
DESCENT OBSTRUCTION AND FUNDAMENTAL EXACT SEQUENCE

DAVID HARARI AND JAKOB STIX

Abstract. We establish a link between the descent obstruction against rational points and
sections of the fundamental group extension that has applications to the Brauer–Manin ob-
struction and to the birational case of the section conjecture in anabelian geometry.

Introduction

Let k be a field of characteristic zero with algebraic closure k̄ and absolute Galois group
Γk := Gal (k̄/k). Let X be a geometrically connected variety over k. Fix a geometric point
x̄ ∈ X(k̄) and let π1(X) := π1(X, x̄) be the étale fundamental group of X. Set X = X ×k k̄
and denote by π1(X) := π1(X, x̄) the étale fundamental group of X. Recall Grothendieck’s
fundamental exact sequence of profinite groups, cf. [9] IX Thm 6.1,

1→ π1(X)→ π1(X)→ Γk → 1. (1)

By covariant functoriality of π1, the existence of a k-point on X implies that the exact sequence
(1) has a section. Grothendieck’s section conjecture predicts that the converse statement is true
whenever X is a proper1 hyperbolic curve over a number field2, see [8].

The goal of this note is to relate the existence of a section for (1) when k is a number field
to the fact that X has an adelic point for which there is no descent obstruction (in the sense of
[27] II §5.3) associated to torsors under finite group schemes. The first result of this flavour is
Theorem 2.1. Its main applications are Theorem 3.3, Theorem 3.5, and Theorem 4.3. The latter
seems to be (up to date) the most general known statement relating the descent obstruction to
the birational fundamental exact sequence.

In Section 1 we will also prove related statements over arbitrary fields, so that the reader can
distinguish between purely formal results and results related to arithmetic properties.

Since we want to deal with variants of the exact sequence (1), for example the abelianized
fundamental exact sequence, we need to introduce a general setting as follows. Let U < π1(X) be
a closed subgroup which is a normal subgroup in π1(X). For example U could be a characteristic
subgroup in π1(X) of which there are plenty, because π1(X) is finitely generated as a profinite
group. We set A = π1(X)/U . The pushout of (1) by the canonical surjection π1(X)→ A is the
exact sequence

1→ A→ πU1 (X)→ Γk → 1, (2)

that can be defined because U is also normal in π1(X) and in particular by definition the kernel
of the induced quotient map π1(X) → πU1 (X). This construction contains as special cases for
A the profinite abelianized group π1(X)ab if we take for U the closure of the derived subgroup
of π1(X), and A = π1(X) if we take for U the trivial group.

Date: February 11, 2011.
1There is also a version of the section conjecture for affine hyperbolic curves when k-rational cusps need to be

considered as well, see [8] page 8/9.
2For a p-adic version of this conjecture, see for example Conjecture 2 of [20] or earlier [14], where the conjecture

is not explicitly stated.
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Let (ki)i∈I be a family of field extensions of k. The guiding example is the case of a number
field k together with the family of all completions kv of k, or of all corresponding henselizations3

khv of k. Fix an algebraic closure k̄i of ki and embeddings k̄ → k̄i, so that with Γi := Gal (k̄i/ki)
we have canonical restriction maps θi : Γi → Γk. Moreover, the embedding k̄ → k̄i yields
canonically a geometric point x̄i of Xi := X ×k ki, that projects onto x̄, and thus a canonical
map π1(Xi, x̄i) → π1(X, x̄). The reason for assuming characteristic zero in the first place is
that by the comparison theorem (cf. [26], p. 186, Remark 5.7.8.), the natural maps induce an
isomorphism

π1(Xi, x̄i)
∼−→ π1(X, x̄)×Γk Γi.

Thus a section s of (1) induces canonically a section si of the analogue of (1) for the ki-variety
Xi. In this formal setting the main goal of this note is to establish a criterion inspired by
the descent obstruction for when a collection of sections (si)i∈I comes from a section s up to
conjugation from π1(X).

Reminder on nonabelian H1. Recall that if G is a finite k-group scheme, then the étale
cohomology set H1(X,G) is the same as the Galois cohomology set H1(π1(X), G(k̄)), where the
action of π1(X) on G(k̄) is induced by the projection map π1(X) → Γk that occurs in (1), cf.
[9] XI §5.

The identification is natural in both X and G, although for a map Y → X the induced map
π1(Y )→ π1(X) is only well defined up to inner automorphism by an element of π1(X). In fact,
such an inner automorphism acts as the identity on H1(π1(X), G) by the following reasoning.
Recall that in general if ϕ = γ(−)γ−1 is an inner automorphism of a profinite group π by an
element γ ∈ π and M is a discrete π-group, then the map (ϕ∗, γ−1) which is the composite

H1(π,M)
ϕ∗−→ H1(π, ϕ∗M)

γ−1.−−−→ H1(π,M),

that exploits the π-map ”multiplication by γ−1” : ϕ∗M →M and which on cocycles is given by(
σ 7→ aσ

)
7→
(
σ 7→ γ−1(aγσγ−1)

)
is the identity map. This is classical when M is abelian, see [22], VII.5. Proposition 3, and easy
to check in the general case by the same direct computation:

γ−1(aγσγ−1) = γ−1(aγ)aσγ−1 = γ−1(aγ)aσσ(γ−1(aγ)), (3)

which shows that (σ 7→ aσ) is indeed cohomologous to σ 7→ γ−1(aγσγ−1). In our geomet-
ric example the element γ ∈ π1(X) acts trivially on the coefficients M = G(k̄) such that
(ϕ∗, γ−1) becomes simply the pullback by conjugation with γ, which therefore acts as identity
on H1(π1(X), G(k̄)).

The étale cohomology set H1(X,G) for G := G×k k̄ is naturally the set

Homout(π1(X), G(k̄))

of continuous homomorphisms up to conjugation by an element of G(k̄), see [23] I.5.

The following well known interpretation of H1(Γ, G) will become useful later. Let

1→ G→ E → Γ̄→ 1

be a short exact sequence of profinite groups, and let ϕ : Γ→ Γ̄ be a continuous homomorphism.
The set of lifts ϕ : Γ → E of ϕ up to conjugation by an element of G is either empty or, with
the group G equipped with the conjugation action of Γ via a choice of lift ϕ0, in bijection with
the corresponding H1(Γ, G). Indeed for a cocycle a : Γ → G the twist of ϕ0 by a = (γ 7→ aγ),
i.e. the map γ 7→ aγ ·ϕ0(γ), is another lift. Any other lift of ϕ can be described by such a twist.

3By convention if kv is an archimedean completion of k, the henselization khv means the algebraic closure of k
into kv.
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Two cocycles are cohomologous if and only if they lead to conjugate lifts. The description of
lifts via H1(Γ, G) is natural with respect to both Γ and G.

1. Results over arbitrary fields

The notation and assumptions in this whole section are as above. In particular we consider
the exact sequence (2) associated to a quotient A of π1(X) by a subgroup U that remains normal
in π1(X).

For each i ∈ I, let σi : Γi → π1(Xi, x̄i) be a section of the fundamental sequence associated
to Xi. For example σi could be the section associated to a ki-point Pi ∈ X(ki). By composition
we obtain a section map

si : Γi
σi−→ π1(Xi)→ π1(X)→ πU1 (X).

Let G be a finite k-group scheme, hence G(k̄) is a finite discrete Γk-group. Via θi : Γi → Γk
we may view G(k̄) = θ∗iG(k̄) also as a discrete Γi-group that describes the base change G×k ki.

A cohomology class α ∈ H1(X,G) such that the corresponding element ᾱ ∈ H1(X,G) has
trivial restriction to U , has an evaluation α(si) ∈ H1(ki, G) as follows. By the restriction–
inflation sequence the class α uniquely comes from H1(πU1 (X), G(k̄)) and so the pullback class
α(si) := s∗i (α) ∈ H1(ki, G) is defined. Note that the coefficients G here are indeed the group
G(k̄) with Γi action induced by θi because si comes from a section σi. By formula (3) the
evaluation does only depend on si up to conjugation by an element of πU1 (X) with trivial action
on G(k̄).

By analogy with [24], Definition 5.2., we say that the tuple of section maps (si)i∈I survives
every finite descent obstruction if the following holds.

(a) For every finite k-group scheme G and every α ∈ H1(X,G) such that the corresponding
element ᾱ ∈ H1(X,G) has trivial restriction to U , the family (α(si)) ∈

∏
i∈I H1(ki, G)

belongs to the diagonal image of H1(k,G).
Clearly, if the sections si are the sections associated to ki-rational points, then (si) survives every
finite descent obstruction if and only if the collection (Pi) of rational points survives every finite
descent obstruction in the sense of [24]. We furthermore say that the tuple of section maps
(si)i∈I survives every finite constant descent obstruction if the following holds.

(a’) For every finite constant k-group scheme G and every α ∈ H1(X,G) such that the
corresponding element ᾱ ∈ H1(X,G) has trivial restriction to U , the family (α(si)) ∈∏
i∈I H1(ki, G) belongs to the diagonal image of H1(k,G).

We first establish a link to continuous homomorphisms Γk → πU1 (X). Let us define a con-
tinuous quotient of a profinite group as a quotient by a normal and closed subgroup.

Proposition 1.1. Consider the following assertion:
(b) There exists a continuous homomorphism s : Γk → πU1 (X) such that for each i ∈ I, we

have si = s ◦ θi up to conjugation in πU1 (X).
Then (b) implies property (a’). If we assume further that the following hypothesis holds:

(∗) For every finite and constant k-group scheme G, the fibres of the diagonal restriction
map H1(k,G)→

∏
i∈I H1(ki, G) are finite.

Then (b) is equivalent to property (a’).

Proof. Assume (b). Let G and α ∈ H1(X,G) = Homout(π1(X), G(k̄)) be as in property (a’).
Since the restriction of α to U is trivial, the class α corresponds to a map denoted again
α : πU1 (X)→ G(k̄) up to conjugation in G(k̄). We get

α(si) = α ◦ si = α ◦ s ◦ θi = θ∗i (α(s))

up to conjugation in G(k̄), so that (α(si)) is the image of α(s) ∈ H1(k,G) under the diagonal
map, whence property (a’).
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Suppose now that assertion (a’) and the additional hypothesis (∗) hold. We are going to show
that (b) holds as well. For a finite continuous quotient p : πU1 (X)→ G we consider the set

SG := {s′ ∈ Hom(Γk, G) ; ∀i ∈ I, θ∗i (s
′) = p ◦ si ∈ H1(ki, G)},

where we view G as a constant k-group scheme. The set SG is non empty by assumption (a’)
and finite thanks to (∗) and to the finiteness of G. Therefore lim←−G SG where G ranges over all
finite continuous quotients of πU1 (X) is not empty, see [1] Chapter I §9.6 Proposition 8. An
element s ∈ lim←−G SG is nothing but a continuous homomorphism

s : Γk → lim←−
G

G = πU1 (X)

such that for every i ∈ I, and every finite continuous quotient p : πU1 (X) → G the equality
p ◦ s ◦ θi = p ◦ si holds up to conjugation by elements from the finite set

Ci,G = {c ∈ G, p ◦ s ◦ θi = c
(
p ◦ si

)
c−1} ⊂ G

The set lim←−GCi,G is not empty by the same argument, which implies that for each i ∈ I, we
have s ◦ θi = si up to conjugation in πU1 (X).

Remarks 1.2. (1) Without additional assumptions, we cannot force the supplementary property
that s is a section. Indeed, take ki = k̄ for every i ∈ I. Then all sets H1(ki, G) are trivial, hence
the condition (a) and thus condition (a’) is automatically satisfied. Although condition (b) also
holds trivially by the choice of the trivial homomorphism, because there is no interpolation
property to be satisfied, nevertheless (2) does not always admit a section, see for example [29]
or [12] for counterexamples over local and global fields.

(2) For an example with a nontrivial homomorphism s : Γk → π1(X) but no section we
consider the case k = R, ki = C and a real Godeaux–Serre variety. Computations with SAGE,
see [21], show that the homogenous equations

z2
0 + z2

1 + z2
2 + z2

3 + z2
4 + z2

5 + z2
6 = 0

z0z2 + z1z3 + z2
4 + z5z6 = 0

i(z2
0 − z2

1) + 3i(z2
2 − z2

3)− 2z2
6 = 0

i(z0z1 + z2z3) + z4z5 + z5z6 + z6z4 = 0

define a smooth surface Y of general type in P6
C with ample canonical bundle ωY = O(1)|Y as

computed by the adjunction formula. By the Lefschetz theorem on hyperplane sections Y is
simply connected. The surface Y is preserved by the ΓR-semilinear action of G = Z/4Z on P6

C
generated by

[z0 : z1 : z2 : z3 : z4 : z5 : z6] 7→ [−z̄1 : z̄0 : −z̄3 : z̄2 : z̄4 : z̄5 : z̄6],

and avoids the fixed point set of the G-action. Hence the quotient map Y → X with X = Y/G
is the universal cover of the geometrically connected R-variety X with π1(X) = Z/4Z. The
analogue of (1) for X is given by

1→ π1(X ×R C)→ Z/4Z→ ΓR → 1

which clearly does not admit sections. Nevertheless, there is a nontrivial morphism ΓR → π1(X).

However, if we suppose that (2) has a section, then we can prove the following stronger
approximation result.

Proposition 1.3. Consider the following assertion:
(c) There exists a section s : Γk → πU1 (X) of (2) such that for each i ∈ I, we have si = s◦θi

up to conjugation in A.
Then (c) implies (a) which implies the following (a”).
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(a”) For every finite k-group scheme G and every α ∈ H1(X,G) such that the corresponding
element ᾱ ∈ H1(X,G) has trivial restriction to U and is surjective (or equivalently,
the G-torsor Y → X corresponding to α is assumed to be geometrically connected), the
family (α(si)) ∈

∏
i∈I H1(ki, G) belongs to the diagonal image of H1(k,G).

If we moreover assume that (∗) holds and that the exact sequence (2) admits a section s0, then
the properties (a), (a”) and (c) are all equivalent.

Proof: The implications (c) ⇒ (a) ⇒ (a”) are obvious because by formula (3) a section s as in
(c) implies for every α ∈ H1(X,G) as in (a) that

α(si) = s∗i (α) = (s ◦ θi)∗(α) = θ∗i (s
∗(α)).

It remains to show that (a”) ⇒ (c) under the additional assumption of (∗) and the existence of
a section s0 of πU1 (X)→ Γk. The method is similar to [25], Lemma 9.13, which deals with the
case when k is a number field and (ki) is the family of its completions for miscellaneous A, like
A = π1(X) or A = πab

1 (X). For the convenience of the reader we give a grouptheoretic version
of the argument.

Let us assume (a”). Let V < π1(X) be an open subgroup of finite index containing U and
normal in π1(X). Let AV be the quotient π1(X)/V and let pV : πU1 (X) � πV1 (X) be the
corresponding quotient map. The composition s0,V = pV ◦ s0 splits the exact sequence (2) for
V

1→ AV → πV1 (X)→ Γk → 1, (4)
so that πV1 (X) is isomorphic to a semi-direct product. The map pV and

p0,V : πU1 (X)→ Γk
s0,V−−→ πV1 (X)

lift the natural projection πU1 (X)→ Γk. Their difference γ 7→ pV (γ)p0,V (γ)−1 is a cohomology
class αV ∈ H1(πU1 (X), AV ), with πU1 (X) acting via p0,V and conjugation, that corresponds to a
class in H1(X,AV ) which becomes trivial when restricted to U . The restriction of αV to π1(X)
equals the surjective map pV |π1(X) : π1(X) � AV , hence is geometrically connected.

We now apply (a”) to the class αV . The class αV (si) = s∗i (αV ) measures the difference
between pV ◦ si and p0,V ◦ si = s0,V ◦ θi. Twisting s0,V by a class in H1(k,AV ) that diagonally
maps to (αV (si)) we obtain a section sV : Γk → πV1 (X) such that sV ◦ θi equals pV ◦ si up to
conjugation in AV .

Assumption (∗) now implies that the set of such sections sV is finite. Again by [1] Chapter I
§9.6 Proposition 8, there is a compatible family of sections (sV ) in the projective limit over all
possible V , which defines a section

s : Γk → lim←−
V

πV1 (X) = πU1 (X)

such that s ◦ θi = si up to conjugation in A by the projective limit argument as in the proof of
Proposition 1.1. This completes the proof of (c). �

Remark 1.4. It is worth noting that the additional assumption that (2) has a section allows
us to find a genuine section s that ”interpolates” the si up to conjugation even in A, and not
merely a homomorphism or interpolation up to conjugation in πU1 (X).

We can prove more under the additional assumption of the collection of fields (ki) being
arithmetically sufficiently rich in a sense to be made precise as follows. Consider the following
property.

(∗∗) The union of the conjugates of all the images Γi → Γk is dense in Γk.

Lemma 1.5. Property (∗∗) is inherited by finite extensions k′/k with respect to the set of all
composita ki · k′.
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Proof: For any σ ∈ Γk let k′i,σ be the field extension of ki associated to the preimage Γ′i,σ =
θ−1
i (σ−1Γk′σ) in Γi, namely the compositum kiσ

−1(k′) in k̄i using the fixed embedding σ−1(k′) ⊂
k̄ ⊂ k̄i that yields θi. The inclusion k′ ⊂ k′i,σ induces the map θ′i,σ = σ(−)σ−1 ◦ θi : Γ′i,σ → Γk′ .

The union of the conjugates of the images of all θ′i,σ is dense in Γk′ , saying that property (∗∗)
is inherited for finite field extensions k′/k for the new family of fields (k′i,σ). Indeed, we have to
show that ⋃

i,σ

θ′i,σ(Γ′i,σ) =
(⋃
i,σ

σΓiσ−1
)
∩ Γk′

surjects onto cofinally any finite continuous quotient of Γk′ . It is enough to treat quotients
p0 : Γk′ → G0 with ker(p0) normal in Γk, i.e, the map p0 extends to a finite continuous quotient
p : Γk → G. Then

p0

((⋃
i,σ

σΓiσ−1
)
∩ Γk′

)
= p
(⋃
i,σ

σΓiσ−1
)
∩G0 = G0

by property (∗∗). �

Lemma 1.6. Property (∗∗) implies property (∗).

Proof: To prove (∗) we consider a finite k-group G and α ∈ H1(k,G). We need to show that
the following set is finite:

Xα = {β ∈ H1(k,G) ; θ∗i (β) = θ∗i (α) ∈ H1(ki, G) for all i ∈ I}.

By the technique of twisting, see [23] I §5.4, we may assume that α is the trivial class in H1(k,G).
Let k′/k be a finite Galois extension that trivialises G. With the notation as in Lemma 1.5, the
commutative diagram

H1(k,G) res−−−−→ H1(k′, G)

θ∗i

y yθ′∗i,σ
H1(ki, G) res−−−−→ H1(k′i,σ, G)

shows that under restriction Xα maps into

Xtrivial = {χ ∈ Homout(Γk′ , G) ; χ ◦ θ′i,σ = 1 for all i, σ}

which contains only the trivial class due to property (∗∗) and Lemma 1.5. Hence, due to the
nonabelian inflation–restriction sequence, Xα is contained in H1(Gal (k′/k), G(k′)) which is a
finite set. �

Proposition 1.7. Under the assumption of (∗∗) the properties (a) and (c) are equivalent.

Proof: By Lemma 1.6 we also have assumption (∗). By Proposition 1.3 it suffices to show
that under assumption (a) the map πU1 (X) → Γk admits a section. As (a) trivially implies
(a’) we may use Proposition 1.1 to deduce (b), so that we have found at least a continuous
homomorphism u : Γk → πU1 (X) such that for all i ∈ I we have si = u ◦ θi up to conjugation in
πU1 (X). Let ϕ : Γk → Γk be the composition of u with the projection p : πU1 (X)→ Γk. To find
a section s0 of (2) and thus to complete the proof of Proposition 1.7, it suffices to prove that ϕ
is bijective because we can then take s0 = u ◦ ϕ−1. We have

ϕ ◦ θi = p ◦ (u ◦ θi) = p ◦ si = θi

up to conjugation in Γk. Thus for every γ ∈
⋃
i

⋃
g∈Γk

gθi(Γi)g−1 the image ϕ(γ) is conjugate
to γ in Γk. By assumption (∗∗) the set

⋃
i

⋃
g∈Γk

gθi(Γi)g−1 is dense in Γk so that ϕ preserves
every conjugacy class of Γk by continuity and compactness of Γk. In particular ϕ is injective.
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In every finite quotient Γk → G the image of ϕ(Γk) is a subgroup H < G such that the union
of the conjugates of H covers G. An old argument that goes back to at least Jordan, namely
the estimate

|G| = |
⋃

g∈G/H

gHg−1| ≤ (G : H) · (|H| − 1) + 1 = |G| − (G : H) + 1 ≤ |G|,

shows that necessarily H = G. Thus ϕ is also surjective. �

Remarks 1.8. (1) The isomorphism ϕ that occurs in the proof of Proposition 1.7 preserves
conjugacy classes of elements, hence is of a very special type which is much studied by group
theorists.

(2) In the case of a number field, every automorphism of Γk is induced by an automorphism of
k by a theorem of Neukirch, Uchida and Iwasawa, see [18], and there are also famous extensions
of this result by Pop to function fields. In particular every automorphism of ΓQ is an inner
automorphism.

Proposition 1.9. Under the assumption of (∗∗) the properties (b) and (c) are equivalent.

Proof: Clearly (c) implies (b). For the converse let u : Γk → πU1 (X) be a homomorphism as in
(b), so that there are γi ∈ πU1 (X) with u ◦ θi = γi(−)γ−1

i ◦ si for all i ∈ I. With the natural
projection p : πU1 (X)→ Γk the proof of Proposition 1.7 says that the homomorphism ϕ = p ◦ u
is an isomorphism, so that s = u ◦ ϕ−1 is a section. With p(γi) := σi we compute

ϕ ◦ θi = p ◦ u ◦ θi = p ◦
(
γi(−)γ−1

i

)
◦ si = σi(−)σ−1

i ◦ θi,

since si is a section and thus p ◦ si = θi. Applying ϕ−1 to both sides yields with τi = ϕ−1(σ−1
i )

the equation
τi(−)τ−1

i ◦ θi = ϕ−1 ◦ θi.
Now the section s interpolates the following

s ◦ θi = u ◦ ϕ−1 ◦ θi = u ◦
(
τi(−)τ−1

i

)
◦ θi =

(
u(τi)(−)u(τi)−1

)
◦ u ◦ θi

=
(
u(τi)(−)u(τi)−1

)
◦
(
γi(−)γ−1

i

)
◦ si =

(
(u(τi)γi)(−)(u(τi)γi)−1

)
◦ si,

and because of
p(u(τi)γi) = ϕ(τi)p(γi) = σ−1

i σi = 1
we find that s actually satisfies the stronger interpolation property of (c). �

Corollary 1.10. Under the assumption of (∗∗) the properties (a), (a’), (b) and (c) are equiv-
alent to each other and to (a”) together with the existence of section.

Proof: This follows immediately by Lemma 1.6, Proposition 1.1, Proposition 1.3, Proposi-
tion 1.7, and Proposition 1.9. �

2. Results over number fields

From now on we assume that k is a number field. We consider the exact sequence (2)

1→ A→ πU1 (X)→ Γk → 1

as above. Let kv be the completion of k at a place v of k. A choice of embeddings k̄ → k̄v of the
respective algebraic closures identifies the absolute Galois group Γv = Gal (k̄v/kv) of kv with
the decomposition subgroup of v, or more precisely the place of k̄ above v corresponding to the
embeding k̄ → k̄v. Hence the map θv : Γv → Γk as defined in the introduction is injective.

Theorem 2.1. Let S be a set of places of k of Dirichlet density 0, for example a finite set of
places. Assume that X(kv) 6= ∅ for v 6∈ S. For each v 6∈ S, let sv : Γv → πU1 (X) be the section
map associated to a kv-rational point Pv ∈ X(kv).

Then the following assertions are equivalent.
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(i) For every finite k-group scheme G and every α ∈ H1(X,G) such that ᾱ has triv-
ial restriction to U , the family (α(Pv)) belongs to the diagonal image of H1(k,G) in∏
v 6∈S H1(kv, G).

(i’) For every finite constant k-group scheme G and every α ∈ H1(X,G) such that ᾱ has
trivial restriction to U , the family (α(Pv)) belongs to the diagonal image of H1(k,G) in∏
v 6∈S H1(kv, G).

(i”) There is a section s0 : Γk → πU1 (X) and for every finite k-group scheme G and every
α ∈ H1(X,G) such that ᾱ restricts trivially to U and the associated G-torsor on X is
geometrically connected, the family (α(Pv)) belongs to the diagonal image of H1(k,G)
in
∏
v 6∈S H1(kv, G).

(ii) There exists a homomorphism s : Γk → πU1 (X) of (2) such that for each v 6∈ S, we have
sv = s ◦ θv up to conjugation in πU1 (X).

(iii) There exists a section s : Γk → πU1 (X) of (2) such that for each v 6∈ S, we have sv = s◦θv
up to conjugation in A, i.e, the sections sv come from a global section s.

Proof: This is merely a translation of Corollary 1.10 into the number field setting, once we
notice that assertion (∗∗) follows immediately from Chebotarev’s density theorem. �

Remarks 2.2. (1) For U trivial, we have πU1 (X) = π1(X) and assertion (i) means in the language
of [24], Definition 5.2, that the family (Pv) survives every X-torsor under a finite group scheme
G/k, while assertion (i’) says that (Pv) survives every X-torsor under a finite constant group
scheme. By (i”) this is equivalent to the existence of a section4 together with (Pv) surviving
every geometrically connected X-torsor under a finite group scheme.

(2) Even when X(k) 6= ∅, it is not sufficient to demand in (i”) that (Pv) survives every
geometrically connected torsor under a finite and constant group scheme to deduce that (Pv)
satisfies the equivalent properties of Theorem 2.1. Take for example k = Q and X such that
π1(X) = µ3 with the corresponding Galois action. Such examples arise among varieties of
general type. Then the only G-torsor over X with G finite constant and Y geometrically
connected is X with trivial group G. Nevertheless, there is a torsor Y → X under µ3 with
Y geometrically connected, and certain families (Pv) do not survive Y , see [10], Remark after
Corollary 2.4.

(3) An interesting case is when U is the closure of the derived subgroup of π1(X), so that
A = π1(X)/U is just the abelianized profinite group πab

1 (X). Then the section s in assertion
(iii) corresponds to a section of the geometrically abelianized fundamental exact sequence

1→ πab
1 (X)→ πU1 (X)→ Γk → 1.

Then assertion (i) means that the family (Pv) survives every X-torsor Y under a finite group
scheme G such that Y → X has abelian geometric monodromy, that is: such that the image
of the homomorphism π1(X)→ G associated to Y → X is an abelian group. Similar statements
hold for abelian replaced by solvable or nilpotent taking for A the maximal prosolvable or
pronilpotent quotient of π1(X).

(4) The analogue of Theorem 2.1 holds with the same proof if we replace the family of
completions (kv) by the corresponding henselizations (khv ), simply because the assertions only
depend on the associated sections and the canonical map Γkv → Γkhv is an isomorphism.

3. Abelian applications

Let k be a number field. Denote by Ωk the set of all places of k. For a smooth and projective
k-variety X its Brauer–Manin set is the subset X(Ak)Br of

∏
v∈Ωk

X(kv) consisting of those

4Thanks to M. Stoll for pointing out the importance of this condition.
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adelic points that are orthogonal to the Brauer group for the Brauer–Manin pairing, cf. [27],
II. Chapter 5.

The following corollary is a consequence of the implication (iii)⇒ (i) in Theorem 2.1. Similar
results had already been observed independently (at least) by J-L. Colliot-Thélène, O. Witten-
berg and the second author.

Corollary 3.1. Let X be a smooth, projective, geometrically connected curve over a number
field k. Assume that the abelianized fundamental exact sequence

1→ πab
1 (X)→ Π→ Γk → 1

has a section s, such that for each v ∈ Ωk the corresponding section sv is induced by a kv-point
Pv of X. Then (Pv) ∈ X(Ak)Br .

Proof: We take for U the closure of the derived subgroup of π1(X) in Theorem 2.1. Then (Pv)
satisfies condition (iii) of Theorem 2.1, hence by (i) it survives every X-torsor with abelian
geometric monodromy under a finite k-group G. In particular, the adelic point (Pv) survives
any X-torsor under a finite abelian group scheme. It remains to apply [24], Corollary 7.3. �

Remarks 3.2. (1) Let X be a smooth projective curve of genus 0. Then the assumption of
Corollary 3.1 seems vacuous as π1(X) = 1 and there is a section with no arithmetic content.
But we also assume the existence of an adelic point, whence the curve X has k-rational points
by the classical Hasse local–global principle for quadratic forms. Moreover, any adelic point on
X ∼= P1

k satisfies the Brauer–Manin obstruction because Br (k) = Br (P1
k).

(2) Let X be a smooth projective curve of genus 1 as in Corollary 3.1 with Jacobian E. Then
X corresponds to an element [X] in the Tate–Shafarevich group X(E/k). The existence of an
adelic point which survives the Brauer–Manin obstruction then implies by [27] Theorem 6.2.3
that [X] belongs to the maximal divisible subgroup of X(E/k), which also follows from [12]
Proposition 2.1. When X(E/k) is finite as is conjecturally always the case, then the curve X
has a k-rational point and is actually an elliptic curve E.

(3) It is conjectured that a p-adic version of Grothendieck’s section conjecture holds, which
would imply that for a smooth, projective, geometrically integral curve of genus at least 2, each
local section sv as in Corollary 3.1 is automatically induced by a kv point. See also Remark (2)
after Theorem 4.1.

(4) If we assume further that the Jacobian variety of X has finitely many rational points and
finite Tate-Shafarevich group, then the conclusion of Corollary 3.1 implies X(k) 6= ∅ by a result
due to Scharaschkin and Skorobogatov, see [27] Corollary 6.2.6. or [24], Corollary 8.1.

The following result (and its proof) are inspired by Koenigsmann’s theorem [14], namely the
fact that for a (smooth, geometrically connected) curve over a p-adic field, the existence of a
section for the birational fundamental exact sequence implies the existence of a rational point.

Theorem 3.3. Let X be a smooth, projective and geometrically connected curve over a number
field k. Assume that the birational fundamental exact sequence

1→ Γk̄(X) → Γk(X) → Γk → 1 (5)

has a section. Then X(Ak)Br 6= ∅. If we assume further that the Jacobian variety of X has
finitely many rational points and finite Tate–Shafarevich group, then X(k) 6= ∅.

A ”non-abelian” version of this theorem will be given in the next section (Theorem 4.3).
Proof: A section s : Γk → Γk(X) of (5) induces5 for every place v of k a section shv for the
analogous sequence for k replaced by khv . We follow the argument used by Koenigsmann [14]
Proposition 2.4 (1).

5This would not be clear if we had replaced k by kv instead of khv . Indeed the existence of a birational section
is not a condition that is stable by extension of scalars; see [6], Remark 3.12(iii).
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The image of shv defines a field extension Lhv/k
h
v (X) as the fixed field in the algebraic closure

of khv (X). Because the natural maps between absolute Galois groups

ΓLhv → Γkhv ← Γkv

are isomorphisms, the fields Lhv , khv and kv are p-adically closed fields, see [13] Theorem 4.1, and
thus Lhv is an elementary extension of khv , see [14] Fact 2.2. In particular, the tautological Lhv
point of X given by

Spec(Lhv)→ Spec khv (X)→ X

implies the existence of a khv -point and thus a kv-point on X.
The core of the following well-known limit argument goes back at least to Neukirch, and was

introduced in anabelian geometry by Nakamura, while Tamagawa emphasized its significance
to the section conjecture. We perform the limit argument by applying the above existence
result to every connected branched cover X ′ → X (necessarily geometrically connected over k)
with s(Γk) ⊂ Γk(X′) ⊂ Γk(X). Thus the projective system lim←−X′ X

′(kv) over all such X ′ is a
projective system of nonempty compact spaces, and is therefore itself nonempty by [1] Chapter
I §9.6 Proposition 8.

Let (P ′v) with P ′v ∈ X ′(kv) be an element in the projective limit with lowest stage Pv ∈ X(kv).
It follows that the section sPv : Γkhv → Γkhv (X) composed with the natural projection Γkhv (X) →
Γk(X) agrees with the v-local component s ◦ θv for the original section s. We may now apply
Corollary 3.1 to the composition

Γk
s−→ Γk(X) → π1(X),

which shows that the adelic point (Pv) of X is orthogonal to BrX for the Brauer-Manin pairing.
Under the further assumptions that the Jacobian ofX has finite Mordell–Weil group and finite

Tate–Shafarevich group we now apply the result by Scharaschkin/Skorobogatov (see Remark
(4) above) to complete the proof of the theorem. �

Remark 3.4. In [6] Theorem 2.1 H. Esnault and O. Wittenberg discuss a geometrically abelian
version of Theorem 3.3 with the result that an abelian birational section yields a divisor of
degree 1 on X under the assumption of the Tate-Shafarevich group of the Jacobian of X being
finite.

We next describe an application towards the birational version of the section conjecture
of Grothendieck’s. Recall that for a geometrically connected k-variety X a k-rational point
a ∈ X(k) describes by functoriality a π1(X)-conjugacy class of sections sa of (1). In the
birational setting the k-rational point leads to the following. Define Ẑ(1) as the inverse limit
(over n) of the Γk-modules µn(k̄). Due to the characteristic zero assumption the decomposition
group Da of a ∈ X(k) in Γk(X) is an extension

1→ Ẑ(1)→ Da → Γk → 1 (6)

that splits for example by the choice of a uniformizer t at a and a compatible choice of nth roots
t1/n of t. It follows that up to conjugacy by Ẑ(1), the inertia group at a, we have a packet of
sections of (6) with a free transitive action by the huge uncountable group

H1(k, Ẑ(1)) = lim←−
n

k∗/(k∗)n.

It can be proven in at least two different ways that the map Da → Γk(X) maps the Ẑ(1)-
conjugacy classes of sections of (6) injectively into the set of Γk̄(X)-conjugacy classes of sections
of (5), see for example [14] Section 1.4, or [28] Section 1.3 and Theorem 14+17, or [5].

The birational form of the section conjecture speculates that for a smooth, projective
geometrically connected curve the map from k-rational points to packets of sections of (5) is
bijective and that there are no other sections of (5), see [14] Section 1.4+5.
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The following theorem is a corollary6 of Stoll’s results [25] (Corollary 8.6 and Theorem 9.18).

Theorem 3.5. Let X be a smooth, projective and geometrically connected curve over k. If
we assume that there is a nonconstant map X → A to an abelian variety A/k with finitely
many k-rational points and finite Tate–Shafarevich group, then every section s of the birational
fundamental exact sequence

1→ Γk̄(X) → Γk(X) → Γk → 1 (7)

is the section sa associated to a k-rational point a ∈ X(k). In other words, the birational section
conjecture is true for such curves X/k.

Proof: Let s be a section of (7), and let X ′ → X be a finite branched cover, such that upon
suitable choices of base points the image of s is contained in Γk(X′) ⊂ Γk(X).

Then Theorem 3.3 shows that X ′(Ak)Br 6= ∅. Exploiting the finite map X ′ → X → A we
may use Stoll’s result [24] Theorem 8.6, to deduce X ′(k) 6= ∅. Cofinally all such X ′ will have
genus at least 2 so that X ′(k) then is nonempty and finite by Faltings–Mordell [7] Satz 7. It
follows that lim←−X′ X

′(k), where X ′ ranges over the system of all X ′ as above, is nonempty by
[1] Chapter I §9.6 Proposition 8. Let a ∈ X(k) be the projection to X(k) of an element of
lim←−X′ X

′(k), then the image of s is contained in the decomposition subgroup Da ⊂ Γk(X) and s
belongs to the packet of sections associated to the k-rational point a.

It remains to refer to the literature for the injectivity of the (birational) section conjecture,
which was already known to Grothendieck [8], see for example [28] Appendix B. �

Remarks 3.6. (1) The conjecture of Birch and Swinnerton-Dyer predicts that an abelian variety
A over a number field k has both finite A(k) and finite X(A/k) if and only if its complex
L-function L(s,A/k) does not vanish at the critical point s = 1. This is known in the case of
elliptic curves E/Q due to work of Coates-Wiles, Rubin, and Kolyvagin. For abelian varieties
A/Q with L(1, A/Q) 6= 0 the work of Kolyvagin-Logachev [15] allows to conclude finiteness of
A(Q) and X(A/Q) subject to an additional technical condition.

Following Mazur [16], every Jacobian J0(p) of the modular curve X0(p) for p = 11 or a
prime p ≥ 17 has a nontrivial Eisenstein quotient, see J̃ [16] II (10.4), with finite Mordell–Weil
group J̃(Q). But only for an Eisenstein ideal p the p-component of the Tate–Shafarevich group
X(J̃/Q) is known to be finite. Building on the work of Mazur, modular quotients J0(p)→ A,
which satisfy L(1, A/Q) 6= 0, have been determined in abundance, see for example Duke [4].

Consequently, every smooth, projective geometrically connected curve X over Q with a non-
constant map X → A for one of the good abelian varieties A above will (subject to the validity
of the technical assumption necessary in [15] or unconditionally if dim (A) = 1) satisfy Theo-
rem 3.5 and thus the birational section conjecture will hold for such X with k = Q.

(2) A recent result of Mazur and Rubin, [17] Theorem 1.1, guarantees for any algebraic num-
ber field k the existence of infinitely many elliptic curves E/k with E(k) = 0. As conjecturally
X(E/k) is always finite, these elliptic curves and moreover their branched covers X → E can
be used in Theorem 3.5 to at least conjecturally produce examples of the birational section
conjecture over any algebraic number field.

4. Non-abelian applications

Theorem 4.1. Let X be a smooth, projective, geometrically connected curve over a number
field k. Let (Pv)v∈Ωk be an adelic point of X that survives every X-torsor under a finite group
scheme. Then (Pv) survives every X-torsor under a linear group scheme.

6Note however that in the proof of [25] Theorem 9.18, it is not explained why the existence of a birational
section over k implies the same property over kv.
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Proof: We apply Theorem 2.1 in the case U = 0, A = π1(X). The hypothesis means that (Pv)
satisfies condition (i) of this Theorem, hence there is a section s : Γk → π1(X) as in condition
(iii). Let Y → X be a geometrically connected torsor under a finite group scheme. Using the
section s, we can lift (Pv) to an adelic point (Qv) on some twisted torsor Y σ such that s take
values in the subgroup π1(Y σ) of π1(X). This means that (Qv) again satisfies condition (iii) of
Theorem 2.1. In particular Corollary 3.1 implies that (Qv) ∈ Y σ(Ak)Br . So we have proved
that for every geometrically connected torsor Y under a finite group scheme G, the adelic point
(Pv) can be lifted to an adelic point (Qv) ∈ Y σ(Ak)Br for some twisted torsor Y σ.

This still holds if Y is not assumed to be geometrically connected: indeed the assumption
that there exists an adelic point of X surviving every X-torsor under a finite group scheme
implies (by a result of Stoll, see also Demarche’s paper [3], beginning of the proof of Lemma
3) that there exists a geometrically connected torsor Z → X under a finite k-group scheme F ,
a cocycle σ ∈ Z1(k,G), and a morphism F → Gσ such that Y σ is obtained by pushout of the
torsor Z. We conclude with the functoriality of the Brauer–Manin pairing.

It remains to apply the main result of [3] to finish the proof, namely that the étale Brauer–
Manin obstruction is a priori stronger than the descent obstruction imposed by linear algebraic
groups. �

Remarks 4.2. (1) The previous result does not hold in higher dimension. For example there are
smooth, projective, geometrically integral and geometrically rational surfaces X (in particular
we have π1(X) = 1) with X(k) 6= ∅, but such that some adelic points (Pv) do not belong to
X(Ak)Br . For an example with an intersection of two quadrics in P4 see [2], p. 3, Example a.
By [27], Theorem 6.1.2 (a), such adelic points do not survive the universal torsors, which are
those torsors under the Néron-Severi torus of X whose type in the sense of Colliot-Thélène and
Sansuc’s descent theory is an isomorphism, see [27], Definition 2.3.3.

(2) Let X be a curve of genus at least 2 such that the fundamental exact sequence (1) has
a section. If we knew the p-adic analogue of Grothendieck’s section conjecture, Theorem 2.1
and Theorem 4.1 would yield the existence of an adelic point (Pv) that survives every torsor
under a linear k-group scheme, which is a priori stronger than (Pv) ∈ X(Ak)Br . Recall that
as we have seen before (a result by Scharaschkin/Skorobogatov), the condition X(Ak)Br 6= ∅
already implies X(k) 6= ∅ if the Jacobian variety of X has finitely many rational points and
finite Tate-Shafarevich group.

The following result is the ”non-abelian” version of Theorem 3.3.

Theorem 4.3. Let X be a smooth, projective and geometrically connected curve over a number
field k. Assume that the birational fundamental exact sequence

1→ Γk̄(X) → Γk(X) → Γk → 1 (8)

has a section. Then X contains an adelic point (Pv) that survives every torsor under a linear
k-group scheme.

Proof: We proceed exactly as in the proof of Theorem 3.3, except that at the end we apply
Theorem 2.1 instead of Corollary 3.1, so that we obtain that the adelic point (Pv) of X survives
every torsor under a finite k-group scheme, hence every torsor under a linear k-group scheme
by Theorem 4.1. �

Remark 4.4. Over a number field or a p-adic field, no example of smooth and geometrically
integral variety X such that the exact sequence (5) has a section, but X(k) = ∅, is known.
According to Grothendieck, a sufficiently small non empty open subset U of X should be
”anabelian”, which would imply (if one believes a general form of his section conjecture, see
[8]) that X has a rational point as soon as the sequence (5) is split. We don’t know whether
Theorem 3.3 and Theorem 4.3 still hold in arbitrary dimension.
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Let Γk̄(X) → Γsolv
k̄(X)

be the maximal pro-solvable quotient of Γk̄(X) and

1→ Γsolv
k̄(X) → Γ(solv)

k(X) → Γk → 1 (9)

the pushout of (5) by Γk̄(X) → Γsolv
k̄(X)

. With this exact sequence we can prove the following
geometrically pro-p version of Theorem 4.3.

Theorem 4.5. Let k be a number field, and let X be a smooth, projective and geometrically
connected curve over k. Assume that the geometrically pro-solvable birational fundamental exact
sequence

1→ Γsolv
k̄(X) → Γ(solv)

k(X) → Γk → 1

has a section. Then X contains an adelic point (Pv) that survives every torsor under a finite
k-group scheme with geometric monodromy a finite solvable group.

Proof: We start as in the proof of Theorem 3.3. Let v | p be a place of k above p. The local
section

shv : Γkhv → Γ(solv)

khv (X)
⊂ Γ(solv)

khv (X)

restricts, i.e., after adjoining the pth roots of unity 〈ζp〉, to a liftable section

shv |... : Γkhv (ζp) → Γ(p)

khv (ζp)(X)

in the sense of [19] for the geometrically pro-p birational fundamental exact sequence of the
scalar extension X ×k khv (ζp). Now [19] Theorem B 2) shows that, modulo the geometric
commutator, the section shv |... belongs to a unique bouquet of sections associated to a point
Pv ∈ X(kv(ζp)) with coefficients in the completion kv(ζp) of khv (ζp). Since shv |... is invariant
under Gal (khv (ζp)/khv ) = Gal (kv(ζp)/kv), the uniqueness of Pv, structure transport and Galois
descent show that in fact Pv ∈ X(kv). The same limit argument as in the proof of Theorem 3.3
applies and shows that in fact the local section shv agrees with the composite

sPv : Γkhv = Γkv → Γ(solv)
kv(X) � Γ(solv)

khv (X)

The rest of the proof follows as in the proof of Theorem 3.3. �
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C.R.A.S. Paris 284, 1215-1218 (1977).

[3] C. Demarche: Obstruction de descente et obstruction de Brauer-Manin étale, Algebra and Number Theory
3, no. 2, 237–254 (2009).

[4] W. Duke: The critical order of vanishing of automorphic L-functions with large level, Invent. Math. 119,
no. 1, 165–174 (1995).

[5] H. Esnault, Ph. H. Hai: Packets in Grothendieck’s Section Conjecture, Advances in Mathematics 218, no.
2, 395–416 (2008).

[6] H. Esnault, O. Wittenberg: On abelian birational sections, Journal of the American Mathematical Society
23, 713–724 (2010).

[7] G. Faltings: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73, no. 3, 349–366
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