
TRADING DEGREE FOR DIMENSION

IN THE SECTION CONJECTURE:

THE NON-ABELIAN SHAPIRO LEMMA

JAKOB STIX

Abstract — This note aims at providing evidence for the section conjecture of anabelian
geometry by establishing its behaviour under Weil restriction of scalars. In particular,
the étale fundamental group of the Weil restriction is determined by means of a Shapiro
Lemma for non-abelian group cohomology.
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1. Introduction and results

Let K be a field with fixed separable closure Ksep. The étale fundamental group π1(X) of
a geometrically connected variety X/K forms naturally a non-abelian extension of pro-finite
groups

1→ π1(X ⊗Ksep)→ π1(X)→ Gal(Ksep/K)→ 1,
that we abbreviate by π1(X/K).

1.1. The section conjecture. A K-rational point x ∈ X(K) yields by functoriality a section
Gal(Ksep/K)→ π1(X) of π1(X/K), with image the decomposition group of a point x̃ above x
in the universal pro-étale cover of X. Having neglected base points and due to the choice of x̃,
only the class of a section up to conjugation by elements from π1(X⊗Ksep) is well defined. Let
us denote by Sπ1(X/K) the set of π1(X ⊗Ksep)-conjugacy classes of sections of π1(X/K). The
section conjecture of Grothendieck’s anabelian geometry [Gr83] speculates the following.

Conjecture 1 (Grothendieck). The map X(K)→ Sπ1(X/K) which sends a rational point to the
section given by its conjugacy class of decomposition groups is bijective if K is a number field
and X/K is a geometrically connected, smooth, projective curve of genus at least 2.

There is also a version of the section conjecture for affine curves. Here rational points at
infinity will lead to an abundance of additional cuspidal sections, see [EH08] and [Sx08b]. But
apart from the obvious modification forced upon us by cuspidal sections the conjecture remains
the same. The condition on the genus gets replaced by asking the Euler-characteristic to be
negative.

A birational version of the section conjecture over p-adic local fields was successfully ad-
dressed by Koenigsmann in [Ko05], and later by Pop [Po07] in a truncated version that exploits
spectacularly modest pro-finite data to recover rational points.
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Only recently evidence for the section conjecture could be found through the first examples
of curves which satisfy the conjecture, see [Sx08a] and [HS09], though for the reason of having
neither points nor sections. Another source of evidence has been the study of the cycle class of
a section as pioneered by [EW08].

The goal of the present paper is to provide evidence for the section conjecture from a different
direction.

1.2. Results — trading degree for dimension. The evidence for the section conjecture
presented in this note consists in its compliance with Weil restriction of scalars, see Section 3.
Of course, in order for this to make sense, we widen the applicability of the conjecture beyond
the case of curves.

Let L/K be a finite separable field extension within Ksep, so that GalL = Gal(Ksep/L) is
a subgroup of GalK = Gal(Ksep/K). Let X/L be a quasi-projective, geometrically connected
variety and RL/K X its Weil restriction of scalars as a geometrically connected variety over K.
In Section 2 we will construct an induction functor for extensions which turns out to describe
the fundamental group of the Weil restriction in characteristic 0 as an extension as follows.

Theorem 2 (Theorem 17 in Section 3). Let K be a field of characterisitc 0 or let X/L be pro-
jective. Then the fundamental group π1(RL/K X/K) of the Weil restriction RL/K X of scalars
is isomorphic to the non-abelian induction IndGalK

GalL
π1(X/L).

Next, a non-abelian analogue of Shapiro’s Lemma yields a description of the set of conjugacy
classes of sections for an induction.

Theorem 3 (Corollary 15 in Section 3). Let E = [1→ N → E → H → 1] be an extension with
induction IndGH(E) = [1→M → IndGH(E)→ G→ 1] with respect to a subgroup H ⊆ G.

Then N -conjugacy classes of sections of E � H are naturally in bijection with M -conjugacy
classes of sections of IndGH(E) � G.

Combining Theorem 2 and Theorem 3 above, we obtain our piece of evidence for the section
conjecture. We note in passing, that no special assumption on the geometry of the quasi-
projective variety X is used.

Theorem 4. Let L/K be a finite separable field extension and let X/L be a quasi-projective,
geometrically connected variety. Let K have characteristic 0 or let X/L be projective.

(1) Let s ∈ Sπ1(X/L) and t ∈ Sπ1(RL/K X/K) be sections that correspond to each other under
the bijection of Theorem 3. Then s is the section associated to a rational point x ∈ X(L) if
and only if t is the section associated to a rational point y ∈ RL/K X(K). In this case we may
choose x and y so that they correspond to each other via the identification RL/K X(K) = X(L).

(2) Applying the functor π1 yields a bijective map X(L)→ Sπ1(X/L) if and only if it yields a
bijective map RL/K X(K)→ Sπ1(RL/K X/K).

Proof: Theorem 2 and Theorem 3 show that there is a natural commutative diagram

RL/K X(K)

��

∼= // X(L)

��
Sπ1(RL/K X/K)

∼= // Sπ1(X/L)

whose horizontal maps are bijections. �

Corollary 5. The section conjecture holds for smooth projective curves over number fields if
it holds for smooth, projective algebraic K(π, 1) spaces over Q (see [Sx02] Appendix A), which
embed into their Albanese variety and have non-vanishing Euler-Poincaré characteristic.

This corollary explains the title of the article. We have lowered the degree of the number field
in the section conjecture to 1 at the expense of working with varieties of dimension exceeding 1.
Of course, these higher dimensional varieties of interest are simply Q-forms of products of



smooth, projective hyperbolic curves and so the trade might be marginal. But on the one hand,
we are not required to limit the section conjecture to curves or products of curves, and secondly,
the arithmetic of Q and so presumably also sections over GalQ are arithmetically much simpler
than for more general algebraic number fields. For exampe, the recent modularity results were
first proven for representations of the full GalQ. So the base has become simpler.

Another argument in favour of the improvement of our situation is the following weak ana-
logue of [Sx08a] Theorem 17.

Proposition 6. Let X/Q be a smooth, projective and geometrically connected variety which is
an algebraic K(π, 1) space such that π1(X/Q) admits a section. Then any Galois invariant line
bundle L ∈ Pic0

X(Q) has vanishing Brauer obstruction b(L) = 0 ∈ Br(Q), hence belongs to a
genuine line bundle on X.

Proof: The local components of b(L) are obtained by base change to Qp or R which preserves
the assumptions. The real section conjecture as in [Sx08a] Theorem 24 applies also for higher
dimensional K(π, 1) spaces and yields the existence of a real point, and so b(L)R = 0.

Over a p-adic field the argument of [Sx08a] Proposition 12 and Corollary 14 still show that
the order of b(L)Qp is a power of p.

The result now follows from the global reciprocity which states that the local invariants of
b(L) sum up to 0. A sum of summands of prime power order where every prime occurs at
most once can only vanish if all the summands vanish. Hence b(L) vanishes by the local global
principle for Brauer groups of number fields. �

2. Non-abelian cohomology

2.1. Twisted generalized wreath products. We recall some group theory in order to fix
notations and to put it into a form useful for the sequel. Although we will ultimately apply the
results in the context of pro-finite groups, we choose to neglect the topology in the presentation,
because this frees us from adding an abundance of ”continuous” everywhere. However we note,
that in the pro-finite case the subgroups in question should be closed subgroups.

2.1.1. Wreath products. The wreath product of two groups G and N along a right G-set A
is the semidirect product

N oG := (
∏
α∈A

N) oG

with respect to the action of G on
∏
α∈AN given by g.(nα)α∈A = (nαg)α∈A, see [Hu67] §15.6.

2.1.2. Induction for groups acting on groups. Let G be a group. A G-group is a group N
together with an action ϑ : G→ Aut(N). For a subgroup H in G, induction is a functor indGH
from H-groups to G-groups defined as follows. As a group

indGH(N) = {f : G→ N ; f(hg) = ϑ(h)(f(g)) all h ∈ H}

with pointwise multiplication. The G-action on f ∈ indGH(N) comes from right translation of
the argument, so (g.f)(α) = f(αg).

2.1.3. Twisted generalized wreath products. The twisted generalized wreath product of the
group G with subgroup H relative to the H-group N is the semidirect product

N oH G := (N,ϑ) oH G := indGH(N) oG

with respect to the natural G-action of the induction as a G-group, see [Ne63] §2, [Me95] I.9.3,
[Hu67] §15.10 and [Ha99] §1.



2.1.4. Sections and H1. Let N be a G-group. A 1-cocycle of G with values in N is a map
a : G→ N such that for all s, t ∈ G we have

ast = as(s.at).

The first non-abelian cohomology H1(G,N) is the set of equivalence classes of 1-cocycles, where
cocycles a and b are equivalent if there is c ∈ N with as = cbs(s.c)−1 for all s ∈ G.

Two sections of N o G � G are equivalent if they differ by conjugation with an element of
N . The following lemma is well known and straight forward.

Lemma 7. The map which sends a 1-cocycle s 7→ as to the section s 7→ as · s, where we have
identified G with the second factor in N o G establishes a natural bijection of H1(G,N) with
the set of equivalence classes of sections of N oG � G.

2.1.5. The non-abelian Shapiro Lemma in degree 1. LetN be anH-group for a subgroupH ⊂ G.
The restriction of the G-group indGH(N) to an H-group admits an H-equivariant map

ev1 : indGH(N)|H → N

by evaluating at 1. The composition of restriction and evaluation at 1 defines the Shapiro map

sh1 : H1(G, indGH(N))→ H1(H,N).

Proposition 8. The Shapiro map sh1 : H1(G, indGH(N))→ H1(H,N) is bijective.

Proof: A 1-cocycle s 7→ bs for G with values in indGH(N) is given by bs,t = bs(t) ∈ N for all
s, t ∈ G such that (i) bs,ht = ϑ(h)(bs,t) for all s, t ∈ G and h ∈ H and (ii) bst,g = bs,gbt,gs for all
s, t, g ∈ G. The map sh1 on the level of cocycles maps b to h 7→ bh,1.

Surjectivity. We choose a set of representatives Y ⊂ G for H\G and obtain maps γ : G→ H
and y : G → Y such that g = γgyg for all g ∈ G. Let a : H → N be a 1-cocycle, in particular
a1 = 1. We set

bs,t :=
(
aγtϑ(γt)(ayt)

)−1(
aγtsϑ(γts)(ayts)

)
and a routine calculation shows that b is a 1-cocycle maping to a. The cocycle condition (ii) is
best checked by noting that our definition of b implies bs,t = (bt,1)−1bts,1.

Injectivity. Let b, b′ be cocycles with sh1(b) ∼ sh1(b′). We have f ∈ indGH(N) defined by
f(s) := (b′s,1)−1bs,1 for all s ∈ G. It follows that b′s,t = f(t)bs,tf(ts)−1 for all s, t ∈ G which
translates into b ∼ b′. �

Remark 9. (1) An alternative proof is given in [Ho78] Theorem 4 using the interpretation as
conjugacy classes of complements in semidirect products.

(2) Proposition 8 speaks about conjugacy classes of sections of a twisted wreath product
N oH G = indGH(N) o G. The assertion appears in [PQ03] Thm 2.6 in the case of wreath
products, i.e., trivial action of H on N . The introduction of [PQ03] contains the observation
that this is a non-abelian version of Shapiro’s Lemma but does not elaborate on this idea further.

2.2. Extensions after Eilenberg and MacLane. We recall the theory of non-abelian exten-
sions of Eilenberg and MacLane from [EMcL47].

2.2.1. Kernel. A kernel or more precisely a G-kernel is a group N together with an exterior
action ρ : G→ Out(N) by a group G, where Out(N) = Aut(N)/ Inn(N) is the group of exterior
automorphisms of N . We denote the set of all G-kernels on N by K(G,N) = Hom(G,Out(N)).

2.2.2. Center. Let ρ : G→ Out(N) be a G-kernel. The center Z of the kernel is the center of
N together with its inherited G-action χ = χρ : G→ Aut(Z). For distinction purposes we may
denote by Z(χ) the G-module Z with module structure given by χ : G → Aut(Z). The set of
kernels ρ with center equal to χ is denoted by K(G,N)χ.



2.2.3. Extensions. An extension E of a group G by a group N is a short exact sequence

1→ N → E → G→ 1.

Isomorphisms of extensions of G by N respect both G and N identically. We denote the set
of isomorphism classes of extensions by Ext(G,N). An extension E leads to a kernel ρ via the
restriction to N of the conjugation by preimages:

E
����

e( )e−1|N// Aut(N)
��

G
ρ // Out(N)

The set of isomorphy classes of extensions, whose kernel has center χ is denoted by Ext(G,N)χ.
The map Ext(G,N)χ → K(G,N)χ that assigns to each extension its kernel is well defined.

2.2.4. Obstruction theory. A kernel which is the kernel of an extension is called extendible.
By pullback of

1→ N/Z → Aut(N)→ Out(N)→ 1
a kernel ρ : G→ Out(N) determines an extension

1→ N/Z → Eρ → G→ 1

such that a presumptive extension E with kernel ρ by conjugation canonically sits in a diagram

1 // N

��

// E //

��

G // 1

1 // N/Z // Eρ // G // 1

Let χ be the center of ρ. If N were an abelian group with a G-submodule Z, then the existence
of E lifting Eρ were controlled by the coboundary δ(Eρ) under δ : H2(G,N/Z)→ H3(G,Z(χ)).
The set of such lifts would receive a transitive action of the group H2(G,Z(χ)) via the ho-
momorphism H2(G,Z(χ)) → H2(G,N). In the non-abelian case discussed here (see [EMcL47]
§7+8), as Z is central in N , the same formulas with inhomogeneous cocycles which prove the
assertions in the abelian case succeed to give the following result, except for the 0 on both sides
which follows from [EMcL47] §9+11.

Proposition 10 (essentially [EMcL47]). The following is exact

0→ H2(G,Z(χ))→ Ext(G,N)χ → K(G,N)χ
δ−→ H3(G,Z(χ))→ 0

in the sense that H2(G,Z(χ)) acts freely on Ext(G,N)χ with quotient set equal to the set of
extendible kernels δ−1(0) and δ is surjective.

The action of a ∈ H2(G,Z(χ)) on Ext(G,N)χ can be constructed on extensions as follows.
Let 1 → Z → Za → G → 1 be an extension realizing the cohomology class a ∈ H2(G,Z(χ)),
and let 1 → N → E → G → 1 be an extension with center of its kernel equal to χ. Then a.E
equals the isomorphism class of the extension

1→ N
inclusion,0−−−−−−→ (E ×G Za)/∆(Z)→ G→ 1,

where ∆ : Z → N × Z is the antidiagonal z 7→ (z,−z).

2.2.5. Categories of extensions. Let G be a group. The category Ext[G] has as objects exten-
sions of G with arbitrary kernel and morphisms are maps of extensions up to composition by
inner automorphisms from elements of the kernel.

Pushing an extension 1→ N → E → G→ 1 by an automorphism of N determines an action
of Out(N) on Ext(G,N) such that the set of orbits equals the set Ext[G,N ] of isomorphism
classes in the category Ext[G] of extensions of G by N . The map Ext(G,N)→ K(G,N) becomes
Out(N)-equivariant when Out(N) acts on K(G,N) = Hom(G,Out(N)) by composition with
inner automorphisms of Out(N).



2.3. Wreath product type extensions. In this section we built on the work of Holt [Ho78].

2.3.1. Wreath kernels. Let N be a group and H ⊆ G a subgroup. On

M = indGH(N, 1) =
∏

α∈H\G

N

we have an action of G by
g.((nα)α∈H\G) = (nαg)α∈H\G

and an outer action indGH(Out(N), 1) =
∏
α∈H\G Out(N)→ Out(M) given by

(fα)α∈H\G(nα)α∈H\G = (fα(nα))α∈H\G.

The two actions are compatible as follows. For g ∈ G and (fα)α∈H\G ∈
∏
α∈H\G Out(N) we

have (
g · (fα)α∈H\G · g−1

)(
(nα)α∈H\G

)
=
(
fαg(nα)

)
α∈H\G =

(
g.(fα)α∈H\G

)(
(nα)α∈H\G

)
resulting in a homomorphism

R : (Out(N), 1) oH G→ Out(M).

A wreath kernel of G on N is a kernel ρ : G → Out(M) together with a lift along R to a
homomorphism ρ̃ : G→ (Out(N), 1) oH G which is a section of the projection to G. Such a lift
is unique if it exists, as two lifts differ at most by elements in

∏
α∈H\G Out(N) which injects

into Out(M). The set of wreath kernels is thus a subset Kwreath(G,H;N) ⊆ K(G,M) of the
set of all G-kernels on M .

2.3.2. The Center of a wreath kernel. The center of M equals indGH(Z, 1) =
∏
α∈H\G Z where

Z is the center of N . Thus the center of a wreath kernel lifts to a homomorphism

G→ (Aut(Z), 1) oH G,

which is a section of the projection to G. The construction in Section 2.1.5 performed on the
level of cocycles, namely restriction to H and then evaluation at 1, yields the two surjective
maps sh as in the following diagram.

(2.1) Kwreath(G,H;N)
center ��

sh // // K(H,N)
center��

{Sections of (Aut(Z), 1) oH G � G} sh // // Hom(H,Aut(Z))

The vertical maps associate to a kernel its center. In particular, the center of M as a G-module
under the center of the wreath kernel ρ is nothing but indGH(χ) = indGH(Z(χ)) where χ is the
center of the H-kernel sh(ρ).

2.3.3. Wreath product type extensions. A wreath product type extension, see [Ho78] p.464,
is an extension of G by M =

∏
α∈H\GN , the kernel of which is a wreath kernel as above. The

set of isomorphism classes of wreath product type extensions is denoted by Extwreath(G,H;N).
We denote by Extwreath(G,H;N)χ (resp. by Kwreath(G,H;N)χ) the set of those wreath type
extensions whose kernel maps (resp. those wreath kernels which map) under sh to a kernel with
center χ.

2.3.4. The Shapiro map for extensions. Let E = [1→M → E
pr−→ G→ 1] be a wreath product

type extension. The kernel of the map ev1 : M � N , which evaluates at 1 is a normal subgroup
of E|H = pr−1(H). We may therefore push the restriction of E to H by the map ev1 to obtain
an extension of H by N , that will be denoted sh2(E).



2.3.5. Non-abelian Shapiro Lemma in degree 2.

Proposition 11. Let H be a subgroup of G. Let N be a group with center Z and H-action χ.
We have a commutative ladder with exact rows in the sense as in Proposition 10

0 // H2(G, indGH(χ)) //

sh2∼= ��

Ext(G,H;N)χ

sh2����

// Kwreath(G,H;N)χ
δ //

sh����

H3(G, indGH(χ))

sh3∼= ��

// 0

0 // H2(H,Z(χ)) // Ext(H,N)χ // K(H,N)χ
δ // H3(H,Z(χ)) // 0

where the vertical maps are induced by the respective Shapiro map, are all surjective and the
two extremal ones are isomorphisms.

Proof: Exactness of the bottom row is Proposition 10. The commutativity of the diagram
follows by tedious but elementary calculations on cochains. The abelian Shapiro Lemma shows
that the two extremal vertical maps are isomorphisms. The surjectivity of sh was discussed in
(2.1). Exactness of the top row follows again from Proposition 10 besides the surjectivity of δ
which follows from a diagram chase. Now the surjectivity of the remaining vertical map follows
again by diagram chase. �

2.3.6. Split extensions. The group
∏
α∈H\G Out(N) acts naturally by pushing on isomorphism

classes Extwreath(G,H;N) of wreath product type extensions. Let Extwreath[G,H;N ] denote
the set of orbits.

Theorem 12 ([Ho78] Thm 3). The map sh2 yields a bijection Extwreath[G,H;N ] ∼−→ Ext[H,N ].

This theorem by Holt has the following immediate corollary.

Corollary 13. Let E be a wreath product type extension in Extwreath(G,H;N)χ. Then E splits
as an extension of G by

∏
α∈H\GN if and only if sh2(E) splits as an extension of H by N .

2.4. Non-abelian induction of extensions.

2.4.1. Adjoint to restriction. Let H be a subgroup of G. We are going to construct a right
adjoint to the functor restriction from G to H

resGH : Ext[G]→ Ext[H], E 7→ resGH = E|H

which by analogy is called induction from H to G and denoted by IndGH . By Yoneda, all we
have to achieve is a proof of the following theorem.

Theorem 14. Let F ∈ Ext[H] be an extension of H. The functor which sends T ∈ Ext[G] to
HomExt[H]

(
resGH(T ), F

)
is representable.

A representing object as in the theorem is denoted by IndGH(F ). By definition, adjointness

(2.2) HomExt[H]

(
resGH(T ), F

)
= HomExt[G]

(
T, IndGH(F )

)
holds naturally, and F 7→ IndGH(F ) is the sought for non-abelian induction functor.

If we apply adjointness to the extension 1→ 1→ G
id−→ G→ 1 we get the following immediate

corollary.

Corollary 15. Let H be a subgroup of G and let E = [1→ N → E → H → 1] be an extension
in Ext[H] with induction IndGH(E) = [1→M → IndGH(E)→ G→ 1] in Ext[G].

(1) The adjointness map (2.2) describes a bijection between N -conjugacy classes of sections
of E � H and M -conjugacy classes of sections of IndGH(E) � G.

(2) In particular, E splits if and only if IndGH(E) splits.



2.4.2. Proof of adjointness. Let F ∈ Ext[H] be an extension of H. By Theorem 12 there exist
an extension E ∈ Ext[G] which is a wreath product type extension such that sh2(E) ∼= F . We
are done if we can find a bijection

(2.3) sh : HomExt[G]

(
T,E

) ∼−→ HomExt[H]

(
resGH(T ), sh2(E)

)
which is natural in T = [1→ S → T → G→ 1].

Let ϕ : T → E be a morphism of extensions. We define the map sh(ϕ) as the composition
ev1 ◦ resGH(ϕ) which is the vertical map in the following diagram.

resGH(T )
resGH(ϕ)��

= [1 // S //

��

T |H

��

// H // 1]

resGH(E)
ev1��

= [1 // M //

��

E|H

��

// H // 1]

sh2(E) = [1 // N // sh2(E) // H // 1]

We denote the projection T → G by pr and its restriction to H by pr |H : T |H → H. A map
ϕ : T → E is nothing but an M -conjugacy class of sections of

pr∗1E = [1→M → E ×G T → T → 1],

which is a wreath product type extension for the subgroup T |H ⊆ T . On the other hand, a map
T |H → sh2(E) is an N -conjugacy class of sections of

(pr |H)∗(sh2(E)) = [1→ N → sh2(E)×H T |H → T |H → 1].

Because of the isomorphism sh2(pr∗1E) ∼= (pr |H)∗(sh2(E)), we get that in fact Theorem 14 is
equivalent to Corollary 15 with F = IndGH(E) and E = sh2(F ), which is what we are going to
prove in the sequel. Part (2) has already been shown in Corollary 13. We may therefore assume
that the wreath product type extension F splits.

We fix a splitting σ, which allows to lift the kernel ρF : G → Out(M) to a homomorphism
ϑF : G → Aut(M). By means of ϑF the extension F is isomorphic to the semidirect product
M oϑF G. Because the following diagram is a fibre product diagram(

Aut(N), 1
)
oH G //

R̃
��

(
Out(N), 1

)
oH G

R
��

Aut(M) // Out(M)

where the map R̃ is constructed analogously to the map R, the wreath kernel ρ̃, which lifts ρF ,
also lifts to a homomorphism ϑ̃ : G→

(
Aut(N), 1

)
oH G.

Restriction of the section σ to H and evaluating at 1 induce the corresponding section of
sh2(F ) and a true action ϑ : H → Aut(N) by means of which sh2(F ) ∼= N oϑ H. But ϑ also
equals the evaluation at 1 of the restriction to H of ϑ̃. Hence M as a G-group via ϑ̃ is nothing
but indGH(N) for the H-group N via ϑ. The result now follows from Proposition 8. �

2.5. The anabelian case. Although still a mystery in general, it is widely believed that a
group only qualifies to be anabelian when its center is trivial. In this section we will work out
under the assumption, that the center Z of N is trivial, how the content of the Sections 2.1 -
2.4 specialises. Proposition 10 yields a bijection

Ext(G,N)→ K(G,N)

with inverse assigning to a kernel ρ : G → Out(N) the pullback under ρ of the extension
1 → N → Aut(N) → Out(N) → 1. Hence all kernels are extendible and each extension is
determined by its kernel up to isomorphism.



It follows that an N -conjugacy class of sections of an extension with kernel ρ : G→ Out(N) is
canonically the same as a lift of ρ to an actual action ρ̃ : G→ Aut(N) up to uniform conjugation
by elements of N .

With N also M =
∏
α∈H\GN has trivial center. The fact that sections of

(
Out(N), 1

)
oHG �

G and sections of Out(N)×H � H correspond to each other under sh1 up to conjugation by
elements from M (resp. N) thus explains Theorem 12 in this case. The content of Corollary 15
follows by applying the same argument to the semi-direct products

(
Aut(N), 1

)
oH G � G and

Aut(N)×H � H.

3. Weil restriction of scalars

We content ourselves with a discussion of Weil restriction of scalars relative a finite separable
field extension for quasi-projective varieties.

3.1. Properties of the Weil restriction. Let L/K be a finite separable field extension. Weil
restriction of scalars relative L/K is a functor RL/K from quasi-projective varieties over L to
quasi-projective varieties over K that is right adjoint to scalar extension − ⊗K L and thus
defined by an identification

HomL

(
Y ⊗K L,X

)
= HomK

(
Y,RL/K(X)

)
which is natural for schemes X (resp. Y ) quasi-projective over L (resp. K), see [BLR90] VII.6.
If X has dimension d then RL/K(X) has dimension d[L : K].

Let K ′/K be another field extension and L′ = L ⊗K K ′ =
∏
α L
′
α the decomposition of the

tensor product in separable K ′ extensions. Then the following Mackey-formula holds(
RL/K(X)

)
⊗K K ′ =

∏
α

RL′α/K
′
(
X ⊗L L′α

)
.

In particular, with an algebraic closure Kalg of K we have(
RL/K(X)

)
⊗K Kalg =

∏
σ

X ⊗L,σ Kalg,

where the product is over all K-embeddings σ : L→ Kalg. If Kalg contains L a priori, then we
have a prefered σ1 = id which gives a projection

pr1 :
(

RL/K(X)
)
⊗K Kalg → X ⊗L Kalg

onto the corresponding factor.

3.2. The fundamental group of the Weil restriction. From now on we work with fields of
characteristic 0 or ask the variety X/L to be projective. Under these conditions the fundamental
group satisfies a Künneth formula [SGA1] Exp X Cor 1.7, Exp XII Cor 5.2, i.e, the projections
yield an isomorphism

(3.1) π1

(
RL/K(X)⊗K Kalg

)
= π1

(∏
σ

X ⊗L,σ Kalg
) ∼−→∏

σ

π1

(
X ⊗L,σ Kalg

)
.

In the extension π1

(
RL/K(X)/K

)
, the outer action by conjugation with lifts of g ∈ GalK

on
∏
σ π1

(
X ⊗L,σ Kalg

)
acts as π1(1 ⊗ g−1) and therefore permutes the factors by mapping

σ ∈ HomK(L,Kalg) = GalK /GalL to g−1σ. Reindexing the product with α = σ−1 transforms
this to the right translation action on GalL \GalK . Thus we have established the following
proposition.

Proposition 16. The extension π1

(
RL/K(X)/K

)
is a wreath product type extension with re-

spect to the subgroup GalL ⊆ GalK .



In the identification of the index set of the product with GalL \GalK we have chosen a
distinguished embedding of L in Kalg. Evaluation at 1 then is nothing but the π1(pr1) for

pr1 :
(

RL/K(X)
)
⊗K L→ X

which is the adjoint map for the pair of adjoint functors RL/K and − ⊗K L and an L-form of
the map pr1 from above. Consequently sh2(π1

(
RL/K(X)/K

)
equals π1(X/L) and we have the

following structure theorem for the fundamental group of a Weil restriction of scalars.

Theorem 17. The fundamental group π1(RL/K X/K) is isomorphic to the non-abelian induc-
tion IndGalK

GalL
π1(X/L).
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