction, i.e., smoothness.
That raises the question about consequences for the geometry of the reduction if only the
wild inertia subgroup acts trivially.

Let us introduce some notation that remain valid throughout the paper. We define
a trait S to be the spectrum of an excellent, strict henselian, discrete valuation ring R
with perfect residue field k, uniformizer π and field of fractions K. We will denote the
generic point by η and the closed/special point by s. We fix geometric points η, s above
η and s, such that — with ηt being the maximal tamely ramified subextension of η/η
— the normalization St of S in ηt has s as its closed point. These data fix an inertia
subgroup Is < GK = Gal(K/K) in the absolute Galois group of K. In case the residue
characteristic char(k) = p is positive, there is also the wild inertia subgroup P ⊂ Is

which is the p-Sylow subgroup of Is. When char(k) equals 0 we set P = 1.
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2 1 INTRODUCTION

A proper curve X/S is a flat, proper map X → S of finite presentation and pure
relative dimension 1 with geometrically connected fibres.

On the above question the following answer exists.

Theorem 1.1 (Saito, [Sai87, Theorem 3]). Let S be a trait with algebraically closed
residue field and residue characteristic p > 0. Let X/S be a proper curve of genus ≥ 2
with smooth generic fibre Xη that is minimal with respect to X being regular and the
reduced special fibre Xs,red being a normal crossing divisor on X. Then the following are
equivalent:

(a) P acts trivially on H1
ét

(
Xη,Q`

)
for some prime number ` 6= p.

(b) Any component of the special fibre Xs with multiplicity divisible by p is isomorphic to
P1

k and intersects the rest of the special fibre in exactly two points lying on components
of multiplicity prime to p.

The first impetus for writing this paper was to stress that Saito’s theorem is actually
about good reduction — but in logarithmic geometry. For an introduction to logarithmic
geometry see [Il02, Ka89].

The trait S admits a canonical fs log structure: MS = OS − {0} ⊂ OS . Loga-
rithmic smoothness over S generalizes semistable maps, i.e., étale locally isomorphic to
SpecR[t1, . . . , tn]/t1 · . . . · tr − π over S.

In parallel to the classical situation, trivial action of wild inertia corresponds to an
action of the fundamental group of the base πlog

1 (S, η) ∼= GK/P . We propose to prove the
following theorem.

Theorem 1.2. Let S be a trait with canonical log structure and residue characteristic
p ≥ 0. Let Xη be a proper, log smooth curve over the generic point η ∈ S with negative
Euler characteristic χ =

∑
(−1)q dimHq

két

(
Xη,F`

)
. Then the following are equivalent:

(c) P acts trivially on H1
két

(
Xη,F`

)
for some prime number ` 6= p.

(d) Xη has good reduction over S as a log scheme, i.e., there is a proper, log smooth
X/S such that the generic fibre is isomorphic to Xη.

Addendum: (1) Moreover, if the above conditions are satisfied, then the minimal proper,
regular model X/S of Xη with respect to the reduced special fibre plus the locus of non-
trivial log structure in the generic fibre being a normal crossing divisor can be endowed
uniquely with a fs log structure such that X/S is log smooth.

(2) Finally, if there is log smooth reduction then there is a log smooth model (not
necessarily regular) such that no component of the special fibre has multiplicity divisible by
p. If p = 0 the divisibility condition is empty.

We replaced the coefficients Q` by F` because the statement is ostensibly stronger.
But actually both variants are equivalent due to group theory alone, see Corollary 3.2(1).

One should notice, however, that though we might have log smooth reduction we still
can have nontrivial action of the wild inertia group on H1

(
Xη,Qp

)
for p = `. For example,

look at an elliptic curve over a p-adic field K with semistable reduction and Tate-model
C∗p/qZ such that q is no pth power in K.
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A guide through the paper

When the generic fibre has trivial log structure, the fastest way to Theorem 1.2 is via §5.
There one finds a quick proof relying on the theorem of semistable reduction for curves.
However, §§2–6 supply a selfcontained proof based on logarithmic geometry, thus reproving
the semistable reduction theorem. In §3 and §8 the connection between Theorem 1.1 and
Theorem 1.2 is dealt with.

One purpose of writing these notes was to separate cohomology (§2), group theory (§3),
logarithmic geometry (§4, §5, §8) and the combinatorial argument (§6). In particular, due
to the use of logarithmic geometry, the author considers the combinatorial treatment as
easier than in [Sai87] or [Ab00], though it is along the same lines.
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2 Computation of cohomology

The basics of logarithmic geometry can be found in [Ka89], whereas the fundamentals of
Kummer étale cohomology are contained in [Il02]. Of this section, only Theorem 2.3 is
used lateron.

We basically encounter fs log structures of the following type. Let D be a divisor on
the normal noetherian scheme X with complement j : U → X. We denote by M(log D)
the fs log structure j∗Gm,U ∩OX ↪→ OX and call it ‘induced by D’. Sometimes we need to

distinguish between the log scheme X and its underlying scheme
◦
X and exploit the ‘forget

log’ map ε : X →
◦
X.
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2.1 Log smooth curves

We first describe log smooth curves X/K over a field K with trivial log structure on

SpecK, i.e.,
◦
X is geometrically connected of pure dimension 1 and X → SpecK is log

smooth.

Lemma 2.1. Let X/K be a log smooth curve. Then the underlying scheme
◦
X/K is a

(classically) smooth curve and the log structure is induced by a divisor D that is relatively
étale over K.

Proof: Let x ∈ X be a point. By [Ka89, 3.13] the map Ω1
X/K ⊗ κ(x) → M

gp
X,x ⊗ κ(x)

is surjective. Hence M
gp
X,x is of rank ≤ 1.

At points of the open set where the log structure is trivial the assertion follows from
[Ka89, Prop 3.8]. On the other hand, if M

gp
X,x is of rank 1, we may choose a generator

t of the log structure, such that Ω1
X,x = OX,x · d log t. By [Ka89, Prop 3.12] and [Ka89,

Prop 3.8] the corresponding map X → SpecK[N] sending 1 ∈ N to t is étale near x in the
classical sense. That proves the lemma with D = {x ∈ X | rkZM

gp
X,x = 1}. ¤

2.2 Kummer étale cohomology

Let X/K be a proper, log smooth curve with MX = M(log D). Kummer étale covers of

X correspond to covers of
◦
X that are at most tamely ramified at most over D, hence an

isomorphism πlog
1 (X) ∼= πtame

1 (X, D). The usual description of Z/`-torsors shows

H1
két

(
X,Z/`

)
= Hom

(
πlog

1 (X),Z/`
)

. (2.1)

Let now K be algebraically closed, and let Λ be a finite ring with #Λ invertible in K. For
the computation of the Kummer étale cohomology of X we exploit the spectral sequence

associated to ε : Xkét →
◦
X ét. Indeed, via the logarithmic Kummer sequence we deduce(

ΛqM
gp
X

) ⊗ Λ(−q) ∼= Rqε∗Λ, see [Il02, 5.2], and thus the following 5-term exact sequence
(all coefficients are constant Λ):

0 → H1
ét

(
X

) → H1
két

(
X

) →
⊕

x∈D

M
gp
X,x ⊗ Λ(−1)

P
−→ H2

ét

(
X

) → H2
két

(
X

) → 0 . (2.2)

We summarize the computation of H∗két

(
X, Λ

)
by the following:

Proposition 2.2. All cohomology groups Hq
két(X, Λ) are free Λ-modules of finite rank, the

logarithmic Euler characteristic being

χ(Xkét, Λ) =
∑

q

(−1)q rkΛ Hq
két

(
X, Λ

)
= 2− 2g − deg D

where g is the genus of
◦
X/K and MX = M(log D). ¤
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2.3 Logarithmic Euler characteristic

We will need a combinatorial expression for the Euler characteristic of a degenerate fibre of
a relative curve in terms of the intersection configuration. Saito obtained such an expres-
sion via inspection of the vanishing cycles sheaf. We will use Kummer étale cohomology
instead.

For intersection theory in this context see for example [Li68]. In particular, we use
intersection numbers

(
C •D

)
on a regular surface between arbitrary divisors D via their

associated line bundles or more generally line bundles itself and divisors C whose support
is proper over some fixed field.

Let S be a trait with its canonical log structure M(log s). Let X/S be a proper curve

such that the generic fibre Xη is log smooth, the underlying scheme
◦
X is regular and the

log structure MX is induced by a normal crossing divisor Y0+H ⊂ X where the horizontal
part H is finite and generically étale over S, and the vertical part Y0 =

∑
C is the divisor

associated to the reduced special fibre Xs,red. Here a divisor D ⊂ X is called normal
crossing if étale locally D = {t1 · . . . · tr = 0} and t1, . . . , tr ∈ OX,x is part of a regular
parameter system, i.e., a regular system with ti linear independent in mx/m2

x.
Let Y1 =

∑
mCC be the divisor on X where the sum is taken over all irreducible

components of the special fibre Xs and mC = #Z[1p ]/(rC) is the prime-to-p part of the
multiplicity rC of C in Xs which as a divisor is Y =

∑
rCC.

Theorem 2.3 (compare [Sai87, Prop 1.1]). Let Λ be a finite ring such that #Λ is
invertible in OS. The respective logarithmic Euler characteristic of the fibres is as follows.

(g) χ
(
(Xη)két, Λ

)
=

∑
(−1)q rkΛ Hq

két

(
Xη, Λ

)
= −(

Y • Y0 + H + ω
)
.

(s) χ
(
(Xs̃)két, Λ

)
=

∑
(−1)q rkΛ Hq

két

(
Xs̃,Λ

)
= −(

Y1 • Y0 + H + ω
)
.

Here ω is the relative dualizing sheaf for
◦
X/

◦
S, and Xs̃ is the log geometric fibre in a log

geometric point s̃ with center in the closed point s.

Proof: (g) We apply Grothendieck duality relative S to the coherent sheaf OXs on X.
As ω is a line bundle we get the usual Adjunction Formula

2χ
(
(Xs)ZAR,OXs

)
= −(

Y • Y + ω
)

.

Moreover, by coherent Euler characteristic being constant in proper, flat families we have

2− 2g = 2χ
(
(Xη)ZAR, OXη

)
= 2χ

(
(Xs)ZAR,OXs

)
,

hence
2− 2g = −(

Y • Y + ω
)

= −(
Y • Y0 + ω

)

as the divisor Y is contained in the kernel of the intersection pairing on the special fibre.
Furthermore,

(
Y •H

)
= deg H/S and (g) is reduced to Proposition 2.2.

(s) We may assume that the residue field k of the trait S is algebraically closed. We have
to describe the log geometric special fibre. Let s̃ be the log geometric point s̃ = lim−→p-n sn

where sn is Spec k with log structure 1
nN → k sending 1

n to 0 and the transition maps in
the limit are the natural ones. Let Xn = Xs ×fs

s sn, such that the log geometric fibre is
Xs̃ = lim←−p-n Xn.



6 2 COMPUTATION OF COHOMOLOGY

The set of double points of Xs is DP(Xs) = {x | rk M
gp
Xs,x = 2}. It consists of the

singular locus of the normal crossing divisor Y0 + H and contains H ∩ Y0 (tails) and
intersections of components of Y0 (actual double points). We define for n ∈ N the set
of double points of Xn as DP(Xn) = {x | rk M

gp
Xn,x = 2}.

Lemma 2.4. Let N = lcm{mC} be the prime-to-p part of the least common multiple of
the multiplicities of components of the special fibre.

(1) The natural maps
◦
X s̃ →

◦
XnN →

◦
XN are bijective closed immersions.

(2) The natural map pr :
◦
XN,red →

◦
Xs,red is a finite ramified cover at most tamely

ramified over the double points. For an irreducible component C of Xs,red we have
∑

C′ 7→C deg C ′/C = mC where the sum is taken over components of
◦
XN,red mapping

to C.

(3) At x ∈ C ∩ D for irreducible components C, D of Xs the ramification index for
x′ ∈ C ′ 7→ x ∈ C is mC/ gcd(mC ,mD).

Proof: For (1) see [Vi02, Section I.3]. Up to taking the strict reduced subscheme, the
map sN → s is a Kummer étale cover. The same holds for its fs-base change. Thus the

ramification of
◦
XN,red →

◦
Xs,red is at most tame over the double points. At a regular point

x of a component C the degree (as map of schemes) may be calculated as the cardinality
of prime-to-p torsion in

M
gp
Xs,x ⊕M

gp

s

M
gp
sN
∼= 1

rC
Z⊕Z 1

N
Z ∼= Z/mC ⊕ 1

lcm{rC , N}Z .

This proves (2). A more careful étale local analysis at the double points shows (3) which
we won’t use in the sequel. ¤

To compute the Euler characteristic of H∗két

(
Xs̃, Λ

)
= lim−→p-n H∗két

(
Xn,Λ

)
we use the

Leray spectral sequences for the ‘forget log’ maps εn : Xn →
◦
Xn

Hp
ét

( ◦
Xn, Rqεn,∗Λ

)
=⇒ Hp+q

két

(
Xn, Λ

)
(2.3)

which is compatible with the direct limit in n. For simplicity we assume that all n are
divisible by N (as in the Lemma 2.4) and therefore all higher direct images live on the

same étale site
( ◦
XN

)
ét

, provided the obvious identifications are made.

Lemma 2.5. The limits of the higher direct images are as follows:

(1) lim−→p-n εnN,∗Λ = Λ,

(2) lim−→p-n R1εnN,∗Λ = lim−→p-n M
gp
XnN

⊗ Λ(−1) ∼=
⊕

x∈DP(XN )

ix,∗Λ(−1),

(3) lim−→p-n R2εnN,∗Λ = lim−→p-n Λ2M
gp
XnN

⊗ Λ(−1) = (0).
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Proof: It suffices to prove (2). Furthermore, by [Il02, Thm 5.2], we need only to
calculate lim−→p-n M

gp
XnN

. At points x where M
gp
XN

is of rank 1 we have

lim−→
p-n

M
gp
XnN ,x = lim−→

p-n

( 1
rC
Z⊕Z 1

nN
Z

)
/tors = lim−→

p-n

1
lcm(rC , nN)

Z = Z(p).

At a double points x ∈ DP(XN ) we have

lim−→
p-n

M
gp
XnN ,x = lim−→

p-n

(( 1
rC
Z⊕ 1

rD
Z

)⊕diag,Z
1

nN
Z

)
/tors = Z⊕ Z(p).

Here ⊕Z is the coproduct over Z in abelian groups, and Z(p) is the localization at the
prime ideal (p). ¤

Thus the only non-vanishing E2-terms in (2.3) in the limit over p - n are Ep0
2 =

Hp
ét

( ◦
XN , Λ

)
and E01

2 =
⊕

x∈DP(XN ) Λ(−1).
Let U ′ = C ′−DP(XN ) be the complement of the set of double points in an irreducible

component C ′ of XN . Let U be the respective image of U ′ under pr : XN → Xs. The
multiplicativity of the Euler characteristic in tame extensions (Hurwitz formula) the above
yields the following:

χ
(
(Xs̃)két,Λ

)
= χ

(
(
◦
XN )ét, Λ

)−#DP(XN )

=
∑

C′
χ(U ′

ét, Λ) =
∑

C

∑

C′ 7→C

deg(C ′/C) · χ(Uét, Λ)

=
∑

C

−mC ·
(
C • Y0 + H + ω

)
= −(

Y1 • Y0 + H + ω
)

.

This proves (s). ¤

3 p-groups acting on `-groups

This section exploits only elementary group theory. We denote the maximal pro-` quotient
of a pro-finite group G by G`.

Let L be a pro-` group. Any action on L induces an action on the maximal abelian
`-elementary quotient Lab/`, which is an F` vector space.

Lemma 3.1. A continuous action of a pro-p group on a finitely generated pro-` group L
factors through a finite quotient that maps isomorphically onto a subgroup of GL(Lab/`).

Proof: This follows from the case of finite groups [Ha59, Thm 12.2.2]. ¤

Corollary 3.2. (1) The monodromy action of the wild inertia in Theorem 1.1 factors
through a finite quotient.

(2) Condition (c) of Theorem 1.2 is equivalent to the following:

(c’) the restriction to P of the natural `-adic exterior action

GK → Out
(
πlog

1 (Xη)`
)

is trivial for some p 6= `.
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Furthermore, if we are in the situation of Theorem 1.1, condition (a) is equivalent to (c)
and (c’).

Proof: (1) The action of P on H1
két

(
Xη,Q`

)
comes by scalar extension from an action

on H1
két

(
Xη,Z`

)
which is a finitely generated pro-` group with H1

két

(
Xη,F`

)
as maximal

`-elementary abelian quotient. (We use H∗két, which in case of trivial log structure as in
Theorem 1.1 coincides with H∗ét, because the argument also applies to the situation of
Theorem 1.2.)

(2) The group H1
két

(
Xη,F`

)
is dual to the maximal `-elementary abelian quotient of

πlog
1 (Xη)`. Using a p-Sylow subgroup of Aut

(
πlog

1 (Xη)`
)

we lift the exterior action of P
to a true action without changing the image. ¤
Lemma 3.3. Let ρ : P → Out(L) be the exterior action of a pro-p group P on a pro-`
group L constructed from an extension 1 → L → G → P → 1.

Then ρ is trivial if and only if L is isomorphic to G` via the canonical map L → G`.

Proof: Use a p-Sylow subgroup of G to split the sequence (from the right). L is
isomorphic to G` if and only if the sequence also admits a retraction G → L if and only
if the action ρ is trivial. ¤

Corollary 3.4. Condition (c’) above is equivalent to the natural map πlog
1

(
Xη

)` →
πlog

1

(
Xηt

)` inducing an isomorphism.

Proof: The exterior action of P comes from the natural short exact sequence

1 → πlog
1

(
Xη

)` → πlog
1

(
Xηt

)
/ ker

(
πlog

1

(
Xη

) → πlog
1

(
Xη

)`
)
→ P → 1 .

¤

4 Specialization and log smoothness

4.1 The ‘easy direction’

In this section we use results about the logarithmic specialization map of logarithmic
fundamental groups to prove the ‘easy direction’ of Theorem 1.2, that is ‘(d) implies (c)’.

Proof: (Vidal) (d) implies (c). Let X/S be a log smooth, proper curve. By [Vi02, Thm
I.2.2] the logarithmic specialization map induces an isomorphism

πlog
1

(
Xη

)` → πlog
1

(
Xs̃

)`

on pro-` completions. Hence the GK-action factors through πlog
1 (S) ∼= GK/P . Thus

condition (c’) is satisfied, and we are done by Corollary 3.2. ¤
Remark 4.1. Alternatively, we may also argue with the vanishing of the sheaf of log
vanishing cycles for a log smooth, proper X/S, see [Na98, Thm 3.2]. Indeed, the sheaf
RΨlog(Q`) of nearby cycles being quasi-isomorphic to Q` in this case, the spectral sequence
of nearby cycles

Ep,q
2 = Hp

két

(
Xs̃, RqΨlog(Q`)

)
=⇒ Hp+q

két

(
Xη,Q`

)

degenerates. Hence the Galois action on Hp
két

(
Xη,Q`

) ∼= Hp
két

(
Xs̃,Q`

)
factors through

πlog
1 (S) ∼= GK/P .
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4.2 Purity

In fact, the basic ingredient [Vi02, Thm I.2.2] of the proof above, like its classical coun-
terpart, requires a logarithmic version of deformation and algebraization together with a
purity assertion. These also yield the following proposition.

Proposition 4.2. Let X/S be a proper curve, H ⊂ X a relative effective Cartier divisor.
Assume that X is regular and Xs,red + H is a normal crossing divisor on X. Endow X
with the log regular fs log structure M(log Xs,red + H). Then the natural maps induce
isomorphisms

πlog
1

(
Xηt

)` π1(j)−−−→ πlog
1

(
XSt

)` π1(i)←−−− πlog
1

(
Xs̃

)`
.

Proof: A close inspection of I. Vidal’s proof of [Vi02, Thm I.2.2] shows that log regular
instead of log smooth over S is sufficient for the deformation and algebraization part.
Thus π1(i) is an isomorphism. Again, log regularity is sufficient for the purity result of
Fujiwara–Kato, cf. [Il02, Thm 7.6], and thus π1(j) is an isomorphism. ¤

5 Tame base extensions

The strategy for the proof of a theorem about good reduction is composed of three steps:
(i) determine a good candidate to work with, (ii) analyze the good candidate’s special
fibre and come up with a cohomological condition that decides whether it is ‘good’, and
(iii) find methods to finally enforce the cohomological condition.

5.1 The good candidate

In our case, the good candidate is provided by the theory of minimal models of surfaces
equipped with a divisor. Let S be a trait with its canonical log structure M(log s). As in
Section 2.3, let X/S be a proper curve such that the generic fibre Xη is log smooth, the

underlying scheme
◦
X is regular and the log structure MX is induced by a normal crossing

divisor Y0 +H ⊂ X where the horizontal part H is finite and generically étale over S, and
the vertical part Y0 =

∑
C is the divisor associated to the reduced special fibre Xs,red.

Moreover, for X/S to be our good candidate we ask X/S to be relatively minimal subject
to the above conditions.

5.2 The fs-base change

Let S′ → S be a finite tame extension. When equipped with the canonical log structures
it is finite log étale. We denote the fs log base change X ×fs

S S′ by X ′
bc. By [Ba95, Thm

3.3] we have:
X/S is log smooth ⇐⇒ X ′

bc/S′ is log smooth. (5.1)

It remains to describe X ′
bc. But X ′

bc is log regular itself being log étale over the log regular

X. Thus
◦

X ′
bc is normal [Ka94, Theorem 4.1] and MX′

bc
= M(log(X ′

bc)s,red + H ′) with H ′

being the preimage of H under the projection X ′
bc → X, see [Ka94, Theorem 11.2]. So

X ′
bc is the normalization of

◦
X × ◦

S

◦
S′ and its singular set is contained in the set where the

log structure is of rank 2. But X ′
bc is not too far away from being the good candidate over

S′. We will remedy the deficiencies subsequently.
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5.3 Desingularisation by log blow-ups

The (classical) desingularisation of a log regular log scheme can be performed through
subdividing the associated fans like with toric varieties, see [Ka94, Section 10]. In our
case these fans are two-dimensional. Thus the subdivision is achieved by consecutive log
blow-ups along ideals of MX generated by two elements. This is of importance as it implies
that there is a log étale desingularisation map X ′

desing → X ′
bc such that the (reduced) fibres

of positive dimension are chains of projective lines (log blow-ups are log étale). Moreover,
X ′

desing is again log regular. On a log regular log scheme whose underlying scheme is
regular, the log structure is induced by a normal crossing divisor.

5.4 Contraction of (−1)-curves

The underlying scheme of X ′
desing is regular but need not be relatively minimal. There

might exist some (−1)-curves that we want to contract using Castelnuovo’s Criterion. But
only those (−1)-curves will be contracted that intersect the rest of the divisor inducing
the log structure in at most two points. In fact, there are no hairs, i.e., (−1)-curves
that intersect only once, for otherwise X/S would not have been relatively minimal. On
the other hand, the contraction is also a classical blow-up map whose structure is under
full control. We easily see that it is the underlying map of a log blow-up. Therefore we
obtain a log étale contraction map X ′

desing → X ′ such that the (reduced) fibres of positive
dimension are chains of projective lines and X ′ is relatively minimal with respect to the
usual requirements. So there emerges the good candidate X ′ over S′. By applying the
following Proposition 5.1 twice, we have:

X ′
bc/S′ is log smooth ⇐⇒ X ′

desing/S′ is log smooth, (5.2)
X ′

desing/S′ is log smooth ⇐⇒ X ′/S′ is log smooth. (5.3)

Combining (5.1) with (5.2), (5.3) we note that while working with our good candidate, we
may perform finite tame extensions of our base trait S without affecting log smoothness.

Proposition 5.1. Let S be a trait with its canonical log structure. Let σ : X → X¦ be a
contraction of log regular, proper curves over S, such that the underlying scheme of X is
regular and x¦ ∈ X¦ has rkM

gp
X¦,x¦ = 2.

If X/S is log smooth, then X¦/S is log smooth near x¦ as well.

For the proof we will need the following.

Proposition 5.2. Let S be a trait with its canonical log structure. Let X/S be a log regular,
proper curve over S and x ∈ X has rkM

gp
X,x = 2. Then the following are equivalent:

(a) X/S is log smooth near x,

(b) coker(Mgp
S,s → M

gp
X,x) has no p = char(κ(x))-torsion.

Proof: If X/S is log smooth near x, then

Ω1
X/S ⊗ κ(x) ³

(
M

gp
X,x/M

gp
S,s

)⊗ κ(x)

with one dimensional module of differentials. This proves (b).
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On the other hand, let us assume (b). A simple argument using Ext•Z shows the
existence of simultaneous charts for X → S based on N→ Q = MX,x sending 1 = π to q.
The map X/S factorizes étale locally as

SpecOsh
X,x

j−→ SpecR[Q]/(q = π) h−→ S.

Here h is log smooth by assumtion (b) and [Ka89, Theorem 3.5], whereas j is essentially
étale being an isomorphism on completions after suitable finite étale extension of R. In-
deed, both rings are normal of dimension 2 and the map on cotangent spaces is surjective:
Q−{0} generates the maximal ideal of x ∈ X because X is log regular with log structure
of rank 2 at x. ¤

Proof of Proposition 5.1: Let j : U ⊂ X (resp. j¦ : U¦ ⊂ X¦) be the open set of
trivial log structure for X (resp. X¦). Clearly U = U¦. By [Ka94, Theorem 11.6] we have

σ∗M
gp
X = σ∗j∗Gm,U = j¦∗Gm,U¦ = Mgp

X¦ .

By Zariski’s Main Theorem and Connectedness Theorem (σ∗OX = OX¦) the preimage of
x¦ is a connected Weil divisor E with components Ei, 1 ≤ i ≤ n. If n = 0 there is nothing
to prove. Let En+1, . . . , EN be the other components of X − U that meet E. Note that
N ≥ 2.

The valuation maps on X lead to an exact sequence near E

1 → Gm,X → Mgp
X →

N⊕

i=1

ZEi
.

Applying the left exact σ∗ yields M
gp
X¦,x¦ ⊆

⊕N
i=1 Z · Ei. Let rEi be the multiplicity of π

along Ei. Then

coker(Mgp
S,s → M

gp
X¦,x¦) ⊆

( N⊕

i=1

Z · Ei

)
/(rEi)Z,

and thus all torsion is killed by gcd(rEi). Proposition 5.2 shows that this gcd is prime to
p. Hence we may deduce again from Proposition 5.2 that X¦/S is log smooth at x¦. ¤

5.5 A shortcut

Using the theorem of semistable reduction we now get a quick proof of Theorem 1.2 in
case Xη has trivial log structure (H = 0).

Proof: (c) implies (d): The monodromy action of the inertia group on H1
ét

(
Xη,Q`

)
is

known to be quasi-unipotent. As P acts trivial by condition (c) the action is unipotent
after a finite tame extension of S. The devissage argument above allows to assume that
the monodromy action of the inertia group is already unipotent over S.

Then the good candidate X/S is semistable by the theorem of semistable reduction
in its precise form, cf. [Sai87, Thm 1]. Hence étale locally X/S has the form SpecR[t] or
SpecR[t1, t2]/(t1 · t2 − π) and is therefore log smooth, cf. [Ka89, Ex 3.7(2)] or Prop. 5.2.
So (d) holds for the good candidate. ¤

The argument above obscures that via logarithmic geometry one may actually reprove
the theorem of semistable reduction. The subsequent section will achieve this.
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6 Combinatorics within the special fibre

Let X/S be the good candidate of Section 5.1. Let B be the set of irreducible components
of the special fibre. As in Section 2.3 we introduce the divisors Y0 =

∑
C∈B C, Y1 =∑

C∈B mCC and Y =
∑

C∈B rCC. Remember that mC was the prime-to-p part of rC , the

multiplicity of C in the special fibre Xs. As above, the relative dualizing sheaf of
◦
X/

◦
S is

denoted by ω. Furthermore, we define the Z-valued linear function F (D) =
(
D•Y0+H+ω

)
on divisors D with support in the special fibre.

Theorem 6.1 (compare [Sai87, Section 2]). Let X/S be a good candidate as above
such that the horizontal part H of the divisor inducing the log structure on X is étale over
S. If the Euler characteristic χ = −1

2F (Y ) is negative, then

F (Y ) = F (Y0) if and only if Y = Y0 .

Proof: Clearly we assume that F (Y ) = F (Y0) and have to show that all multiplicities
rC equal 1.

step 1. If Y = rC · C then the theorem follows from F (Y ) 6= 0. We may therefore
assume that #B ≥ 2.

step 2. Now we locate the non-positive contributions to F (Y ).

Lemma 6.2 ([Ab00, Lemma 2.4]). Let #B ≥ 2 and C ∈ B. Then F (C) ≤ 0 occurs
if and only if

(
C • C + ω

)
= −2 with C of one of the following types:

(α) F (C) = −1, C intersects only one component C ′ of Y0 and avoids H. Moreover,(
C • C ′) = 1 and

(
C • C

)
rC + rC′ = 0.

(β) F (C) = 0 and C intersects only two components C ′, C ′′ of Y0 + H. Moreover,(
C •C ′) =

(
C •C ′′) = 1 and C ′ has support in Y0. If C ′′ has support in Y0 we have(

C • C
)
rC + rC′ + rC′′ = 0 while

(
C • C

)
rC + rC′ = 0 if C ′′ has support in H.

(γ) F (C) = 0, C intersects only one component C ′ of Y0 and avoids H. Moreover,(
C • C ′) = 2 and

(
C • C

)
rC + 2rC′ = 0.

Proof: By the Adjunction Formula
(
C•C+ω

)
equals 2gC−2 where gC is the arithmetic

genus of C. As gC ≥ 0 and C has to intersect at least one other component of Y0 by Zariski
connectedness, we have

F (C) =
(
C • C + ω

)
+

∑

C′ 6=C

(
C • C ′) +

(
C •H

) ≥ −1

Using that
(
C •C + ω

)
is even and #B ≥ 2 one derives the assertion of the lemma. The

equation for the multiplicities follows from
(
C • Y

)
= 0. ¤

The curves dealt with in Lemma 6.2 will be called of type (α), (β) or (γ) respectively
or of non-positive type. Due to relative minimality, in all cases (α), (β) or (γ) the
selfintersection is

(
C • C

) ≤ −2.
step 3. To balance the negative contributions to F (Y ) we build clusters coming from

the combinatorial structure of the dual graph of the special fibre.
First, not all components can be of non-positive type for otherwise F (Y ) is non-positive

contradicting the assumption on the Euler characteristic. Secondly, we define an α-hair
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as a maximal connected subgraph of the dual graph of Y0 that contains one curve of type
(α) and all other curves are of type (β):

α β1 β2 βn δ• • • · · · • •
︸ ︷︷ ︸

α−hair

The other neighbour δ of βn is called the neighbour of the α-hair. The neighour has
support in Y0 and is not of non-positive type, for otherwise all components of Y0 were of
non-positive type.

Let Bα be the set of components that belong to some α-hair, let Bδ be the set of
all neighbours of α-hairs, and let Bρ be the set of all other components. Then B =
Bα ∪Bδ ∪Bρ yields a disjoint partition of the set of irreducible components of Y0.

Let π : Bα → Bδ map a component to the neighbour of the α-hair that it is part of.
Furthermore, for D ∈ Bδ let

ϕ(D) = (rD − 1)F (D) +
∑

{C∈Bα |π(C)=D}
(rC − 1)F (C)

be the part in F (Y )− F (Y0) that is ‘combinatorially related’ to D.

Lemma 6.3. Let D be a neighbour. If F (Y ) > 0 then ϕ(D) > 0.

Proof: Let us write R = Y0 + H −D −∑
{C∈Bα |π(C)=D}C. Then

ϕ(D) =
rD − 1

2

(
F (D) +

(
D •D + ω

)
+

(
D •R

))
+

∑
C of type (α),

π(C)=D

rD − 1
2

− (rC − 1) .

The following lemma shows that the second summand is positive. So if we assume that
ϕ(D) ≤ 0 then F (D)+

(
D •D +ω

)
+

(
D •R

)
has to be negative. But the minimal values

are F (D) = 1,
(
D • D + ω

)
= −2, and

(
D • R

)
= 0 which therefore must be attained.

Hence the fibre consists only of D together with at least three α-hairs neighbouring D,
for otherwise D were of type (α) or (β). Consequently,

F (Y ) = ϕ(D) + F (Y0) ≤ F (Y0) = F (D)−#{α-hairs} ≤ −2

leads to a contradiction. ¤

Lemma 6.4. (1) For an α-hair together with its neighbour the multiplicity rC is a convex
function on the distance from the terminal curve of type (α).

(2) Let rα, resp. rδ, be the multiplicity of the terminal curve of type (α), resp. the
neighbour, of the same α-hair. The convex function of (1) is strict monotone increasing
and in particular rα ≤ 1

2rδ.

Proof: This follows from the relations between the multiplicities and the bound on the
selfintersection numbers listed in Lemma 6.2. ¤

step 4. We claim that under the assumptions of F (Y ) = F (Y0) there is no curve of
type (α). Indeed, we have only non-negative summands in

0 = F (Y )− F (Y0) =
∑

D∈Bδ

φ(D) +
∑

C∈Bρ

(rC − 1)F (C)
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forcing all summands to vanish. Hence all components of Y which are neither of type (β)
nor (γ) are reduced and there do not exist any α-hairs by step 3.

step 5. It remains to deal with curves of type (β) or (γ). As not all components are
of non-positive type the curves of type (β) organize in maximal chains in the dual graph
of Y0 and no chain forms a closed circle. At both ends these chains terminate: either in a
curve which is not of non-positive type and thus is reduced, or in a component C of type
(β) which intersects H. Because H/S is étale, a local equation for C at C ∩H is given by
π ·unit and thus rC = 1. An adaptation of Lemma 6.4 shows that the multiplicity, being a
convex function on the position of the component in the chain, must be a constant equal
to 1 along such a β-chain.

A curve C of type (γ) intersects with a curve C ′ which is not of non-positive type.
Thus

(
C • C

)
rC + 2rC′ = 0, and rC′ = 1 shows rC = 1 for not to contradict relative

minimality. This completes the proof of Theorem 6.1. ¤

7 Proof of the main theorem

We may now complete the proof of Theorem 1.2 apart from the special properties of the
special fibres in the case of logarithmic smooth reduction. Those will be discussed in
Section 8.

Proof: (c) implies (d). Let X/S be the good candidate as in Section 5.1. By Corollary
3.2, Corollary 3.4 and Proposition 4.2, condition (c) implies that πlog

1 (Xη)` ∼= πlog
1 (Xs̃)`

and via (2.1) thus χ
(
(Xη)két,Z/`

)
= χ

(
(Xs̃)két,Z/`

)
for that particular prime ` 6= p.

From the 5-term exact sequence (2.2) we obtain a Galois sequence

H1
két

(
Xη,Z`

) → Z`(−1)[H(K)] → Z`(−1)

so that trivial action of P on H1
két yields that H(K) = H(Ksep) is P -stable. Thus H/S is

at most tamely ramified and H splits after an apropriate finite tame extension of the base
trait S.

The base change argument of Section 5 allows us to assume that H/S is étale and that
the support of Y1−Y0 is contained in chains of projective lines, i.e., P1’s that intersect the
rest of the fibre in two points. Indeed, by a suitable tame base change we kill the prime
to p part of the existing multiplicities. However, new components arise in the new good
candidate: chains of P1’s. In particular F (Y1) = F (Y0). By Theorem 2.3 we conclude
further that

F (Y ) = −χ
(
(Xη)két,Z/`

)
= −χ

(
(Xs̃)két,Z/`

)
= F (Y1) = F (Y0) .

The combinatorial reasoning of Theorem 6.1 shows that Y = Y0 or that the special fibre
is a reduced normal crossing divisor that meets the relative étale H with normal crossing.
It remains to argue that such an X/S is actually log smooth.

At regular points of Y0 + H the map X → S is strict and even smooth in the classical
sense (k is perfect). At a double point x, we choose regular parameters u, v such that
{u · v = 0} = Y0 + H locally at x. We may impose uva = π with either a = 1 (actual
double point) or a = 0 (tail). In both cases X/S factors étale locally as

SpecOsh
X,x

j−→ W = Spec R[u, v]/(uva = π) h−→ S
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with log structure on W induced by uNvN. The map h is log smooth being the fs-base
change of a map induced by (1, a) : N → N2. The map j is essentially étale as can be
checked on completions which are regular rings of dimension 2. Indeed, by the choice of
u, v the map j is surjective on the Zariski cotangent space after scalar extension. (Compare
Proposition 5.2) ¤

Corollary 7.1 (semistable reduction of curves). Let S be a trait. Any proper, smooth
curve of genus ≥ 2 over the generic point η ∈ S admits a semistable model over some finite
extension of S.

Proof: By Corollary 3.2 the wild inertia action vanishes after some finite extension.
Thus we are reduced to the above proof of (c) implies (d). ¤

This Corollary 7.1 is actually a powerful theorem of Deligne/Mumford, Grothendieck,
Artin/Winters, ..., see [Ab00] for references.

8 Multiplicities divisible by p

In this section we address the addendum to Theorem 1.2 that describes the special fibre
in the case of log smooth reduction. We emphasize geometric reasoning thereby providing
a link between the conditions (b) and (d).

Let X/S be log smooth such that the underlying scheme of X is relatively minimal
with respect to being regular and the divisor inducing the log structure being normal
crossing. This was our good candidate in Section 5.1.

Let E be a component of Xs with multiplicity divisible by p. The reasoning of Sections
5 & 6 shows that E is a projective line that intersects the rest of the special fibre in exactly
two points. By Proposition 5.2 of two intersecting components of the special fibre, not
both components have multiplicity divisible by p. This shows that (d) implies (b).

For the converse that (b) implies (d) we contract an annoying projective line E with
multiplicity divisible by p and intersecting C, D transversally. The resulting normal S-
curve X¦/S has a rational singularity in x¦, the image of E. With the help of M. Artin’s
work on rational singularities we determine the étale local structure: from the monoid
Q = {(c, d, e) ∈ N3 | c + d +

(
E • E

)
e ≥ 0} with (rC , rD, rE) =: q ∈ Q we form the log

smooth S-scheme SpecR[Q]/π = q that is étale locally isomorphic at ’Q = 0’ to X¦ in
x¦, see [Sx02, I.3.4.3]. In general, after the contraction the curve is not regular any more.
Nevertheless, it is log smooth over S, see Proposition 5.1, thus proving the addendum of
Theorem 1.2.
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