
On the birational section conjecture with local conditions
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Abstract — A birationally liftable Galois section s of a hyperbolic curve X/k over a
number field k yields an adelic point x(s) ∈ X(Ak)• of the smooth completion X ⊆ X.
We show that x(s) is X-integral outside a set of places of Dirichlet density 0, or s is
cuspidal. The proof relies on GL2(F`)-quotients of π1(U) for some open U ⊂ X.

If k is totally real or imaginary quadratic, we prove that all birationally adelic, non-
cuspidal Galois sections come from rational points as predicted by the section conjecture
of anabelian geometry. As an aside we also obtain a strong approximation result for
rational points on hyperbolic curves over Q or imaginary quadratic fields.

1. Introduction

The section conjecture [Gr83] predicts for a smooth hyperbolic curve X/k over a number field
k that every Galois section of the projection π1(X) → π1(Spec(k)) arises by functoriality from
a rational point (possibly of the smooth completion), see [Sti13] for a survey.

For diophantine applications it suffices to describe the set of rational points in terms of sections
with additional group theoretic conditions. We impose two kinds of extra conditions in this note:
(1) birational lifting: the section lifts to a section of π1(Spec(K)) → π1(Spec(k)) where K is

the function field of X, see Section §2.1.
(2) adelic: the section locally belongs to an adelic point of X, see Section §2.2.

Both conditions imply by Koenigsmann [Ko05] that the section is Selmer, i.e., it comes locally
from a point or is cuspidal. While (1) allows us to work birationally on the curve and is entirely
in terms of groups, condition (2) imposes some kind of discreteness that we rather would like to
deduce than to invest in the theory. Nevertheless, the study of (2) is justified by the application
to strong approximation, see Theorem C below.

1.1. Results. We obtain in Corollary 7 the following result.

Theorem A. Let k be a totally real or an imaginary quadratic number field, and X/k be a
hyperbolic curve. Then the set of π1(Xk̄)-conjugacy classes of birationally adelic non-cuspidal
sections of π1(X)→ π1(Spec(k)) is in natural bijection with the set of k-rational points of X.

While Theorem A shows that assuming birationally adelic is almost enough (depends on k)
to prove the birational section conjecture, Theorem B shows that this hypothesis is almost true.

Theorem B. Let s : Galk → π1(X) be a birationally liftable section of a hyperbolic curve X/k
with smooth completion X over a number field k.

Then the associated adelic point (xv(s)) ∈ X(Ak)• has
(1) either xv(s) ∈ X(ov) is integral for a set of places v of Dirichlet density 1,
(2) or the section s is cuspidal.

The proof of Theorem B, see Corollary 15 and Theorem 20, uses the geometric monodromy
of the Legendre family of elliptic curves. This leads to a new GL2-type description of cuspidal
sections in contrast to the characterization via weights due to Nakamura [Na90]. The use of the
Legendre family has the flavour of the known reduction of the section conjecture for birationally
liftable sections to the special case of X = P1 − {0, 1,∞} as observed for example in [EsHa08]
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Proposition 7.9. But in fact, we have to exploit many rational maps X 99K P1 − {0, 1,∞} and
so the line of thought is different.

1.2. Outline. Section §2 contains various notions of sections with (local) conditions and de-
scribes these notions for 1-dimensional tori. In Section §3 we make use of Stoll’s finite support
result in descent theory. Here we prove Theorem A and obtain the following interesting result
of strong approximation, see Corollary 6.

Theorem C. Let X/k be a hyperbolic curve over either k = Q or k an imaginary quadratic
number field such that O∗(X) 6= k∗. Then the natural map

X(k)
∼−→ X(Ak)f−desc

•

is a bijection from rational points to adelic points that survive any finite descent obstruction.

In Section §4 we start to draw conclusions for Selmer sections from the presence of non-
constant families of elliptic curves. We prove a density theorem, Theorem 10, based on the
asymptotic of group theory in GL2(F`) for ` → ∞. The theorem roughly says that the adelic
point associated to a section behaves either, up to a set of density 0, like a rational point, or like
a cuspidal section. This works over any number field. The precise statement concerning cuspidal
sections is obtained in Section §5 by means of the geometric monodromy of the Legendre family.
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1.3. Notation and terminology. A hyperbolic curve is a smooth relative curve X → S
endowed with a smooth projective compactification X → S such that the following holds. The
geometric fibres X s̄ are connected of constant genus, Y = X \X → S is a finite étale relative
divisor, and the fibrewise `-adic Euler characteristic χ(Xs̄,Q`) is constant and negative (` ∈ O∗S).

For a number field k we denote its ring of integers by ok, the completion at a place v of k is
kv with ring of integers ov if v -∞. The adele ring of k is denoted by Ak. For a not necessarily
finite set of places S of k we denote by ok,S the ring of S-integers (which are integral outside S).

2. Galois sections with local conditions

2.1. Sections. Let X/k be a geometrically irreducible and reduced variety with function field
K. Let K ⊂ K be a fixed algebraic closure and set GalK = Gal(Ksep/K) with Ksep the
separable closure in K. The algebraic (resp. separable) closure of k contained in K will be
denoted by k̄ (resp. ksep) and Galk = Gal(ksep/k). The fundamental group of X/k forms an
extension π1(X/k)

1→ π1(Xk̄)→ π1(X)→ Galk → 1,

where the geometric generic point Spec(K) → Xk̄ → X is the implicit base point. The space
of sections of π1(X/k) up to conjugation by elements from π1(Xk̄) will be denoted by Sπ1(X/k),
and its birational analogue, GalKk̄-conjugacy classes of sections of GalK → Galk, by Sπ1(K/k).

To the point a ∈ X(k) we associate by functoriality a class of sections sa : Galk → π1(X).
This gives rise to the non-abelian profinite Kummer map a 7→ κ(a) = sa

κ : X(k)→ Sπ1(X/k).
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2.1.1. Birationally liftable sections. The inclusion of the generic point j : SpecK → X induces
a map j∗ : GalK → π1(X), a surjection if X is normal, and furthermore a map

j∗ : Sπ1(K/k) → Sπ1(X/k),

the image of which by definition is the set of birationally liftable sections S bir
π1(X/k). The

property birationally liftable is a priori stronger than the notion defined in [Sti13] §18.5.

2.1.2. The limit argument. A neighbourhood of a section s : Galk → π1(X) is a finite étale
cover X ′ → X together with a lift s′ of the section, i.e., an open subgroup H ⊆ π1(X) containing
the image of the section s = s′. The limit over all neighbourhoods yields a pro-étale cover

Xs = lim←−X
′ → X

corresponding to π1(Xs) = s(Galk) ⊆ π1(X). It follows that a section s of π1(X/k) comes from
a k-rational point of X if and only if Xs(k) is nonempty: we have s = sa if and only if

a ∈ im
(
Xs(k)→ X(k)

)
.

2.1.3. Cuspidal sections. For simplicity, we now moreover assume that X/k is a smooth curve
with smooth completion X ⊆ X. Let a ∈ X(k) \X(k) and let wa be the corresponding discrete
k-valuation of K. Denote by Iwa the inertia group and by Dwa the decomposition group of (a
prolongation w̄a to K of) the valuation wa. The short exact sequence

1→ Iwa → Dwa → Galk → 1

splits. Composing splittings with the natural map Dwa ⊆ GalK → π1(X) leads to sections of
π1(X/k). These are by definition the cuspidal sections of π1(X/k) and naturally form a subset

S cusp
π1(X/k) ⊆ S bir

π1(X/k).

If the section s comes from a section of Dwa → Galk, then we say that s is centered in a ∈ X \X.
For an arbitrary section s : Galk → π1(X) we consider the pro-(finite branched) cover

Xs = lim←−
X′

X ′ → X

whereX ′ → X ranges through neighbourhoods of s andX ′ is the normalization ofX inX ′ → X.
Then s is cuspidal and centered in a if and only if

a ∈ im
(
Xs(k)→ X(k)

)
\X(k).

2.2. Local conditions. Recall the base change map s 7→ s ⊗ k′ for a field extension k′/k in
characteristic 0, see [Sti13] §3.2, namely the map

Sπ1(X/k) → Sπ1(X×kk′/k′).

Note that base change for birational sections exists only if k′/k is algebraic, because in general
GalKk′ → GalK ×Galk Galk′ is not an isomorphism, if k′/k is transcendental.

2.2.1. Selmer sections. Let k be a number field. Selmer groups in Galois cohomology classify
torsors that become locally trivial because they possess local points everywhere. In analogy,
Selmer sections are sections that locally belong to a rational point.

For a place v of k we write s⊗ kv = sv. The section s : Galk → π1(X) is a Selmer section
if for every place v of k the localisation sv is cuspidal or belongs to a rational point in X(kv).
The set of all Selmer sections we denote by S Sel

π1(X/k).
Let X/k be a hyperbolic curve with smooth completion X. The adelic point x(s) = (xv)v in

X(Ak)• associated to a Selmer section s by sv = sxv is unique. Here X(Ak)• denotes the set of
modified adelic points of X where the component at an infinite place v is given by π0(X(kv)). It
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follows form [HSx10] Theorem 11 that x(s) ∈ X(Ak)f−desc
• , the set of adelic points that survive

all finite descent obstructions. So we obtain a map

x : S Sel
π1(X/k) → X(Ak)f−desc

• . (2.1)

If X = X and the genus is at least 1, then (2.1) is surjective by [HSx10] Theorem 11.

Proposition 1 (Koenigsmann). Let X/k be a hyperbolic curve over a number field k with smooth
projective completion X ⊆ X.
(1) If π1(X/k) admits a birationally liftable section, then X(kv) 6= ∅ for every completion kv.
(2) Any birationally liftable section of π1(X/k) is a Selmer section.

Proof. (1) is immediate from [Ko05] Corollary 2.6. To show (2) we apply (1) to all neighbour-
hoods X ′ of s as in the proof of [Ko05] Proposition 2.4 (a). As Xsv = Xs ×k kv, we find by
compactness

Xs(kv) = lim←−
X′

X ′(kv) 6= ∅.

We pick xv ∈ im(Xs(kv)→ X(kv)), so that sv = sxv , and the section s is Selmer. �

2.2.2. Adelic sections. Let X/k be a hyperbolic curve. An adelic section is a Selmer section
s : Galk → π1(X) such that x(s) ∈ X(Ak)• lies in X(Ak)•. The set of all adelic sections will be
denoted by S adelic

π1(X/k). We obtain a map

x : S adelic
π1(X/k) � X(Ak)f−desc

•

that is surjective due to [HSx10] Theorem 11, see also [Sti13] Theorem 144.

2.2.3. Birationally adelic sections. Let X/k be a hyperbolic curve with function field K. A
birationally adelic section is a section s : Galk → π1(X) that is birationally liftable to a
section Galk → GalK such that for every open U ⊆ X the induced section of π1(U/k) is either
adelic for U/k or cuspidal. The set of all birationally adelic sections is denoted by S ba

π1(X/k).

2.3. Examples. We discuss tori of rank 1, since these enter the proof of Theorem A.

Proposition 2. For a quadratic imaginary number field k or k = Q we have

k∗ = Gm(k) = S adelic
π1(Gm/k).

Proof. The diagonal map k̂∗ ↪→
∏
v k̂
∗
v is injective, see [NSW08] Theorem 9.1.11(2). The inter-

section
S adelic
π1(Gm/k) = Sπ1(Gm/k) ∩Gm(Ak)• = k̂∗ ∩Gm(Ak)•

inside the product contains k∗. By finiteness of the class number we can fix a finite set of places
S of k containing all infinite places S∞ with Pic(ok,S) = 1. Then we can use elements from k∗

to move the support of the divisor of any (xv) ∈ Gm(Ak)• into S and thus

k̂∗ ∩Gm(Ak)• = k∗ ·
(
k̂∗ ∩

∏
v/∈S

o∗v ×
∏

v∈S\S∞

k∗v ×
∏
v∈S∞

π0(k∗v)
)

= k∗ ·
(
ô∗k,S ∩

∏
v/∈S

o∗v ×
∏

v∈S\S∞

k∗v ×
∏
v∈S∞

π0(k∗v)
)

= k∗ · ker(v ⊗ Ẑ : o∗k,S ⊗ Ẑ→
⊕

v∈S\S∞

Ẑ/Z) = k∗ · ô∗k.

The assumption on k implies that o∗k is finite, hence k∗ = k∗ · ô∗k and the proof is complete. �
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Proposition 3. Let F be a totally real number field and let E/F be a quadratic extension that
is totally imaginary. Then, for the norm 1-torus T = ker(N : RE|FGm → Gm) over F we have

T (F ) = ker(N : E∗ → F ∗) = S adelic
π1(T/F ).

Proof. We need to compute T̂ (F ) ∩ T (AF )• which certainly injects by restriction into

ker
(
N : Ê∗ ∩Gm(AE)• → F̂ ∗ ∩Gm(AF )•

)
= ker

(
N : E∗ · ô∗E → F ∗ · ô∗F

)
,

where we have used the general computation of Proposition 2. By Dirichtlet’s Unit Theorem the
map N : o∗E → o∗F is an isomorphism up to torsion. This is preserved under profinite completion,
and furthermore, the map

N : ô∗E/o
∗
E → ô∗F /o

∗
F

is an isomorphism. An application of the snake lemma shows that the natural map

T (F ) = ker(N : E∗ → F ∗)
∼−→ ker

(
N : E∗ · ô∗E → F ∗ · ô∗F

)
is an isomorphism. This completes the proof. �

3. Finite support

Let X/k be a hyperbolic curve over the number field k with smooth projective completion X.
The support of a Selmer section s : Galk → π1(X) is defined as the Zariski-closed subscheme

Z(s) =
⋃
v im(xv : Spec(kv)→ X) ⊆ X

where x(s) = (xv) ∈ X is the adelic point associated to the Selmer section. We say that a
Selmer section s has finite support if Z(s) is finite over k.

The following important descent result due to Stoll.

Theorem 4 (Stoll [St07] Theorem 8.2). Let Z be a proper closed subscheme of a smooth pro-
jective curve X of genus at least 1 over a number field k. Then the diagonal map is a bijection:

Z(k)
∼−→
{

(xv) ∈ X(Ak)f−desc
• ; xv ∈ Z(kv) for a set of places v of density 1

}
.

Stoll’s result is stronger requiring that the adelic point only survives finite descent obstructions
with respect to abelian groups. For our application to sections the difference does not matter.

Corollary 5. Let X/k be a hyperbolic curve over a number field. Then the image of the map

X(k)→ S adelic
π1(X/k) ⊆ S Selmer

π1(X/k) \S cusp
π1(X/k)

consists precisely of the non-cuspidal Selmer sections with finite support.

Proof. For a ∈ X(k) the support of sa is the subscheme {a} ↪→ X. It remains to conclude the
converse: if the support Z(s) is finite and s is not cuspidal, then s belongs to some rational
point of X. If we pass to a neighbourhood h : X ′ → X of the section s with lift s′, then

Z(s′) ⊆ h−1(Z(s)),

so that the property of having finite support is preserved. We may therefore without loss of
generality assume that the smooth completion X of X has genus ≥ 1. Then by Theorem 4

x(s) ∈ Z(s)(Ak)• ∩X(Ak)f−desc
• = Z(k)

and so in the limit over all neighbourhoods X ′ of s

Xs(k) ⊇ lim←−
(X′,s′)

Z(s′)(k) 6= ∅.

The limit argument (Section §2.1.2) implies that s = sa for any a ∈ im
(
Xs(k)→ X(k)

)
. Since

we assumed s not to be cuspidal, we may even deduce that a ∈ X(k). �
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Corollary 6. Let k be Q or an imaginary quadratic number field. Let X/k be a hyperbolic curve
with a global non-constant unit f ∈ O∗X \ k∗. Then the maps κ and x are bijective:

X(k)
∼−→ S adelic

π1(X/k)
∼−→ X(Ak)f−desc

• .

Proof. We first treat κ. By Corollary 5 it suffices to show that adelic sections s : Galk → π1(X)
have finite support. The non-constant unit defines a non-constant map f : X → Gm, and

Z(s) ⊆ f−1(Z(f∗s)).

But the adelic section f∗s : Galk → π1(Gm) comes from a rational point by Proposition 2, hence
f∗s and a forteriori s have finite support. This shows κ is bijective.

The map X(k) ↪→ X(Ak)f−desc
• is injective and x : S adelic

π1(X/k) � X(Ak)f−desc
• is surjective by

[HSx10] Theorem 11. In view of X(k) = S adelic
π1(X/k) we conclude that also x must be bijective. �

Corollary 7. Let k be a totally real number field or an imaginary quadratic number field. Let
X/k be a hyperbolic curve. Then the natural map is a bijection:

S cusp
π1(X/k) qX(k)

∼−→ S ba
π1(X/k).

Proof. We show that birationally adelic sections have finite support and use Corollary 5. We
may replace X by an open U ⊆ X. If k/Q is imaginary quadratic or k = Q we choose U such
that we have a non-constant global unit on U and conclude with Corollary 6.

It remains to treat the case of a totally real number field k. Let a ∈ k∗ be totally negative
and set k′ = k(

√
a) with Gal(k′/k) generated by σ. We set

T = ker(N : Rk′|kGm → Gm).

A rational map f : X 99K T corresponds to an element f ∈ k(X)⊗k k′ of norm
N(f) = σ(f)f = 1.

We take α ∈ k′ \ k and a non-constant element g ∈ k(X)∗ \ k∗ and set

f = σ(g + α)/(g + α) = (g + σ(α))/(g + α).

Then N(f) = 1 and, for U ⊂ X small enough, f is a non-constant map f : U → T . The
argument of Corollary 6 with Proposition 3 instead of Proposition 2 concludes the proof. �

A result in the same spirit but using abelian varieties instead of tori was proven by Stoll [St07]
Theorem 8.6 and Remark 8.9. For abelian varieties all Selmer sections are adelic.

4. Density of non-integral places

We now discuss to what extent a Selmer section misses to be an adelic or cuspidal section.

4.1. Types of adelic points. Let X/k be a smooth, geometrically connected curve over a
number field k and let X be its smooth projective completion. Let U ⊆ Spec(ok) be a dense
open such that X ⊆ X has good reduction X ⊆ X over U in the sense of open curves, i.e.,
X is an open in the smooth, projective X → U and the boundary divisor X \X is relatively
étale over U . For an adelic point

x = (xv) ∈ X(Ak)•
we define a partition of all places of k with respect to U and the models X ⊆X as follows.
integral : An integral place for x is a place v ∈ U such that the closure of {xv} in X ×U ov

is contained in X ×U ov.
degenerate : A degenerate place for x is a place v ∈ U such that xv ∈ X(kv) and the closure

of {xv} in X ×U ov meets the boundary (X \X )×U ov.
cuspidal : A cuspidal place for x is a place v ∈ U such that xv ∈ (X \X)(kv).
bad : A bad place for x is a place v /∈ U . In particular, all infinite places are bad by

definition.
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Definition 8. With the notation as above, we say that (xv) ∈ X(Ak)• is asymptotically
integral if the intersection number with the boundary divisor X \X of the closure of {xv} for
degenerate places v tends to 0 in Ẑ, i.e., for every n ≥ 1 there are only finitely many degenerate
places v where n does not divide this intersection number.

Remark 9. (1) Since we will be interested in assertions on finiteness or on the Dirichlet density
of the partition sets, the choice of U and the models X ⊆X are irrelevant.

(2) The subset X(Ak)• ⊆ X(Ak)• contains precisely those adelic points for which all but
finitely many places are integral, no place is cuspidal and the components at v /∈ U lie in X(kv).

4.2. Families of elliptic curves and `-adic representations. Let X/k be a geometrically
connected variety with geometric point x̄ ∈ X. We assume that there is a family of elliptic
curves E → X and consider, for every ` 6= char(k), the `-adic 2-dimensional representation

ρE/X,` : π1(X, x̄)→ GL(T`(Ex̄))

where Ex̄ is the geometric fibre of E/X in x̄. The Weil-pairing induces a canonical isomorphism

det(ρE/X,`) = ε ◦ pr∗

where ε is the corresponding `-adic cyclotomic character and pr∗ : π1(X, x̄) → Galk is induced
by the projection map.

To any section s : Galk → π1(X, x̄) we can thus associate a family of `-adic representations

ρs,E/X,` = ρE/X,` ◦ s : Galk → GL(T`(Ex̄))

with cyclotomic determinant
det(ρs,E/X,`) = ε.

By naturality of the construction, if s = sa for a ∈ X(k), then ρs,E/X,` is nothing but the
Galois representation ρEa/k,` on T`(Ea) for the fibre Ea of E/X in a. If the family is constant
E = X × E0, then clearly ρs,E/X,` is independent of s and agrees with ρE0/k,`.

Recall that k is a number field. Strictly speaking, the family {ρs,E/X,`}` does not deserve to
be called an `-adic representation, because
(i) we lack a conductor N such that ρs,E/X,` is unramified for all places v - ` ·N ,
(ii) we lack integrality of the characteristic polynomials of Frobenius,
(iii) and we lack independence of ` for the characteristic polynomials of Frobenius.
This changes for Selmer sections, well almost.

4.3. Almost an `-adic representation. Let now X/k be a smooth, geometrically connected
curve, and assume that the family E/X has bad semistable reduction along every point of X \X.
Let s : Galk → π1(X) be a Selmer section with associated adelic point x(s) = (xv) of the smooth
projective completion X. Let Dv = Galkv ⊂ Galk be the decomposition subgroup of the place
v, and let Iv ⊂ Dv be the inertia subgroup. We discuss the local behaviour

ρs,E/X,`|Dv : Galkv → GL(T`(Ex̄))

in terms of the type of v with respect to x. As X → U with U ⊆ Spec(ok) we take a model such
that the family E/X has good reduction over X and bad semistable reduction along X \X .
Note that X is a surface and that semistable reduction ceases to make sense only in a set of
codimension 2, hence a finite set that we may assume to be empty by shrinking U .

integral: For an integral v the local representation belongs to the elliptic curve Ev/kv which is
the fibre of E/X in xv ∈ X(kv) and has good reduction over Spec(ov). It follows that
(i) the representation ρs,E/X,`|Dv is unramified for ` 6= char(Fv) with Fv being the

residue field of v,
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(ii) the characteristic polynomial of Frobenius is integral

det(1− Frobv T |ρs,E/X,`) = 1− avT +N(v)T 2 ∈ Z[T ]

(here N(v) = #Fv is the norm of v),
(iii) and the trace of Frobenius av ∈ Z is independent of ` with |av| ≤ 2

√
N(v).

degenerate: For a degenerate v the local representation belongs to the elliptic curve Ev/kv
which is the fibre of E/X in xv ∈ X(kv) and has bad semistable reduction over Spec(ov).
It follows that
(i) there is a quadratic unramified character δv : Galkv → {±1} such that for all

` 6= char(Fv) in a suitable basis

ρs,E/X,`|Dv ∼
(
δε ψ

δ

)
(4.1)

where ψ|Iv = mv ·t` is a multiple of the tame `-adic character with mv > 0 integral
and independent of `,

(ii) the characteristic polynomial of Frobenius still makes sense (computed on the
unramified semisimplification) and is integral

det(1− Frobv T |ρs,E/X,`) = 1− avT +N(v)T 2

= (1− δv(Frobv)T )(1− δv(Frobv)N(v)T ) ∈ Z[T ],

(iii) and the trace of Frobenius av ∈ Z is independent of ` with

av = δv(Frobv)(N(v) + 1).

The character δ describes the 1-dimensional torus in the special fibre of the Néron model
of Ev over Spec(ov). Concerning the claim on ψ we may pass to an unramified extension
k′v/kv such that Ev attains split multiplicative reduction and therefore admits a Tate
uniformization Ev ×kv k′v = Gm/q

Z
v , with qv ∈ k′v. The cocycle ψ|Iv is the Kummer

cocycle associated to qv and thus agrees with the mv = v(qv) > 0 multiple of the tame
`-adic character.

cuspidal: For a cuspidal v the local section sv is cuspidal at xv and thus factors over the
decomposition subgroup of xv in π1(X⊗kv/kv): the absolute Galois group of the fraction
field of Ô

X⊗kv ,xv
that is noncanonically isomorphic to kv((z)). It follows that the image

of the representation ρs,E/X,`|Dv is contained in the image of the representation of the
corresponding Tate elliptic curve which is the fibre E ×X Spec k((z)). We thus can say
the same thing about ρs,E/X,`|Dv for v - ` as for degenerate places v except that we do
know nothing on ψ:
(i) There is a quadratic unramified character δv : Galkv → {±1} such that for all

` 6= char(Fv) in a suitable basis

ρs,E/X,`|Dv ∼
(
δε ∗

δ

)
,

(ii) the characteristic polynomial of Frobenius still makes sense and is integral

det(1− Frobv T |ρs,E/X,`) = 1− avT +N(v)T 2

= (1− δv(Frobv)T )(1− δv(Frobv)N(v)T ) ∈ Z[T ],

(iii) and the trace of Frobenius av ∈ Z is independent of ` with

av = δv(Frobv)(N(v) + 1).

bad: For the finitely many bad v we say nothing.
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For a Selmer section s as above and ρ = {ρs,E/X,`} we define the trace of Frobenius

av(ρ) = tr
(
ρs,E/X,`(Frobv)|T`(Ex̄)

)
∈ Z

for any ` 6= char(Fv) and any v that is not bad. By the above discussion this number is indeed
a well defined integer.

4.4. A dichotomoy. As a consequence of the Chebotarev Density Theorem we will now prove
the following result.

Theorem 10. Let X/k be a hyperbolic curve over a number field with smooth completion X.
Let E/X be a family of elliptic curves with bad and not even potentially good reduction over
X \X. Let s : Galk → π1(X) be a Selmer section with adelic point x(s) = (xv) ∈ X(Ak)•. Then
x(s) is asymptotically integral with respect to X, and exactly one of the following occurs.
(1) Either the set

{places v such that xv is integral with respect to X}
has Dirichlet density 1,

(2) or the family of `-adic representations ρs,E/X,` factors in a suitable basis through(
δε ∗

δ

)
with a quadratic character δ : Galk → {±1} that is independent of ` and ramified at most
in the bad places. Moreover, all but finitely many places are cuspidal or degenerate. The
remaining places are bad.

Proof. Wemay pass to a neighbourhood h : X ′ → X of the section s. For every y′ ∈ X ′\X ′ above
y ∈ X \X, the semistable reduction theorem implies that h∗E/X ′ has semistable reduction at
y′ if the ramification index ey′/y is divisible by an integer that only depends on the degeneration
of E in y. Since X is hyperbolic, among the neighbourhoods of the section s we find universal
ramification along X \ X. Hence we may and will assume from the beginning that the family
E/X has bad semistable reduction outside X.

Let us first address the claim on asymptotic integrality. Let ` be a prime number and let
r ≥ 1. We have to show divisibility by `r of the intersection number dv of the closure of {xv}
with the boundary for almost all degenerate v - `.

Let mv = v(qv) > 0 be the valuation of the local Tate parameter qv at a degenerate place v
for the elliptic curve Ev as in Section §4.3 above. Being essentially a finite quotient of a global
Galois group, the mod `r reduction of the representation ρs,E/X,` is unramified for allmost all v.
If v - ` is degenerate and unramified in the mod `r representation, then `r | mv by the description
of ψ in (4.1).

Let now t be a local parameter on X ×U ov for the boundary component of (X \X )×U ov
that intersects with xv. The j-function on X induced by the family E/X (more precisely its
extension to X ) has a pole along {t = 0} of some order e and thus te ∼ j−1 differ by a v-adic
unit. Moreover, the local Tate parameter qv has v(qv) = −v(j(xv)). This leads to

dv = v(t(xv)) = −1

e
v(j(xv)) =

1

e
v(qv) =

mv

e
.

Since only finitely many e can occur, we conclude asymptotic integrality for x(s).
We now address the claimed dichotomy. Let G` ⊆ GL2(F`) be the image of the mod `

reduction of ρs,E/X,`. And let M` ⊆ G` be the subset of elements with split characteristic
polynomial and at least one eigenvalue ±1 modulo `. The Frobv for v cuspidal or degenerate
are contained in M` so that their Dirichlet density is bounded above by

#M`

#G`
.
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We will show that this ratio can become arbitrarily small for ` ranging over all prime numbers
or otherwise ρs,E/X,` has the exceptional form (2).

Since the determinant of our representation is the cyclotomic character, we may assume by
working with `� 0 that

det : G` � F∗`
is surjective.

Let PG` be the image of G` in PGL2(F`). Then the classification of subgroups G ⊆ GL2(F`)
with det(G) = F∗` (for `� 0) says that we can have either of the following cases:
(i) The mod ` representation is reducible, i.e.,

G` ⊆
(
∗ ∗
∗

)
,

(ii) G` = GL2(F`),
(iii) G` is contained in the normalizer of a split torus but not in the torus and ` - #G`,
(iv) G` is contained in the normalizer of a non-split torus and ` - #G`,
(v) PG` is either A4, S4, or S5 and ` - #G`.
By Lemmata 11–14 below we are done unless case (i) occurs for all but finitely many places. We
therefore now assume that all mod ` representations are reducible for `� 0.

Let χi : G` → F∗` for i = 1, 2 be the projection onto the two diagonal entries. We denote by
Hi ⊆ F∗` the subgroup generated by χi(M`). If the index

(χ(G`) : Hi)

is unbounded for ` ranging over all prime numbers, then #M`/#G` ≤ #Hi/#χi(G`) becomes
arbitrarily small and we are done. We therefore assume that the two indices are bounded.

Let G` denote the image of G` under

pr = (χ1, χ2) :

(
∗ ∗
∗

)
→ F∗` × F∗`

and set M ` = pr(M`). We have (H1)2 × (H2)2 ⊆ G` and therefore the estimate

#M`

#G`
≤ #M `

#G`
≤ 2#H1 + 2#H2

1/4 ·#H1 ·#H2
=

8

#H1
+

8

#H2

so that we can conclude the claim of the theorem if both #Hi are unbounded when ` ranges
over all prime numbers.

It remains to discuss the case, where mini=1,2{#χi(G`)} remains bounded when ` tends to
infinity. In this case there is an m ∈ N independent of ` and v such that there is a ζ ∈ µm
depending on `, v such that

av(ρ) = tr(Frobv |ρs,E/X,`) ≡ ζ + ζ−1N(v) mod `.

Now there are only finitely many ζ ∈ µm and so for a each fixed v there must be one ζ that is
good for infinitely many `. With that ζ we find

av(ρ) = ζ + ζ−1N(v)

so that ζ satisfies a nontrivial quadratic relation over Z. If [Q(ζ) : Q] = 2, then this must be
irreducible, and N(v) = N(ζ) = 1 which is absurd. Therefore ζ ∈ Q and thus ζ = ±1. We
conclude that

av(ρ) = ±(N(v) + 1)

for every finite place v. This contradicts the Hasse–Weil bound |av(ρ)| ≤ 2
√
N(v) in case v

were integral. We deduce that all but finitely many places are cuspidal or degenerate and the
remaining places are bad (the same argument shows that the two scenarios (1) and (2) of the
theorem cannot hold simultaneously).
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By approximating an arbitrary element σ ∈ Galk by Frobenius elements at places which are
unramified in the mod `n reduction of ρs,E/X,` we deduce that in Z`.

tr(ρs,E/X,`(σ)) = ±(ε(σ) + 1).

Here the sign is independent of ` since we can approximate the mod `n reduction for two different
` simultaneously by Frobenius elements and there the sign is independent of `.

Let Γ` ⊂ GL(T`(Ex̄)) be the image of the representation ρs,E/X,`. Then Γ` is a closed `-adic
analytic group and by [La65] contains an open normal subgroup Γ0

` CΓ` that consists of squares
from Γ`. Let k` be the finite extension of k corresponding to the finite quotient Galk � Γ`/Γ

0
` .

Then for σ ∈ Galk` we find γ ∈ Γ` with

ρs,E/X,`(σ) = γ2.

Using the identity for A ∈ GL2

tr(A2) = tr(A)2 − 2 det(A),

we compute

tr(ρs,E/X,`(σ)) = tr(γ2) = (tr(γ))2 − 2 det(γ)

= (±(ε(γ) + 1))2 − 2ε(γ) = ε(γ2) + 1 = ε(σ) + 1.

It follows that the semisimplification of ρs,E/X,`|Galk`
agrees with ε ⊕ 1. Since ε 6= 1 and the

trivial representation is preserved by automorphisms we conclude that ρs,E/X,` itself is also
reducible. The semisimplification must be δε ⊕ δ−1 with a character δ of finite order. For the
Frobenius elements, we find values of these characters

{±1,±N(v)} = {δ(Frobv)N(v), δ−1(Frobv)}.

As ±N(v) is never torsion in Z∗` we must have δ(Frobv) = ±1 and δ is a quadratic character

δ : Galk → {±1} ⊂ Z∗` .

Moreover, δ is independent of `, since it is determined by the signs in av(ρ) = ±(N(v)+1) which
are independent of `. Furthermore, by comparing with the local form at cuspidal or degenerate
places, we see that δ can be ramified at most at the bad places.

It remains to exclude that ρs,E/X,` has the form(
δ ∗

δε

)
in a suitable basis without being the direct sum δ ⊕ δε. Assume that this happens. Then
no place can be degenerate since inertia would then act nontrivially unipotently and thereby
uniquely determine the fixed Z`-line. However, the description of the local representations then
says that the character associated to this submodule must be δε, a contradiction. If now all but
finitely many places are cuspidal, we conclude that the adelic point x(s) has finite support in
X \ X. This allows to use Corollary 5 (or better its proof) to deduce that s is cuspidal. But
then it follows from the known structure (as recalled above for cuspidal places) of the Galois
representation associated to Tate elliptic curves that ρs,E/X,` has the shape of (2). This finally
finishes the proof of the theorem. �

4.5. Asymptotics in subgroups of GL2(F`). We now provide the Lemmas needed in the
proof of Theorem 10.

Lemma 11. If G` = GL2(F`), then

#M`/#G` ≤ 2/(`− 1).
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Proof. The possible Jordan normal forms for elements in M` are(
1

1

)
,

(
−1

−1

)
,

(
a

1

)
,

(
b
−1

)
,

(
1 1

1

)
,

(
−1 1

−1

)
with a, b ∈ F∗` and, to make the list disjoint, the condition a 6= 1 and b 6= ±1. We now have to
sum up the reciprocals of the size of the respective centralizer. This leads to

#M`

#G`
=

2

(`2 − 1)(`2 − `)
+

2`− 5

(`− 1)2
+

2

`(`− 1)

=
2`

(`2 − 1)(`− 1)
+

2`− 5

(`− 1)2
≤ 2`− 3

(`− 1)2
≤ 2

`− 1
.

�

Lemma 12. If PG` = A4, S4, or A5 and det(G`) = F∗` , then
#M`/#G` ≤ 60/(`− 1).

Proof. We consider an element A ∈M` with eigenvalues a, 1 or −a,−1. The order of the image
of A in PG` is in both cases the order of a ∈ F∗` . Since the order of an element in A4, S4, or A5

divides 60 we conclude that a must lie in the 60-torsion of F∗` .
Since det(A) = a we conclude that det(M`) is also contained in the 60-torsion of F∗` . The

estimate
#M`

#G`
≤ # det(M`)

`− 1
≤ 60

`− 1
finishes the proof. �

Lemma 13. If G` is contained in the normalizer of a non-split torus, ` - #G` and det(G`) = F∗` ,
then

#M`/#G` ≤ 2/(`− 1).

Proof. The normalizer of a nonsplit torus has the form F∗`2 o Gal(F`2/F`). We consider an
element A ∈ M` with eigenvalues a, 1 or −a,−1. Then A2 is contained in the non-split torus
with eigenvalues a2, 1. The eigenvalues of λ ∈ F`2 are λ, λ̄. We deduce that necessarily a2 = 1,
and the Jordan normal form of A is one of the following(

1
1

)
,

(
−1

−1

)
,

(
1
−1

)
.

Therefore det(M`) is contained in the 2-torsion of F2
` and the estimate

#M`

#G`
≤ # det(M`)

`− 1
≤ 2

`− 1

finishes the proof. �

Lemma 14. If G` is contained in the normalizer of a split torus but not in a torus, ` - #G`
and det(G`) = F∗` , then

#M`/#G` ≤ 6/
√

(`− 1).

Proof. The normalizer of the split torus is(
F∗` × F∗`

)
o 〈
(

1
1

)
〉 =

{(
a

b

)
,

(
b

a

)
; a, b ∈ F∗`

}
.

For A ∈ M` not in the torus, we have A =

(
b

a

)
with characteristic polynomial X2 − ab.

As ±1 must be a root we see that ab = 1. Moreover, two such elements differ by an element of

D := G` ∩ SL2(F`),
and their eigenvalues are ±1.
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Let H ⊆ F∗` be the subgroup generated by all eigenvalues of elements from M`. Then for
every a ∈ H2 we have (

a
1

)
∈ G`.

Therefore we have H2×H2 ⊆ G` and the product map D× (H2×{1}) ↪→ G` is injective. Since
H is cyclic, we obtain the estimates

(#H)2 ≤ 4#G` and #H ·#D ≤ 2#G`.

Now we simply count the elements in M` by counting those of the form(
a
±1

)
,

(
±1

a

)
,

(
a−1

a

)
so that

#M` ≤ 4 ·#H + #D.

As det(M`) ⊆ ±H has size # det(M`) ≤ 2#H, the estimate(
#M`

#G`

)2

≤ 4 ·#H + #D

#G`
· # det(M`)

`− 1
≤ 8(#H)2 + 2#D ·#H

#G`(`− 1)
≤ 36

`− 1

finishes the proof. �

Corollary 15. Let s : Galk → π1(X) be a birationally liftable section of a hyperbolic curve with
smooth completion X over a number field k. Then the associated adele x(s) ∈ X(Ak)• has
(1) either xv ∈ X(ov) is integral for a set of places v of Dirichlet density 1, or
(2) all but finitely many places v are cuspidal or degenerate with respect to X ⊂ X.

Proof. The open subsets U = β−1(P1 − {0, 1,∞}) ⊆ X for finite maps β : X → P1 which map
X \X to {0, 1,∞} form a basis of the topology of X (even with β étale over P1−{0, 1,∞} due
to an improved version of Belyi’s Theorem by Mochizuki [Mz04] Corollary 1.1). The Legendre
family of elliptic curves

Eλ = {Y 2 = X(X − 1)(X − λ)} → P1 − {0, 1,∞}
has bad reduction exactly in 0, 1, and∞. Thus we can apply Theorem 10 to a lift Galk → π1(U)
of s and the pullback family β∗Eλ → U . It follows that either xv ∈ U(ov) is integral for a set of
places of density 1, in which case we are done, or secondly that all but finitely many places are
cuspidal or degenerate with respect to U ⊆ X.

We may therefore assume that we are in the second case for all U as above. Let X be covered
by U1, . . . , Un for open subsets Ui as above (in fact two such sets suffice). Let Yi be the Zariski
closure of X \ Ui in a suitable common model. The intersection

⋂
i Yi is finite. Thus xv is

actually cuspidal or degenerate also for allmost all places v with respect to X ⊂ X. �

5. Cuspidal sections

5.1. Geometric monodromy of the Legendre family. For the finer analysis in Theorem 20
below we have to understand the geometric monodromy representation of the Legendre family

ρLeg = ρEλ/P1−{0,1,∞} : π1(P1
Q̄ − {0, 1,∞},

−→
01)→ GL2(Z`).

In fact, the 2-adic representaion turns out to be crucial. Since we are in characteristic 0, this is
nothing but the profinite/pro-2 completion of the topological monodromy on the period lattice
of the family. The topological fundamental group

πtop
1 (P1(C)− {0, 1,∞},−→01) = 〈x, y, z|xyz = 1〉

is freely generated by an infinitesimal counterclockwise loop x around 0 starting and ending
at the tangential base point

−→
01, and by the path y which is the image of x under λ 7→ 1 − λ
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conjugated by the path from
−→
01 to

−→
10 along the real interval [0, 1]. The path z = (xy)−1 turns

out to be a an infinitesimal loop around ∞ conjugated by a path form
−→
01 to a tangential base

point at ∞. In particular, this topological presentation reveals representatives for the inertia
groups at the cusps 0, 1, and ∞, namely I0 = 〈x〉, I1 = 〈y〉, and I∞ = 〈z〉.

Lemma 16. For a suitable basis, the topological monodromy representation

ρtop
Leg : πtop

1 (P1(C)− {0, 1,∞},−→01)→ GL2(Z)

for the Legendre family maps the generators as follows:

x 7→
(

1 2
1

)
, y 7→

(
1
−2 1

)
, z 7→

(
1 −2
2 −3

)
.

Proof. The computation of the monodromy of the Legendre family of elliptic curves is classi-
cal, its Picard-Fuchs equation being a hypergeometric equation studied already by Gauß. The
concrete matrices above can for example be found in [St81] on page 450. �

Remark 17. Note that the explicit formulae of Lemma 16 allow to conclude that inertia at 0
and 1 acts unipotently, while inertia at ∞ acts quasi-unipotently with Jordan normal form(

−1 1
−1

)
.

Indeed, the reduction of the Legendre family is semistable at 0, 1 and additive at ∞.

5.2. Unipotent subgroups up to conjugation. Let U ⊆ GL2(Z`) be a nontrivial unipotent
subgroup. Then

LU = ker(1− U) ⊂ Z` × Z`
is a free and cotorsion free submodule of rank 1 and as such defines an element LU ∈ P1(Z`).
Conversely, to a line L ∈ P1(Z`) we associate the unipotent subgroup

U(L) = {A ∈ GL2(Z`) ; A|L = idL and det(A) = 1}.
Clearly, U ⊆ U(LU ) and unipotent subgroups of the form UL are maximal among unipotent
subgroups with respect to inclusion.

Lemma 18. Every nontrivial unipotent subgroup U of GL2(Z`) is contained in a unique maximal
unipotent subgroup, namely U(LU ). The map U 7→ LU defines a bijection

{maximal unipotent subgroups of GL2(Z`)} ←→ P1(Z`).

Proof. The map L 7→ U(L) is the inverse map. �

5.3. Recognizing cusps via unipotent subgroups. It follows from Lemma 18 that GL2(Z`)
acts transitively by conjugation on the set of its maximal unipotent subgroups. However, this
changes if we consider only the conjugation action by a suitable subgroup.

Lemma 19. The maximal unipotent subgroups U0, U1, and U∞ of GL2(Z2) containing the im-
ages of (the square of) inertia in the 2-adic geometric monodromy representation of the Legendre
family

ρLeg(I0), ρLeg(I1), and respectively ρLeg((I∞)2)

are mutually not conjugate under the image ρLeg

(
π1(P1

Q̄ − {0, 1,∞},
−→
01)
)
.

Proof. The Legendre family has trivial 2-torsion as is reflected by ρtop
Leg mapping to the subgroup

Γ(2) ⊂ SL2(Z) of elements ≡ 1 mod 2. This is inherited by the profinite completion ρLeg. We
deduce that conjugation by elements from im(ρLeg) only moves maximal unipotent subgroups
within the fibre of the mod 2 reduction

P1(Z2)� P1(F2) = {0, 1,∞}.
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Now x fixes
(

1
0

)
, and y fixes

(
0
1

)
and z2 fixes

(
1
1

)
, so that U0, U1, and U∞ map to three different

elements in P1(F2). �

5.4. Enough families of elliptic curves. We are now in a position to treat Selmer sections
that behave like cuspidal sections with respect to the dichotomy of Theorem 10.

Theorem 20. Let s : Galk → π1(X) be a birational lifting section of a hyperbolic curve X over
a number field k with smooth completion X. If the associated adele x(s) = (xv) is cuspidal or
degenerate with respect to X ⊆ X at all but finitely many places of k, then s is a cuspidal section.

Proof. Let Y = X \X be the complement. Since the assumptions are inherited by neighbour-
hoods, it suffices to show that Y (k) 6= ∅ and apply the limit argument in the version for cuspidal
sections, see Section §2.1.3.

We consider the following map defined on almost all places of k:

v 7→ yv ∈ Y
where we assign to a cuspidal or degenerate place v of k the closed point yv of Y such that the
closure of xv and yv in a model over ov intersect in the special fibre.

Let β : U → P1 − {0, 1,∞} be a finite map defined on an open U ⊆ X. We lift s to a section
of π1(U/k) and apply Theorem 10 to this lift and β∗Eλ/U . Since x(s) does not change with the
lift, we are still in the second case of the conclusion of Theorem 10. The 2-adic representation
induced by the section factors through(

δε ∗
δ

)
⊆ GL2(Z2),

which is a pro-2 group. By passing to a neighbourhood h : U ′ → U of s we may assume that

ρh∗β∗Eλ/U ′,2 : π1(U ′)→ GL2(Z2)

factors through a pro-2 group. Let S be a finite set of places containing all the bad places for
h∗β∗Eλ/U

′ and the places dividing 2. Let U ′/Spec(ok,S) be a hyperbolic curve model of U ′/k.
Denote by π(2)

1 (−) the fibrewise pro-2 fundamental group. Then the representations factor as

π
(2)
1 (U ′)

sp // //

pr∗
��

π
(2)
1 (U ′)

ρh∗β∗Eλ/U′,2//

pr∗
��

GL2(Z2)

Galk // //

s
TT sp◦s 77

π1(Spec(ok,S))

The specialisation map sp : π
(2)
1 (U ′)→ π

(2)
1 (U ′) is an isomorphism on the kernels of the respec-

tive projections pr∗. Let v - 2 be a cuspidal or degenerate place, and let Dv ⊂ Galk be a choice
of a decomposition subgroup at v. Then, as xv degenerates into yv we find that

sp ◦ s(Dv) cyclotomically normalizes Iy′v (5.1)

where Iy′ denotes the inertia group of y′ ∈ Y ′ = X ′ \X ′ in π(2)
1 (U ′

k̄
) ⊆ π

(2)
1 (U ′). Here cyclo-

tomically normalizing means that the induced action by conjugation is via the cyclotomic
character. Due to neglecting base points and choice of prolongations of places, these inertia and
decomposition groups are only well defined up to conjugation and (5.1) has to be considered as
holding for suitable choices within the conjugacy classes of these groups. Because of

ρs,h∗β∗Eλ/U ′,2(Dv) ⊆
(
δε ∗

δ

)
,

depending on whether or not ∗ = 0 for the restriciton of the representation to Dv, there are two:

U+ =

(
1 ∗

1

)
and U− =

(
1
∗ 1

)
,
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or a unique maximal unipotent subgroup normalized by Dv. But in any case only U+ is cyclo-
tomically normalized. This maximal unipotent subgroup is independent of v and thus must by
(5.1) be conjugate to the image of Iy′v . We conclude with Lemma 19 that

β(yv) = β(h(y′v)) ∈ {0, 1,∞}
is also independent of v.

By Riemann-Roch, it is easy to find for any partition Y = Y0 q Y∞ a suitable U ⊆ X and a
finite β : U → P1−{0, 1,∞} with β(Y0) = {0} and β(Y∞) =∞. We conclude that v 7→ yv must
be a constant function, i.e., all local points xv degenerate or are cuspidal with the very same
point y ∈ Y . This means in particular, that the residue field extension κ(y)/k has a split place
above almost all places v of k, and this is only possible if κ(y) = k by the classical Lemma 21
below. Thus y ∈ Y (k) and this finishes the proof. �

Lemma 21. Let F/K be a finite extension of number fields such that for all but finitely many
places of v there is a place w of E with the same residue field. Then we have necessarily E = F .

Proof. Let E/K be a Galois hull of F/K and let G = Gal(E/K) ⊇ H = Gal(F/K) be the
respective Galois groups. The assumption says that for all but finitely many v the conjugacy
class of Frobenius elements at places w | v meets H nontrivially. But since every element of G
is a Frobenius element infinitely often, this implies that G is the union of the conjugates of H.
This is only possible if G = H and thus F = K as claimed. �
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