
Birational p-adic Galois sections in higher dimensions

JAKOB STIX

Abstract — This note explores the consequences of Koenigsmann’s model theoretic
argument from the proof of the birational p-adic section conjecture for curves in the
context of higher dimensional varieties over p-adic local fields.

1. Introduction

A birational Galois section for a geometrically irreducible and reduced variety X/k is a
continuous section of the restriction homomorphism

resK/k : GalK → Galk,

where GalK and Galk are the absolute Galois groups of the function field K = k(X) and of k,
with respect to an algebraic closure K of K and the algebraic closure k̄ of k contained in K.

A proof of Grothendieck’s anabelian section conjecture would imply, for a smooth projective
curve X/k over a finitely generated extension k/Q, that birational Galois sections come in
packets indexed by the k-rational points X(k). In particular, then X(k) 6= ∅ if and only if
X/k admits birational Galois sections. These consequences of the section conjecture are known
in some cases for number fields k by Stoll [St07] Remark 8.9, see also [HS10] Theorem 17 and
[Sx12a]. For the section conjecture we refer to [Sx12b].

Even more strikingly, in [Ko05] Proposition 2.4(b), Koenigsmann proves, with a touch of
model theory of p-adically closed fields, that birational Galois sections for smooth curves X/k
over finite extensions k/Qp come in packets indexed by X(k). The packet of a ∈ X(k) consists
of those sections s with s(Galk) ⊂ Dv̄, where Dv̄ is any decomposition group of a prolongation
v̄ to K of the k-valuation v corresponding to a with valuation ring OX,a ⊂ k(X).

Our main result is the following theorem, see Theorem 8.

Theorem. Let X/k be a geometrically irreducible, normal variety over a finite extension k/Qp

with function field K. Then every birational Galois section has image in the decomposition
subgroup Dv̄ ⊂ GalK for a unique k-valuation v̄ of K with residue field of v = v̄|K equal to k.

In particular, conjugacy classes of sections of GalK → Galk come in disjoint non-empty
packets associated to k-valuations v of K with residue field k.

Acknowledgements. I thank Zoé Chatzidakis and François Loeser for inviting me to the
seminar Géométrie et Théorie des Modèles and I am grateful to Jean-Louis Colliot-Thélène,
Jochen Koenigsmann and Moshe Jarden for the subsequent discussion.

2. Review of Koenigsmann’s use of model theory

We keep the notation from the introduction and refer to [PR84] for the notion of a p-adically
closed field, i.e., a field that is elementary equivalent to a finite extension of Qp. Koenigsmann
has the following lemma in the case of smooth curves, [Ko05] Proposition 2.4(a). The general
case, see [Ko05] Remark 2.5, admits a mathematically identical proof. We decide to nevertheless
give a proof in order to hopefully make the argument more transparent for non-model theorists.

Lemma 1 (Koenigsmann’s Lemma). Let k be a p-adically closed field, and let X/k be a geometri-
cally irreducible and reduced variety. If X/k admits a birational Galois section, then X(k) 6= ∅.
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Proof: Let s : Galk → GalK be a section. We set L = K
s(Galk) for the fixed field of the image,

so that by construction, the restriction map GalL → Galk is an isomorphism. Thus k ⊂ L is
relatively algebraically closed and the subfields kabs = Labs of absolutely algebraic elements, i.e.,
algebraic over Q, agree. Since the restriction map Galk → Galkabs is an isomorphism [Po88]
(E4), we deduce that GalL → GalLabs is an isomorphism as well. Now [Po88] Theorem (E12)
implies that L is p-adically closed with respect to a valuation with same the p-rank as the p-adic
valuation on k.

With Prestel and Roquette [PR84] Theorem 5.1 we conclude that k ⊂ L is an elementary
extension with respect to the model theory of valued fields. This implies that the statement in
the language of fields with constants in k saying

’the set of rational points of X is non-empty’ (2.1)

is true over k if and only if it is true over L where the constants from k are interpreted via
k ⊂ L. Since X admits the tautological L-rational point

Spec(L)→ Spec(K)→ X,

we are done. �

Remark 2. To understand that (2.1) is a statement in the language of fields with constants in
k one has to get back (for each affine open of a finite Zariski open covering) to the classical
language that describes the set of rational points of X as the set of solutions of systems of
polynomial equations with coefficients in k.

3. The limit argument

The fundamental group π1(X) of X/k fits in an extension

1→ π1(Xk̄)→ π1(X)
pr∗−−→ Galk → 1, (3.1)

where the geometric generic point Spec(K)→ Xk̄ → X is the implicit base point. The notation
π1(X/k) will serve as a shorthand for the extension (3.1), i.e., the datum of the group π1(X)
together with the projection pr∗.

The space of sections Galk → π1(X) of π1(X/k) up to conjugation by elements from π1(Xk̄)
will be denoted by Sπ1(X/k) and the set of Galk̄K-conjugacy classes of sections of GalK → Galk,
will be denoted by Sπ1(K/k). By functoriality, to a ∈ X(k) we associate a class of sections
sa : Galk → π1(X). This gives rise to the non-abelian Kummer map a 7→ κ(a) = sa, see [Sx12b]
§2.4,

κ : X(k)→ Sπ1(X/k).

Let j : SpecK → X be the inclusion of the generic point which on π1(−) induces the map
j∗ : GalK → π1(X), a surjection if X is normal, and furthermore a map s 7→ j∗(s) = j∗ ◦ s

j∗ : Sπ1(K/k) → Sπ1(X/k).

A section in the image of j∗ is called birationally liftable.

Proposition 3. Let k be a finite extension of Qp, and let X/k be a proper, smooth and geometric-
ally irreducible variety. Then the image of the non-abelian Kummer map κ : X(k)→ Sπ1(X/k)

agrees with the set of birationally liftable sections.

Proof: A neighbourhood of a section s : Galk → π1(X) is a finite étale cover X ′ → X
together with a lift s′ of the section, i.e., an open subgroup π1(X ′) = H ⊆ π1(X) containing
the image of the section s = s′. By allowing a lift s′, the map π1(X ′) → Galk is surjective and
hence X ′/k is necessarily geometrically connected. Since here X and thus X ′ are smooth over
k, we conclude that X ′ is also geometrically irreducible over k.

The limit over all neighbourhoods yields a pro-étale cover

Xs = lim←−X
′ → X
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corresponding to π1(Xs) = s(Galk) ⊆ π1(X). Then we have s = sa if and only if

a ∈ im
(
Xs(k)→ X(k)

)
.

We have
Xs(k) = lim←−X

′(k)

where X ′ ranges over all neighbourhoods of the section s. Since X/k is assumed proper, all sets
X ′(k) are compact in the p-adic topology. Thus Xs(k) is nonempty if and only if lim←−X

′(k) is a
projective limit of nonempty sets. We conclude that s = sa for some a ∈ X(k) if and only if all
neighbourhoods (X ′, s′) of s have k-rational points. The latter follows from being in the image
of j∗ by Koenigsmann’s Lemma above, because with s also s′ is birationally lifting as a section
of π1(X ′/k).

To conclude the converse, it suffices to construct a k-valuation v onK = k(X), i.e., a valuation
on K with k in its valuation ring, such that
(i) a given point a ∈ X(k) is the center of the valuation on X,
(ii) the residue field of v agrees with k,
(iii) and the natural surjection Dv � Galk splits where Dv ⊂ GalK is the decomposition

subgroup of the valuation.
Then j∗(Dv) = sa(Galk), and thus any splitting of Dv → Galk will allow to lift sa to a section
of GalK → Galk.

We construct such a valuation v. Let t1, . . . , td be a system of parameters in the regular local
ring OX,a. The prime ideals pi = (t1, . . . , ti) for 0 ≤ i ≤ d correspond to the generic points
ai ∈ X of irreducible cycles Zi ⊆ X which are regular at a = ad. We consider the valuation v
associated to the corresponding chain

X = Z0 ⊃ Z1 ⊃ . . . ⊃ Zd = a

which is the composition of the discrete rank 1 valuation rings OZi,ai+1 . Its decomposition group
Dv sits in an extension

1→ Ẑ(1)d → Dv → Galk → 1

that splits by choosing compatible nth roots for all ti and all n. The splitting also follows by
general valuation theory, see for example [HJP07] Proposition 7.3(a). �

Remark 4. (1) For birationally liftable sections to be contained in κ(X(k)) requires X/k to be
proper, or at least a smooth compactification with no k-rational point in the boundary. Any
affine smooth hyperbolic curve with a k-rational point at infinity provides a counter-example.

(2) That sections sa are birationally liftable requires a certain amount of local regularity at
k-rational points. It is not enough to assume X normal as the following example shows.

Example 5. Let k/Qp be finite and let C/k be a smooth projective geometrically irreducible
curve which is

(i) not hyperelliptic, in particular of genus g ≥ 3,
(ii) and has no k-rational point.

We consider the difference map (a, b) 7→ a− b
d : C × C → A = AlbC

to the Albanese variety AlbC of C. We set f : C × C → X for the Stein-factorization of d.
This X is a normal variety and, due to assumption (i) and Riemann-Roch, the map d contracts
exactly the diagonally embedded ∆ = C ↪→ C ×C. So X can be identified with the contraction
of ∆ to a k-rational point ?

X = C × C/∆ ∼ ?.
Thus X is birational to C×C. If X/k were eligible for the conclusion of Proposition 3, then the
section s? associated to ? ∈ X(k) admits birational lifting and in particular lifts to a birationally
lifting section s of π1(C × C/k). That contradicts Proposition 3 by assumption (ii).
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We now forget about assumption (ii) but keep (i). The induced maps on fundamental groups
are surjective

π1(C × C) � π1(X) � π1(A).

Since the diagonally embedded copy of π1(Ck̄) goes to zero, the computation in ker(π1(f))

(1, α)(β, β)(1, α)−1(β, β)−1 = (1, αβα−1β−1)

shows that we more precisely have

coker
(
π1(∆) : πab

1 (Ck̄)→ πab
1 (Ck̄)× πab

1 (Ck̄)
)
� π1(Xk̄) � π1(Ak̄)

with the composite map being an isomorphism by geometric class field theory. In particular, we
have π1(X/k) = π1(A/k) as extensions. The image of the p-adic analytic map

d : C(k)× C(k)→ X(k)→ A(k)

lies in a 2-dimensional p-adic analytic subspace of the p-adic manifold A(k) of dimension g ≥ 3.
Therefore, the map d is never surjective on k-rational points. Sections sa of π1(A/k) for k-
rational points in a ∈ A(k) \ X(k) are thus sections of π1(X/k) which are not birationally
liftable and for which there is no k-rational point on X that is responsible for it.

4. On birational sections and valuations

We keep the notation from above, but now assume X is normal. A neighbourhood of a section
s : Galk → GalK is given by a normal finite branched cover X ′ → X, i.e., a finite extension
K ′/K inside K, such that the image of s lies in GalK′ ⊆ GalK . In particular, X ′/k has to be
geometrically irreducible. The limit over all these neighbourhoods yields a pro-branched cover
again denoted

Xs = lim←−X
′ → X

corresponding to π1(k(Xs)) = s(Galk) ⊂ GalK .

Proposition 6. Let k be a finite extension of Qp, and let X/k be a normal projective, geomet-
rically irreducible variety. Suppose X/k admits a birational Galois section s : Galk → GalK .
Then the set Xs(k) consists of exactly one element.

Proof: If we can show that the image of Xs(k)→ X(k) consists of only one element, then we
can apply this to all neighbourhoods X ′ of s and achieve the proof of the proposition.

That the image is nonempty follows from the first part of the proof of Proposition 3 above
which only requires X/k to be proper.

A point a ∈ im
(
Xs(k)→ X(k)

)
necessarily has j∗(s) = sa as a section of π1(X/k). So let us

assume that we have a 6= b in the image. By the projective version of Noether’s Normalization
Lemma, we can choose a suitable finite map

f : X → Pnk
with n = dim(X) by first choosing an immersion X ↪→ PNk followed by a sufficiently generic
linear projection. We furthermore assume that f(a) 6= f(b), which is an open condition. Next,
we pick our favourite abelian variety A/k of dimension n and apply Noether’s Normalization
Lemma again to obtain a finite map A → Pnk . Let X ′ be defined as the normalization of X in
the compositum of function fields of X and of A over that of Pnk , i.e., we have a commutative
(not necessarily cartesian) square

X ′
f ′ //

��

A

��

X
f // Pnk .
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The branched cover X ′ → X however, as can be seen by looking at GalK′ ⊆ GalK where K ′
is the function field of X ′, is hardly ever a neighbourhood of s. Nevertheless, we can choose a
finite extension k′/k such that s(Galk′) ⊂ GalK′ which means that a scalar extension to k′ (from
the field of constants) of X ′ is a neighbourhood of s′ = s|Galk′ as a section of the birational
extension associated to X ×k k′. Now Xs′ = Xs ×k k′ and the map of rational points factors as

Xs(k
′)→ X ′(k′)→ X(k′),

with a 6= b in the image. Let a′ and b′ be the intermediate images in X ′(k′). Then we have
sa′ = sb′ as sections of π1(X ′/k′), so that f ′(a′) = f ′(b′) by the injectivity of the map from
rational points to sections for abelian varieties over a p-adic local field recalled in Lemma 7
below. This contradicts our choice of f , namely f(a) 6= f(b), and the proof is complete. �

Lemma 7. Let k/Qp be a finite extension, and let A/k be an abelian variety. If two rational
points a, b ∈ A(k) yield the same section sa = sb : Galk → π1(A), then a equals b.

Proof: A proof can be found for example in [Sx12b] Proposition 73. We present an altern-
ative for the convenience of the reader. By the translation between Galois sections and Galk-
equivariant path torsors, see [Sx12b] Proposition 8 and Definition 20, the assumption sa = sb
means that the space

π1(Ak̄; a, b)

of étale paths on Ak̄ from a to b, see [SGA1] exposé V §5 or [Sx12b] §2, contains a Galk-invariant
path. Indeed, the section sa is more precisely a homomorphism

sa : Galk → π1(A, a)

and similarly for sb. The choice of an étale path γ ∈ π1(Ak̄; a, b) yields an isomorphism

γ()γ−1 : π1(A, a)
∼−→ π1(A, b),

and the precise meaning of sa = sb is that γ()γ−1 ◦ sa is conjugate to sb under an element of
π1(Ak̄, b). By modifying γ appropriately, we may assume that

γ()γ−1 ◦ sa = sb.

This means that for arbitrary σ ∈ Galk we have

σ(γ) = sb(σ) ◦ γ ◦ sa(σ)−1 = sb(σ) ◦ sb(σ)−1 ◦ γ = γ,

and indeed γ is Galk-invariant.
The path space, together with its Galois action, is described by natural transformations from

the fibre above a to the fibre above b in finite étale covers of Ak̄. Cofinally these are the
multiplication by n maps [n] : A → A. The element γ ∈ π1(Ak̄; a, b) is described by γn ∈ A(k̄)
for all n ∈ N such that translation by γn

[n]−1(a)
∼−→ [n]−1(b)

α 7→ α+ γn

yield bijections that are compatible in n in the tower of all [n], and

γ = (γn) ∈ lim←−
n

[n]−1(b− a) = π1(Ak̄; a, b).

Now, if γ is Galk-invariant, then b− a = n(γn) has a Galk-invariant nth root γn ∈ A(k) for all
n. Because A(k) is a topologically finitely generated profinite group by a theorem of Mattuck
[Ma55] Theorem 7, therefore

b− a ∈
⋂
n≥1

nA(k) = 0,

which shows a = b as claimed by the lemma. �

We are now ready to prove the main theorem.
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Theorem 8. Let X/k be a geometrically irreducible, normal, proper variety over a finite exten-
sion k/Qp. Let K be the function field of X. Then the image of every section of the restriction
map

GalK → Galk
is contained in the decomposition subgroup Dv̄ ⊂ GalK for a unique k-valuation v̄ of K with
residue field of v = v̄|K equal to k.

In particular, conjugacy classes of sections of GalK → Galk come in disjoint non-empty
packets associated to each k-valuation v of K with residue field k.

Proof: We first show that for every k-valuation v of K the set of birational Galois sections
with image in Dv is nonempty. Put differently, we need to show that the natural projection
Dv → Galk splits. This follows from the well know fact of general valuation theory that the
corresponding extension

1→ Iv → Dv → Galk → 1

with the inertia group Iv of v splits, see for example [HJP07] Proposition 7.3(a).
We now show that every birational Galois section s belongs to a packet of a k-valuation. By

Chow’s Lemma and Hironaka’s resolution of singularities, we may assume that X/k is smooth
and projective. For every normal, birational X ′ → X the section s gives rise to a tower of
branched neighbourhoods that are again linked by a natural map X ′s → Xs. The map that
assigns to a k-valuation of K its center on a birational model for a finite branched cover of X
leads to a bijection {

v̄ ;
k-valuation on K with

residue field k̄

}
∼−→ lim←−

X′→X
X ′s(k̄)

since X ′s(k̄) = (Xs×k k̄)(k̄) and X ′s×k k̄ is the normalization of X ′s in K. Indeed, the assumption
on the residue field of the valuation implies that the center is a closed point on every birational
model.

By definition of the decomposition group, a valuation v̄ has s(Galk) ⊆ Dv̄ if and only if the
action of Galk via s on the set of all valuations fixes v̄. But the set of such fixed points is
precisely

lim←−
X′→X

X ′s(k),

which is a set of cardinality one by Proposition 6. �

5. An alternative proof based on valuation theory

Theorem 8 also admits the following valuation theoretic proof1 and generalization to arbitrary
field extensions. This generalization could also be obtained by a limit argument from Theorem 8.

Theorem 9. Let F/k be a nontrivial field extension of a finite extension k/Qp. Then every
section of the restriction map

resF/k : GalF → Galk
is contained in the decomposition group Dv̄ for a unique k-valuation v̄ of the algebraic closure
F of F with k as residue field of v̄|F .

Proof: We may assume that F/k is a regular extension because otherwise resF/k is not surject-
ive and there is no section, thus nothing to be proven. In particular, since F 6= k, the extension
F/k is not algebraic.

Let s : Galk → GalF be a section of resF/k. Denote the fixed field of s(Galk) in F by L. Note
that F ⊆ L ⊆ F is an algebraic closure of L, so GalL = s(Galk) as subgroups of GalF . Then

1I am grateful to Jochen Koenigsmann for allowing me to include his observation of an alternative valuation
theoretic proof and to Moshe Jarden for his assistance with the details of the proof.
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restriction GalL
∼−→ Galk is an isomorphism, and we conclude2 as in the proof of Lemma 1 that

the field L is p-adically closed with respect to a p-adic valuation wL that extends the p-adic
valuation wk on k. Since k is relatively algebraically closed in L, the residue field of L with
respect to wL coincides with the residue field of k with respect to wk, see [PR84] page 38. The
value group of wk is Z and the value group of wL contains a unique convex subgroup isomorphic
to Z that contains the value wL(p), and in this sense

wL(p) = wk(p) ∈ N,
see [PR84] page 38. Let OwL be the valuation ring of wL and let ok be the valuation ring of wk.
It follows by induction on n that for every n ∈ N the inclusion ok ⊂ OwL induces isomorphisms

ok/p
nok

∼−→ OwL/p
nOwL .

In the limit we find an ok-algebra homomorphims

ϕ : OwL � lim←−
n

OwL/p
nOwL

∼= lim←−
n

ok/p
nok = ok

due to the p-adic completeness of the valuation wk. The map ϕ is surjective by ϕ(ok) = ok.
Now let vL be the relative rank-1 coarsening of wL, i.e., the unique k-valuation of L with

valuation ring
OvL = OwL [1/p],

see [PR84] page 27. The homomorphism ϕ extends to a surjective k-algebra homomorphism

ϕ̃ : OvL = OwL [1/p] � ok[1/p] = k,

that identifies k with the residue field of vL. It follows that the restriction v = vL|F has also
residue field k. Moreover, the morphism ϕ̃ shows OvL 6= L, since L 6= k (otherwise F/k were
algebraic), and thus the valuation vL is nontrivial.

By [PR84] Theorem 3, the p-adically closed valuation wL is henselian. As a nontrivial coarsen-
ing of a henselian valuation, vL is henselian as well, see [Ja91] Proposition 13.1. With the unique
extension v̄ of vL to F we have

s(Galk) = GalL ⊆ Dv̄,

showing the existence of a k-valuation v̄ as in the theorem.
In order to prove uniqueness of v̄ we assume that we have a further valuation ū of F with

s(Galk) ⊆ Dū (5.1)

such that u = ū|F has residue field k. Let uL = ū|L be the restriction to L. Now L admits the
henselian valuation vL with non-separably closed residue field k and, by (5.1), the valuation uL
is also henselian. It follows from a theorem of F.K. Schmidt and Engler, [En78] Corollary 2.6,
that vL and uL are comparable valuations, more precisely, one is a coarsening of the other.

If uL is a coarsening of vL, then, by the assumption on the residue fields of u and v, the
quotient valuation ν = vL/uL on the residue field of uL is a henselian valuation on an algebraic
extension of k with residue field k. This forces ν to be trivial and therefore vL = uL. If vL is
a coarsening of uL, then the quotient valuation ν = uL/vL is a henselian valuation on k with a
residue field that is algebraic over k. Again ν must be trivial and vL = uL.

The uniqueness of the extension to F of a henselian valuation on L shows v̄ = ū as claimed
by the theorem. �

2An algebraic proof based on p-rigid elements of the existence of the p-adic valuation on L follows from [Ko95]
Theorem 4.1.
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