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Abstract

Given a graph property Φ, we consider the problem #EdgeSub(Φ), where the input is a pair of a graph G and a
positive integer k, and the task is to compute the number of k-edge subgraphs in G that satisfy Φ. Specifically, we
study the parameterized complexity of #EdgeSub(Φ) with respect to both approximate and exact counting, as
well as its decision version EdgeSub(Φ). Among others, our main result fully resolves the case of minor-closed
properties Φ: the decision problem EdgeSub(Φ) always admits an FPT (“fixed-parameter tractable”) algorithm
and the counting problem #EdgeSub(Φ) always admits an FPTRAS (“fixed-parameter tractable randomized
approximation scheme”). For exact counting, we present an exhaustive and explicit criterion on the property Φ
which, if satisfied, yields fixed-parameter tractability and otherwise #W[1]-hardness. Additionally, our hardness
results come with an almost tight conditional lower bound under the Exponential Time Hypothesis. Our main
technical result concerns the exact counting problem: Building upon the breakthrough result of Curticapean, Dell
and Marx (STOC 17), we express the number of subgraphs satisfying Φ as a finite linear combination of graph
homomorphism counts and derive the complexity of computing this number by studying its coefficients. Our
approach relies on novel constructions of low-degree Cayley Graph Expanders of p-groups, which might be of
independent interest. The properties of those expanders allow us to analyse the coefficients in the aforementioned
linear combinations over the field Fp which gives us significantly more control over the cancellation behaviour of
the coefficients.
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1 Introduction

Be it searching for cliques in social networks or understanding protein-protein interaction networks, many
interesting real-life problems boil down to finding (or counting) small patterns in large graphs. Hence,
to no surprise, finding (and counting) small patterns in large graphs are among the most well-studied
computational problems in the fields of database theory [14, 46, 36, 15, 31], molecular biology and
bioinformatics [43, 1, 73, 82], and network science [83, 66, 67]. In fact, already in the 1970s, the relevance
of finding patterns became apparent in the context of finding cliques, finding Hamiltonian paths, or finding
specific subgraphs in general [21, 20, 88, 14]. However, with the advent of motif counting for the frequency
analysis of small structures in complex networks [66, 67], it became evident that detecting the existence
of a pattern graph is not enough; we also need to count all of the occurrences of the pattern.

In this work, our patterns are (not necessarily induced) edge subgraphs that satisfy a certain graph
property: for instance, given a graph, we want to count all occurrences of edge subgraphs that are are planar
or connected. From a classical point of view, often the problem of finding patterns is already NP-hard:
prime examples include the aforementioned problems of finding (maximum) cliques or Hamiltonian paths.
However, for the task of network motif counting, the patterns are (almost) always much smaller than
the network itself (see [66, 67, 1]). This motivates a parameterized view: can we obtain fast algorithms
to compute the number of occurrences of “small” patterns? If we cannot, can we at least obtain fast
(randomized) algorithms to compute an estimate of this number? And if we cannot even do this, can we
at least obtain fast algorithms to detect an occurrence? In this work, we completely answer all of the
above questions for patterns that are specified by minor-closed graph properties (such as planarity) or
selected other graph properties (such as connectivity).

As it turns out, the techniques we develop for answering the above questions are quite powerful: they
easily generalize to a parameterized version of the Tutte polynomial. Specifically, our techniques allow us
to completely understand at which rational points we can evaluate said parameterized Tutte polynomial in
reasonable time, and at which rational points this is not feasible. This dichotomy turns out to be similar,
but not equal, to the complexity landscape of the classical Tutte polynomial due to Jaeger et al. [49].

Parameterized Counting and Hardness

By now, counting complexity theory is a well established subfield of theoretical computer science. Already
in the 1970s, Valiant started a formal study of counting problems when investigating the complexity
of the permanent [89, 90]: counting the number of perfect matchings in a graph is #P-complete, and
hence harder than any problem in the polynomial-time hierarchy PH by Toda’s Theorem [87]. In contrast,
detecting a perfect matching in a graph is much easier and can be done in polynomial time [37]. Hence,
counting problems can be much harder than their decision problem counterparts. As an attempt to
overcome the hardness of counting problems in general, the focus shifted to a multivariate or parameterized
view on these problems. Consider for example the following problem: given a query ϕ of size k and a
database B of size n, we want to count the number of answers to ϕ in B. If we make the very reasonable
assumption that k is much smaller than n, then we may consider an algorithm running in time O(2k · n)
as tractable. Note that in particular, such an algorithm may even outperform an algorithm running in
time O(n2). Also consider [44] for a more detailed and formal discussion.

Formally, given a problem P and a parameterization κ that maps each instance I of P to a param-
eter κ(I), we say that P is fixed-parameter tractable (FPT) with respect to κ, if there is an algorithm
that solves each instance I of size n in time f(κ(I)) · nO(1), for some computable function f . This notion
was introduced by Downey and Fellows in the early 1990s [33, 34] and has itself spawned a rich body of
literature (see [39, 35, 27]). In the context of the problems of detecting and counting small patterns in
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large networks, we parameterize by the size of the pattern: given a pattern of size k and a network of
size n, we aim for algorithms that run in time f(k) · nO(1), for some computable function f . However, for
some patterns, even this goal is too ambitious: it is widely believed that even finding a clique of size k
is not fixed-parameter tractable; in particular, an FPT algorithm for finding a clique of size k would
also imply a breakthrough result for the Satisfiability Problem and thereby refute the widely believed
Exponential Time Hypothesis (ETH) [17, 18]. If a problem P is at least as hard as finding a clique (or
counting all cliques) of size k, we say that P is W[1]-hard (or #W[1]-hard, respectively).

For such a (#)W[1]-hard problem, the hope is to (significantly) improve upon the naive brute-force
algorithm, which runs in time nO(k) for the problems considered in this work. However, in view of the
aforementioned reduction from the Satisfiability Problem to the problem of finding cliques of size k [16, 17],
we can see that for finding cliques this, too, would require a breakthrough for the Satisfiability Problem,
which, again, is believed to be unlikely [48]. In our paper, via suitable reductions from the problem of
finding cliques, we establish that exact algorithms significantly faster than the brute-force algorithms are
unlikely for the problems we study.

Parameterized Detection and Counting of Edge Subgraphs

It is well-known that vertex-induced subgraphs as patterns are notoriously hard to detect or to count. The
long line of research on this problem [53, 19, 50, 51, 65, 52, 25, 78, 32, 79] showed that this holds even if
the patterns are significantly smaller than the host graphs, as witnessed by W[1] and #W[1]-hardness
results and almost tight conditional lower bounds. In case of exact counting, it is in fact an open question
whether there are non-trivial instances of induced subgraph counting that admit efficient algorithms;
recent work [79] supports the conjecture that no such instances exist.

In search for fast algorithms, in this work, we hence consider a related, but different version of
network-motif counting: for a computable graph property Φ, in the problem #EdgeSub(Φ) we are
given a graph G and a positive integer k, and the task is to compute the number of (not necessarily
induced) edge subgraphs1 with k edges in G that satisfy Φ. Similarly, we write EdgeSub(Φ) for the
corresponding decision problem. Then, in contrast to the case of counting vertex-induced subgraphs,
for (#)EdgeSub(Φ), we identify non-trivial properties Φ for which (#)EdgeSub(Φ) is fixed-parameter
tractable; we discuss this in more detail later. First, however, let us take a detour to elaborate more on
what is known already for (#)EdgeSub(Φ).

If the property Φ is satisfied by at most a single graph for each value of the parameter k, the decision
problem EdgeSub(Φ) becomes the subgraph isomorphism problem. Hence, naturally there is a vast body
of known techniques and results for special properties Φ: for FPT algorithms, think of the Colour-Coding
technique by Alon, Yuster and Zwick [3], the “Divide and Colour”-technique [18], narrow sieving [9],
representative sets [40], or “extensor-coding” [11] to name but a few. For hardness results, apart from the
aforementioned example of detecting a clique, Lin quite recently established that detecting a k-biclique
is also W[1]-hard [58]. However, a complete understanding of the parameterized decision version of
the subgraph isomorphism is one of the major open problems of parameterized complexity theory [35,
Chapter 33.1], that is still to be solved.

In the setting of parameterized counting, the situation is much better understood: Flum and Grohe [38]
proved #EdgeSub(Φ) to be #W[1]-hard when Φ is the property of being a cycle, or the property of
being a path. Curticapean [23] established the same result for the property of being a matching. In [26],
Curticapean and Marx established a complete classification in case Φ does not hold on two different graphs

1 Recall that an edge subgraph G′ of a graph G may have fewer edges than the subgraph of G that is induced by the
vertices of G′.
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with the same number of edges, which is essentially the parameterized subgraph counting problem. In
particular, they identified a bound on the matching number as the tractability criterion. In a later work,
together with Dell [25], they presented what is now called the framework of Complexity Monotonicity,
which can be considered to be one of the most powerful tools in the field of parameterized counting
problems. Note that this does not classify the decision version.

In contrast to the parameterized subgraph detection/counting problems, the problem (#)EdgeSub(Φ)
allows to search for more general patterns. For example, while the (parameterized) complexity of counting
all subgraphs of a graph G isomorphic to a fixed connected graph H with k edges is fully understood [26],
the case of counting, for instance, all connected, or all bipartite k-edge subgraphs of a graph G remained
open so far. As consequences of our main technical result, we completely understand the problem
#EdgeSub(Φ) for the properties Φ = connectivity and Φ = bipartiteness. In what follows, we present
our results, followed by an exposition of the most important techniques.

1.1 Main Results
In a first part, we present our results on (#)EdgeSub(Φ); we continue with a definition and our results
for a parameterized Tutte polynomial in a second part.

Our main results on (#)EdgeSub(Φ) can be categorized in roughly three categories: (1) exact
algorithms and hardness results for the counting problem; (2) approximation algorithms for the counting
problem; and (3) algorithms for the decision problem. For minor-closed properties Φ, we obtain exhaustive
results for all three categories, for other (classes of) properties that we study, we obtain partial criteria.

Complete Classification for Minor-Closed Properties
Let us start with the case where the graph property Φ is closed under taking minors, that is, if Φ holds for
a graph, then Φ still holds after removing vertices or edges, or after contracting edges. For minor-closed
properties Φ, we obtain a complete picture of the complexity of #EdgeSub(Φ) and EdgeSub(Φ). In
what follows, we say that a property Φ has bounded matching number if there is a constant bound on the
size of a largest matching in graphs satisfying Φ.

Main Theorem 1. Let Φ denote a minor-closed graph property.

1. Exact Counting: If Φ is either trivially true or of bounded matching number, then the (exact) counting
version #EdgeSub(Φ) is fixed-parameter tractable. Otherwise, the problem #EdgeSub(Φ) is #W[1]-
hard and, assuming the Exponential Time Hypothesis, cannot be solved in time f(k) · |G|o(k/ log k) for
any function f .

2. Approximate Counting: The problem #EdgeSub(Φ) always has an FPTRAS.2
3. Decision: The problem EdgeSub(Φ) is always fixed-parameter tractable.

Let us present an exemplary application of our main result; further discussions on those examples can
be found in [70].

Corollary 1. The following problems are #W[1]-hard and, assuming ETH, cannot be solved in time
f(k) · |G|o(k/ log k) for any function f : Given G and k, compute the number of

planar subgraphs with k edges in G.

2 A fixed-parameter tractable randomised approximation scheme. The formal definition is given in Section 2.2; intuitively
an FPTRAS is the parameterized equivalent of an FPRAS.
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linear k-forests (unions of paths) in G.3
k-edge subgraphs in G with tree-depth at most t, for a constant t ≥ 2.
k-edge subgraphs in G with genus at most g, for a constant g ≥ 0.
k-edge subgraphs in G with Colin de Verdière’s invariant at most c, for a constant c ≥ 1.

In contrast, all of the previous problems have an FPTRAS and a fixed-parameter tractable decision version.

Further Results on Exact Counting
Let us return to the case of arbitrary graph properties Φ. Without any further assumptions on Φ, the
naive algorithm for #EdgeSub(Φ) on the input (k,G) proceeds by enumerating the k-edge subsets of G
and counting the number of cases where the corresponding subgraph satisfies Φ. This leads to a running
time of the form f(k) · |V (G)|2k+O(1). However, at least the linear constant in the exponent can be
substantially improved using the currently fastest known algorithm for counting subgraphs with k edges
due to Curticapean, Dell and Marx [25]. We will show that it easily extends to the case of #EdgeSub(Φ):

Proposition 2. Let Φ denote a computable graph property. There exists a computable function f such
that #EdgeSub(Φ) can be solved in time

f(k) · |V (G)|0.174k+o(k) .

On the other hand, it was shown by Curticapean and Marx [26] that for the property Φ of being a
matching, the problem #EdgeSub(Φ) cannot be solved in time f(k) · |V (G)|o(k/ log k) for any function f ,
unless ETH fails. In other words, asymptotically and up to a factor of 1/ log k, the exponent of |V (G)| in
the running time of #EdgeSub(Φ) cannot be improved without posing any restriction on Φ.

The goal is hence to identify properties Φ for which the algorithm in theorem 2 can be (significantly)
improved. In the best possible outcome, we hope to identify the properties for which the exponent of
|V (G)| does not depend on k; those cases are precisely the fixed-parameter tractable ones. An easy
consequence of known results for subgraph counting (see for instance [26]) establishes the following
tractability criterion; we will include the proof only for the sake of completeness:

Proposition 3. Let Φ denote a computable graph property satisfying that there is M > 0 such that for
all k either the graphs with k edges satisfying Φ or the graphs with k edges satisfying ¬Φ have matching
number bounded by M . Then #EdgeSub(Φ) is fixed-parameter tractable.

Examples of properties satisfying the tractability criterion of theorem 3 include, among others, the
property of being a star, or the complement thereof. We conjecture that all remaining properties induce
#W[1]-hardness and cannot be solved in time f(k) · |G|o(k/ log k) for any function f , unless ETH fails.4
For the case of minor-closed graph properties, we have seen above that this conjecture holds.

Further, the techniques we develop to prove hardness of #EdgeSub(Φ) for minor-closed properties Φ
in Main Theorem 1 can also be applied directly to show hardness for other specific properties Φ. Below,
we record several natural examples of such properties which are covered by our methods.

3 #W[1]-hardness and, implicitly, the same conditional lower bound for counting (not necessarily linear) k-forests was
shown in [13], and is subsumed by our result as well.

4 Note that it does not matter whether we choose |G| or |V (G)| for the size of the large graph since we care about the
asymptotic behaviour of the exponent.
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Main Theorem 2. Consider the following graph properties.

ΦC(H) = 1 if and only if H is connected.
ΦB(H) = 1 if and only if H is bipartite.
ΦH(H) = 1 if and only if H is Hamiltonian.
ΦE(H) = 1 if and only if H is Eulerian.
ΦCF (H) = 1 if and only if H is claw-free.

For each Φ ∈ {ΦC ,ΦB ,ΦH ,ΦE ,ΦCF }, the problem #EdgeSub(Φ) is #W[1]-hard. Further, unless ETH
fails, #EdgeSub(Φ) cannot be solved in time f(k) · |G|o(k/ log k) for any function f .

Can you beat treewidth?

We conclude the presentation of our results on exact counting by commenting on the factor of 1/(log . . . )
in the exponents of all of our fine-grained lower bounds. This factor is related to the conjecture of whether
it is possible to “beat treewidth” [63]. In particular, we point out that the factor can be dropped in all of
our lower bounds if this conjecture, formally stated as Conjecture 1.3 in [64], is true.

Novel Constructions of p-group Cayley Graph Expanders
Cayley graphs are recalled in Section 3 and in the technical overview. Our hardness results crucially rely
on a novel construction of families of low-degree Cayley Graph Expanders of p-groups, which might be of
independent interest. We will present the new Cayley Graph Expanders in the following theorem; their
construction, as well as their role in the hardness proofs for #EdgeSub(Φ) will be elaborated on in the
technical discussion (Section 1.2).

Main Theorem 3. Let p ≥ 3 be a prime number, and d ≥ 2 be an integer. We assume that d ≥ (p+3)/2
if p ≥ 7. Then there is an explicit construction of a sequence of finite p-groups Γi of orders that tend to
infinity, with symmetric generating sets Si of cardinality 2d such that the Cayley graphs C(Γi, Si) form a
family of expanders (of fixed valency 2d on a set of vertices of p-power orders and with vertex transitive
automorphism groups).

For completeness, we emphasize that the case p = 2, has already been resolved by two of the authors
in [71].

Results for Approximate Counting and Decision
Our results on exact counting indicate that we have to relax the problem if we aim for tractability results
for a larger variety of properties. One approach is to only ask for an approximate count of the number of
k-edge subgraphs satisfying Φ. Tractability of approximation in the parameterized setting is given by
the notion of a fixed-parameter tractable randomized approximation scheme (FPTRAS) as introduced by
Arvind and Raman [6]. While we give the formal definition in Section 2.2, it suffices for now to think of an
FPTRAS as a fixed-parameter tractable algorithm that can compute an arbitrarily good approximation
of the answer with high probability. Readers familiar with the classical notions of approximate counting
algorithms should think of an FPTRAS as an FPRAS in which we additionally allow a factor of f(k) in
the running time, for any computable function f .

For the statement of our results, we say that a property Φ satisfies the matching criterion if it is true
for all but finitely many matchings, and we say that it satisfies the star criterion if it is true for all but
finitely many stars. Furthermore, we say that Φ has bounded treewidth if there is a constant upper bound
on the treewidth of graphs that satisfy Φ.
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Main Theorem 4. Let Φ denote a computable graph property. If Φ satisfies the matching criterion
and the star criterion, or if Φ has bounded treewidth, then #EdgeSub(Φ) admits an FPTRAS.

For example, the property of being planar satisfies both, the star and the matching criterion. Moreover,
we can show that every minor-closed graph property Φ has either bounded treewidth or satisfies matching
and star criterion, and thus always admits an FPTRAS.

Additionally, if not only exact but also approximate counting is intractable, we ask whether we can at
least obtain an efficient algorithm for the decision version EdgeSub(Φ). Again, we obtain a tractability
criterion; observe the subtle difference in the tractability criterion compared to Main Theorem 4.

Main Theorem 5. Let Φ denote a computable graph property. If Φ satisfies the matching criterion or
the star criterion, or if Φ has bounded treewidth, then EdgeSub(Φ) is fixed-parameter tractable.

As an easy corollary, we can conclude that for monotone, that is, subgraph-closed properties Φ, the
problem EdgeSub(Φ) is always fixed-parameter tractable.5

For many previously studied problems, the complexity analysis of approximate counting and decision
were related: often an algorithm solving one setting can be used to solve the other setting [65, 30].
However, in our results Main Theorems 4 and 5 we see an asymmetry between the two settings: it suffices
for Φ to satisfy only one of the star and the matching criterion to induce tractability of the decision
version, but we require satisfaction of both for approximate counting. One might expect that this reflects
a shortcoming of our proof methods (and that in fact it suffices to check one of the criteria to have
tractability of approximate counting). Interestingly, this is not the case: There exist a property Ψ that
satisfies the matching criterion, but not the star criterion, such that EdgeSub(Ψ) is fixed-parameter
tractable, but #EdgeSub(Ψ) does not admit an FPTRAS unless W[1] coincides with FPT (the class of
all fixed-parameter tractable decision problems) under randomised parameterized reductions [80].

Dichotomy for Evaluating a parameterized Tutte Polynomial
As a final part of the presentation of our main results, let us discuss our results on a parameterized Tutte
polynomial.

The classical Tutte polynomial (as well as its specializations like the chromatic, flow or reliability
polynomial) have received widespread attention, both from a combinatorial as well as a complexity
theoretic perspective [49, 2, 91, 8, 42, 29, 12, 10]. The classical Tutte polynomial is of special interest
from a complexity theoretic perspective, as the Tutte polynomial encodes a plethora of properties of
a graph: prominent examples include the chromatic number, the number of acyclic orientations, and
the number of spanning trees; we refer the reader to the work of Jaeger et al. [49] for a comprehensive
overview. Formally, the Tutte polynomial is a bivariate graph polynomial defined as follows (see [49]):

TG(x, y) :=
∑

A⊆E(G)

(x− 1)k(A)−k(E(G)) · (y − 1)k(A)+#A−#V (G) ,

where k(S) is the number of connected components of the graph (V (G), S). In the aforementioned work,
Jaeger et al. [49] also classified the complexity of evaluating the Tutte Polynomial in every pair of (complex)
coordinates, that is, for every pair (a, b), the complexity of computing the function G 7→ TG(a, b) is fully
understood.

5 Every graph property has either bounded treewidth or unbounded matching number. In the latter case, if the property
is additionally monotone, it must satisfy the matching criterion.



7 Parameterized Counting and Cayley Graph Expanders

In this work, we consider the following parameterized version of the Tutte Polynomial by restricting to
edge-subsets A in G of size k:

T kG(x, y) :=
∑

A∈(E(G)
k )

(x− 1)k(A)−k(E(G)) · (y − 1)k(A)+k−#V (G) .

We observe that the parameterized Tutte polynomial can be seen as a weighted version of counting small
k-edge subgraph patterns by assigning to each k-edge subset A of G the weight

(x− 1)k(A)−k(E(G)) · (y − 1)k(A)+k−#V (G) .

Moreover, we point out that T kG(x, y) is related to a generalization of the bases generating function for
matroids [5]. By establishing a so-called deletion-contraction recurrence, we show that T kG(x, y) has similar
expressive power as its classical counterpart TG(x, y):

Main Theorem 6. For any graph G and positive integer k, the following graph invariants are encoded
in T kG(x, y):

1. T kG(2, 1) is the number of k-forests in G. In other words T kG(2, 1) corresponds to the problem
#EdgeSub(Φ) for the property Φ of being a forest.

2. For each positive integer c, the values of T kG(1− c, 0) determine6 the numbers of pairs (A, σ), where A
is a k-edge subset of G, and σ is a proper c-colouring of (V (G), A).

3. From T kG(2, 0) we can compute the numbers of pairs (A, ~η), where A is a k-edge subset of G, and ~η is
an acyclic orientation of (V (G), A).

4. T kG(2, 0) also determines the number of k-edge subsets A of G, such that (V (G), A) has even Betti
Number (we give a formal definition of the Betti number in Section 9.1).

5. T kG(0, 2) determines the number of k-edge subsets A of G, such that (V (G), A) has an even number of
components.

Note that, while #EdgeSub(Φ) only allows us to count the number of subgraphs with k edges that
satisfy Φ, the parameterized Tutte polynomial allows us to count more intricate objects, such as tuples of
an edge-subset and a colouring (or acyclic orientation) on the induced graph. From a complexity theoretic
point of view, we obtain a similar result as [49], albeit only for rational coordinates: for each fixed pair
(x, y) of coordinates, we consider the problem receiving as input a graph G and a positive integer k and
computing T kG(x, y). Following the paradigm of this work, we choose k as a parameter, that is, we consider
inputs in which k is significantly smaller than |G|.

Main Theorem 7. Let (x, y) denote a pair of rational numbers. The problem of computing T kG(x, y) is
solvable in polynomial-time if x = y = 1 or (x− 1)(y − 1) = 1, fixed-parameter tractable, but #P-hard, if
x = 1 and y 6= 1, and #W[1]-hard otherwise.

The class #P is the counting version of NP [89, 90] and, in particular, the #P-hard cases in the above
classification are not polynomial-time tractable unless the polynomial-time hierarchy collapses to P [87].
Consider fig. 1 for a depiction of the classification. Note that Main Theorem 7 yields #W[1]-hardness for
each of the aforementioned problems from Main Theorem 6. Note further, that the tractable cases are
similar, but not equal to the classical counterpart [49].

6 They are equal up to trivial modifications; in particular, their complexities coincide.
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1
x = 1

(x− 1)(y − 1) = 1

(x− 1)(y − 1) = 1

x

y

(a) Points of the parameterized Tutte polynomial that
can be computed in polynomial-time (blue) and that are
fixed-parameter tractable, but #P-hard (red). Exact
computation at any other point (yellow) is #W[1]-hard.

y = 1

x = 1

(x− 1)(y − 1) = 1

(x− 1)(y − 1) = 1
x

y

(b) Points of the parameterized Tutte polynomial that
allow for an FPRAS (blue) and for an FPTRAS (red);
all points on the boundary of the blue area are included.
The complexity of approximation is open for all points
outside of the coloured region.

Figure 1 Points of the parameterized Tutte polynomial that can be computed in FPT-time (a) exactly or
(b) approximately. We emphasize that a full classification for exact counting is established, while the complexity
of approximation remains open outside of the coloured area.

Moreover, our proof uses entirely different tools than [49] and illustrates the power and utility of the
method presented in the subsequent discussion of our techniques.

Having fully classified the complexity of exact evaluation of the parameterized Tutte Polynomial, we
also consider the complexity of approximate evaluation. We identify two regions bounded by the hyperbola
(x − 1)(y − 1) = 1 and the lines x = 1 and y = 1 as efficiently approximable; consider Figure 1b for a
depiction.

Main Theorem 8. Let (x, y) denote a pair of rational numbers satisfying the condition 0 ≤ (x− 1)(y−
1) ≤ 1. Then T kG(x, y) has an FPTRAS. If additionally x 6= 1 or y = 1 then T kG(x, y) even has a fully
polynomial-time randomized approximation scheme (FPRAS).

1.2 Technical Overview
Our Main Theorems 4, 5 and 8 are obtained easily: the proof of Main Theorem 4 is a standard application
(see for instance [65]) of the Monte-Carlo approach, in combination with Ramsey’s theorem, and Arvind
and Raman’s algorithm for approximately counting subgraphs of bounded treewidth [6]. The proof of
Main Theorem 5 uses a standard parameterized Win-Win approach for graphs of bounded treewidth or
bounded degree. Finally, the proof of Main Theorem 8 is an easy consequence of the work of Anari et
al. [5] on approximate counting via log-concave polynomials.

Hence, in this discussion, we want to focus on our main technical results on exact counting as well as
on the construction of novel low-degree Cayley Graph Expanders, which, in combination, will enable us to
prove the lower bounds for Main Theorems 1 and 2 and, perhaps surprisingly, also for Main Theorem 7.

As a main component, we use the Complexity Monotonicity framework of Curticapean, Dell and
Marx [23]. Given a property Φ and a positive integer k, we write #EdgeSub(Φ, k → ?) for the function that
maps a graph G to the number of k-edge subgraphs of G that satisfy Φ. Using a well-known transformation
via Möbius inversion [60, Chapter 5.2], we can show that there exists a function of finite support aΦ,k
from graphs to rational numbers such that for every graph G we have

#EdgeSub(Φ, k → G) =
∑
H

aΦ,k(H) ·#Hom(H → G) , (1)
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where #Hom(H → G) is the number of graph homomorphisms from H to G. In other words, we can
express #EdgeSub(Φ, k → ?) as a finite linear combination of homomorphism counts. Here, we can
then apply the Complexity Monotonicity framework [25], which asserts that computing a finite linear
combination of homomorphism counts is precisely as hard as its hardest term (among the terms with a
non-zero coefficient). However, the complexity of computing the number of homomorphisms from small
pattern graphs to large host graphs is very well-understood [28, 63]. Roughly speaking, the higher the
treewidth of the pattern graph, the harder the problem becomes; we make this formal in Section 2.2.

Instead of our original problem #EdgeSub(Φ), we can thus consider the problem of computing linear
combinations of graph homomorphism counts. In particular, to obtain hardness, it suffices to understand
for which graphs H, the coefficient aΦ,k(H) in equation (1) is non-zero.

Relying on the well-known fact that the Möbius function of the partition lattice alternates in sign,
Curticapean, Dell, and Marx [25] observed that non-trivial cancellations cannot occur in equation (1) if,
for each k, every k-edge graph that satisfies Φ must have the same number of vertices. Consequently,
if the matching number is unbounded, those properties yield #W[1]-hardness. An example for such a
property is the case of Φ(H) = 1 if and only if H is a tree. In contrast, the intractability result for the
case of Φ = acyclicity (that is, being a forest) turned out to be much harder to show [13], indicated by
connections to parameterized counting problems in matroid theory.

More generally, it has turned out that the coefficients of such linear combinations for related pattern
counting problems are often determined by (or even equal to) a variety of algebraic and topological
invariants, whose analysis is known, unfortunately, to be a difficult problem in its own right. For example,
in case of the vertex-induced subgraph counting problem, the coefficient of the clique is the reduced Euler
characteristic of a simplicial graph complex [78], the coefficient of the biclique is the so-called alternating
enumerator [32], and, more generally, the coefficients of dense graphs are related to the h- and f -vectors
associated with the property of the patterns that are to be counted [79]. In all of the previous works
mentioned here, the complexity analysis of the respective pattern counting problems therefore amounted
to understanding the cancellation behaviour of those invariants. To do so, the papers used tools from
combinatorial commutative algebra and, to some extent, topological fixed-point theorems.

In this work, we provide additional insights into said coefficients aΦ,k(H). More precisely, we show
that the coefficients of high-treewidth low-degree vertex-transitive graphs can be analysed much easier
than generic graphs of high treewidth such as the clique or the biclique. First, we prove that the coefficient
of a graph H with k edges in (1) is equal to the indicator of Φ and H, defined as follows:7

a(Φ, H) :=
∑

σ∈L(Φ,H)

∏
v∈V (H)

(−1)|σv|−1(|σv| − 1)! , (2)

where L(Φ, H) is the set of fractures σ of H such that the associated fractured graph H] σ satisfies Φ.
Here, a fracture of a graph H is a tuple σ = (σv)v∈V (H), where σv is a partition of the set of edges EH(v)
of H incident to v. Given a fracture ρ of H, the fractured graph H] σ is obtained from H be splitting
each vertex v ∈ V (H) according to σv; an illustration is provided in Figure 2.

As a consequence, the #W[1]-hardness for #EdgeSub(Φ) can be obtained if we find a family of graphs
H of unbounded treewidth, such that a(Φ, H) 6= 0 for infinitely many graphs H in this family. The almost
tight conditional lower bound under the Exponential Time Hypothesis will, additionally, require sparsity
of the graphs.

Recall further that we claimed the analysis of a(Φ, H) to be easier for vertex-transitive graphs. Let us
now elaborate on this claim. First of all, we will use Cayley graphs as a natural class of vertex-transitive

7 To be precise, the identity in (2) will be obtained for a coloured version of #EdgeSub(Φ), which we show to be
interreducible with the uncoloured version.
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v B1 B2

Figure 2 Illustration of the construction of a fractured graph. The left picture shows a vertex v of a graph H
with incident edges EH(v) = { , , , , , }. The right picture shows the splitting of v in the construction of
the fractured graph H]σ for a fracture σ satisfying that the partition σv contains two blocks B1 = { , , }, and
B2 = { , , }.

Figure 3 Two isomorphic representations of the toroidal grid }}}`: On the left hand side as a grid with connected
endpoints, on the right hand side as a stylized torus.

graphs: The Cayley graph of a group Γ together with a symmetric generating set8 S ⊆ Γ is the graph
G = C(Γ, S) with vertex set V (G) = Γ and edge set

E(G) = {(x, xs) ∈ V (G)× V (G);x ∈ Γ, s ∈ S}.

Since S is symmetric, with any edge (x, xs) the Cayley graph also contains the edge with opposite
orientation (xs, x) = (xs, (xs)s−1). Hence we consider Cayley graphs as the underlying unoriented graph.
For example, setting Γ = Z/`Z× Z/`Z to be the twofold direct product of the group of integers modulo `,
and setting S = {(1, 0), (−1, 0), (0, 1), (0,−1)}, the Cayley graph C(Γ, S) becomes the toroidal grid }}}`; a
depiction is given in Figure 3

Cayley graphs H = C(Γ, S) have a vertex transitive symmetry group. The group Γ acts on the
graph by letting g ∈ Γ send the vertex v ∈ V (H) = Γ to gv. This preserves edges because g(xs) =
(gx)s for all g, x, s ∈ Γ. This action extends to the set of fractures L(Φ, H) and since the terms∏

v∈V (H)(−1)|σv|−1(|σv| − 1)! in the formula (2) are shown to be invariant under this action, the group Γ
naturally permutes these summands.

Now let us assume that Γ is a p-group, and we are given a Cayley graph H = C(Γ, S) with |E(H)| = k.
Since our Cayley graph H arises from a p-group Γ, it follows that when evaluating the indicator a(Φ, H)
modulo p, only those contributions from fractures fixed under Γ survive. Now recall that σv is a partition
of the edges incident to v. The fixed-point fractures σ will satisfy that all σv are equal if we identify the
edges incident to v with the elements of the generating set. Consequently, the evaluation of the indicator
a(Φ, H) modulo p requires us to only consider as many terms as there are partitions of the generating
set S. In particular, if H has constant degree, then |S| and hence the number of partitions of S must be
bounded by a constant as well.

8 This means a subset S of the group Γ that generates this group and satisfies S−1 = S.
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To illustrate the power of this strategy, we provide an explicit consequence when applied to the special
case of toroidal grids (which satisfy |S| = 4): Let us write Mk for the matching of size k, P2 for the path
consisting of 2 edges, Ck for the cycle of length k, Sk for a sun (a cycle with dangling edges) of size k,
and recall that }}}k denotes the toroidal grid of size k.

Theorem 4. Let Φ denote a computable graph property and assume that infinitely many primes `
satisfy the equation9

−6Φ(M2`2) + 4Φ(M`2 + `C`) + 8Φ(`2P2)− Φ(2`C`)− 2Φ(`C2`)− 4Φ(`S`) + Φ(}}}`) 6= 0 mod ` . (3)

Then #EdgeSub(Φ) is #W[1]-hard.

As a toy example for an application of theorem 4, let us consider the property Φ of being connected.
Observe that among the graphs in (3), only }}}` is connected, and thus the sum is always 1 for ` ≥ 2. Thus,
indeed the left-hand side of (3) is nonzero, proving that #EdgeSub(Φ) is #W[1]-hard.

For our general results, especially for the fine-grained lower bounds, we need better classes of Cayley
graphs. Let us summarise the necessary conditions: Our Cayley graphs must be

sparse and of high treewidth (required for hardness), and
generated by a p-group and of constant degree (required for the analysis of the indicators)

The natural choice of Cayley graphs satisfying both constraints are p-group Cayley Graph Expanders of
low degree. An optimal construction (w.r.t. the degree) for the case p = 2 is known and due to a subset of
the authors [71]. However, we will see that 2-group Cayley Graph Expanders are not sufficient to prove
our full classification. For this reason, we provide a novel construction of low-degree p-group Cayley Graph
Expanders in this work. For the sake of presentation, we decided to encapsulate the treatment of our
constructions in separate sections, both in the introduction and the main part of the paper. We hope that
this makes the paper accessible both for readers primarily interested in the novel construction of Cayley
Graph Expanders, as well as for readers mainly interested in the analysis of the pattern counting problems.
In particular, this last group may safely skip the next subsection and rely only on Main Theorem 3.

Construction of Low-Degree Cayley Graph Expanders

We prove Main Theorem 3 via an explicit construction of the groups Γi and the symmetric generating
sets Si in Section 3 motivated by number theoretic objects.

Let us fix a prime p ≥ 3. The starting point is an explicit arithmetic lattice (a discrete subgroup) in a
group of generalized quaternions over a function field in characteristic p. The quaternion algebra is at
the heart of the mathematical properties of extracting the finite p-groups and the expansion property of
the resulting Cayley graphs, but it is not crucial for understanding the construction. Concretely, for any
choice of elements α 6= β ∈ Z/(p− 1)Z we construct an infinite group Γp;α,β defined in terms of 2(p+ 1)
generators ak, bj (where the indices k, j run through sets K,J ⊆ Z/(p2 − 1)Z defined depending on α, β)
and relations of length 4. The set of relations is described by explicit algebraic equations in the field Fp2 .
In [81] these groups were realized by mapping the generators ak, bj to explicit generalized quaternions,
leading ultimately to an explicit injective group homomorphism

Ψ: Γp;α,β → GL3(Fp[[t]]) . (4)

9 We write + for (disjoint) graph union and `H for the graph consisting of ` disjoint copies of H. Further, we set
Φ(H) = 1 if H satisfies Φ and Φ(H) = 0 otherwise.
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In other words, every element of Γp;α,β is sent to an invertible 3× 3-matrix whose entries are power series
in some formal variable t, whose coefficients live in the finite field Fp with p elements. This is made
explicit for p = 3 in Section 3.3, but could also be made explicit for any p ≥ 5. Since the applications do
not depend on concrete matrices, we merely state its existence.

To construct the finite p-groups Γi, consider the group homomorphism

πi : GL3(Fp[[t]])→ GL3(Fp[t]/(ti+1))

taking a matrix with power series entries and truncating the power series after the term of order ti.
Then the group GL3(Fp[t]/(ti+1)) is finite, and we define Γi to be the image of the group Γp;α,β under
the composition πi ◦ Ψ. These groups Γi are easily shown to be p-groups and they are what is called
congruence quotients (by construction). The generators ak, bj from the construction of Γp;α,β map to
symmetric generating sets Ti of Γi, i.e., to the set of cosets akNi, bjNi when Γi = Γp;α,β/Ni is considered
as a factor group with respect to Ni = ker(πi ◦ Ψ). Using results from [81], we know that the Cayley
graphs Gi = C(Γi, Ti) associated to the congruence quotient groups Γi with respect to the generating
sets Ti are expanders. This argument is worked out in [81] by Rungtanapirom and two of the authors,
and it is based on a similar approach in the classical papers by Lubotzky, Phillips and Sarnak [61] and
by Morgenstern [69]. We note here that the results of [81] ultimately rely on deep number theoretic
results, namely a translation of the spectrum of the adjacency operator into Satake parameters of an
associated automorphic representation and most crucially on work of Drinfeld on the geometric Langlands
programme for GL2.
At this point we have proven Main Theorem 3 for the particular valency 2d = 2(p+ 1). In order to obtain
the more general valencies stated in the theorem, we recall in Section 3.1 that a uniformly controlled
change of the generating sets Ti of the groups Γi (the generators must be mutually expressible in words
of uniformly bounded length) preserves the expander property. This change of generating set is best
performed by finding a smaller generating set for the underlying infinite group Γp;α,β . This is done in
theorem 22 reducing to d = (p+ 3)/2 for all p ≥ 3. The reduction is based on the explicit form of the
relations and a combinatorial group theoretic result from [85] on the local permutation structure of the
underlying geometric square complex. To improve even further for p = 3 we consider in Section 3.3 a
concrete presentation of Γ3;0,1 which in theorem 21 is shown to reduce to 2 generators. For p = 5, the
explicit theorem 23 achieves a reduction to 2 generators for Γ5;0,2. It follows again from the theory recalled
in Section 3.1 that by adding generators (as necessary) we obtain Main Theorem 3 for all d’s in the range
that the theorem promises.

While this is not needed for the purposes of our hardness results, all of the constructions above are
explicit, certainly in the weak sense that for a fixed p, the sequence of graphs Gi from Main Theorem 3 is
computable. We also would like to emphasize again, that the expanders constructed for the proof of Main
Theorem 3 consist of vertex transitive graphs, of prime power number of vertices, with a fairly low bound
on the degree. All of this is made possible by working with very specific generalized quaternion groups in
positive characteristic.

2 Preliminaries

Given a finite set S, we write |S| and #S for the cardinality of S. Further, given a function f : X×Y → Z

and an element x ∈ X, we write f(x, ?) : B → C for the function y 7→ f(x, y).

2.1 Graphs and Homomorphisms
Graphs in this work are simple and irreflexive, that is, we do not allow multiple edges or self-loops. Given
a graph G and a subset A of E(G), we write G(A) for the graph (V (G), A), and we write G[A] for the
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graph obtained from G(A) by deleting all isolated vertices. The degree of a graph is the maximum degree
of its vertices, and we write H +G for the union of H and G; formally, we assume that V (G)∩ V (H) = ∅
and set H +G := (V (H) ∪ V (G), E(H) ∪ E(G)).

Given graphs F and G, a homomorphism from F to G is an edge-preserving mapping ϕ : V (F )→ V (G),
that is, for each edge {u, v} ∈ E(F ) we have that {ϕ(u), ϕ(v)} ∈ E(G). A homomorphism is called an
embedding if it is injective (on the vertices). We write Hom(F → G) and Emb(F → G) for the set of all
homomorphisms and embeddings, respectively, from F to G.

An isomorphism between two graphs F and G is a bijective embedding ϕ satisfying the stronger
constraint {u, v} ∈ E(F ) ⇔ {ϕ(u), ϕ(v)} ∈ E(G). We say that F and G are isomorphic, denoted by
F ∼= G, if an isomorphism from F to G exists. An isomorphism from a graph F to itself is called an
automorphism and we write Aut(F ) for the group formed by such automorphisms (where the group
operation is the composition of automorphisms).

A graph property Φ is a function from graphs to {0, 1} which is invariant under isomorphisms, that is,
Φ(H) = Φ(F ) whenever H ∼= F . We say that a graph H satisfies Φ if Φ(H) = 1.

A graph F is a minor of a graph H if it can be obtained from H by a sequence of edge- and vertex-
deletions and edge-contractions (with multiple edges and self-loops deleted). We write F ≺ H if F is a
minor of H. A graph property Φ is minor-closed if Φ(H) = 1 implies Φ(F ) = 1 whenever F ≺ H. Every
minor-closed graph property Φ is defined by a set F(Φ) of minimal (w.r.t. ≺) forbidden minors, that is,
Φ(H) = 1 if and only if F ⊀ H for each F ∈ F(Φ). The celebrated Robertson-Seymour-Theorem [75]
implies that F(Φ) is always finite. In particular, the latter implies that each minor-closed graph property
is (polynomial-time) computable. For the purpose of this work, forbidden minors of degree at most two
will be of particular importance; therefore, we define F2(Φ) to be the subset of F(Φ) containing only the
graphs of degree at most 2.

A graph G is called k-edge-coloured if the edges of G are coloured with (at most) k pairwise different
colours. Given a homomorphism ϕ ∈ Hom(G→ H) for some graphs G and H, we also call ϕ an H-
colouring. Moreover, an H-coloured graph is a pair of a graph G and an H-colouring ϕ. For ease
of readability, we say that a graph G is H-coloured if the H-colouring is implicit or clear from the
context. Observe that an H-colouring ϕ of a graph G induces a #E(H)-edge-colouring by mapping an
edge {u, v} ∈ E(G) to the colour {ϕ(u), ϕ(v)}. Throughout this work, we use the following notion of
homomorphisms between H-coloured graphs:

Definition 5. Let F and G denote two H-coloured graphs and let cF and cG denote their H-colourings.
A homomorphism ϕ from F to G is called colour-preserving if cG(ϕ(v)) = cF (v) for every v ∈ V (F ). We
write Homcp(F →H G) for the set of all colour-preserving homomorphisms from F to G. Colour-preserving
embeddings and the set Embcp(F →H G) are defined similarly.

Further, two H-coloured graphs F and G are isomorphic as H-coloured graphs, denoted by F ∼=H G,
if there is a colour-preserving isomorphism from F to G.

Note that, given two H-coloured graphs F and G, we write F ∼= G (rather than F ∼=H G) if the underlying
uncoloured graphs are isomorphic.

For the treatment of decision and approximate counting, we introduce the following classification
criteria on (computable) graph properties. To this end, we write K`,r for the biclique with ` vertices on
the left and r vertices on the right side, respectively. In particular, K1,r denotes the star of size r.

Definition 6. Let Φ denote a computable graph property. We say that

Φ satisfies the matching criterion if Φ(Mk) = 1 for all but finitely many k.
Φ satisfies the star criterion if Φ(K1,k) = 1 for all but finitely many k.
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Φ has bounded treewidth if there is a constant B such that Φ is false on all graphs of treewidth at
least B.

For example, the properties of being bipartite or planar satisfy both, the matching and the star criterion.
Furthermore, the property of being 2-regular has bounded treewidth, while the criterion of just being
regular satisfies only the matching criterion. Further, the property of being a tree is an example that
satisfies both, the star criterion and is of bounded treewidth, while the property of being a forest satisfies
all three criteria.

Expander Graphs

All (almost-tight) conditional lower bounds in this work rely on the existence of certain (families of)
expander graphs. Given a positive integer d, a rational c > 0, and a class of graphs G = {G1, G2, . . . } with
#V (Gi) = ni, we call G a family of (ni, d, c)-expanders if, for all i, the graph Gi is d-regular and satisfies

∀X ⊆ V (Gi) : |S(X)| ≥ c
(

1− |X|
ni

)
|X| ,

where S(X) is the set of all vertices in V (Gi) \X that are adjacent to a vertex in X.
While being sparse due to d-regularity, expander graphs have treewidth10 linear in the number of

vertices (see for instance Proposition 1 in [45] and set α = 1/2). Furthermore, they admit arbitrarily large
clique minors [54]. Formally, we have:

Fact 7. Fix a rational c and an integer d, and let G denote a family of (ni, d, c)-expanders. Then,
#E(Gi) ∈ Θ(ni) and tw(Gi) ∈ Θ(ni). Furthermore, for each positive integer k there is an index j such
that for all i ≥ j, the graph Gi contains the complete graph on k vertices as a minor.

In Section 3.1 we recall a spectral reformulation of the expander property in terms of the non-trivial
eigenvalues of the graph Laplace operator on R-valued functions on the set of vertices.

2.2 Parameterized Complexity Theory
A parameterized counting problem is a pair of a counting problem P : Σ∗ → N and a parameterization
κ : Σ∗ → N. A parameterized decision problem is a pair (P, κ) of a decision problem P : Σ∗ → {0, 1} and
a parameterization κ. Consider for example the problems #Clique and Clique: on input a graph G
and a positive integer k, the task is to either compute the number of k-cliques in G or to detect the mere
existence of a k-clique, respectively. The parameterization is given by κ(G, k) := k for both problems.

A parameterized problem (P, κ) is called fixed-parameter tractable (FPT) if there is a computable
function f such that P can be computed in time f(κ(x)) · |x|O(1). For historic reasons, the class of all fixed-
parameter tractable decision problems is called FPT.11 Furthermore, a parameterized Turing reduction
from (P, κ) to (P̂ , κ̂) is a Turing reduction from P to P̂ that, on input x, runs in time f(κ(x)) · |x|O(1)

and additionally satisfies κ̂(y) ≤ f(κ(x)) for each oracle query y. Again, f only needs to be some fixed
computable function. We write (P, κ) ≤fpt

T (P̂ , κ̂) if a parameterized Turing reduction exists.
A parameterized counting problem is #W[1]-hard if it can be reduced from #Clique, and, similarly,

a parameterized decision problem is W[1]-hard if it can be reduced from Clique, both with respect to
parameterized Turing reductions.

10We use the graph parameter “treewidth” (tw) in a black-box manner only, and refer the reader to, for instance,
Chapter 7 of [27] for a detailed exposition.

11 In some literature FPT is used for both, parameterized decision and counting problems, while some authors write FFPT
for the class of all fixed-parameter tractable parameterized counting problems.
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Under reasonable assumptions, such as the Exponential Time Hypothesis (ETH) [48], defined below,
#W[1]- and W[1]-hard problems are not fixed-parameter tractable.12

Conjecture 8 (Exponential Time Hypothesis). The Exponential Time Hypothesis (ETH) asserts that
3-SAT cannot be solved in time exp(o(n)), where n is the number of variables of the input formula.

Our hardness results in this paper are obtained by reducing from the problem #Hom(H). Given a
fixed class of graphs H, in the problem #Hom(H) the input is a graph H ∈ H and an arbitrary graph G
and the task is to compute the number of homomorphisms from H to G; the parameter is |H|. Dalmau
and Jonsson [28] established an exhaustive classification for this problem, stating that #Hom(H) is
fixed-parameter tractable if the treewidth of graphs in H is bounded by a constant, and #W[1]-hard,
otherwise.

Let Φ denote a graph property, that is, a function from (isomorphism classes) of graphs to {0, 1}.
Setting

EdgeSub(Φ, k → G) := {A ⊆ E(G) | #A = k ∧ Φ(G[A]) = 1} ,

we define #EdgeSub(Φ) as the parameterized counting problem in which on input a graph G and a
positive integer k, the task is to compute #EdgeSub(Φ, k → G); the parameter is k.

In this paper, we often rely on the following important, but easy observation: write Φk for the set of
graphs H with k edges and without isolated vertices, that satisfy Φ. Then we have

#EdgeSub(Φ, k → G) =
∑
H∈Φk

#Sub(H → G) , (5)

where #Sub(H → G) is the number of subgraphs of G that are isomorphic to H.
Using the aforementioned transformation, both, theorem 2 and theorem 3 are easy consequences

of known results regarding the subgraph counting problem. We add their proofs only for the sake of
completeness:

Proposition 9. Let Φ denote a computable graph property. There exists a computable function f such
that #EdgeSub(Φ) can be solved in time

f(k) · |V (G)|0.174k+o(k) .

Proof. The fastest known algorithm for computing #Sub(H → G) for a k-edge graph H runs in time
kO(k) · |V (G)|0.174k+o(k) and is due to Curticapean, Dell and Marx [25]. Now observe that the size of Φk
is bounded by a function in k, since graphs in Φk have k edges and no isolated vertices and thus have at
most 2k vertices. Consequently, their algorithm extends to #EdgeSub(Φ) by computing the number
#EdgeSub(Φ, k → G) as given in Equation (5).

Note that the growth of f in the previous result depends, among other factors, on the complexity of
verifying Φ.

For the following, recall that a property Φ has bounded matching number if there is a constant c such
that Φ is false on all graphs containing a matching of size at least c. Furthermore, write ¬Φ for the
complement of Φ.

12 In fact, Chen et al. [16, 17] proved the much stronger statement that #Clique cannot be solved in time f(k) · |V (G)|o(k)

for any function f , unless ETH fails.
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Proposition 10. Let Φ denote a computable graph property satisfying that there is M > 0 such that for
all k either the graphs with k edges satisfying Φ or the graphs with k edges satisfying ¬Φ have matching
number bounded by M . Then #EdgeSub(Φ) is fixed-parameter tractable.

Proof. Applying Equation (5), we observe that counting subgraphs isomorphic to H is fixed-parameter
tractable (even polynomial-time solvable) if there is a constant upper bound on the size of the largest
matching of H [26]. This allows us to compute #EdgeSub(Φ, k → G) in the desired running time if the
graphs in Φk have matching number bounded by M . In case the latter is true for ¬Φk instead, we use the
fact that #EdgeSub(Φ, k → G) =

(#E(G)
k

)
−#EdgeSub(¬Φ, k → G) and proceed similarly.

2.3 Combinatorial Commutative Algebra

We assume familiarity with the notions of basic group theory and refer the reader to for instance [57] for
a detailed introduction. Given a positive integer `, we write Z` for the group of integers modulo `, and
we write Zk` for the k-fold direct product of Z`; recall that the binary operation of the direct product is
defined coordinate-wise.

For a prime p, recall that a finite group G is called a p-group if the order #G of G is a power of p.
Recall that by Lagrange’s theorem, this implies that the order of any subgroup H of G is likewise a power
of p.

Given a group G and a subgroup H ⊆ G, we write G/H for the set of left cosets of H. Formally, a left
coset of H is an equivalence class of the following equivalence relation on G: two elements g, g′ ∈ G are
equivalent if and only if g′ = gh for some h ∈ H. We write gH for the equivalence class of g ∈ G. We
define the index of H in G as the cardinality [G : H] = #G/H of the set of left cosets. Note that [G : H]
might be finite even though #G is infinite. The index satisfies the basic identity #G = [G : H] ·#H, and
again, with a slight abuse of notation, we observe that the identity remains well-defined in the infinite
case: #G is infinite if and only if one of [G : H] or #H is infinite. If the subgroup H is normal in G (that
is for each g ∈ G we have that the subset gHg−1 = {ghg−1|h ∈ H} of G is equal to H), then the set G/H
naturally carries the structure of a group, with the group operation defined by (g1H) · (g2H) = (g1 · g2)H.
In this case, we call G/H a quotient group.

Given an element g ∈ G we write

〈g〉 = {ga : a ∈ Z} ⊆ G

for the subgroup generated by g (recall that for a negative integer a we define ga as the |a|-th power of the
inverse element of g). If there is a positive integer a such that ga equals the neutral element of G, we
define the order ordG(g) of g as the smallest such positive integer a (and set ordG(g) =∞ otherwise). If
g has finite order, the subgroup 〈g〉 of G generated by g is isomorphic to the cyclic group ZordG(g).

Given a finite group Γ and a symmetric set S of generators of Γ, the Cayley graph of Γ and S, denoted
by C(Γ, S) has as vertices the elements of Γ, and two vertices u and v are adjacent13 if there is an s ∈ S
such that v = us. For example, the Cayley graph C(Z/`Z, {1,−1}) is isomorphic to the cycle of length `.

13Note that, in some literature, Cayley graphs are coloured and directed. However, we only consider the underlying
uncoloured and simple graph.
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Möbius Inversion and the Partition Lattice

We follow the notation of the standard textbook of Stanley [84]. Given a finite partially ordered set (L,≤),
and a function f : L→ Q, the zeta transformation ζf : L→ Q is defined as

ζf(σ) :=
∑
ρ≥σ

f(ρ) .

The principle of Möbius inversion allows us to invert a zeta transformation; a proof of the following
theorem can be found in [84, Chapt. 3]

Theorem 11. Given a partially ordered set (L,≤), there is a computable function µ : L × L → Z,
called the Möbius function, such that for all f : L→ Q and σ ∈ L we have

f(σ) =
∑
ρ≥σ

µ(σ, ρ) · ζf(ρ) .

We use Möbius inversion on the ordering of partitions of finite sets. Given two partitions σ and ρ of a
finite set S, we say that σ refines ρ if every block of σ is a subset of a block of ρ, and in this case we write
σ ≤ ρ. This induces a partial order, called the partition lattice14 of S. The explicit formula of the Möbius
function over the partition lattice is of particular importance in this work:

Theorem 12 (see Chapter 3 in [84]). Let σ denote a partition of a finite set S. We have

µ(σ,>) = (−1)|σ|−1 · (|σ| − 1)! ,

where > = {S} denotes the coarsest partition.

Fractured graphs

Definition 13 (Fractures). Let H denote a graph. A fracture of H is a tuple

ρ = (ρv)v∈V (H) ,

where ρv is a partition of the set of edges EH(v) of H incident to v.

Note that the set of all fractures of H, denoted by L(H), is a lattice that is isomorphic to the
(point-wise) product of the partition lattices of EH(v) for each v ∈ V (H). In particular, we write σ ≤ ρ
if, for each v ∈ V (H), the partition σv refines the partition ρv. Consider fig. 4 for a visualization of a
fracture and its refinement.

Note further that a fracture describes how to split (or fracture) each vertex of a given graph: for each
vertex v, create a vertex vB for each block B in the partition ρv; edges originally incident to v are made
incident to vB if and only if they are contained in B. We call the resulting graph the fractured graph H] ρ;
a formal definition is given in theorem 14, a visualization is given in fig. 4.

Definition 14 (Fractured Graph H] ρ). Given a graph H, we consider the matching MH containing
one edge for each edge of H; formally,

V (MH) :=
⋃

e={u,v}∈E(H)

{ue, ve} and E(MH) := {{ue, ve} | e = {u, v} ∈ E(H)}.

14A lattice is a partially ordered set in which every pair of elements has a least upper bound and a greatest lower bound.
For a formal definition we refer to [84].
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Figure 4 Two fractures ρ and ρ′ ≤ ρ of a graph H (depicted by the colours of the outgoing edges of the vertices)
and the corresponding fractured graphs H] ρ and H] ρ′.

For a fracture ρ of H, we define15 the graph H] ρ as the quotient graph of MH under the equivalence
relation on V (MH) which identifies two vertices ve, wf of MH if and only if v = w and e, f are in the
same block B of the partition ρv of EH(v). We write vB for the vertex of H] ρ given by the equivalence
class of the vertices ve (for which e ∈ B) of MH .

The fractured graph H] ρ comes with a natural H-colouring. Indeed, the homomorphism MH → H

which sends ve ∈ V (MH) to v ∈ V (H) descends to H] ρ so that we always have a canonical diagram
MH → H] ρ → H of graph homomorphisms. For example, for any graph H, the fracture ⊥, with
⊥v := {{e} | e ∈ EH(v)}, induces the fractured graph H]⊥ = MH ; the fracture >, with >v := {EH(v)}
induces the fractured graph H]> = H. The fractures ⊥,> are the minimal and maximal elements of the
lattice L(H), respectively.

Given a graph property Φ and a graph H, we write L(Φ, H) for the set of all fractures ρ of H that
satisfy Φ(H] ρ) = 1.

15The notation H] ρ stems from the fact that the symbol “] ” is commonly used for medical fractures.
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3 Construction of Cayley Graph Expanders

As mentioned before, this section encapsulates our novel construction of p-group Cayley Graph Expanders
with low degree. Readers only interested in the application of those Cayley Graphs in our hardness proofs
can safely skip this section. Recall that the Cayley graph of a group Γ generated by a symmetric set
S ⊆ Γ, i.e., such that S−1 = S, is the graph G = C(Γ, S) with vertex set V (G) = Γ and edge set

E(G) = {(x, xs) ∈ V (G)× V (G);x ∈ Γ, s ∈ S}.

Since S is symmetric, with any edge (x, xs) the Cayley graph also contains the edge with opposite
orientation (xs, x) = (xs, (xs)s−1). Hence we consider Cayley graphs as the underlying unoriented graph.

In this section we recall the construction of certain discrete groups from [85, 81] that are lattices
in generalized quaternion algebras. Their group theory is controlled by representations with values in
power series rings with coefficients in Fp. In particular, these representations lead to well chosen finite
congruence quotients that are p-groups. With a natural set of generators as in [85, 81] these lead to
sequences of Cayley Graph Expanders of valency 2(p+ 1) and vertex set of size a power of p, here p is
odd. We explain the known fact that a change of generators for the lattice does not destroy the expander
property. Moreover, we analyse the relations and find that we can reduce the number of generators to
(p+ 3)/2 (here p is odd); so the valency of the corresponding Cayley graph is p+ 3. For p ≥ 5 (with an
extra argument for p = 5) we deduce the existence of a series of Cayley Graph Expanders of p-power order
and now valency 2(p− 2) that is necessary for the applications in this paper. Theorem 24 gives a more
precise statement for the range of possible valencies of our construction.

3.1 Change of Generators in Cayley Graphs
This section is concerned with the expansion property of Cayley graphs under change of generators.
In general, the expansion property is not preserved (see, e.g., [47, Section 11.4] for a brief discussion).
However, if the two families of generators remain bounded and can be mutually written in words of
bounded lengths of each other, then the expansion property is preserved (see, e.g., [55, Prop. 3.5.1]). The
remainder of this section is devoted to an easy self-contained proof in the following special case: Let Γ be
a finitely generated infinite group generated by two finite symmetric sets of generators S1 and S2, that is,
S−1

1 = S1 and S−1
2 = S2. Let Γk be finite index subgroups of Γ with [Γ : Γk]→∞ and Hk = Γ/Γk be the

corresponding finite quotients. The sets Si of generators of Γ can also be viewed as sets of generators of
the quotients Hk. Then the following holds:

Proposition 15 (see, e.g., [55, Prop. 3.5.1]). If the Cayley graphs C(Hk, S1) represent a family of
expander graphs then C(Hk, S2) is also a family of expander graphs.

The proof is based on a well-known spectral description of expander graphs: Let G = (V,E) be a
connected graph with vertex set V and edge set E. The degree of a vertex x ∈ V is denoted by dx. The
Laplacian LG of a function f : V → R is defined as follows

LGf(x) =
∑
y∼x

(f(x)− f(y)) = dxf(x)−
∑
y∼x

f(y) .

Then LG is a symmetric operator with non-negative real eigenvalues. Let µ1(G) > 0 be the smallest
non-zero eigenvalue of LG. Since Cayley graphs are regular graphs, there is a close relationship between
the eigenvalues of LG and the adjacency matrix AG (see, e.g., [47, Lemma 4.7]), namely µ1(G) =
λ1(AG) − λ2(AG), where λ1(AG), λ2(AG) are the two largest eigenvalues of AG. The Cayley graphs
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C(Hk, S1) from above are an expander family if and only if there exists a positive constant C > 0 such
that, for all k ∈ N (see, e.g., [47, Theorem 4.11]):

µ1(C(Hk, S1)) ≥ C .

Via the Rayleigh quotient

R(f) :=
∑
x∈V f(x) · LGf(x)∑

x∈V f(x)2 =
∑
{x,y}∈E(f(x)− f(y))2∑

x∈V f(x)2

the eigenvalue µ1(G) has the following variational description (see, e.g., [56, Prop. 1.82] and [55, Prop.
3.4.3])

µ1(G) = inf
{
R(f) :

∑
x∈V

f(x) = 0, f 6= 0
}
.

We aim to show that there exists a positive constant K > 0 such that, for all k ∈ N,

µ1(C(Hk, S2)) ≥ Kµ1(C(Hk, S1)) .

Then the expanding property of the family C(Hk, S1) implies a similar expanding property of the family
C(Hk, S2), albeit with a different spectral expansion constant.

Before starting the proof, we first consider the description of the Rayleigh quotient R(f) in the case of
a Cayley graph C(H,S): The vertex set of this graph is given by V = H and the set of edges is given
by E = {{x, xs} : x ∈ V, s ∈ S}, where E is understood as a multiset. Then the Rayleigh quotient for a
function f : H → R can be written as

RS(f) = 1
2

∑
x∈H

∑
s∈S(f(x)− f(xs))2∑
x∈H f(x)2 .

The Rayleigh quotient is equipped with the index S, that is, the set of generators of the Cayley graph,
since it depends on this choice of generators. Note that C(H,S) is vertex transitive since H acts on the
vertex set V = H by group left-multiplication. The proof is complete if there exists a constant K > 0
such that, for all k ∈ N and all f : Hk → R,

RS2(f) ≥ KRS1(f). (6)

This is the case if there exists, for every generator s ∈ S1, a constant K ′(s) > 0 such that∑
x∈Hk

(f(x)− f(xs))2 ≤ K ′(s)
∑
x∈Hk

∑
t∈S2

(f(x)− f(xt))2, (7)

and that his constant K ′(s) does not depend on k ∈ N. Since S2 is a set of generators of Γ, any s ∈ S1 ⊂ Γ
can be written in the form

s = t1t2 · · · tn

with t1, . . . , tn ∈ S2. The same relation between the generators holds in each of the quotients Hk, k ∈ N.
We abbreviate sj = t1 · · · tj , so s0 = 1 and sn = s, and sj = sj−1tj . Let us now show (7):

∑
x∈Hk

(f(x)− f(xs))2 =
∑
x∈Hk

( n∑
j=1

(f(xsj−1)− f(xsj))
)2
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≤ n
∑
x∈Hk

n∑
j=1

(
f(xsj−1)− f(xsj−1tj)

)2 = n
∑
y∈Hk

n∑
j=1

(f(y)− f(ytj))2

≤ n2
∑
y∈Hk

∑
t∈S2

(f(y) − f(yt))2.

This shows (7) with K ′(s) = n2, where n is the length of a word in S2 expressing s.
Let us finally show (6):

RS1(f) =
∑
s∈S1

∑
x∈Hk

(f(x)− f(xs))2

2
∑
x∈Hk

f(x)2

≤
∑
s∈S1

K ′(s)
∑
x∈Hk

∑
t∈S2

(f(x)− f(xt))2

2
∑
x∈Hk

f(x)2

≤
( ∑
s∈S1

K ′(s)
) ∑

x∈Hk

∑
t∈S2

(f(x)− f(xt))2

2
∑
x∈Hk

f(x)2 =
( ∑
s∈S1

K ′(s)
)
RS2(f).

This implies that (6) holds with K =
(∑

s∈S1
K ′(s)

)−1.

3.2 Unbounded Torsion Order in Congruence Quotients
Let Γ be a group and let R be a ring. Let GLn(R) denote the general linear group of n × n matrices
with entries in R and whose determinant is a unit in R. A representation of Γ with coefficients in R of
dimension n is a group homomorphism

ρ : Γ→ GLn(R),

i.e., ρ(g1 · g2) = ρ(g1) · ρ(g2) for all g1, g2 ∈ Γ. The representation ρ is said to be faithful if ρ is injective.
The ring Fp[[t]] is the ring of formal power series in the variable t and coefficients in the finite field Fp

of p elements. Truncating a formal power series f(t) =
∑
k≥0 akt

k at order ti+1, that is, mapping it to
i∑

k=0
akt

k + (ti+1) ∈ Fp[t]/(ti+1),

can be understood as a ring homomorphism

πi : Fp[[t]]→ Fp[[t]]/(ti+1) = Fp[t]/(ti+1).

A group is said to be torsion-free if all non-trivial elements have infinite order.

Lemma 16. Let Γ be an infinite, torsion-free group and let

ρ : Γ→ GLn(Fp[[t]])

be a faithful representation. For any i ≥ 0 let Γi be the finite group which is the image of the composition

Γ ρ−→ GLn(Fp[[t]])
πi−→ GLn(Fp[t]/(ti+1)) .

and we denote by ψi = πi ◦ ρ : Γ→ Γi the corresponding surjective map from Γ to Γi.
Then for g ∈ Γ a nontrivial element, the order of ψi(g) in Γi tends to infinity as i increases.

Proof. We argue by contradiction. Note that the orders of ψi(g) are monotone in i. If N is an upper
bound for the orders of ψi(g) for all i, then with ` = N ! we have ψi(g`) = ψi(g)` = 1 for all i. Since
ρ(g`) is described formally to arbitrary precision by ψi(g`) = 1, we conclude that ρ(g`) = 1. Because ρ is
faithful, it follows that g` = 1. Moreover, as Γ is torsion-free, we conclude g = 1, a contradiction.
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3.3 Quartic Cayley Graph Expanders of 3-Groups
Let us begin with the least complex example underlying our construction of Cayley Graph Expanders,
namely a group Γ generated by a1, a2, a3, a4 subject to relations

a1a3a1a4, a1a
−1
3 a2a

−1
3 , a1a

−1
4 a−1

2 a−1
4 , a2a3a2a

−1
4 .

The group Γ agrees with the group Γ2 on page 457 of [85], where the correspondence is a1 = g0, a2 = g2,
a3 = g3, a4 = g1. The group Γ can be obtained as the group Γ3;0,1 described in Section 3.4 (a particular
case of the group ΓM,δ of [81, Section 2.8] for q = 3) by means of the identification Γ ∼= Γ3;0,1 via a1 7→ a0,
a2 7→ a2, a3 7→ b−1

3 and a4 7→ b−1
1 . It was shown by Stix and Vdovina in [85], that this group is a

quaternionic lattice. The group Γ is torsion-free by [85, Theorem 30].
Consider the function field F3(x) over the finite field F3 in one variable x. Using computer algebra, it

is easy to verify that the following assignments give a well-defined representation Ψ : Γ→ GL3(F3(x)):

Ψ(a1) =

 1
x 1 + 1

x −x+ 1− 1
x

− 1
x − 1

x −x+ 1
x

− 1
x 1− 1

x x+ 1 + 1
x

 (8)

Ψ(a2) =

 1
x −x+ 1 −x3 − x2 − x
0 1 −x2 + x

0 0 x



Ψ(a3) =

 0 0 x2 + 1
0 −1 −x− 1

1
x2+1

x+1
x2+1 −1 + x

x2+1



Ψ(a4) =

 2x
x2+1 − 1 −x− 1

x2+1 x2 − x+ 1− x
x2+1

2x+1
x2+1

2x−1
x2+1

2x+1
x2+1 − x− 1

1
x2+1

2x
x2+1

1
x2+1 − 1


In fact, all matrices Ψ(ai), for i = 1, . . . , 4 have determinant 1.

The denominators of the matrix entries are nonzero at x = 1. Therefore we can substitute x = 1 + t

and expand the matrix entries, which are now rational functions in t, as formal power series in F3[[t]].
The determinant is still 1, so that the resulting matrices are invertible as matrices with values in F3[[t]].

We thus obtain a representation

Ψ̃ : Γ→ GL3(F3[[t]]).

Lemma 17. The group homomorphism Ψ̃ : Γ → GL3(F3[[t]]) given above is injective and defines a
faithful representation of Γ.

Proof. Because Ψ̃(a2) agrees with Ψ(a2) under the necessary identifications, it has the same order, which
is visibly infinite (due to the upper triangular shape and the entry x on the diagonal). Therefore Ψ̃ has
infinite image.

The group Γ is an arithmetic lattice in a group of rank 2 by construction in [85]. By [62], therefore
all homomorphic images of Γ are finite, or the kernel of the homomorphism is finite. As Ψ̃(Γ) is infinite,
it follows that the kernel of Ψ̃ is finite. But Γ is torsion-free, hence all finite subgroups are trivial, and
trivial kernel means that Ψ̃ is faithful.
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As in Lemma 16 we consider the truncated representations up to orders ti+1 and higher

Ψ̃i : Γ Ψ̃−→ GL3(F3[[t]]) πi−→ GL3(F3[t]/(ti+1))

and denote the image by Γi := Ψ̃i(Γ).

Remark 18. As an alternative to the proof of Lemma 17 one may observe that Γ is a lattice in a
quaternion algebra D over a field K (or rather an arithmetic lattice in D×/K×) that is split by F3(x)
(as an extension of K). The homomorphism Ψ is nothing but the one induced from D acting on the
3-dimensional purely imaginary quaternions in D by conjugation. It follows that Γ acts faithfully since
D×/K× acts faithfully.

More importantly, it follows from this construction that the truncated homomorphisms Γ→ Γi are
finite congruence quotients of Γ.

Lemma 19. The finite groups Γi are 3-groups: the order of Γi is a power of 3.

Proof. We denote by id3 the 3×3 unit matrix. Forgetting the term of order ti yields a group homomorphism
Γi → Γi−1. Its kernel is naturally a subgroup of the additive group M3(F3) of 3×3 matrices with coefficients
in F3, hence a 3-group. Indeed, the elements in ker(Γi → Γi−1) have the form id3 +Ati for an A ∈ M3(F3)
and the identity matrix id3. The assignment id3 + Ati 7→ A is an injective group homomorphism
ker(Γi → Γi−1)→ M3(F3), because

(id3 +Ati)(id3 +Bti) = id3 + (A+B)ti ∈ Γi.

It remains to prove the claim for i = 0, the leading constant term, and to conclude by induction thanks
to Lagrange’s theorem on group orders.

For i = 0, we simply plug in t = 0, or what is the same x = 1, into (8) to get formulas for
Ψ̃0 : Γ→ Γ0 ⊆ GL3(F3) as follows:

Ψ̃0(a1) =

 1 −1 −1
−1 −1 0
−1 0 0

 , Ψ̃0(a2) =

 1 0 0
0 1 0
0 0 1

 ,

Ψ̃0(a3) = Ψ̃0(a4) =

 0 0 −1
0 −1 1
−1 1 1

 ,

which generate a cyclic group of order 3, namely Γ0.

Remark 20. In fact, the kernel Ni = ker(Ψ̃i : Γ → Γi) is by construction described by congruences
modulo ti+1, and — unraveling the definition of [85, 81] — we see that Ni is a congruence subgroup of
the lattice Γ. There is a corresponding infinite series of square complexes Pi, the quotient of the product
of trees T4 × T4 by Ni, with the number of vertices being a power of 3. Indeed, the 3-group Γi = Γ/Ni
acts simply transitively on the vertices of Pi. The 1-skeleton of Pi is a the Cayley graph G̃i = C(Γi, Si),
for Si the image in Γi of the set of generators {a±1

1 , a±1
2 , a±1

3 , a±1
4 } of Γ as considered in [85, 81].

Theorem 21. The quaternionic lattice Γ2 of page 457 of [85], introduced above as Γ, is an infinite
group with two generators x0, x1, and an infinite sequence {Ni}i∈N of normal subgroups such that the
following are true:

1. The indices [Γ : Ni] = ni are powers of 3.
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2. Let v0 = x0Ni (resp. v1 = x1Ni) be the image of the generator x0 (resp. x1) under the quotient map
Γ→ Γi := Γ/Ni. The orders of the four subgroups H1

i , H2
i , H3

i , H4
i of Γi, generated by v0, v1, v−1

1 v0,
v1v0, respectively, converge to infinity as i increases.

3. There exists a positive constant c > 0 such that the set G = {G1, G2, . . . } of Cayley graphs Gi =
C(Γi, {v±1

0 , v±1
1 }) is a family of (ni, 4, c)-expanders.

Proof. The generators are the elements x0 = a2 and x1 = a3 of above. These two elements generate Γ
because the other defining generators can be written (using the defining relations) as

a1 = a3a
−1
2 a3, a4 = a2a3a2.

The normal subgroups are the groups Ni = ker(Ψ̃i) of above. The indices [Γ : Ni] = #Γi are powers of 3
due to Lemma 19. Lemma 16 shows the assertion on the asymptotic of the orders of the images of specific
elements. In order to apply this to v0, v1, v−1

1 v0 and v1v0 we must show that x0, x1, x−1
1 x0 and x1x0 are

all non-trivial. Consider the homomorphism Γ→ Z/2Z× Z/2Z given by counting modulo 2 the number
of even and odd indexed ai occurring in a word representing a group element of Γ. Then x0, x1, x−1

1 x0
and x1x0 all have nontrivial image: (1, 0), (0, 1), (1, 1) and (1, 1) respectively, hence these elements are
non-trivial.

Our next aim is to prove the expander property of the graphs Gi. In order to do so, we first consider
the Cayley graphs G̃i = C(Γi, Si), for the larger set of generators Si that is the image in Γi of the set
of generators {a±1

1 , a±1
2 , a±1

3 , a±1
4 } of Γ. As recalled in Theorem 20, the graph G̃i is the 1-skeleton of a

square complex Pi = (T4 × T4)/Ni. As explained in [81, § 6], there are two Hecke operators on functions
on the vertices V (Pi) of Pi, averaging functions over neighbours that differ in the first component (Av,i
with v: vertical neighbour) resp. in the second component (Ah,i with h: horizontal neighbour). Because
the universal covering is a product of trees, these Hecke operators commmute: Av,iAh,i = Ah,iAv,i. It
follows that Av,i and Ah,i are simultaneously diagonalizable. Therefore the spectrum of the adjacency
operator AG̃i

of G̃i, which is

AG̃i
= Av,i +Ah,i,

can be related to the spectrum of both Hecke operators. Eigenvalues of AG̃i
are sums of eigenvalues: one

of each Hecke operator. By [81, Theorem 6.14] the square complex Pi is Ramanujan (here it is crucial that
Ni is a congruence subgroup) and thus the eigenvalues of both Hecke operators satisfy a spectral gap (even
a Ramanujan gap). Using [81, Proposition 6.17] to bound the multiplicity of the extremal eigenvalues of
the Hecke operators, also a spectral gap is inherited by AG̃i

(but now without the optimal Ramanujan
property). Therefore the graphs G̃i form a family of Cayley Graph Expanders (of valency 8 for 3-groups).

The result of Section 3.1 shows that the Cayley graphs Gi = C(Γi, {v±1
0 , v±1

1 }) of Γi with respect to
the generating set given by the images of {a±2 , a

±
3 } in Γi is still a sequence of expander graphs (although

with a different expansion constant). The valency is now 4 and the vertex set has cardinality ni, a power
of 3.

3.4 Explicit Cayley Graphs p-Expanders with p− 2 Generators
We recall the explicit description of the lattices from [81, Section 2.8]. For details we refer to loc. cit.

Let p ≥ 2 be a prime number and let Fp2 be the field with p2 elements. Its multiplicative group F×p2 is
cyclic, and we fix a generator δ ∈ F×p2 . We define for k, j ∈ Z/(p2 − 1)Z such that k 6≡ j (mod p− 1) the
elements xk,j , yk,j ∈ Z/(p2 − 1)Z uniquely by

δxk,j = 1 + δj−k, δyk,j = 1 + δk−j .
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(This is possible since δj−k 6= −1.) We set further in Z/(p2 − 1)Z:

i(k, j) = j − yk,j(p− 1), `(k, j) = k − xk,j(p− 1).

We now fix two elements α 6= β ∈ Z/(p− 1)Z, consider the reduction modulo p− 1 given by

pr : Z/(p2 − 1)Z→ Z/(p− 1)Z,

and define (p+ 1)-element sets K = pr−1(α) and J = pr−1(β). Since p− 1 divides µ = (p2 − 1)/2, the
sets K and J are preserved under translation by µ.

The group Γp;α,β (the dependence on δ is implicit) is defined by generators ak for k ∈ K and bj for
j ∈ J subject to the relations: for all k ∈ K and j ∈ J we have akak+µ = 1, and bjbj+µ = 1, and

akbja
−1
`(k,j)b

−1
i(k,j) = 1. (9)

It was proven in [81] that Γp;α,β is a quaternionic arithmetic lattice of rank 2, and residually pro-p
by congruence p-group quotients. Moreover, congruence quotients yield Cayley graphs with respect to
the given generators A = {ak; k ∈ K} together with B = {bj ; j ∈ J} that form a sequence of expanders
(as the 1-skeleton of 2-dimensional Ramanujan expander complexes). The valency of these graphs is
#(K ∪ J) = 2(p+ 1).

For the applications in this note we must reduce the number of essential generators (not counting
inverses).

Proposition 22. The group Γp;α,β can be generated by (p+ 3)/2 elements. More precisely, half of the
elements of B (omitting inverses) together with one a ∈ A generate Γp;α,β.

Proof. The relations (9) comes from the squares in the one vertex square complex with complete bipartite
link whose fundamental group is Γp;α,β . It follows that for all j ∈ J the map

σj : K → K, σj(k) = `(k, j)

is bijective. The argument of [85, Proposition 35] works also for the groups Γp;α,β and shows that the
group PB generated by all σj , for j ∈ J in the symmetric group on the set K acts transitive on K. Since
the relation (9) shows that

aσj(k) = b−1
i(k,j)akbj ,

a subgroup containing all b ∈ B will contain with any ak also the ak′ for k′ ∈ K in the PB-orbit of k. By
transitivity of PB on K this automatically involves all of A. This proves the theorem.

Example 23. The following is an explicit example for the above construction for p = 5 and α = 0, β = 2
in Z/4Z. The group Γ5;0,2 is generated by elements (indices are to be considered modulo 24)

a0, a4, a8, b2, b6, b10,

and 9 relations of length 4

a0b2a0b10, a0b6a
−1
0 b−1

6 , a0b
−1
2 a−1

4 b−1
2 , a0b

−1
10 a8b

−1
10 , a4b6a4b

−1
2 ,

a4b10a
−1
4 b−1

10 , a4b
−1
6 a−1

8 b−1
6 , a8b2a

−1
8 b−1

2 , a8b10a8b
−1
6 .

A direct inspection shows that Γ5;0,2 can be generated by 2 elements, for example a0, b2.
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Theorem 24. Let p ≥ 3 be a prime number, and let d ≥ 2 be an integer. We assume that d ≥ (p+ 3)/2
if p ≥ 7.

There are infinitely many finite p-groups Γi with order tending to infinity and generating sets Ti of
cardinality d such that the Cayley graphs C(Γi, Ti) form a family of expanders with number of vertices a
power of p and valency 2d.

In particular, for p ≥ 5 we may take d = p− 2.

Proof. We consider the groups constructed in [81, Section 2.8] as recalled in Section 3.4 with notation
Γp;α,β . By Proposition 22, these groups can be generated by (p+ 3)/2 elements. Moreover, for p = 5 we
take the group Γ5;0,2 considered in Example 23, which can be generated by 2 elements. For p = 3, we
take the 2-generated group Γ3,0,1 of Theorem 21. For any d as in the statement of the theorem, we may
therefore choose a set T of d generators of the respective infinity group Γp;α,β (adding arbitrary elements
if necessary for values of d larger than the given minimal values).

If p ≥ 7, then p− 2 ≥ (p+ 3)/2 and d = p− 2 is a possible choice. For p = 5, we have p− 2 ≥ 2, so
d = p− 2 is a valid choice for all p ≥ 5.

It follows from [81, Proposition 2.22] that these groups Γp;α,β are residually pro-p with respect to a
suitable infinite sequence of congruence subgroup quotients of p-power order.

The standard generating sets A ∪B of Γp;α,β yield for the sequence of congruence quotients of Γp;α,β
that the corresponding Cayley graphs form a series of expanders (as the 1-skeleton of 2-dimensional
Ramanujan expander complexes), see [81, Section 6]. Details of the transition to the 1-skeleton are as in
the proof of Theorem 21.

Indeed, by the results of Section 3.1, all these Cayley graphs of the finite congruence p-group quotients
of Γp;α,β with respect to the alternative set T of d generators are still expanders (but not necessarily
Ramanujan). This proves the theorem.

Let us conclude this section by emphasizing that, in combination, Theorems 21 and 24 yield Main
Theorem 3.

4 The Colour-Preserving Homomorphism Basis

It turns out that the analysis of the complexity of #EdgeSub(Φ) is much easier if a colourful version
of the problem is considered. For our hardness results, we then show that the colourful version reduces
to the uncoloured version. To this end, recall that an H-colouring of a graph G is a homomorphism
from G to H, and that a graph G is H-coloured if G is equipped with an H-colouring c. Recall further
the implicitly defined #E(H)-edge-colouring of G. In the colourful version of #EdgeSub(Φ), denoted by
#ColEdgeSub(Φ), the task is to compute the cardinality of the set

ColEdgeSub(Φ→H G) := {A ⊆ E(G) | #A = #E(H) ∧ c(A) = E(H) ∧ Φ(G[A]) = 1} ,

and the parameter is k := #E(H). In particular, we write #ColEdgeSub(Φ→H ?) for the function that
maps an H-coloured graph G to #ColEdgeSub(Φ→H G). Note that #A = #E(H)∧c(A) = E(H) implies
that the A contains each of the #E(H) colours precisely once. Further, note that Φ(G[A]) = 1 if and
only if Φ holds on the (uncoloured) graph G[A].

Each element A ∈ ColEdgeSub(Φ→H G) induces a fracture ρ of H, where for v ∈ V (H) two edges
e, f ∈ EH(v) are in the same block of ρv if and only if their (unique) preimages ê, f̂ ∈ A under c : A→ E(H)
are connected to the same endpoint in c−1(v) ⊆ V (G). From the construction, it immediately follows
that G[A] and H] ρ are canonically isomorphic as H-coloured graphs, that is, G[A] ∼=H H] ρ.
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Our goal is to express #ColEdgeSub(Φ→H ?) as a linear combination of (colour-preserving) homo-
morphism counts from graphs only depending on Φ and H. In case H is a torus, we establish an explicit
criterion sufficient for the term #Homcp(}}}` →}}}`

?) to survive with a non-zero coefficient in this linear
combination. The existence of the linear combination is given by the following lemma:

Lemma 25. Let H denote a graph. We have

#ColEdgeSub(Φ→H ?) =
∑

σ∈L(Φ,H)

∑
ρ≥σ

µ(σ, ρ) ·#Homcp(H] ρ→H ?) ,

where the relation ≤ and the Möbius function µ are over the lattice of fractures L(H).

Proof. LetG denote anH-coloured graph. We first partition the elementsA of the set ColEdgeSub(Φ→H G)
according to their induced fractures. Now, writing ColEdgeSub(Φ→H G)[σ] for the set of A inducing the
fracture σ ∈ L(H), we obtain

#ColEdgeSub(Φ→H G) =
∑

σ∈L(Φ,H)

#ColEdgeSub(Φ→H G)[σ] ,

since #ColEdgeSub(Φ→H G)[σ] = 0 for all σ /∈ L(Φ, H). From the fact that G[A] is canonically isomorphic
to H] σ as an H-coloured graph, for σ associated to A ∈ ColEdgeSub(Φ→H G), it follows that

#ColEdgeSub(Φ→H G)[σ] = #Embcp(H] σ →H G) .

Note that we are using that graphs of the form H] σ can have no non-trivial automorphisms as H-coloured
graphs (since all edges must be fixed). It remains to show that

#Embcp(H] σ →H G) =
∑
ρ≥σ

µ(σ, ρ) ·#Homcp(H] ρ→H G) (10)

To this end, we establish the following zeta transformation, which should be considered as a colour-
preserving version of the standard transformation in the uncoloured case (see e.g. [60, Section 5.2.3]).

Claim 26. For every fracture σ of H, we have

#Homcp(H] σ →H G) =
∑
ρ≥σ

#Embcp(H] ρ→H G)

Proof. Every colour-preserving homomorphism ϕ from H] σ to G, induces a fracture ρ ≥ σ, that is, ρv is
a coarsening of σv for every v ∈ V (H). Indeed, recall that the vertices of H] σ over v ∈ V (H) correspond
to the blocks B of the partition σv of the edges EH(v). Then the partition ρv of EH(v) is obtained from
σv by joining those blocks B,B′ whose associated vertices in H] σ map to the same vertex of G under ϕ.
We have that the subgraph of G given by the image of H] σ under ϕ is canonically isomorphic to H] ρ as
an H-coloured graph.

Let us call two homomorphisms in Homcp(H] σ →H G) equivalent if they induce the same fracture
and write Homcp(H] σ →H G)[ρ] for the equivalence class of all homomorphisms inducing ρ. The claim
then follows by partitioning the set Homcp(H] σ →H G) into those equivalence classes and observing that

#Homcp(H] σ →H G)[ρ] = #Embcp(H] ρ→H G) .
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Equation (10) is now obtained by using Möbius inversion (theorem 11) on the zeta-transformation given
by the previous claim. This concludes the proof.

Let us now collect for the coefficient of the term #Homcp(H]> →H G), where > is the maximum
fracture of H with respect to the ordering ≤. In particular, each partition of > only consists of a single
block and thus H]> ∼= H, where the isomorphism is given by the H-colouring of H]>.

Corollary 27. Let Φ denote a computable graph property and let H denote a graph. There is a unique
computable function aΦ,H : L(H)→ Z such that

#ColEdgeSub(Φ→H ?) =
∑

ρ∈L(H)

aΦ,H(ρ) ·#Homcp(H] ρ→H ?) ,

For ρ = > we have

aΦ,H(>) =
∑

σ∈L(Φ,H)

∏
v∈V (H)

(−1)|σv|−1 · (|σv| − 1)!

Here, |σv| denotes the number of blocks of partition σv.

Proof. The first claim follows immediately from theorem 25 by collecting coefficients; note that Φ and µ
are computable, and that the image of µ is a subset of Z. For the second claim, we collect the coefficients
of #Homcp(H]> →H ∗) in theorem 25 and obtain

aΦ,H(>) =
∑

σ∈L(Φ,H)

µ(σ,>) .

Recall that µ is the Möbius function of L(H) and that the latter is the product of the partition lattices
of NH(v) for each v ∈ V (H). Using that the Möbius function is multiplicative with respect to the
product (see for instance [84, Proposition 3.8.2]) and applying the explicit formula for the partition lattice
(theorem 12), we obtain the second claim.

In the remainder of the paper, given Φ and H, we refer to the function aΦ,H from theorem 27 as the
coefficient function of Φ and H.16

4.1 A Coloured Version of Complexity Monotonicity
Our next goal is to prove that computing a finite linear combination of colour-preserving homomorphism
counts, as given by theorem 27, is precisely as hard as computing its hardest term. While the proof
strategy follows the approach used in [25] and [32], we need to adapt to the setting of colour-preserving
homomorphisms between fractured graphs.

We rely on the tensor product of H-coloured graphs in the following way: let H denote a fixed graph,
and let G and F denote H-coloured graphs with colourings cG and cF . The colour-preserving tensor
product G×H F has vertices {(x, y) ∈ V (G)× V (F ) | cG(x) = cF (y)}, and two vertices (x, y) and (x′, y′)
are made adjacent in G×H F if (and only if) {x, x′} ∈ E(G) and {y, y′} ∈ E(F ). Observe that the graph
G×H F is H-coloured as well by the colouring (x, y) 7→ cG(x) = cF (y).

16We note that the value aΦ,H(>) of the coefficient function on the largest partition > is equal to the indicator a(Φ, H)
used in the proof outline in the introduction.
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Lemma 28. Let H denote a graph, and let F , G1 and G2 denote H-coloured graphs. We have

#Homcp(F →H G1 ×H G2) = #Homcp(F →H G1) ·#Homcp(F →H G2) .

Proof. The function

b : Homcp(F →H G1)× Homcp(F →H G2)→ Homcp(F →H G1 ×H G2),
b(ϕ,ψ)(u) := (ϕ(u), ψ(u)) for u ∈ V (F )

is the canonical bijection.

The reduction for isolating terms with non-zero coefficient requires to solve a system of linear equations.
For the definition of the corresponding matrix, we fix a linear extension 4 of the order ≤ of the H-fractures.
Recall that ≤ is also the order of the product of the partition lattices of the set E(v) for all v ∈ V (H). In
particular, σ ≤ ρ if and only if σv refines ρv for all v ∈ V (H). As a consequence, we observe that ρ � σ,
that is, ¬(ρ 4 σ), implies the existence of a vertex v ∈ V (H) such that ρv does not refine σv. Now let
MH denote the matrix whose columns and rows are associated with the set of all H-fractures, ordered by
4, and whose entries are given by

MH [ρ, σ] := #Homcp(H] ρ→ H] σ) .

Lemma 29. For each H, the matrixMH is upper triangular with entries 1 on the diagonal.

Proof. Let us first consider the diagonal. We claim that #Homcp(H] ρ→ H] ρ) = 1. Due to the trivial
(identity) homomorphism we have #Homcp(H] ρ→ H] ρ) ≥ 1. On the other hand, the canonical colouring
H] ρ → H induces a bijection from the edges of H] ρ to the edges of H that preserves the colouring.
Since a colour-preserving homomorphism H] ρ→ H] ρ must commute with this map, it must act as the
identity on all edges of H] ρ and is thus equal to the identity.

It remains to prove thatMH [ρ, σ] = 0 for every ρ � σ. Recall that the latter implies the existence of
a vertex v ∈ V (H) such that ρv does not refine σv, that is, there is a block B of ρv which is not a subset
of any block of σv. Thus, there are edges e, f ∈ B ⊆ EH(v) such that e, f are in different blocks of σv.
Identifying E(H] σ) = E(H] ρ) = E(H) using the colouring, we see that e, f are adjacent to the same
vertex in H] ρ (corresponding to the block B), but to different vertices in H] σ. This implies that there
cannot be a colour preserving homomorphism ϕ : H] ρ → H] σ since e, f being incident at vB in H] ρ
would imply that e = ϕ(e), f = ϕ(f) must be incident at ϕ(vB) in H] σ.

We are now able to prove a version of the Complexity Monotonicity principle which is sufficient for the
purposes in this work. In what follows, given a graph property Φ, we write #ColEdgeSub(Φ→? ?) for the
function that expects as input a graphH and anH-coloured graph G, and outputs #ColEdgeSub(Φ→H G).

Lemma 30. Let Φ denote a computable graph property. Then there exists a deterministic algorithm A
which has oracle access to the function #ColEdgeSub(Φ→? ?), and computes, given as input a graph H
and an H-coloured graph G, the numbers #Homcp(H] ρ →H G) for every H-fracture ρ satisfying that
aΦ,H(ρ) 6= 0, where aΦ,H is the coefficient function of Φ and H.

Furthermore, there is a computable function f such that A runs in time f(|H|) · |G|O(1) and every
posed oracle query (Ĥ, Ĝ) satisfies Ĥ = H and |Ĝ| ≤ f(|H|) · |G|.

Proof. Given H and G, we can obtain #ColEdgeSub(Φ→H G×H (H] σ)) for all H-fractures σ via access
to the oracle. By theorems 27 and 28, we have

#ColEdgeSub(Φ→H G×H (H] σ))
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=
∑

ρ∈L(H)

aΦ,H(ρ) ·#Homcp(H] ρ→H G×H (H] σ))

=
∑

ρ∈L(H)

aΦ,H(ρ) ·#Homcp(H] ρ→H G) ·#Homcp(H] ρ→H H] σ)

Observe that the latter yields a system of linear equations for the numbers

aΦ,H(ρ) ·#Homcp(H] ρ→H G)

with matrixMH which has full rank according to theorem 29. Consequently A can compute the number
aΦ,H(ρ) ·#Homcp(H] ρ→H G) for each H-fracture ρ. Therefore, #Homcp(H] ρ→H G) can be computed
whenever aΦ,H(ρ) 6= 0.

Now observe that aΦ,H , which is computable, only depends on Φ, which is fixed, and H. Furthermore
L(H) and all H] ρ only depend on H. Thus the computation of #Homcp(H] ρ→H H] σ), takes time only
depending on H as well. Consequently, the system of linear equations can be solved in time f ′(|H|) · |G|O(1)

for some computable function f ′. Furthermore, the size of G×H (H] σ) is bounded by |H] σ| · |G|. Setting
f(|H|) := max{f ′(|H|),maxσ∈L(H) |H] σ|} concludes the proof; since each fractured graph H] σ has
only #E(H) many edges.

4.2 Intractability of Counting Homomorphisms from Tori and Expanders
The final step of this section is to establish #W[1]-hardness of the (uncoloured) problem #EdgeSub(Φ)
whenever aΦ,}}}`

(>) 6= 0 for infinitely many `. Essentially, we rely on the fact that tori have high treewidth
and that the problem of counting (colour-preserving) homomorphisms from high-treewidth graphs is hard.
We can proceed similarly in case of expanders, and due to the fact that expanders have high treewidth
and are sparse (see theorem 7), we even obtain an almost tight conditional lower bound.

In both cases, we use Complexity Monotonicity, which yields hardness of the (edge-) colourful version
of #EdgeSub(Φ). Consequently, we need to show that the colourful version reduces to the uncoloured
version. This can be achieved by a standard inclusion-exclusion argument:

Lemma 31. Let Φ denote a computable graph property. There exists a deterministic algorithm A,
equipped with oracle access to the function

(k, Ĝ) 7→ #EdgeSub(Φ, k → Ĝ) ,

which expects as input a graph H and an H-coloured graph G, and computes in time 2|E(H)| · |G|O(1)

the cardinality #ColEdgeSub(Φ→H G). Furthermore, every oracle query (k, Ĝ) posed by A satisfies
k = |E(H)| and |Ĝ| ≤ |G|.

Proof. Given H and an H-coloured graph G, we write c : E(G)→ E(H) for the induced edge-colouring
of G. Given a set of edge-colours J ⊆ E(H), we write G \ J for the graph obtained from G by deleting all
edges e with c(e) ∈ J . Now recall that

EdgeSub(Φ, |E(H)| → G) = {A ⊆ E(G) | #A = |E(H)| ∧ Φ(G[A]) = 1} , and

ColEdgeSub(Φ→H G) = {A ⊆ E(G) | #A = |E(H)| ∧ c(A) = E(H) ∧ Φ(G[A]) = 1} .

Next set k := |E(H)|, then we have

#ColEdgeSub(Φ→H G)
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= #EdgeSub(Φ, k → G)

−#

 ⋃
e∈E(H)

{A ∈ EdgeSub(Φ, k → G) | e /∈ c(A)}


= #EdgeSub(Φ, k → G)

−
∑

∅6=J⊆E(H)

(−1)|J|+1 ·#
(⋂
e∈J
{A ∈ EdgeSub(Φ, k → G) | e /∈ c(A)}

)
= #EdgeSub(Φ, k → G)

−
∑

∅6=J⊆E(H)

(−1)|J|+1 ·#{A ∈ EdgeSub(Φ, k → G) | ∀e ∈ J : e /∈ c(A)}

= #EdgeSub(Φ, k → G)

−
∑

∅6=J⊆E(H)

(−1)|J|+1 ·#EdgeSub(Φ, k → G \ J)

=
∑

J⊆E(H)

(−1)|J| ·#EdgeSub(Φ, k → G \ J)

Note that the second equation is due to the inclusion-exclusion principle. We conclude that the de-
sired number #ColEdgeSub(Φ→H G) can be computed using 2|E(H)| many oracle calls of the form
#EdgeSub(Φ, |E(H)| → G \ J). The claim of the lemma follows since |G \ J | ≤ |G|.

For the formal statement of this section’s main lemma, we define H[Φ,}}}] as the set of all }}}` such that
aΦ,}}}`

(>) 6= 0. Furthermore, given a family G = {G1, G2, . . . } of (ni, d, c)-expanders, we write H[Φ,G] for
the set of all Gi such that aΦ,Gi

(>) 6= 0

Lemma 32. Let Φ denote a computable graph property, fix a rational c and an integer d, and let
G = {G1, G2, . . . } denote a family of (ni, d, c)-expanders. If at least one of H[Φ,}}}] and H[Φ,G] is infinite,
then #ColEdgeSub(Φ) and #EdgeSub(Φ) are #W[1]-hard. Moreover, if H[Φ,G] is infinite, then,
assuming ETH, both problems cannot be solved in time

f(k) · |G|o(k/ log k)

for any function f .

Proof. We first consider the coloured version #ColEdgeSub(Φ).
We start with the case of H[Φ,}}}] being infinite. If the latter is true, then H[Φ,}}}] has unbounded

treewidth since it contains graphs with arbitrary large grid minors [74]. This allows us to reduce from the
problem #Hom(H[Φ,}}}]) which is known to be #W[1]-hard since H[Φ,}}}] has unbounded treewidth [28].
It is convenient to consider the following intermediate problem: given a graph H ∈ H[Φ,}}}] and an
H-coloured graph G with colouring c, in the problem #cp-Hom(H[Φ,}}}]) the task is to compute the
number #cp-Hom(H → G) of homomorphisms ϕ ∈ Hom(H → G) such that c(ϕ(v)) = v for each vertex v
of H. It is well-known that #Hom(H) reduces to #cp-Hom(H) for every class of graphs H; see for
instance [77, 32, 31, 24]—note that, in the latter, the problem is referred to as #PartitionedSub(H).
Thus we have

#Hom(H[Φ,}}}]) ≤fpt
T #cp-Hom(H[Φ,}}}]) . (11)
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Now observe that #cp-Hom(H → G) = #Homcp(H]> →H G) for every graph H and H-coloured
graph G, since H]> = H. By definition of H[Φ,}}}], we have that aΦ,}}}`

(>) 6= 0 whenever }}}` ∈ H[Φ,}}}].
Thus we can use Complexity Monotonicity (theorem 30) which yields the reduction

#cp-Hom(H[Φ,}}}]) ≤fpt
T #ColEdgeSub(Φ) . (12)

Consequently, #ColEdgeSub(Φ) is #W[1]-hard by (11) - (13) in combination with #W[1]-hardness of
#Hom(H[Φ,}}}]).

In case of H[Φ,G], we reduce from the homomorphism counting problem as well and obtain #W[1]-
hardness analogously. However, for the almost tight conditional lower bound, we rely on a result of
Marx [63] implying that for any class H of unbounded treewidth, the problem #Hom(H) cannot be solved
in time

f(|H|) · |G|o(tw(H)/ log tw(H))

for any function f , unless ETH fails.17 Let us use the aforementioned lower bound for the case of
H = H[Φ,G]. Observe that the reduction sequence from #Hom(H[Φ,G]) to #ColEdgeSub(Φ) as
illustrated before only leads to a linear blow up of the parameter: given an input (Gi, G) for which we
wish to compute #Hom(Gi → G), we only query the oracle for #ColEdgeSub(Φ) on instances (k,G′)
where k = #E(Gi) and |G′| ≤ f ′′(#E(Gi)) · |G| for some function f ′′. Since both #E(Gi) and the
treewidth of Gi are linear in |V (Gi)| (see theorem 7), any algorithm that, for some function f ′, solves
#ColEdgeSub(Φ) in time

f ′(k) · |G′|o(k/ log k)

yields an algorithm for #Hom(H[Φ,G]) running in time

f(|Gi|) · |G|o(tw(Gi)/ log tw(Gi)) ,

for some function f (depending only on f ′ and f ′′), contradicting ETH by Marx’ lower bound.
Finally, we reduce the coloured version to the uncoloured version by theorem 31 and obtain

#ColEdgeSub(Φ) ≤fpt
T #EdgeSub(Φ) . (13)

Again, this reduction is tight in the sense that the parameter does not increase by the condition on the
oracle queries in theorem 31. Consequently, #W[1]-hardness and the conditional lower bound hold for
#EdgeSub(Φ) as well.

Regarding the previous proof, observe that we cannot obtain a similar conditional lower bound if only
H[Φ,}}}] is infinite, since in that case the parameter grows quadratically: while }}}` has treewidth O(`), it
has 2`2 edges.

In the next section, we will focus on analysing the classes H[Φ,}}}] and H[Φ,G], the latter for a variety
of families of p-group Cayley Graph Expanders constructed in Section 3. More precisely, we will establish
conditions on properties Φ under which those classes are infinite. The parameterized and fine-grained lower
bounds on exact counting will then be derived in Section 6 as an immediate consequence of Lemma 32.

17Observe that this result follows only implicitly from [63], but we made it explicit in [79].
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5 Coefficients of Tori and Cayley Graph Expanders

The previous section allows us to establish hardness of #EdgeSub(Φ) by the purely combinatorial
problem of determining whether one of the sets H[Φ,}}}] and H[Φ,G], for some family of expanders G, is
infinite. Still, this is a challenging combinatorial problem and we consider the treatment of the coefficients
of the tori and Cayley Graph Expanders to be our main technical contribution in this work.

Recall from theorem 27 that the coefficient function of Φ and H satisfies

aΦ,H(>) =
∑

σ∈L(Φ,H)

∏
v∈V (H)

(−1)|σv|−1 · (|σv| − 1)! .

In case that H satisfies certain symmetry properties, we prove that it suffices to consider only those
fractures in the previous sum that are fixed-points under suitable group actions. More formally, we obtain
the desired symmetries from the structure of the groups underlying the Cayley graph constructions for
tori and expanders as introduced in the subsequent subsections.

We start with general conditions on properties under which H[Φ,}}}] and H[Φ,G], the latter for a family
of 4-regular 2-group Cayley Graph Expanders, are infinite.

5.1 Tori and 2-group Cayley Graph Expanders
5.1.1 Symmetries of the Torus
Even though most (but not all) of our hardness results rely on Cayley Graph Expanders, we start our
presentation of the analysis of the coefficient function with the Toroidal Grid (or just the “torus”). Since
the structure of the torus is much simpler compared to the Cayley Graph Expanders, the group action on
the fractures of the torus will be much easier to visualise. In particular, we hope that the analysis of the
torus provides the intuition for actions on our Cayley Graph Expanders needed in the subsequent sections
which generalise the case of the torus in the natural way.

Formally, the torus is a simple Cayley graph given by the direct product of two cyclic groups:

Definition 33 (The Torus). Let ` ≥ 3 denote an integer. The torus, also called the toroidal grid, }}}` of
size ` is the Cayley graph of Z2

` with generators (±1, 0), (0,±1), that is,

}}}` := C
(
Z2
` , {(1, 0), (−1, 0), (0, 1), (0,−1)}

)
.

Equivalently, the vertices of }}}` are Z2
` and two vertices (x, y) and (x′, y′) are adjacent if and only if

x = x′ and y′ = y ± 1 mod `, or y = y′ and x′ = x± 1 mod `.

Consult fig. 3 for a visualization.

In the following, for simplicity, we write + for (point-wise) addition modulo `. Our goal is to understand
the symmetries of }}}`. Consider the following action of Z2

` on the vertices of }}}`. Let (i, j) ∈ Z2
` and let

(x, y) ∈ V (}}}`). We set (i, j) ` (x, y) := (i, j) + (x, y). The following is immediate:

Fact 34. The action of Z2
` on V (}}}`) is transitive. In particular, for every (i, j) ∈ Z2

` , the function
(i, j) ` ? is an automorphism of }}}`.

The fact above allows us to consider the set Z2
` of all (i, j)-“shifts” is a subgroup of the automorphism

group of }}}`. We remark that not all automorphisms are given by such shifts, but for our arguments we
will not need to consider the full group of automorphisms.
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MH H] ρ H

MH H]ϕ(ρ) H

ϕ̂ ϕ

Figure 5 Each automorphism ϕ of H lifts to an automorphism ϕ̂ ofMH . The latter descends to an isomorphism
from H] ρ to H]ϕ(ρ), for every fracture ρ of H.

Fractures of the Torus

Recall that a fracture ρ of a graph H is a tuple ρ = (ρv)v∈V (H) where ρv is a partition of the set EH(v) of
edges of H incident to v. Now given an automorphism ϕ : H → H of H, it gives a bijection from the edges
EH(v) at v to the edges EH(ϕ(v)) at ϕ(v). Thus, given a fracture ρ of H, we obtain a fracture ϕ(ρ) of H,
such that two edges e1, e2 ∈ EH(ϕ(v)) are in the same block of ϕ(ρ)ϕ(v) if and only if their preimages
ϕ−1(e1), ϕ−1(e2) ∈ EH(v) are in the same block of ρv.
We claim that that the two fractured graphs H] ρ ∼= H]ϕ(ρ) are isomorphic. To see this, note that the
automorphism ϕ : H → H lifts to an automorphism ϕ̂ : MH →MH of the matching MH associated to H,
where ϕ̂ sends the vertex ve ofMH to ϕ(v)ϕ(e). The map ϕ̂ sends the equivalence relation onMH associated
to ρ (with quotient H] ρ) to the equivalence relation associated to ϕ(ρ) (with quotient H]ϕ(ρ)). Thus
ϕ̂ : MH →MH descends to an isomorphism H] ρ→ H]ϕ(ρ) fitting in a diagram of graph homomorphisms,
depicted in fig. 5.

Given a finite group G acting on the graph H by graph isomorphisms ϕg : H → H (for g ∈ G), we
obtain an action  of G on the lattice L(H) of fractures on H, where g ∈ G acts by g  ρ = ϕg(ρ).
Clearly, this action respects the order of the lattice (ρ ≤ ρ′ if and only if g  ρ ≤ g  ρ′) and as seen
above, for any ρ̃ in the G-orbit of ρ we have H] ρ̃ ∼= H] ρ.

We now return to the special case when H = }}}` is a torus. Here, given a vertex (i, j) of H it is
convenient to identify the edges incident to the vertex (connecting it to (i, j + 1), (i, j − 1), (i− 1, j), and
(i+ 1, j)) with the four “directions” M,O,C, and B, respectively, so that each ρ(i,j) is a partition of the
set {M,O,C,B}.

We have seen that Z2
` acts transitively on the vertices of }}}` in such a way that every element of Z2

`

induces an automorphism of }}}`. Thus, by the discussion above, we obtain an action  of Z2
` on the set

of fractures of }}}`. Let us make this action explicit: (i, j)  ρ := ρ̂, where ρ̂((i,j)`(i′,j′)) = ρ(i′,j′) for all
(i′, j′) ∈ Z2

` .

Analysis of the Fixed-points

We proceed with the fixed-points of the action  of Z2
` on the fractures }}}`. Since this action consists

of (all possible) (i, j)-shifts, the fixed-points are precisely those fractures ρ for which all partitions ρ(i,j)
are equal — recall that we assumed every ρ(i,j) to be a partition of {M,O,C,B}. Fortunately, there are
only 15 partitions of the four-element set, and thus we can analyse the fixed-points by hand. Indeed, one
special case of our main result, as well as the classification of the parameterized Tutte polynomial, rely on
the understanding of all of those 15 fixed-points. However, while there are 15 fixed-points ρ, we can group
those into 7 types according to the isomorphism class of }}}`] ρ; an illustration of all fixed-points is given
in fig. 6.

Observation 35. The fixed-points of the action of Z2
` on the fractures of }}}` are as follows.

Matching: }}}`] ρ ∼= M2`2 , the matching of size 2`2.

1. ρ(i,j) = {{M}, {O}, {C}, {B}} for all (i, j) ∈ Z2
` , that is, ρ = ⊥.
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Matching and cycles: }}}`] ρ ∼= M`2 + `C`, the union of a matching of size `2 and ` disjoint cycles of
length `.

2. ρ(i,j) = {{M,O}, {C}, {B}} for all (i, j) ∈ Z2
` .

3. ρ(i,j) = {{M}, {O}, {C,B}} for all (i, j) ∈ Z2
` .

Wedge packing: }}}`] ρ ∼= `2P2, the union of `2 disjoint paths of length 2.

4. ρ(i,j) = {{M,B}, {O}, {C}} for all (i, j) ∈ Z2
` .

5. ρ(i,j) = {{M,C}, {O}, {B}} for all (i, j) ∈ Z2
` .

6. ρ(i,j) = {{O,C}, {M}, {B}} for all (i, j) ∈ Z2
` .

7. ρ(i,j) = {{O,B}, {M}, {C}} for all (i, j) ∈ Z2
` .

Cycle packing I: }}}`] ρ ∼= 2`C`, the union of 2` disjoint cycles of length `.

8. ρ(i,j) = {{M,O}, {C,B}} for all (i, j) ∈ Z2
` .

Cycle packing II: }}}`] ρ ∼= `C2`, the union of ` disjoint cycles of length 2`.

9. ρ(i,j) = {{M,B}, {O,C}} for all (i, j) ∈ Z2
` .

10. ρ(i,j) = {{M,C}, {O,B}} for all (i, j) ∈ Z2
` .

Sun packing: }}}`] ρ ∼= `S`, the union of ` suns of size `. Here a a sun of size ` is obtained from a cycle
of length ` by adding one “dangling” edge at every vertex of the cycle.

11. ρ(i,j) = {{M}, {O,C,B}} for all (i, j) ∈ Z2
` .

12. ρ(i,j) = {{O}, {M,C,B}} for all (i, j) ∈ Z2
` .

13. ρ(i,j) = {{C}, {M,O,B}} for all (i, j) ∈ Z2
` .

14. ρ(i,j) = {{B}, {M,C,O}} for all (i, j) ∈ Z2
` .

Torus: }}}`] ρ ∼=}}}`, the torus of size `.

15. ρ(i,j) = {{M,O,C,B}} for all (i, j) ∈ Z2
` , that is ρ = >.

While it might be surprising at first glance, we observe that, for many properties Φ, our analysis of
the complexity of #EdgeSub(Φ) only depends on which of the previous 15 fixed-points ρ satisfy that
}}}`] ρ has the property Φ.

5.1.2 Symmetries of Cayley Graph Expanders of 2-groups
For the second family of Cayley graphs, we rely on an explicit construction of 4-regular Cayley Graph
Expanders due to a subset of the authors [71]. They are constructed from an explicit infinite group Γ
with generators x0, x1 and a sequence

Γ ⊇ N0 ⊇ N1 ⊇ N2 ⊇ · · ·

of normal subgroups Ni of Γ, such that the indices [Γ : Ni] = 2ti = ni are powers of 2 converging
to infinity as i increases. Moreover, writing Ki for the quotient group Γ/Ni, the set of Cayley graphs
Gi := C(Ki, {v±1

0 , v±1
1 }) is a family G of (ni, 4, c)-expanders for some constant c > 0. Here, v0 = x0Ni and

v1 = x1Ni are generators of Ki.
Similar to the case of the toroidal grid, we obtain an action of the group Ki on the graph Gi, where an

element g ∈ Ki acts on a vertex v ∈ V (Gi) = Ki sending it to g ` v = gv, where the latter is the product
of g and v in the group Ki. The action of g defines a graph automorphism of Gi since the four edges
{v, vv±1

j } (for j = 0, 1) at v are sent to the four edges {gv, gvv±1
j } incident to gv.
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{{M}, {O}, {C}, {B}} {{M,O}, {C}, {B}} {{M}, {O}, {C,B}} {{B,M}, {C}, {O}}

{{M}, {C}, {O,B}} {{M,C}, {O}, {B}} {{M}, {C,O}, {B}} {{B,M}, {C,O}}

{{M,C}, {O,B}} {{M,O}, {C,B}} {{C}, {M,O,B}} {{M}, {C,O,B}}

{{M,C,O}, {B}} {{M,C,B}, {O}} {{M,C,O,B}}

Figure 6 The 15 fixed points of the action  of Z2
` on the fractures of }}}`. Vertices in the fractured graphs that

correspond to the same vertex in the original graph are encircled with a dashed line; the corresponding fixed point
is denoted below its graphical representation.
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Fractures of the Cayley Graph Expanders

For v ∈ V (Gi) ∼= Ki, the edges adjacent to v connect v to the vertices vs for s ∈ S and thus can be
uniquely labelled18 by

B= {v, vv0}, C= {v, vv−1
0 }, M= {v, vv1}, O = {v, vv−1

1 }.

Thus a fracture ρ ∈ L(Gi) is a collection ρ = (ρv)v∈V (Gi) of partitions of the set {B,C,M,O}.

Analysis of the Fixed-points

As seen before, the action ` of Ki on Gi induces an action  of Ki on the lattice of partitions L(Gi). A
fracture ρ = (ρv)v∈V (Gi) is invariant under the action of Ki if and only if ρv does not depend on v.

Later we want to compute the coefficient aΦ,Gi(>) modulo two. As before we observe that only
fixed points of the action of Ki contribute, and additionally we observe that only such fixed points ρ
can contribute where ρv has at most two blocks: The contribution of ρv to aΦ,Gi(>) contains a factor
(|ρv| − 1)! which is even if ρv has at least 3 blocks (see Corollary 27). Thus in the following we consider
fixed points in which each partition has at most 2 blocks.

Lemma 36. Fix i ≥ 2 and let us denote b0 = ordKi(v0), b1 = ordKi(v1), b2 = ordKi(v−1
1 v0), b3 =

ordKi
(v1v0), and aj = #Ki/bj for j = 0, . . . , 3. Then the fixed-points ρ = (ρv)v∈V (Gi) of the action of Ki

on the fractures of Gi satisfying that all ρv have at most two blocks are as follows:
Cycle packing I:

1. ρv = {{M,O}, {C,B}} for all v ∈ V (Gi) and Gi] ρ ∼= a0 · Cb0 + a1 · Cb1 .

Cycle packing II:

2. ρv = {{M,B}, {O,C}} for all v ∈ V (Gi) and Gi] ρ ∼= a2 · C2b2 .
3. ρv = {{M,C}, {O,B}} for all v ∈ V (Gi) and Gi] ρ ∼= a3 · C2b3 .

Sun packing:

4. ρv = {{M}, {O,C,B}} for all v ∈ V (Gi) and Gi] ρ ∼= a0 · Sb0 .
5. ρv = {{O}, {M,C,B}} for all v ∈ V (Gi) and Gi] ρ ∼= a0 · Sb0 .
6. ρv = {{C}, {M,O,B}} for all v ∈ V (Gi) and Gi] ρ ∼= a1 · Sb1 .
7. ρv = {{B}, {M,C,O}} for all v ∈ V (Gi) and Gi] ρ ∼= a1 · Sb1 .

Full graph:

8. ρv = {{M,O,C,B}} for all v ∈ V (Gi), that is ρ = > and Gi] ρ ∼= Gi.

Moreover, the numbers aj , bj are all powers of 2 and aj ≥ 8.

Proof. In cases 1,2,3 it follows from the definition of the fractured graph that Gi] ρ is 2-regular and thus
a union of circles. In case 1 the first type of circles (associated to the directions C,B) is given by

w0 → w0v0 → w0v
2
0 → · · · → w0v

b0−1
0 → w0v

b0
0 = w0 (14)

and thus isomorphic to Cb0 , with one circle for each w0 ∈ Ki/〈v0〉 giving a total number of #(Ki/〈v0〉) =
#Ki/bi = ai. Analogously we obtain a1 copies of Cb1 associated to the directions M,O.

18We use the same notation here as in the section about the torus grid }}}`. Many of the intuitions that we gained so far
are still valid, for instance the edge B going out from the vertex v to vv0 is equal to the edge C associated to the vertex
vv0. On the other hand, we also need to be more careful in our proofs, since e.g. going along an edge B followed by M
does not necessarily go to the same vertex as the path M followed by B, since the group Ki is in general not abelian.
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In case 2 the circles are of the form

w0 → w0v
−1
1 → w0v

−1
1 v0 → w0v

−1
1 v0v

−1
1 → w0(v−1

1 v0)2 → · · ·
→ w0(v−1

1 v0)b2−1v−1
1 → w0(v−1

1 v0)b2 = w0.

Thus they are isomorphic to C2b2 and since the total number of edges of Gi] ρ is equal to #E(Gi) =
4#Ki/2 = 2#Ki, the number of copies of C2b2 is given by 2#Ki/(2b2) = a2. The case 3 is treated
analogously.

In case 4, the connected component of a vertex w0 ∈ Gi] ρ associated to the directions O,C,B
certainly contains the circle Cb0 given by (14) and in addition, each vertex w0v

`
0 is connected to w0v

`
0v
−1
1 ,

which forms a leaf of Gi] ρ. Thus, these are the only additional vertices connected to the circle and
thus the connected component of each vertex in Gi] ρ forms a sun Sb0 . The total number of suns is
#E(Gi)/#E(Sb0) = (2#Ki)/(2b0) = a0. The cases 5,6,7 are treated completely analogously.

Finally, case 8 follows from the general property H]> ∼= H. The fact that aj , bj divide the order of
#Ki together with the property that Ki is a 2-group, imply that aj , bj are powers of 2. Finally, we show
the inequality aj ≥ 8 by induction on i ≥ 2. Note that in the case i = 2 this can be checked by hand. For
this one uses the explicit description of the group law of K2 presented in [71, Section 3] and verifies that
the orders bj of elements v0, v1, v

−1
1 v0, v1v0 are precisely 4, so that aj = #K2/bj = 8.

To conclude the general case for i ≥ 2, denote V i0 = 〈v0〉 ⊆ Ki the subgroup generated by v0, so that
a0 = [Ki : V i0 ]. Recalling the facts from the start of the section, we saw that Ki = G/Ni with N2 ⊇ Ni for
i ≥ 3. Thus we have a surjective group homomorphism

ϕi : Ki = G/Ni → G/N2 = K2 , xNi 7→ xN2

sending V i0 ⊆ Ki to V 2
0 ⊆ K2 (this follows since the generator v0 = x0Ni of V i0 maps to the generator

v0 = x0N2 of V 2
0 ). As mentioned above, we checked by hand that V 2

0 has index 8 in K2. Then by
theorem 37 we have that 8 = [K2 : V 2

0 ] = [ϕ(Ki) : ϕ(V i0 )] divides [Ki : V i0 ] = ai and thus a0 ≥ 8. The
bounds for a1, a2, a3 work exactly the same way.

Lemma 37. Let Γ,Γ′ denote finite groups and ϕ : Γ → Γ′ a group homomorphism. Then, for any
subgroup H ⊆ Γ we have that [ϕ(Γ) : ϕ(H)] divides [Γ : H].

Proof. Let K = ker(ϕ) and KH = K ∩H = ker(ϕ|H), then by the First isomorphism theorem we have
ϕ(Γ) ∼= Γ/K and ϕ(H) ∼= H/KH . Using this, we have

[Γ : H] = #Γ
#H = #Γ/#K

#H/#KH
· #K

#KH
= #(Γ/K)

#(H/KH) ·
#K

#KH
= #ϕ(Γ)

#ϕ(H) ·
#K

#KH

= [ϕ(Γ) : ϕ(H)] · #K
#KH

.

But KH ⊆ K is a subgroup, so by Lagrange’s theorem, the order of KH divides the order of K, so that
#K/#KH is an integer. Thus the above equality shows that [ϕ(Γ) : ϕ(H)] divides [Γ : H].

5.1.3 Analysis of the Coefficient Function via Fixed-points
While the value aΦ,H(>) of the coefficient function seems to be very difficult to handle for arbitrary
graphs H, we now use our observations on the symmetries of the torus and the Cayley Graph Expanders
to prove that the coefficient function does not vanish infinitely often under specific constraints on the
behaviour of Φ on the fixed-points presented in the preceding section.

We start with the case of aΦ,}}}`
(>), which, while being simple, turns out to be required for one of the

special cases in our main classification for minor-closed graph properties:
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Lemma 38. Let ` denote a prime and let Φ denote a computable graph property. We have that

aΦ,}}}`
(>) = −6Φ(M2`2) + 4Φ(M`2 + `C`) + 8Φ(`2P2)

− Φ(2`C`)− 2Φ(`C2`)− 4Φ(`S`) + Φ(}}}`) mod ` .

Proof. By theorem 27 we have

aΦ,}}}`
(>) =

∑
σ∈L(Φ,}}}`)

∏
v∈V (}}}`)

(−1)|σv|−1 · (|σv| − 1)!

Setting f(σ) :=
∏
v∈V (}}}`)(−1)|σv|−1 · (|σv| − 1)!, this rewrites to

aΦ,}}}`
(>) =

∑
σ∈L(Φ,}}}`)

f(σ) .

We now use the action  of Z2
` on the subset L(Φ,}}}`) of L(}}}`), given by permuting the elements of a

fracture ρ according to the coordinate shift induced by an element (i, j) ∈ Z2
` . Restricting this action to

L(Φ,}}}`) is well-defined since the action does not change the isomorphism class19 of }}}`] ρ. In particular,
we have that f(σ) = f(ρ) whenever σ and ρ are in the same orbit of the action. This allows us to rewrite
as follows; the sum is taken over all orbits [σ] of the group action:

aΦ,}}}`
(>) =

∑
[σ]

#[σ] · f(σ)

Since ` is a prime, the group order of Z2
` is a power of `. As the size of every orbit must divide the group

order, we can ignore all orbits which are not fixed-points, that is σ for which #[σ] 6= 1, if we take the sum
modulo `. All 15 fixed-points are explicitly given in theorem 35. Let us now compute the coefficients of
each collection of fixed-points that induce the same graph, up to isomorphism; we use Fermat’s Little
Theorem—recall that ` is a prime.

Matching: One fixed-point ρ satisfies }}}`] ρ ∼= M2`2 . The contribution to aΦ,}}}`
(>) is thus

1 · f(ρ) · Φ(M2`2) = ((−1)4−1 · (4− 1)!)`
2
Φ(M2`2) = −6Φ(M2`2) mod ` .

Matching and cycles: Two fixed-points ρ satisfy }}}`] ρ ∼= M`2 + `C`. The contribution to aΦ,}}}`
(>) is

thus

2 · f(ρ) · Φ(M`2 + `C`) = 2 · ((−1)3−1 · (3− 1)!)`
2
Φ(M`2 + `C`) = 4Φ(M`2 + `C`) mod ` .

Wedge packing: Four fixed-points ρ satisfy }}}`] ρ ∼= `2P2. The contribution to aΦ,}}}`
(>) is thus

4 · f(ρ) · Φ(`2P2) = 4 · ((−1)3−1 · (3− 1)!)`
2
Φ(`2P2) = 8Φ(`2P2) mod ` .

Cycle packing I: One fixed-point ρ satisfies }}}`] ρ ∼= 2`C`. The contribution to aΦ,}}}`
(>) is thus

1 · f(ρ) · Φ(2`C`) = ((−1)2−1 · (2− 1)!)`
2
Φ(2`C`) = −Φ(2`C`) mod ` .

Cycle packing II: Two fixed-points ρ satisfy }}}`] ρ ∼= `C2`. The contribution to aΦ,}}}`
(>) is thus

2 · f(ρ) · Φ(`C2`) = 2 · ((−1)2−1 · (2− 1)!)`
2
Φ(`C2`) = −2Φ(`C2`) mod ` .

19Note that while the action can change the isomorphism class as a }}}`-coloured graph, the property Φ only depends on
the underlying uncoloured graph, which is unchanged, and thus L(Φ,}}}`) is indeed invariant under the action.
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Sun packing: Four fixed-points ρ satisfy }}}`] ρ ∼= `S`. The contribution to aΦ,}}}`
(>) is thus

4 · f(ρ) · Φ(`S`) = 4 · ((−1)2−1 · (2− 1)!)`
2
Φ(`S`) = −4Φ(`S`) mod ` .

Torus: One fixed-point ρ satisfies }}}`] ρ ∼= }}}`. The contribution to aΦ,}}}`
(>) is thus

1 · f(ρ) · Φ(}}}`) = ((−1)1−1 · (1− 1)!)`
2
Φ(}}}`) = Φ(}}}`) mod ` .

Taking the sum of the previous terms (modulo `) concludes the proof.

We proceed with a similar lemma for the Cayley Graph Expanders.

Lemma 39. Let G = {G1, G2, . . . } denote the family of Cayley Graph Expanders given in Section 5.1.2
and let Φ denote a computable graph property. For i ≥ 2 we have

aΦ,Gi(>) = Φ(a0 · Cb0 + a1 · Cb1) + Φ(a2 · C2b2) + Φ(a3 · C2b3) + Φ(Gi) mod 2 .

Moreover, the numbers aj , bj are all powers of 2 and aj ≥ 8.

Proof. By theorem 27 we have

aΦ,Gi(>) =
∑

ρ∈L(Φ,Gi)

∏
v∈V (Gi)

(−1)|ρv|−1 · (|ρv| − 1)!

Setting f(ρ) :=
∏
v∈V (Gi)(−1)|ρv|−1 · (|ρv| − 1)!, this rewrites to

aΦ,Gi
(>) =

∑
ρ∈L(Φ,Gi)

f(ρ) .

As before, the action of the 2-group Ki leaves the set L(Φ, Gi) invariant and modulo 2 the contribution of
all elements ρ not fixed under Ki vanishes. Thus we only consider the fixed points ρ = (ρv)v∈V (Gi), for
which ρv is independent of v.

From the formula of f(ρ) it is easy to see that f(ρ) = 1 mod 2 if ρ has at most two blocks and
f(ρ) = 0 mod 2 otherwise. Thus only the fractures ρ from cases 1 to 8 of theorem 36 can give a nontrivial
contribution to aΦ,Gi

(>). The fixed-point ρ contributes if and only if Φ(Gi] ρ) = 1. Finally, since the
pairs of cases 4,5 and 6,7 lead to isomorphic graphs Gi] ρ, any possible contributions from these cancel
modulo 2 and we are left with the four summands above.

5.2 3-group Cayley Graph Expanders and Suitable Graph Properties
The proof of our classification for minor-closed properties will require a separate treatment of properties
that are false on cycles. Formally, we consider suitable graph properties; recall that Ck denotes the cycle
of length k:

Definition 40. A graph property Φ is called suitable if there exists k ≥ 3 such that Φ(Ck) = 0.

Our goal in this subsection is to show that certain suitable and minor-closed graph properties yield
non-zero values of the coefficient function for the family of 4-regular 3-group Cayley Graph Expanders
constructed in Theorem 21. This will later allow us to infer hardness by Lemma 32.

For the formal statement, we call a path with two edges a wedge, and we define a wedge-packing of size
k, denoted by kP2, as the graph by a (disjoint) union of k wedges. Furthermore, we say that a graph
property Φ has bounded wedge-number if there is a constant d such that Φ(kP2) = 0 for each k ≥ d.
Otherwise, Φ has unbounded wedge-number.

Now, given a family G = {G1, G2, . . . } of expander graphs, we recall that H[Φ,G] denotes the set of
all Gi such that aΦ,Gi

(>) 6= 0.
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Lemma 41. Let Φ be a minor-closed graph property. If Φ is suitable and of unbounded wedge-number,
then there exists a family G = {G1, G2, . . . } of 4-regular 3-group Cayley Graph Expanders such that H[Φ,G]
is infinite.

Proof. We prove the lemma for the family G = {G1, G2, . . . } constructed in Theorem 21.
Since Φ is suitable, there exists t such that Φ(Ct) = 0. Now choose any i such that the orders of the

groups H1
i , H2

i , H3
i , and H4

i (from Theorem 21) are at least t. We will show that for each such choice
of i, the coefficient function aΦ,Gi

(>) is non-zero. Since, by Theorem 21, the orders of the four groups are
unbounded, the coefficient function will then be non-zero infinitely often, proving that G is an obstruction.

Recall that

aΦ,Gi
(>) =

∑
σ∈L(Φ,Gi)

∏
v∈V (Gi)

(−1)|σv|−1 · (|σv| − 1)! .

Recall further that L(Φ, Gi) is the set of fractures ρ of Gi such that Gi] ρ satisfies Φ.
The graph Gi is 4-regular, and every vertex v ∈ V (Gi) corresponds to a coset of the quotient group Γ/Ni.

Moreover, every v is adjacent to vv0, vv−1
0 , vv1 and vv−1

1 , where v0 and v1 are the generators of Γ/Ni. It
will be convenient to label the edges incident to v by

B= {v, vv0},C= {v, vv−1
0 },M= {v, vv1},O = {v, vv−1

1 }

Thus a fracture of Gi is a tuple ρ = (ρv)v∈V (Gi) of partitions of the set {B,C,M,O}.
Similarly as in Section 5.1.2, we observe that the quotient group Γ/Ni acts on the graph Gi by setting

g ` v := gv for each g ∈ Γ/Ni and v ∈ V (Gi) = Γ/Ni. Moreover, this action is transitive and for each
g ∈ Γ/Ni, the function g ` ? is an automorphism of Gi.

The action ` extends to an action  of Γ/Ni on the set L(Φ, H): Given g ∈ Γ/Ni and ρ ∈ L(Φ, H),
the fracture g  ρ is obtained from ρ by permuting its entries according to the automorphism g ` ?.
Again, similarly as in Section 5.1.2, this action is well-defined since H] ρ is isomorphic to H] (g  ρ).
Thus H] (g  ρ) satisfies Φ if and only if H] ρ does. In particular, setting

f(σ) :=
∏

v∈V (Gi)

(−1)|σv|−1 · (|σv| − 1)! ,

we have that f(σ) = f(ρ) whenever σ and ρ are in the same orbit.
This enables us to rewrite

aΦ,Gi
(>) :=

∑
[ρ]

#[ρ] · f(ρ) ,

where the sum is over all orbits [ρ] of the action. We will proceed by considering aΦ,Gi
(>) mod 3. Recall

that the size of any orbit must divide the order of the group. Since Γ/Ni is a 3-group, only orbits of
size 1, i.e., fixed-points, survive modulo 3. Due to transitivity of the group action on the vertices, the
only fixed-points are fractures ρ for which all ρv are equal. In what follows, we will thus abuse notation
and write e.g. ρ = {{B,C}, {M}, {O}} for the fixed-point ρ in which ρv = {{B,C}, {M}, {O}} for all
v ∈ V (Gi).

We will analyse the contribution to aΦ,Gi
(>) (modulo 3) of any possible fixed-points in the subsequent

series of claims.

Claim 42. If C and B are in the same block of ρ, then ρ /∈ L(Φ, Gi).
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Proof. If C and B are in the same block, then Gi] ρ contains the (simple) cycle Cb given by

e→ v0 → v2
0 → · · · → vb−1

0 → e ,

where b is the order of v0 (and thus equal to the order of H1
i ). By our choice of i, we have b ≥ t.

Consequently Ct ≺ Gi] ρ. Since Φ(Ct) = 0 and Φ is minor-closed, we conclude that Φ(Gi] ρ) = 0 and
thus ρ /∈ L(Φ, Gi).

Claim 43. If M and O are in the same block of ρ, then ρ /∈ L(Φ, Gi).

Proof. Analogously to the previous claim; substitute v0 by v1, and H1
i by H2

i .

Claim 44. {{M,B}, {O,C}} /∈ L(Φ, Gi).

Proof. The fractured graph Gi] {{M,B}, {O,C}} contains the (simple) cycle C2b given by

e→ v−1
1 → v−1

1 v0 → v−1
1 v0v

−1
1 → (v−1

1 v0)2 → · · · → (v−1
1 v0)b−1 → e ,

where b is the order of v−1
1 v0 (and thus equal to the order of H3

i ). By our choice of i, we have 2b ≥ t.
Consequently Ct ≺ Gi] ρ. Since Φ(Ct) = 0 and Φ is minor-closed, we conclude that Φ(Gi] ρ) = 0 and
thus ρ /∈ L(Φ, Gi).

Claim 45. {{M,C}, {O,B}} /∈ L(Φ, Gi).

Proof. Analogously to the previous claim; substitute v−1
1 by v1, and H3

i by H4
i .

The only partitions of {M,O,C,B} not covered by one of the previous four claims are the finest
partition ⊥ = {{M}, {O}, {C}, {B}}, as well as the following four:

ρ1 = {{M,C}, {O}, {B}}
ρ2 = {{M,B}, {O}, {C}}
ρ3 = {{O,C}, {M}, {B}}
ρ4 = {{O,B}, {M}, {C}}

First note that ⊥ ∈ L(Φ, Gi) since Φ has unbounded wedge-number, the fractured graph of ⊥ is a matching
and every matching is a minor of a sufficiently large wedge-packing. However, the contribution from ⊥
still vanishes, since we have

f(⊥) =
∏

v∈V (Gi)

(−1)4−1 · (4− 1)! = 0 mod 3 .

Finally, we observe that Gi] ρj is a wedge-packing for j = 1, . . . , 4. Since Φ is minor-closed and of
unbounded wedge-number, we obtain that Φ(Gi] ρj) = 1 and thus Gi] ρj ∈ L(Φ, Gi) for j = 1, . . . , 4. The
latter implies

aΦ,Gi(>) = 4 ·
∏

v∈V (Gi)

(−1)3−1 · (3− 1)! = 2|V (Gi)| mod 3 ,

concluding the proof, since 2|V (Gi)| 6= 0 mod 3.
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5.3 p-group Cayley Graph Expanders and Forests
While the property of being a forest is minor-closed and will thus be covered by our classification for
minor-closed graph properties, we nevertheless treat this case separately. The reason for the latter is the
fact that the coefficient function of this property turns out to not vanish modulo p for any prime p ≥ 3,
which has strong implications for modular counting as discussed in Section 6.3.

Since the case of 3-group Cayley Graph Expanders was covered in the previous subsection — note
that the property of being a forest is suitable and of unbounded wedge-number — we focus on p ≥ 5 in
what follows.

The crucial ingredients of our proof are the p-group Cayley Graph Expanders with p− 2 generators
constructed in Theorem 24. In particular, the relatively low degree of 2(p− 2) provides us with additional
control over their coefficient in the colour-prescribed homomorphism basis and ultimately allows us to
establish that those Cayley Graph Expanders have non-zero coefficients modulo p.

Let Γ be a finite group, let S0 ⊆ Γ be a set of m generators and S = {g±1 : g ∈ S0} ⊆ Γ be the
associated symmetric set of 2m generators.20 Let G = C(Γ, S) be the associated Cayley graph. Similarly
as in the proof of Lemma 41, we have an action of Γ on G which extends to the fractures of G. We write
L(Φ, G)Γ for the set of fixed-points, i.e., fractures σ which are invariant under this action. As seen before,
we can interpret σ as a partition of the set S into blocks.

We begin with a general construction that will appear prominently later: Let m ≥ 1 and let S and S0
be as above. Then for any set partition σ of S, we define a graph H(σ). It has a vertex wB for each block
B of σ and its set of (multi)edges E(H(σ)) is given by{

{wB , wB
′
} : one multiedge for each g ∈ S0 such that g ∈ B, g−1 ∈ B′

}
. (15)

Note that we see H(σ) as a graph with possible loops and possible multiedges. In particular, the graph
H(σ) has precisely m edges. An alternative construction of H(σ) is by taking the matching Mm on the
vertex set S defined by the involution s 7→ s−1 on S and identify all vertices in the same block of the
partition σ.

The following two lemmas will be needed below:

Lemma 46. Let m ≥ 1 and let S be a finite set with 2m elements. Given any (simple) graph T with m
edges, the number of set partitions σ of S such that H(σ) is isomorphic to T is given by 2mm!/|Aut(T )|.

Proof. Given the data above, consider the two sets

M0 = {σ : σ partition of S such that H(σ) ∼= T} ,

M =
{

(σ, ϕ) : σ partition of S, and ϕ : H(σ) ∼−→ T isomorphism
}
.

In the lemma we want to count the number of elements of M0, but as an auxiliary set we use M , which
explicitly records the data of the isomorphism ϕ : H(σ) ∼−→ T . First, we note that the automorphism
group Aut(T ) acts on M , where η ∈ Aut(T ) sends the pair (σ, ϕ) to (σ, η ◦ ϕ). We claim that the action is
free: since ϕ is an isomorphism, the equality η ◦ ϕ = ϕ implies that η is the identity. Thus the orbits of
the action all have cardinality |Aut(T )|. On the other hand, we observe that the map

M →M0, (σ, ϕ) 7→ σ

20 In particular, we require that for g ∈ S0 we have g−1 /∈ S0.
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is surjective and the fibres of this map are precisely the orbits of the above action of Aut(T ). Indeed, the
surjectivity is clear from the definition and given (σ, ϕ) and (σ, ϕ′) in the fibre of σ, we have that the
automorphism η = ϕ′ ◦ ϕ−1 of T satisfies η · (σ, ϕ) = (σ, ϕ′). Combining these two observations we see

|M | = |M0| · |Aut(T )|.

Thus to conclude we need to show that |M | = 2mm!. To do this observe that we can identify the elements
of S with the vertices of the matching Mm in such a way that there is an edge {g, g−1} for each g ∈ S0.
Given a partition σ of S, note that we can see H(σ) as the quotient of Mm obtained by identifying
the vertices belonging to the blocks of σ. In particular there is a canonical, well-defined quotient map
qσ : Mm → H(σ). Let Sur(Mm, T ) be the set of surjections from Mm to the graph T (where we mean
graph homomorphisms that are surjective, hence bijective, on the set of edges). Then we have a map

G : Sur(Mm, T )→M, ψ 7→ (σ = {ψ−1(w) : w ∈ V (T )}, ψ) ,

where ψ : H(σ) → T is the unique map such that ψ = ψ ◦ qσ. A short computation shows that G is a
bijection with inverse given by

G−1 : M → Sur(Mm, T ), (σ, ϕ) 7→ ϕ ◦ qσ .

Thus the proof is finished once we show that |Sur(Mm, T )| = 2mm!. But this is easy to see: to specify a
surjection from Mm to T we exactly have to give a bijection from the set of edges of Mm to the m edges
of T (for which we have m! possibilities) and for each of these edges we have two choices of orientation in
our map (giving the factor of 2m), because T is a simple graph.

Lemma 47. Given n ≥ 1 we have∑
T tree on
n vertices

1
|Aut(T )| = nn−2

n! , (16)

where the sum goes over isomorphism classes of trees T .

Proof. For the proof we use Cayley’s formula: the number of labeled trees T̂ on n vertices is given by
nn−2. The natural action of the symmetric group Sn on the n vertices induces an action on the set of
labeled trees T̂ and the stabilizer of such a tree is equal to its automorphism group. Moreover, two labeled
trees T̂1, T̂2 are in the same orbit if and only if their underlying unlabeled graphs are isomorphic. Thus

nn−2 =
∑

T tree on
n vertices

|Sn|
|Aut(T )| = n! ·

∑
T tree on
n vertices

1
|Aut(T )|

by the Orbit-Stabilizer-Theorem.

Now recall that G is the Cayley graph of Γ and S. We show that the fractured graph G] σ is a forest
if and only if H(σ) is.

Lemma 48. There exists a natural graph homomorphism

Ψ : G] σ → H(σ), vB 7→ wB (17)

which is surjective and a local isomorphism (i.e. the edges incident to vB map bijectively to the edges at
wB). Moreover, the graph G] σ is a forest if and only if H(σ) is.
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Proof. First we show that Ψ is a well-defined graph homomorphism. Given v ∈ V (G) = Γ, the edges
of G incident to v are given by {v, vg} for g ∈ S. Then, given a block B of σ, the edges incident to vB
inside G] σ are in bijection with B and given by

{vB , (vg)B
′
} for g ∈ B, g−1 ∈ B′ .

Comparing to the edges (15) of H(σ) we see that Ψ is not only a well-defined graph homomorphism but
in fact, as claimed above, a local isomorphism. Finally, the surjectivity (both on vertices and edges) is
also clear.

To see the last claim, first assume that G] σ is not a forest, and let C be a a circular walk without
backtracking21 inside G] σ. Under the homomorphism Ψ it maps to a circular walk Ψ(C) and, since Ψ is
a local isomorphism, there is again no backtracking in Ψ(C). Thus, the graph H(σ) is not a forest.

Conversely let C ′ in H(σ) be a circular walk without backtracking starting at some vertex wB . Choose
a vertex vB0 in the preimage of wB under Ψ and let C in G] σ be the unique lift of the walk C ′. By this
we mean that we start at vB0 and for the first edge taken by the path C ′ from wB , we take the unique edge
incident to vB0 mapping to it. Iterating the process for the subsequent edges of C ′ we obtain the walk C,
which terminates at some vertex vB1 . The whole process can now itself be iterated: we continue the walk
C by concatenating it with the unique lift of C ′ starting this time at vertex vB1 , terminating at vB2 , and
we can continue from there. In this way we can obtain an arbitrarily long walk in the graph G] σ. But
note that this walk involves no backtracking (since the original walk C ′ in H(σ) had no backtracking and
Ψ is a local isomorphism). Thus, since the graph G] σ is finite, the infinite walk must contain a circular
sub-walk which, as seen before, involves no backtracking. Thus G] σ is not a forest.

Proposition 49. Let p ≥ 5 be a prime, Γ a finite p-group, S0 ⊆ Γ a set of q = p− 2 generators such
that S = {g±1 : g ∈ S0} has 2q elements. Then for the property Φ of being a forest, we have aΦ,G(>) 6= 0
mod p.

Proof. Recall that the number aΦ,G(>) is given by

aΦ,G(>) =
∑

σ∈L(Φ,G)

∏
v∈V (G)

(−1)|σv|−1 · (|σv| − 1)! .

As before, when evaluating modulo p, we can reduce to the fractures σ ∈ L(Φ, G)Γ invariant under the
action of Γ. Such σ can be interpreted as partitions of the set S. Rewriting the above formula we have

aΦ,G(>) ≡
∑

σ∈L(Φ,G)Γ

(
(−1)|σ|−1 · (|σ| − 1)!

)|V (G)|
mod p .

Since |V (G)| = |Γ| is a power of p by the assumption that Γ is a p-group, by Fermat’s little theorem we
have u|V (G)| ≡ u mod p for all integers u so that we can remove the exponent |V (G)| in the formula
above. Looking at the index set of the sum, we note that for σ ∈ L(Φ, G)Γ with |σ| > p we have that p
divides the term (|σ| − 1)! inside the sum, so that the corresponding summands vanish modulo p. On
the other hand, for the property Φ of being a forest, we have by theorem 48 that a partition σ of S is
contained in L(Φ, G)Γ if and only if H(σ) is a forest.

The graph H(σ) has |S0| = p− 2 edges and |σ| many vertices, where, as seen above, we can assume
|σ| ≤ p. If H(σ) is a forest, then the number of trees it contains (the connected components) is its Euler

21A walk is a sequence of vertices w0, w1, . . . , w` such that wi−1 and wi are connected by an edge for i = 1, . . . , `. We
say that the walk is without backtracking if there does not exist an i such that wi−1 = wi+1.
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characteristic |V (H(σ))| − |E(H(σ))| = |σ| − (p− 2). For |σ| ≤ p− 2, the graph H(σ) has at least as many
edges as it has vertices, and thus it can never be a forest. We are left with two cases:22

Case I : |V (H(σ))| = |σ| = p− 1, which forces H(σ) ∼= T to be a tree T ,
Case II : |V (H(σ))| = |σ| = p, which forces H(σ) ∼= T1 + T2 to be a union of two trees T1, T2. We
remark for later that, since the total number p of vertices is odd, the two trees T1, T2 cannot be
isomorphic (since one has odd and one has even number of vertices). Therefore we have

|Aut(T1 + T2)| = |Aut(T1)| · |Aut(T2)| . (18)

Denote by LI,LII the set of partitions of S corresponding to the cases I, II above. Then the current status
of the calculation is that

aΦ,G(>) ≡
∑

σ∈LItLII

(−1)|σ|−1 · (|σ| − 1)! mod p

≡
∑
σ∈LI

(−1)p−2 · (p− 2)! +
∑
σ∈LII

(−1)p−1 · (p− 1)! mod p

≡ −|LI| − |LII| mod p . (19)

where we used that p is odd and, due to Wilson’s theorem, we have:

−(p− 2)! ≡ (p− 1) · (p− 2)! ≡ (p− 1)! ≡ −1 mod p .

To count the number of elements σ ∈ LI, we can group them according to the isomorphism class T of
the tree H(σ). Then, by theorem 46 we have

|LI| = 2p−2(p− 2)!
∑

T tree on
p− 1 vertices

1
|Aut(T )| = 2p−2(p− 2)! (p− 1)p−3

(p− 1)! = 2p−2(p− 1)p−4 .

Here in the third equality we used theorem 47. Plugging into the formula above we compute

−|LI| = −2p−2(p− 1)p−4 ≡ −2p−2(−1)p−4 ≡ 2p−1 · p+ 1
2 · (−1)p−3

≡ p+ 1
2 mod p ,

where in the fourth congruence we used Fermat’s little theorem.
We now turn to the sum in Case II. We are counting every forest twice by choosing a numbering T1,

T2 for the two trees in the forest. It is important that never T1 ∼= T2 as remarked above, so that for all
forests we overcount with the factor 2. Then we have

|LII| =
1
2 · 2

p−2(p− 2)!
p−1∑
j=1

∑
T1 tree, j vertices,
T2 tree, p−j vertices

1
|Aut(T1 + T2)|

= 2p−3(p− 2)!
p−1∑
j=1

 ∑
T1 tree, j vertices

1
|Aut(T1)|

 ·
 ∑
T2 tree, p−j vertices

1
|Aut(T2)|


22As a reassurance to the reader: a priori, the graph H(σ) was allowed to have loops or multi-edges. However, any graph
H(σ) having either of those is certainly not a forest (since it has a cycle of length 1 or 2 respectively) and thus from
here on, only standard (simple) graphs appear.
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= 2p−3(p− 2)!
p−1∑
j=1

jj−2

j! ·
(p− j)p−j−2

(p− j)!

= 2p−3
p−1∑
j=1

(
jj−2(p− j)p−j−3 ·

j∏
k=2

p− k
k

)
, (20)

where the first equality uses theorem 46, the second uses the observation (18) and the third uses theorem 47.
In the fourth equation we rearranged the factors of the factorials.

To continue, we observe that the final formula (20) for |LII| in fact is well-defined modulo p. That is,
we never divide by a number divisible by p. Thus we are allowed to evaluate and simplify this expression
modulo p:

−|LII| = −2p−3
p−1∑
j=1

(
jj−2(p− j)p−j−3 ·

j∏
k=2

p− k
k

)
mod p

≡ −1
42p−1

p−1∑
j=1

jj−2(−j)p−j−3 · (−1)j−1 mod p

≡ 1
4

p−1∑
j=1

jp−5(−1)p−5 ≡ 1
4

p−1∑
j=1

jp−5 mod p .

To simplify the sum from j = 1 to p− 1, we observe that j ranges over F×p . The map F×p → F×p , j 7→ 2j is
a bijection. Thus we have

16
p−1∑
j=1

jp−5 ≡ 16
p−1∑
j=1

(2j)p−5 ≡ 16 · 2p−5
p−1∑
j=1

jp−5 ≡ 2p−1
p−1∑
j=1

jp−5 ≡
p−1∑
j=1

jp−5 mod p , (21)

where the last equality is again Fermat’s little theorem. Subtracting the right hand side of (21) from the
left hand side, we see that that p divides 15 ·

∑p−1
j=1 j

p−5. If p > 5, this implies that p divides
∑p−1
j=1 j

p−5

and so by the previous computation we conclude −|LII| ≡ 0 mod p.
We are now ready to plug in our computations in the formula (19) and to conclude the proof. In the

case p = 5 we obtain

aΦ,G(>) ≡ −|LI| − |LII| ≡
5 + 1

2 + 1
4 · 4 ≡ 4 6= 0 mod 5 .

On the other hand, for p > 5 we saw that the contribution from Case II vanishes and thus we have
aΦ,G(>) = (p+ 1)/2 6= 0 mod p. In any case we can conclude that aΦ,G(>) does not vanish modulo p,
finishing the proof.

Corollary 50. Let Φ be the property of being a forest. Then for every prime p ≥ 3 there exists a family
of max{4, 2(p− 2)}-regular p-group Cayley Graph Expanders G = {G1, G2, . . . } such that

aΦ,Gi
(>) 6= 0 mod p

for infinitely many positive integers i.

Proof. The case p = 3 was treated in Section 5.2 (the property of being a forest is suitable and of
unbounded wedge-number). For the case p ≥ 5, we apply the previous proposition to the Cayley Graph
Expanders constructed in Theorem 24.
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5.4 p-group Cayley Graph Expanders and Bipartite Graphs

So far, we only considered minor-closed graph properties. In the current section, we show that our
technique also applies to more general properties, using bipartiteness as an example.

H(σ) No. of σ |σ| Contribution

1 6 −120 · 1

12 5 24 · 12

24 4 −6 · 24

8 4 −6 · 8

6 4 −6 · 6

24 3 2 · 24

4 2 −1 · 4
Total contribution −16

Table 1 List of bipartite graphs H(σ) for m = 3 generators; here we give the isomorphism class of H(σ), the
number of partitions σ with the corresponding isomorphism class, the number of blocks of sigma and the total
contribution to a(Φ, Gi) mod p. The number of possible σ can be computed by enumeration or via a variant of
theorem 46 where the graph is allowed to be a multigraph with loops (using the correct notion of the automorphism
group of such a graph).

Similarly as in the previous section, we will use the graph H(σ) to prove that the property of being
bipartite has non-zero coefficients on Cayley Graph Expanders. The central argument necessary for the
latter is given by the following proposition.

Proposition 51. Let Γ be a finite group of odd order, let S0 ⊆ Γ be a set of m generators and
S = {g±1 : g ∈ S0} ⊆ Γ be the associated symmetric set of 2m generators. Let G = C(Γ, S) be the
associated Cayley graph and let σ be a partition of S. Then, the graph G] σ is bipartite if and only if H(σ)
is.23

23The property of being bipartite extends naturally to graphs with loops and multiedges: a graph H is bipartite if there
is a partition V (H) = L tR of the vertices into two disjoint sets such that for an edge connecting vertices v1, v2, one
of them is in L and one of them is in R. This is easily seen to be equivalent to the property that the graph has no odd
cycle.
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Proof. By theorem 48 there is a well-defined graph homomorphism Ψ : G] σ → H(σ). Thus if H(σ) is
bipartite with a partition V (H(σ)) = LtR of the vertices, then the partition V (G] σ) = Ψ−1(L)tΨ−1(R)
shows that G] σ is bipartite.

For the converse direction, assume that H(σ) is not bipartite. This means that there is a cycle

wB0 , wB1 , . . . , wB` = wB0 ∈ V (H(σ))

in H(σ) of odd length `, which can be specified by a starting vertex wB0 ∈ V (H(σ)) together with a
choice of ` elements g1, . . . , g` ∈ S of the generating set (corresponding to the oriented edges that our
cycle follows). Choose any v ∈ V (G] σ) = Γ then we can lift the cycle above to a walk

vB0 , (v · g1)B1 , . . . , (v · g1 · · · g`)B0 ∈ V (G] σ)

in the graph G] σ. Let o ≥ 1 be the order of the element g1 · · · g` in the group Γ, which must be an odd
number since it divides the order of the group which is assumed to be odd. Then we can repeat the lifting
procedure above o times (always starting the lift at the endpoint of the previous walk) to obtain a walk in
G] σ of length o · ` which is odd. The endpoint of this walk is the vertex

(v · (g1 · · · g`)o)B0 = vB0

that we started at, so indeed we found a walk of odd length (which must contain a cycle of odd length)
and so the graph G] σ is not bipartite.

Proposition 52. Let Φ be the property of being bipartite, let p ≥ 3 be a prime such that there exists a
family G = {G1, G2, . . . } of (ni, 6, c)-expanders for some positive c such that the Gi are Cayley-graphs for
some p-groups Γi. Then

aΦ,Gi
(>) 6= 0 mod p

for all positive integers i.

Proof. Since the graph Gi is a 6-regular Cayley graph for Γi, there is a set S0 ⊆ Γi of three generators
such that Gi = C(Γ, S) for S = {g±1 : g ∈ S0}.

As before, when evaluating aΦ,Gi
(>) modulo p, we can reduce to the fractures σ ∈ L(Φ, Gi)Γ invariant

under the action of Γ. Such a σ can be interpreted as a partition of the set S. Rewriting the above
formula we have

aΦ,Gi
(>) ≡

∑
σ∈L(Φ,Gi)Γi

(
(−1)|σ|−1 · (|σ| − 1)!

)|V (G)|
mod p .

Since |V (G)| = |Γ| is a power of p by the assumption that Γ is a p-group, by Fermat’s little theorem we
have u|V (G)| ≡ u mod p for all integers u so that we can remove the exponent |V (G)| in the formula
above:

aΦ,Gi
(>) ≡

∑
σ∈L(Φ,Gi)Γi

(−1)|σ|−1 · (|σ| − 1)! mod p . (22)

By theorem 51, the graph Gi] σ is bipartite if and only if H(σ) is. In table 1 we list all possible isomorphism
classes of bipartite graphs H(σ) as σ varies through the partitions of the set S of size 6 – here we use that
our graphs are 6-regular. Summing all the contributions to (22) we see aΦ,Gi

(>) = −16 6= 0 mod p .
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Note that, for p = 5, a family of 6-regular expanders required in the previous proposition exists by
Theorem 24. In combination with Lemma 32, those expanders will thus ultimately allow us to prove
hardness of counting bipartite k-edge subgraphs.

Remark 53. Instead of considering 6-regular expanders as above, we could consider more generally
(2m)-regular expanders for some m ≥ 2 and use the same method as in the proof of theorem 52 to compute
aΦ,Gi

(>) modulo p. The results for the first few m, computed using the software SageMath [86], are as
follows:

m 2 3 4 5 6
aΦ,Gi (>) mod p 0 -16 192 -16576 1109760

From this we see two things: firstly, 4-regular expanders (such as used in Section 5.1.2) cannot be used to
show hardness since for m = 2 the value of aΦ,Gi(>) vanishes modulo p for all p. Secondly, for p = 2 the
number aΦ,Gi

(>) vanishes for all m that we checked. If it vanishes for all m, then the question arises
whether the problem of counting bipartite k-edge subgraphs modulo 2 might actually be fixed-parameter
tractable, or at least allow for a significant improvement over the brute-force algorithm.

6 Hardness of Exact Counting

Building upon our analysis of the coefficient function of the torus and the Cayley Graph Expanders above,
we are now able to present the proofs of our results on #EdgeSub(Φ) with respect to exact counting.

6.1 Minor-Closed Properties
We begin with the classification for minor-closed graph properties. Our goal is to show that #EdgeSub(Φ)
is hard whenever Φ is minor-closed, not trivially true, and of unbounded matching number. Our proof
relies on Lemma 32 and the analysis of the coefficient function in the previous section. We need to treat
the following cases separately; recall that F(Φ) denotes the set of (minimal) forbidden minors of Φ.

(I) Each graph in F(Φ) has degree at least 3.
(II) Φ has bounded wedge-number.
(III) Φ is suitable and has unbounded wedge-number.
(IV) Φ is unsuitable and F(Φ) contains a graph of degree at most 2.

Observe that the cases are exhaustive.

6.1.1 Case (I): Forbidden minors of degree at least 3

Lemma 54. Let Φ denote a minor-closed graph property which is not trivially true, and assume
that F(Φ) does not contain a graph of degree at most 2. Then the problem #EdgeSub(Φ) is #W[1]-hard
and, assuming ETH, cannot be solved in time

f(k) · |G|o(k/ log k) ,

for any function f .

Proof. Let G = {G1, G2, . . . } denote the family of Cayley Graph Expanders given in Section 5.1.2 We
show that H[Φ,G] is infinite — this proved the claim by Lemma 32. Since Φ is not trivially true, the set
F is non-empty. Thus let F denote an arbitrary graph in F . By theorem 7, there is an index j such that
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for all i ≥ j, the graph Gi contains the complete graph on #V (F ) vertices (and thus also F ) as a minor.
In other words, Φ(Gi) = 0 for all i ≥ j. By theorem 39, we have that for all i ≥ 2

aΦ,Gi
(>) = Φ(a0 · Cb0 + a1 · Cb1) + Φ(a2 · C2b2) + Φ(a3 · C2b3) + Φ(Gi) mod 2 .

Hence, for i ≥ max{2, j}, we have

aΦ,Gi
(>) = Φ(a0 · Cb0 + a1 · Cb1) + Φ(a2 · C2b2) + Φ(a3 · C2b3) mod 2 .

Finally, we rely on the premise of the lemma, implying that each graph in F has a vertex of degree at
least 3. Consequently, no graph in F can be a minor of a cycle-packing. Thus Φ(a0 · Cb0 + a1 · Cb1) =
Φ(a2 · C2b2) = Φ(a3 · C2b3) = 1, and, consequently, aΦ,Gi

(>) = 1 mod 2 for each i ≥ max{2, j}.

6.1.2 Case (II): Properties of bounded wedge-number
For properties of bounded wedge-number (but unbounded matching-number), we do not rely on complexity
monotonicity, but instead on a more classical reduction from counting (edge-colourful) k-matchings.
Furthermore, we prove hardness for the coloured version, which will be required in an intermediate step of
case (IV).

Recall that a wedge, denoted by P2, is a path with two edges, and a k-wedge-packing, denoted by kP2,
is the disjoint union of k wedges. Recall further that a graph property Φ has bounded wedge-number if
there exists a constant d such that Φ(kP2) = 0 for all k ≥ d.

In what follows, we write #ColMatch for the problem of counting edge-colourful k-matchings, that
is, on input a graph G with k edge-colours, the goal is to compute the number of k-matchings in G

that contain each colour precisely once. The problem #ColMatch is known to be hard [26, Theorem
III.1].24 Observe that #ColMatch is equivalent to the problem #ColEdgeSub(Ψ) for the property Ψ
of excluding P2 as a minor.

Lemma 55. Let Φ be a minor-closed graph property. If Φ has unbounded matching number, but bounded
wedge-number, then #ColEdgeSub(Φ) is #W[1]-hard and, assuming ETH, cannot be solved in time

f(k) · |G|o(k/ log k) ,

for any function f .

Proof. We construct a parameterized Turing-reduction from #ColMatch to #ColEdgeSub(Φ) such
that, additionally, on input G with k edge-colours, every oracle query (G′, k′) satisfies |G′| ∈ O(|G|) and
k′ ∈ O(k). Both #W[1]-hardness and the conditional lower bound then transfer from #ColMatch
(see [24, Section 5.2] and [26, Theorem III.1]).

Since Φ has bounded wedge-number, we have Φ(dP2) = 0 for some non-negative integer d. Let s be
the minimum non-negative integer such that

∃b ≥ 0 : Φ(sP2 +Mb) = 0 .

We have that s ≤ d (for b = 0), and observe further that s > 0, as Φ has unbounded matching number
and is minor-closed. Let furthermore b(s) be the minimum over all b such that Φ(sP2 +Mb) = 0. This
enables us to construct the reduction as follows:

24To be precise, [26, Theorem III.1] establishes hardness if G has at least k edge-colours. The case of G having precisely
k edge-colours is shown to be hard in [24, Section 5.2].
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Let G be the input of #ColMatch, that is, G has k edge-colours and the goal is to compute the
number of edge-colourful k-matchings in G.

We setG′ := G+(s−1)P2+Mb(s) and colour (s−1)P2+Mb(s) with 2(s−1)+b(s) = #E((s−1)P2+Mb(s))
fresh colours. Setting k′ := k + 2(s− 1) + b(s) we observe that every k′-edge-colourful set A′ of edges of
G′ decomposes into

A′ = A ∪̇ E((s− 1)P2 +Mb(s)) ,

where A is a k-edge-colourful set of edges in G. We claim that the number of edge-colourful k-matchings
in G is equal to #ColEdgeSub(Φ, k′ → G′).

To verify the latter claim, we prove that Φ(G′[A′]) = 1 if and only if A is a matching: If A is a
matching, then Φ(G′[A′]) = Φ((s− 1)P2 +Mk+b(s)) = 1, by our choice of s. If A is not a matching, then
G[A] contains a single wedge P2 as a subgraph. Consequently G′[A′] contains sP2 + Mb(s) as a minor.
Then Φ(G[A′]) = 0 by our choice of b(s).

Our reduction thus computes G′ and returns #ColEdgeSub(Φ, k′ → G′) by querying the oracle. Since
s, and thus b(s) are fixed and independent of the input, we additionally obtain the desired conditions on
the size of G′ and k′, which concludes the proof.

6.1.3 Case (III): Suitable properties of unbounded wedge-number
For minor-closed graph properties that are suitable and of unbounded wedge-number, we will use our
4-regular 3-group Cayley Graph Expanders, the coefficients of which have been analysed in Lemma 41.
Similarly as in case (II), we will establish hardness for the coloured version.

Lemma 56. Let Φ be a minor-closed graph property. If Φ is suitable and of unbounded wedge-number,
then #ColEdgeSub(Φ) is #W[1]-hard and, assuming ETH, cannot be solved in time

f(k) · |G|o(k/ log k) ,

for any function f .

Proof. Follows immediately by Lemma 41 and Lemma 32.

6.1.4 Case (IV): Unsuitable properties
In what follows, we write F2(Φ) for the set of forbidden minors of Φ that have degree at most 2. We show
that an unsuitable minor-closed property Φ can be reduced from a suitable property Ψ whenever F2(Φ) is
non-empty.

Lemma 57. Let Φ be a minor-closed graph property. If F2(Φ) 6= ∅, but Φ is unsuitable, then there
exists a graph property Ψ such that

1. Ψ is minor-closed and of unbounded matching number,
2. Ψ is suitable, and
3. #ColEdgeSub(Ψ) ≤fpt

T #ColEdgeSub(Φ) and, on input G and k, every oracle query (G′, k′) of
the reduction satisfies |G′| ∈ O(|G|) and k′ ∈ O(k).

Proof. Since Φ is not suitable, it is true on arbitrarily large cycles Ck. Since any finite union of paths is a
minor of a sufficiently large cycle, any such union also satisfies Φ. Now any graph F ∈ F2 is a union of
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circles and paths25 and by the argument above, it must contain at least one circle. Using again that Φ is
not suitable, we infer that each graph in F2(Φ) is the union of a cycle and a non-empty path-cycle-packing.
Since F2(Φ) 6= ∅, we can choose F ∈ F2(Φ) such that the number of cycles in F is minimal among all
graphs in F2(Φ). Thus F = C +R for a cycle C and a (non-empty) path-cycle-packing R. We define

Ψ(H) = 1 :⇔ Φ(H +R) = 1 .

Let us now prove 1. - 3.:

1. First assume that Ψ(H) = 1 and H ′ ≺ H; thus H ′ +R ≺ H +R. Then

Ψ(H) = 1⇒ Φ(H +R) = 1⇒ Φ(H ′ +R) = 1⇒ Ψ(H ′) = 1 .

The second implication holds as Φ is minor-closed. Consequently, Ψ is minor-closed as well.
Next assume for contradiction that Ψ has bounded matching number. Then there exists a positive
integer d such that Ψ(Md) = 0 which implies that Φ(Md +R) = 0. Since Md +R is of degree 2, and
every minor of a graph of degree 2 has degree at most 2, one of the graphs in F2(Φ) must be a minor
of Md + R. Observe that every minor of Md + R contains strictly fewer cycles than F (= C + R).
However, we choose F in such a way that the number of its cycles is minimal among all graphs in
F2(Φ), which yields the desired contradiction.

2. Since 0 = Φ(F ) = Φ(C +R) we immediately obtain that Ψ(C) = 0. Hence Ψ is suitable.
3. Let r = #E(R). The reduction is straightforward: Given G with k edge-colours for which we wish to

compute #ColEdgeSub(Ψ, k → G), we construct G′ as follows: We add a disjoint copy of R to G and
colour the edges of R arbitrarily with r fresh colours, yielding a k + r-edge-coloured graph G′ of size
|R|+ |G| ∈ O(|G|) — recall that |R| is a constant. Then every k + r-edge-colourful subset of edges in
G′ consists precisely of all edges of R and a k-edge-colourful subset of edges in G. By definition of Ψ,
we immediately obtain that

#ColEdgeSub(Ψ, k → G) = #ColEdgeSub(Φ, k + r → G′) ,

which completes the reduction.

With all cases verified, the proof is concluded.

6.1.5 Proof of the Classification
Theorem 58. Let Φ be a minor-closed graph property. If Φ is trivially true or of bounded matching

number, then #EdgeSub(Φ) is fixed-parameter tractable. Otherwise, #EdgeSub(Φ) is #W[1]-hard and,
assuming ETH, cannot be solved in time

f(k) · |G|o(k/ log k)

for any function f .

Proof. The (fixed-parameter) tractability part of the classification was shown in Proposition 3.
Thus assume that Φ is not trivially true and of unbounded matching number. Then F(Φ) is non-empty.

If F2(Φ) is empty, then the result follows from Theorem 54. Hence consider the case F2(Φ) 6= ∅.

25We see an isolated vertex as a path of length 0.
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We will show that the colourful version #ColEdgeSub(Φ) satisfies the desired lower bound; a (tight)
reduction to the uncoloured version #EdgeSub(Φ) given by Lemma 31.

If Φ has bounded wedge-number, then we apply Lemma 55. If Φ is of unbounded wedge-number and
suitable, then we apply Lemma 56. If Φ is unsuitable, then we apply Lemma 57 which yields a (tight)
reduction

#ColEdgeSub(Ψ) ≤fpt
T #ColEdgeSub(Φ) ,

for a minor-closed and suitable property Ψ of unbounded matching number. Now depending on whether
Ψ has bounded wedge-number we, again, either obtain hardness by Lemma 55 or by Lemma 56.

6.2 Selected Natural Properties and Criteria for Hardness
In this section, we will first present a concise criterion for graph properties Φ which, if satisfied, immediately
yields #W[1]-hardness of #EdgeSub(Φ). Afterwards, we present hardness results for a selected set of
properties listed in Main Theorem 2. In what follows, we write `H for the graph consisting of ` disjoint
copies of H.

We begin with a criterion that relies on the coefficient of the torus which was stated as theorem 4 and
which we restate for convenience.

Theorem 4. Let Φ denote a computable graph property and assume that infinitely many primes `
satisfy the equation26

−6Φ(M2`2) + 4Φ(M`2 + `C`) + 8Φ(`2P2)− Φ(2`C`)− 2Φ(`C2`)− 4Φ(`S`) + Φ(}}}`) 6= 0 mod ` . (3)

Then #EdgeSub(Φ) is #W[1]-hard.

Proof. By theorem 38, we have that H[Φ,}}}] is infinite for Φ that satisfy (3). #W[1]-hardness thus follows
by Lemma 32.

While easier to apply, recall that the torus cannot yield (almost) tight conditional lower bounds. If
such fine-grained lower bounds are sought, it is necessary to choose a proper family of Cayley Graph
Expanders as demonstrated by the examples given in Main Theorem 2, which we restate for convenience.

Main Theorem 2. Consider the following graph properties.

ΦC(H) = 1 if and only if H is connected.
ΦB(H) = 1 if and only if H is bipartite.
ΦH(H) = 1 if and only if H is Hamiltonian.
ΦE(H) = 1 if and only if H is Eulerian.
ΦCF (H) = 1 if and only if H is claw-free.

For each Φ ∈ {ΦC ,ΦB ,ΦH ,ΦE ,ΦCF }, the problem #EdgeSub(Φ) is #W[1]-hard. Further, unless ETH
fails, #EdgeSub(Φ) cannot be solved in time f(k) · |G|o(k/ log k) for any function f .

Proof. We begin with the properties ΦC ,ΦH ,ΦE , and ΦCF ; the case of bipartiteness is proved separately
further below. Our proof proceeds by applying theorem 39 to show aΦ,Gi

(>) 6= 0 for each of the properties
Φ, allowing us to conclude using theorem 32.

26We write + for (disjoint) graph union and `H for the graph consisting of ` disjoint copies of H. Further, we set
Φ(H) = 1 if H satisfies Φ and Φ(H) = 0 otherwise.
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For Φ ∈ {ΦC ,ΦH ,ΦE}, observe that the graphs a0 · Cb0 + a1 · Cb1 , a2 · C2b2 , and a3 · C2b3 are each
disconnected (and hence not Hamiltonian, nor Eulerian either) if ai ≥ 8 for i = 1, 2, 3. Further, the graphs
Gi are connected since Cayley graphs are connected27 Thus, the graphs Gi are also Eulerian, since they
are 4-regular. Moreover, Cayley graphs of p-groups are Hamiltonian [92]. Thus, by theorem 39, we have
that for i ≥ 2:

aΦ,Gi(>) = Φ(a0 · Cb0 + a1 · Cb1) + Φ(a2 · C2b2) + Φ(a3 · C2b3) + Φ(Gi) = 1 mod 2 .

Consequently, H[Φ,G] is infinite if Φ ∈ {ΦC ,ΦH ,ΦE}. By theorem 32, we obtain both, #W[1]-hardness
and the conditional lower bound.

For Φ = ΦCF we can perform a similar analysis: observe that cycle-packings are always claw-free. On
the other hand, for each i > 2, the graphs Gi do contain an (induced) claw. To see this, let eKi

denote
the neutral element of Ki and consider the vertices of Gi associated to eKi , v0, v1 and v−1

1 . While eKi

is adjacent to the remaining three cosets, it is easy to check by hand that v0, v1 and v−1
1 constitute an

independent set in Gi.
Consequently, by theorem 39, we have that for i > 2:

aΦ,Gi
(>) = Φ(a0 · Cb0 + a1 · Cb1) + Φ(a2 · C2b2) + Φ(a3 · C2b3) + Φ(Gi) = 3 + 0 = 1 mod 2 .

Thus, H[ΦCF ,G] is infinite. By theorem 32, we hence obtain both #W[1]-hardness and the conditional
lower bound.

Finally, for the property Φ = ΦB of being bipartite, we invoke Proposition 52 and use the 6-regular
5-group Cayley Graph Expanders given by Theorem 24. Again, in combination with Lemma 32, this
yields the desired lower bounds.

6.3 A Comment on Modular Counting
It was shown in the conference version [70] that our technique of proving lower bounds for #EdgeSub(Φ)
via the coefficients of Cayley Graph Expanders in the homomorphism basis also applies to modular
counting. More precisely, let us write #pEdgeSub(Φ) for the problem of, given G and k, computing
#EdgeSub(Φ, k → G) mod p. Observing that the reduction sequence in Section 4 applies to counting
modulo p as well28 and relying on known hardness results for counting colour-prescribed homomorphisms
modulo p, the following criterion was established for #pEdgeSub(Φ):

Lemma 59 ([70]). Let Φ be a computable graph property and let furthermore G = {G1, G2, . . . } be a
family of (ni, d, c)-expanders for some positive integers c and d. If for infinitely many i we have

aΦ,Gi(>) 6= 0 mod p ,

then #pEdgeSub(Φ) is ModpW[1]-hard29 and, assuming the randomised Exponential Time Hypothesis,
cannot be solved in time f(k) · |G|o(k/ log k), for any function f .

Due to the length of this paper, we decided to not include an introduction to parameterized mod-
ular counting. However, we wish to emphasize one particular consequence of our treatment of forests

27Recall that our definition of Cayley graphs enforces the set S to be a set of generators of the group.
28The matrix in Lemma 29 is triangular with 1s on the diagonal and thus non-singular over GF[p] for any prime p.
29 ModpW[1]-hard problems are at least as hard as counting k-cliques modulo p, with respect to parameterized Turing-

reductions.
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in Section 5.3 on the complexity of modular counting: Let us write #pForests for the problem of, given
a graph G and a positive integer k, computing the number of forests with k edges in G, modulo p; the
parameterization is given by k. Similarly, we write #pBases for the problem of, given a linear matroid M
of rank k in matrix representation, computing the number of bases of M , modulo p; the parameterization
is given by the rank k of M .

Theorem 60. Given a prime number p ≥ 3, the problems #pForests and #pBases are ModpW[1]-
hard and, assuming the randomised ETH, cannot be solved in time

f(k) · |G|o(k/ log k) (resp. f(k) · |M |o(k/ log k)) ,

for any function f .

Proof. We prove the lower bound for #pForests; a parsimonious reduction to #pBases follows easily
by (deterministic) polynomial-time matroid truncation: Given a graph G, the number of k-forests in G
is equal to the number of k-independent sets in the graphic matroid M(G) (which is a linear matroid).
A k-truncation of M(G) is a matroid M of rank k whose bases are in one-to-one correspondence to the
k-independent sets of M(G), and thus, to the k-forests in G. We refer the reader to [59] for a detailed
exposition of k-truncations and, in particular, for a deterministic algorithm which, on input a linear
matroid and a positive integer k, computes a (linear) k-truncation of the matroid in polynomial time.

Now observe that #pForests is equal to the problem #pEdgeSub(Φ) for Φ being the property of
being a forest. Hence we can apply Lemma 59 to the Cayley Graph Expanders given by Corollary 50 —
the latter satisfy that the coefficients are aΦ,Gi(>) are non-zero modulo p infinitely often.

We leave it as an open question whether or not the case of p = 2, that is, counting k-forests modulo 2,
is fixed-parameter tractable.

7 Approximate Counting of Small Subgraph Patterns

Recall that we identified #EdgeSub(Φ) as an inherently hard problem in case we aim for exactly counting
the solutions. In particular, we established #W[1]-hardness for any non-trivial minor-closed property Φ of
unbounded matching number. For this reason, the section below deals with the complexity of approximating
the number of solutions. Tractability of approximating the solutions of parameterized counting problems
is given by the notion of a fixed-parameter tractable randomized approximation scheme.

Definition 61 (FPTRAS [6, 65]). Let (P, κ) denote a parameterized counting problem. A fixed-parameter
tractable randomized approximation scheme “FPTRAS” for (P, κ) is a randomized algorithm A that,
given x ∈ Σ∗ and rational numbers ε > 0 and 0 < δ < 1 computes an integer z such that

Pr[ (1− ε)P (x) ≤ z ≤ (1 + ε)P (x) ] ≥ 1− δ .

The running time of A must be bounded by f(κ(x)) ·poly(|x|, 1/ε, log(1/δ)) for some computable function f .

Indeed, we can show that #EdgeSub(Φ) allows an FPTRAS for every minor-closed property Φ. In
fact, we prove the following general criterion, which implies the existence of an FPTRAS for minor-closed
properties.

Main Theorem 4. Let Φ denote a computable graph property. If Φ satisfies the matching criterion
and the star criterion, or if Φ has bounded treewidth, then #EdgeSub(Φ) admits an FPTRAS.
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We start with the case of Φ satisfying both the matching and the star criterion. For readers familiar
with the meta-theorem of Dell, Lapinskas and Meeks [30], we point out that their method cannot be used
to achieve the desired goal in the current setting: the results in [30, Section 1.3] imply that #EdgeSub(Φ)
admits an FPTRAS whenever the edge-colourful decision version of EdgeSub(Φ) is fixed-parameter
tractable; in the latter, we expect as input a graph G with k different edge-colours and the goal is to
decide whether there is a subset A of edges containing each colour exactly once such that G[A] satisfies Φ
(w.r.t. the underlying uncoloured graph). Thus, if we could show that the edge-colourful decision version
is fixed-parameter tractable for properties satisfying the matching and the star criterion, Main Theorem 4
would follow.

However, the latter cannot be true (unless FPT = W[1]) since the following property Φ induces a
W[1]-hard colourful decision version, while satisfying both the matching and the star criterion: Φ(H) = 1
if and only if H is either a star, a matching, or the union of a clique and a triangle. W[1]-hardness follows
from a reduction from finding edge-colourful k-cliques in a graph, which is known to be W[1]-hard.30 The
reduction is straightforward: given a graph G with

(
k
2
)
edge colours, we construct a graph G′ by adding a

triangle with three fresh colours to the graph. Then G′ contains a colourful
(
k
2
)

+ 3-edge-subset A that
satisfies Φ if and only if G contains an edge-colourful k-clique. The latter is true since any colourful(
k
2
)

+ 3-edge-subset must contain the triangle with the three fresh colours and can thus neither induce a
star, nor a matching.

Being unable to rely on the colourful decision version, we thus use a different approach using Ramsey’s
Theorem, similarly to the one in [65]. More precisely, we use the following consequence:

Lemma 62. Let k ≥ 4 denote a positive integer and let G denote a graph with at least R(k, k) edges.
Then G contains either K1,k or Mk as a subgraph.

Proof. We apply Ramsey’s Theorem to the line graph L(G) of G: The vertices of L(G) are the edges
of G, and two vertices e and e′ of L(G) are adjacent if and only if e ∩ e′ 6= 0. Sine L(G) contains at least
R(k, k) vertices, Ramsey’s Theorem implies that L(G) either contains an independent set of a clique of
size k. Note that a k-independent set of L(G) corresponds to a k-matching in G, and that a k-clique
in L(G) corresponds to a star K1,k in G; the latter requires that k ≥ 4 since the line graph of a triangle is
a triangle (and thus a clique) as well.

The subsequent observation enables our Monte-Carlo algorithm to only rely on “FPT-many” samples:

Lemma 63. Let k ≥ 4 denote a positive integer and let G denote a graph with at least R(k, k) edges.
Assume a subset A of k edges is sampled uniformly at random. We have

Pr[G[A] ∼= Mk ∨G[A] ∼= K1,k ] ≥
(
R(k, k)
k

)−1
.

Proof. Set m = |E(G)| and r = R(k, k). It is convenient to assume that A is sampled as follows: we first
choose r edges u.a.r., denote this set by S, and afterwards we obtain A by choosing k edges among S
u.a.r.; of course, we need to show that this yields a uniform distribution. Let B denote any k-edge subset
of G. By the law of total probability, we have that

Pr[A = B ] =
∑

T∈(E(G)
r )

Pr[S = T ] · Pr[A = B | S = T ]

30The vertex-colourful clique problem is W[1]-hard (see Chapter 13 in [27]) and reduces to the edge-colourful clique
problem by assigning an edge {u, v} the colour {c(u), c(v)}, where c(u) and c(v) are the vertex-colours of u and v.
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=
∑

T∈(E(G)
r )

(
m

r

)−1
· Pr[A = B | S = T ] .

Note that Pr[A = B | S = T ] =
(
r
k

)−1 if B ⊆ T , and Pr[A = B | S = T ] = 0 otherwise. Consequently

Pr[A = B ] = #{T ⊆ E(G) | B ⊆ T ∧ #T = r} ·
(
m

r

)−1(
r

k

)−1

=
(
m− k
r − k

)(
m

r

)−1(
r

k

)−1
=
(
m

k

)−1
.

Now let E denote the event G[A] ∼= Mk ∨G[A] ∼= K1,k and note that for every r-edge subset T of G we
have that Pr[ E | S = T ] ≥

(
r
k

)−1 since, by the previous lemma, G[T ] contains either Mk or K1,k as a
subgraph. We conclude that Pr[ E ] is equal to

∑
T∈(E(G)

r )
Pr[S = T ] · Pr[ E | S = T ] =

(
m

r

)(
m

r

)−1
· Pr[ E | S = T ] ≥

(
r

k

)−1
,

which concludes the proof.

For our FPTRAS, we use the following (consequence of a) Chernoff bound:

Theorem 64 (see Theorem 11.1 in [68]). Let X1, . . . , Xt denote independent and identically distributed
indicator random variables with expectation η = E[Xi], and let 0 < ε, δ < 1 denote positive rationals. If
t ≥ (3 ln(2/δ))/(ε2η), then

Pr
[ ∣∣∣∣∣1t ·

t∑
i=1

Xi − η

∣∣∣∣∣ < εη

]
≥ 1− δ .

Lemma 65. Let Φ denote a computable graph property satisfying both, the matching criterion and the
star criterion. Then #EdgeSub(Φ) has an FPTRAS.

Proof. By assumption, there is a constant c′ such that Φ is true for all matchings and stars of size at
least c′; we set c = max(c′, 4). Our FPTRAS A is constructed as follows: If k < c or if |E(G)| ≤ R(k, k),
then we solve the problem (exactly) by the naive brute-force algorithm. Otherwise, we take(

R(k, k)
k

)
· 3 ln(2/δ)

ε2

many independent samples of k-edge sets A of G, each taken uniformly at random. Finally, we output
the fraction of those samples A such that Φ(G[A]) = 1. Consult Algorithm 1 for a visualization as
pseudo-code.
Let us first argue about the running time: if k < c then the brute force algorithm takes time at most |G|c,31

and if |E(G)| ≤ R(k, k) then the brute force algorithm takes time at most |G|+R(k, k)k. Otherwise, we
iterate through the loop t times, and each iteration can clearly be done in time f ′(k) · poly(|G|) for some
computable function f ′ — note that the factor f ′(k) depends on the complexity of verifying whether

31 |G| rather than |E(G)| since G might contain many isolated vertices.
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MatchingsAndStarsFPTRAS(G, k, ε, δ)
if k < c or |E(G)| ≤ R(k, k) then

Solve the problem exactly by brute force;
end
else

X ← 0; t←
(
R(k,k)
k

)
· 3 ln(2/δ)

ε2 ;
for i← 1 to t do

Sample a k-edge subset A of G uniformly at random;
if Φ(G[A]) = 1 then X ← X + 1;

end
return X

t ·
(|E(G)|

k

)
;

end
end
Algorithm 1 An FPTRAS for #EdgeSub(Φ), where Φ satisfies the matching and the star criterion.

Φ(G[A]) holds, which might require super-polynomial time in |G[A]| ∈ O(k). The overall running time is
thus bounded by

max
{
|G|c, |G|+R(k, k)k,

(
R(k, k)
k

)
· (3 ln(2/δ))/ε2 · f ′(k) · poly(|G|)

}
,

which is bounded by f(k) · poly(|G|, 1/ε, log(1/δ)) for some computable function f .
Next note that correctness is trivial in case the brute force algorithm is executed. Hence assume

that k ≥ c and |E(G)| > R(k, k). To avoid notational clutter, we set r := R(k, k) and m := |E(G)|. Now
let Xi denote the indicator variable defined to be 1 if the i-th sample, denoted Ai, satisfies Φ(G[Ai]) = 1,
and Xi = 0 otherwise. Observe that E[Xi] = #EdgeSub(Φ, k → G) ·

(
m
k

)−1 for all i. In what follows, we
thus just set η := E[Xi]. Since Φ is true for Mk and K1,k, and by theorem 63 we furthermore have

η = Pr[ Φ(G[A]) = 1 ] ≥ Pr[G[A] ∼= Mk ∨G[A] ∼= K1,k ] ≥
(
r

k

)−1
.

Consequently, t ≥ (3 ln(2/δ))/(ε2η). By the previous Chernoff bound, we thus have

Pr
[ ∣∣∣∣∣1t ·

t∑
i=1

Xi − η

∣∣∣∣∣ < εη

]
≥ 1− δ .

Finally, recall that X =
∑t
i=1Xi and observe that∣∣∣∣∣1t ·

t∑
i=1

Xi − η

∣∣∣∣∣ < εη

⇒

∣∣∣∣∣Xt − #EdgeSub(Φ, k → G)(
m
k

) ∣∣∣∣∣ < ε · #EdgeSub(Φ, k → G)(
m
k

)
⇒
∣∣∣∣Xt ·

(
m

k

)
−#EdgeSub(Φ, k → G)

∣∣∣∣ < ε ·#EdgeSub(Φ, k → G) .

We conclude the proof by pointing out that the latter implies

(1− ε) ·#EdgeSub(Φ, k → G) ≤ X

t
·
(
m

k

)
≤ (1 + ε) ·#EdgeSub(Φ, k → G) .
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For the case of Φ having bounded treewidth, we rely on the following result of Arvind and Raman; to
this end, given a fixed positive integer T , let #Sub(T ) denote the problem that, on input a graph H of
treewidth at most T and an arbitrary graph G, requires to compute #Sub(H → G).

Theorem 66 ([6]). For each positive integer T , there is an FPTRAS for #Sub(T ) if parameterized by
the size of the graph H.

Lemma 67. Let Φ denote a computable graph property of bounded treewidth. Then #EdgeSub(Φ)
admits an FPTRAS.

Proof. By assumption, there is a constant T such that the treewidth of each graph H with Φ(H) = 1 is
at most T . Define g(k) := |Φk| and observe that g is computable as Φ is.

Recall from equation (5) that for each G and k we have

#EdgeSub(Φ, k → G) =
∑
H∈Φk

#Sub(H → G)

We thus just use the FPTRAS from theorem 66 to approximate (with probability 1− δ/g(k)) each term
#Sub(H → G) with H ∈ Φk and output the sum given by the previous equation.

Observe that approximating each term #Sub(H → G) takes time at most

f ′(|H|) · poly(|G|, 1/ε, log(g(k)/δ)),

for some computable function f ′.
Since each H ∈ Φk has k edges, the overall running time is thus clearly bounded by

f(k) · poly(|G|, 1/ε, log(δ))

for some computable function f—note that f depends on Φ, f ′ and g, but the latter three are independent
of the input. Now let r denote the output of our algorithm. It remains to show that

Pr[ (1− ε) ·#EdgeSub(Φ, k → G) ≤ r ≤ (1 + ε) ·#EdgeSub(Φ, k → G) ] ≥ 1− δ .

Write rH for the output of the FPRAS from theorem 66 on input G, H, ε, and δ/g(k). Then

r =
∑
H∈Φk

rH ,

and the following holds for each H ∈ Φk

Pr[ (1− ε) ·#Sub(H → G) ≤ rH ≤ (1 + ε) ·#Sub(H → G) ] ≥ 1− δ/g(k) .

Since the outcomes rH are independent and g(k) = |Φk|, we have

Pr[ ∀H ∈ ΦH : (1− ε) ·#Sub(H → G) ≤ rH ≤ (1 + ε) ·#Sub(H → G) ]
≥ (1− δ/g(k))g(k) ,

which is at most (1− δ) by Bernoulli’s inequality.
Consequently, with probability at least (1− δ), we have that

(1− ε) ·#EdgeSub(Φ, k → G) = (1− ε)
∑
H∈Φk

#Sub(H → G)



61 Parameterized Counting and Cayley Graph Expanders

=
∑
H∈Φk

(1− ε) ·#Sub(H → G)

≤
∑
H∈Φk

rH (= r)

≤
∑
H∈Φk

(1 + ε) ·#Sub(H → G)

= (1 + ε)
∑
H∈Φk

#Sub(H → G)

= (1 + ε) ·#EdgeSub(Φ, k → G) ,

which concludes the proof.

Proof of Main Theorem 4. Holds by theorems 65 and 67.

8 Detection of Small Subgraph Patterns

In this section, we study the complexity of the decision problem EdgeSub(Φ). As a first observation
we observe that EdgeSub(Φ) essentially subsumes the (parameterized) subgraph isomorphism problem:
consider for instance the property Φ defined as Φ(H) = 1 if and only if H ∼= K`,` for some positive
integer `. Then EdgeSub(Φ) is equivalent to the problem k-BICLIQUE which was only recently shown
to be W[1]-hard by the seminal result of Lin [58] after being unresolved for at least a decade.

More generally, let H denote a class of graphs and define Emb(H) as the problem that asks, given
a graph H ∈ H and an arbitrary graph G, whether there is a subgraph embedding from H to G; the
parameterization is given by |H|. Plehn and Voigt [72] proved Emb(H) to be fixed-parameter tractable
whenever the treewidth of graphs in H is bounded by a constant. On the other hand, the question
whether Emb(H) is W[1]-hard in all remaining cases is one of the “most infamous” [35, Chapter 33.1]
open problems in parameterized complexity. Since EdgeSub(Φ) subsumes32 Emb(H) as we have seen in
case of k-BICLIQUE, a complete classification of EdgeSub(Φ) seems to be elusive at the moment.

However, we identify the following tractable instances of EdgeSub(Φ), which significantly extends the
case of bounded treewidth.

Main Theorem 5. Let Φ denote a computable graph property. If Φ satisfies the matching criterion or
the star criterion, or if Φ has bounded treewidth, then EdgeSub(Φ) is fixed-parameter tractable.

In case Φ satisfies the matching or the star criterion, fixed-parameter tractability is obtained by a
surprisingly simple Win-Win approach relying on the treewidth and the maximum degree of a graph.
Assume, for example, that Φ is true for all matchings. Now, given a graph G and an integer k, we can
easily verify whether G contains a maximum matching of size at least k. If the latter is true, G contains a
subgraph with k edges that satisfies Φ. More interestingly, if the matching number of G is bounded by k,
then its vertex-cover number (and thus its treewidth) is bounded by 2k, and we can efficiently use dynamic
programming over a tree-decomposition of small width of G to verify whether EdgeSub(Φ, k → G) 6= ∅.
Formally, the latter can be established by an easy application of Courcelle’s Theorem [22] as shown in the
following lemma:

32To be precise, EdgeSub(Φ) subsumes Emb(H) whenever H does not contain two graphs with the same number of
edges, which is, however, true for most of the natural instances of the subgraph isomorphism problem such as finding
cliques, bicliques, cycles, paths and matchings, only to name a few.
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Lemma 68. Let Φ denote a computable graph property. There is a computable function g and an
algorithm A that, given a graph G and a positive integer k, correctly decides whether EdgeSub(Φ, k → G) 6= ∅
in time g(tw(G), k) · |G|.

Proof. We use Courcelle’s Theorem as stated in [39, Theorem 11.37]. Thus it remains to provide an
MSO-sentence33 ϕ such that G satisfies ϕ if and only if EdgeSub(Φ, k → G) 6= ∅. To this end, let H ∈ Φk
and assume that V (H) = {1, . . . , vH}. Consider the following sentence

ϕH := ∃x1, . . . ,∃xvH
:
∧
i6=j

xi 6= xj ∧
∧

{i,j}∈E(H)

E(xi, xj) .

Observe that G satisfies ϕH if and only if H is a subgraph of G. Consequently, we set

ϕ :=
∨

H∈Φk

ϕH .

Since the length of ϕ only depends on Φ and k, the lemma holds by Courcelle’s Theorem.

We are now able to establish fixed-parameter tractability of EdgeSub(Φ) whenever Φ satisfies the
matching criterion.

Lemma 69. Let Φ denote a computable graph property that satisfies the matching criterion. Then the
problem EdgeSub(Φ) is fixed-parameter tractable.

Proof. Since Φ satisfies the matching criterion, there is a constant c (only depending on Φ) such that
Φ(Mk) = 1 for all k ≥ c. The FPT algorithm is constructed as follows:

Given a graph G and a positive integer k, we can assume that k ≥ c, solving the case k < c by brute
force enumeration of all k-subsets of edges. In the case k ≥ c, we compute a maximum matching M of
G in polynomial time by, e.g., the Blossom Algorithm [37]. If |M | ≥ k, then we can output 1, since any
k-subset A of M satisfies that Φ(G[A]) = 1 by assumption.

In the remaining case, we can thus assume that the matching number of G is bounded by k. Conse-
quently, the vertex cover number of G is bounded by 2k. Since the treewidth of a graph is bounded by its
vertex cover number, we conclude that tw(G) ≤ 2k. Invoking the algorithm from the previous lemma thus
yields an overall running time bounded by

mO(1) + g(2k, k) · |G| ,

which proves fixed-parameter tractability.

We continue with the case of Φ satisfying the star criterion. To this end, we require the following
result, which is implicitly implied by the counting version of the Frick-Grohe-Theorem [41]; we provide a
proof based on the bounded search-tree paradigm for completeness.

Lemma 70. Let Φ denote a computable graph property. There is a computable function g and an
algorithm A that, given a graph G and a positive integer k, correctly decides whether EdgeSub(Φ, k → G) 6= ∅
in time g(deg(G), k) · |G|.

33We refer the reader to e.g. Chapter 4 in [39] for an introduction to Monadic Second Order (MSO) logic.
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Proof. We check for each H ∈ Φk whether H is a subgraph of G and output 1 if (and only if) at least
one of those checks is positive.

Assume for a moment that H is connected. In this case, the strategy is very simple: We guess a
vertex v of G and search for a subgraph embedding of H in G that includes v. Since H is connected and
has k edges, the image of the subgraph embedding can only contain vertices of distance at most k from v.
This allows us to search for a copy of H in the ≤ k neighbourhood of v by brute-force, since the latter
contains at most deg(G)k vertices. The overall running time of finding a subgraph isomorphic to H in G
is thus bounded by |V (G)| · deg(G)k.

The situation becomes slightly more complicated if H is not connected. We would like to perform
the previous strategy for each connected component of H, adding an additional factor of k in the worst
case. However, since a subgraph embedding needs to be injective, we have to guarantee that we do
not construct a solution that uses vertices of G twice. This issue is solved by a standard application of
colour-coding: We choose a function col : V (G)→ V (H) uniformly at random. If G contains a subgraph
isomorphic to H, then with probability at least p(k) > 0 there is a subgraph embedding ψ : V (H)→ V (G)
such that additionally col(ψ(v)) = v for each vertex v ∈ V (H), and such a subgraph embedding can be
found in time O(k · |V (G)| · deg(G)k) by adapting the above strategy for every connected component H
accordingly. Finally, derandomization can be achieved by perfect hashing as shown in [3] (see also [39,
Chapter 13.3]).

Let us now establish fixed-parameter tractability of EdgeSub(Φ) whenever Φ satisfies the star criterion.

Lemma 71. Let Φ denote a computable graph property satisfying the star criterion. Then the problem
EdgeSub(Φ) is fixed-parameter tractable.

Proof. Since Φ satisfies the star criterion, there is a constant c (only depending on Φ) such that Φ(K1,k) = 1
for all k ≥ c. The FPT algorithm is constructed as follows:

Given a graph G and a positive integer k, we can again solve the case k < c by brute force and thus
assume k ≥ c. Then, we check whether G contains a vertex v of degree at least k, in which case we can
output 1, since any k-subset A of the incident edges of v satisfies that Φ(G[A]) = 1 by assumption.

In the remaining case, we can thus assume that deg(G) ≤ k. Invoking the algorithm from the previous
lemma thus yields an overall running time bounded by

mO(1) + g(k, k) · |G| ,

which proves fixed-parameter tractability.

Proof of Main Theorem 5. In case Φ satisfies the matching criterion or the star criterion, the claim
holds by theorem 69 and theorem 71. If Φ has bounded treewidth, then, given G and k, we can use the
algorithm of Plehn and Voigt [72] for each H ∈ Φk. Since the size of Φk is bounded by a function in k,
the overall running time still yields fixed-parameter tractability.

Our main result regarding minor-closed properties is now obtained by the combination of our results
in the realms of exact counting, approximate counting, as well as decision:

Main Theorem 1. Let Φ denote a minor-closed graph property.

1. Exact Counting: If Φ is either trivially true or of bounded matching number, then the (exact) counting
version #EdgeSub(Φ) is fixed-parameter tractable. Otherwise, the problem #EdgeSub(Φ) is #W[1]-
hard and, assuming the Exponential Time Hypothesis, cannot be solved in time f(k) · |G|o(k/ log k) for
any function f .
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2. Approximate Counting: The problem #EdgeSub(Φ) always has an FPTRAS.
3. Decision: The problem EdgeSub(Φ) is always fixed-parameter tractable.

Proof. Note that each minor-closed property is computable (even in polynomial time) by the Robertson-
Seymour Theorem [75]. The classification of exact counting follows by theorem 58. For approximate
counting and decision, we claim that each minor-closed property Φ either has bounded treewidth or
satisfies both, the matching and the star criterion. If the latter holds, then the existence of an FPTRAS
for approximate counting follows by Main Theorem 4, and the FPT algorithm for decision follows by
Main Theorem 5.

To prove the claim, we assume that Φ has unbounded treewidth; otherwise we are done. In that case,
by the Excluded-Grid-Theorem [74], Φ holds for a sequence of graphs containing arbitrarily large grids
as minors. Since every planar graph (including matchings and stars) is a minor of a grid [76], and Φ is
minor-closed, we conclude that Φ holds for all matchings and all stars and thus satisfies both the matching
and the star criterion.

9 A Parameterized Tutte Polynomial

In the last part of the paper, we take a step back and revisit exact counting: Recall that problem
#EdgeSub(Φ) can be interpreted as the problem of evaluating a linear combination of subgraph counts,
given by

#EdgeSub(Φ, k → ∗) =
∑
H∈Φk

#Sub(H → G) ,

where Φk is the set of all k-edge graphs that satisfy Φ. In particular, each coefficient in this linear
combination is 0 or 1. We have seen that the values of Φ on the fixed-points of certain group actions on
(fractures of) Cayley graphs can be used to obtain explicit criteria for (#W[1]-)hardness of #EdgeSub(Φ).
In the current section, we show that the aforementioned method applies to the significantly more general
problem of computing weighted linear combinations of k-edge subgraph counts. More precisely, we consider
a natural parameterized variant of the Tutte polynomial and obtain an exhaustive classification for the
complexity of evaluating it at any rational coordinates.

Recall that the (classical) Tutte polynomial is defined as follows:

TG(x, y) :=
∑

A⊆E(G)

(x− 1)k(A)−k(E(G)) · (y − 1)k(A)+#A−#V (G) ,

where k(S) is the number of connected components of the graph (V (G), S).
In this work, we consider the specialization of the Tutte polynomial to edge-subsets of size k, which we
call the parameterized Tutte polynomial:

T kG(x, y) :=
∑

A∈(E(G)
k )

(x− 1)k(A)−k(E(G)) · (y − 1)k(A)+k−#V (G) .

We emphasize that the parameterized Tutte polynomial is related to a generalisation of the bases generating
function for matroids investigated by Anari et al. in their work on approximate counting (and sampling)
via log-concave generating polynomials [5, Section 1.2].

Similarly to the classical counterpart due to Jaeger et al. [49], our goal is to understand the parameterized
complexity of evaluating T kG(x, y) for any fixed pair of coordinates (x, y), when parameterized by k. Note
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that at points (x, y) with x 6= 1, y 6= 1 we can write the polynomial as

T kG(x, y) = (x− 1)−k(E(G))(y − 1)k−#V (G)
∑

A∈(E(G)
k )

((x− 1) · (y − 1))k(A) .

So, up to the global factor (x− 1)−k(E(G))(y − 1)k−#V (G) (which can be computed in linear time in the
input size) in this region the polynomial is really just a polynomial in the single variable z = (x− 1)(y− 1).
Still, we keep the variables x, y separate in the treatment below. On the one hand, this facilitates
comparisons to the classical Tutte polynomial. On the other hand, we see some interesting behaviour
of T kG(x, y) at points with x = 1 or y = 1. Indeed, let us start by investigating the expressibility of the
parameterized Tutte polynomial in some individual points.

9.1 Interpretation in Individual Points
Recall that, given a graph G and a subset A ⊆ E(G) of its edges, we write G(A) = (V (G), A) for the graph
induced by A. We emphasize the difference from the construction G[A] we saw before: the graph G[A] is
obtained from G(A) by removing all isolated vertices.

The most immediate information encoded in the parameterized Tutte polynomial is the number of
k-forests in a graph:

Observation 72. The number of forests with k edges in a graph G is given by T kG(2, 1).

In particular, evaluating T kG(2, 1) is equivalent to evaluation #IndSub(Φ, k → G) for the (minor-closed)
property of being acyclic.

For further individual points, it is convenient to consider the following modification.

Definition 73. Define the modified Tutte polynomial of a graph G as

T̃G(x, y) :=
∑

A⊆E(G)

(x− 1)k(A) · (y − 1)k(A)+#A ,

so that T̃G(x, y) = (x− 1)k(E(G))(y − 1)#V (G)TG(x, y). Similarly we define the parameterized version as

T̃ kG(x, y) :=
∑

A∈(E(G)
k )

(x− 1)k(A) · (y − 1)k(A)+#A .

As for its classical counter-part, we observe a deletion-contraction recurrence, which enables us establish
the properties at individual points. Setting T̃−1

G (x, y) = 0 we obtain:

Lemma 74. Given a graph G and an edge e ∈ E(G) we have

T̃ kG(x, y) = T̃ kG\e(x, y) + (y − 1)T̃ k−1
G/e (x, y) ,

for any k ≥ 0 and similarly

T̃G(x, y) = T̃G\e(x, y) + (y − 1)T̃G/e(x, y) .

Proof. In the definition of T̃ kG we split the sum over A ∈
(
E(G)
k

)
as

T̃ kG(x, y) =
∑

A∈(E(G)
k )

e 6∈A

(x− 1)k(A) · (y − 1)k(A)+#A +
∑

A∈(E(G)
k )

e∈A

(x− 1)k(A) · (y − 1)k(A)+#A . (23)
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The subsets A ∈
(
E(G)
k

)
with e 6∈ A are naturally identified with the subsets A ∈

(
E(G\e)

k

)
and we have

G(A) = (G \ e)(A). Thus the first sum in (23) is equal to T̃ kG\e(x, y). On the other hand, the subsets
A ∈

(
E(G)
k

)
with e ∈ A are naturally identified with the subsets A′ ∈

(
E(G/e)
k−1

)
by A 7→ A′ = A \ {e}

and we have k(A) = k(A′) (in their respective graphs G and G/e). Thus the second summand in (23)
equals (y − 1)T̃ k−1

G/e (x, y), with the factor (y − 1) coming from the fact that #A = #A′ + 1 in the above
correspondence. The deletion-contraction formula for the (unparameterized) modified Tutte polynomial is
obtained by summing over all k.

Using the previous recurrence, the following transformation encapsulates the relation between the
parameterized and the classical Tutte polynomial.

Proposition 75. Given a graph G and k ≥ 0 we have

k∑
`=0

(
#E(G)− `

k − `

)
· T̃ `G(x, y) =

∑
A∈(E(G)

k )
T̃G(A)(x, y) . (24)

Proof. We prove the statement by induction on the number of edges. For E(G) = ∅ the two sides are
zero for k 6= 0 and equal to T̃ 0

G(x, y) = T̃G(x, y) for k = 0.
We show the induction step using the deletion-contraction relations above. Let G denote a graph with

at least one edge e. Then we have

k∑
`=0

(
#E(G)− `

k − `

)
· T̃ `G(x, y) (25)

=
k∑
`=0

(
#E(G)− `

k − `

)
· T̃ `G\e(x, y) +

(
#E(G)− `

k − `

)
· (y − 1)T̃ `−1

G/e (x, y) . (26)

Furthermore, since #E(G) = #E(G \ e) + 1, we can use the usual recursion of binomial coefficients to see

k∑
`=0

(
#E(G)− `

k − `

)
· T̃ `G\e(x, y)

=
k∑
`=0

(
#E(G \ e)− `

k − `

)
· T̃ `G\e(x, y) +

(
#E(G \ e)− `

(k − 1)− `

)
· T̃ `G\e(x, y)

=
∑

A∈(E(G\e)
k )

T̃(G\e)(A)(x, y) +
∑

A′∈(E(G\e)
k−1 )

T̃(G\e)(A′)(x, y) ,

where we have used the induction step. For the second summand in (26) we make the index shift `′ = `− 1
and obtain

k∑
`=0

(
#E(G)− `

k − `

)
· (y − 1)T̃ `−1

G/e (x, y)

=
k−1∑
`′=0

(
#E(G/e)− `′

(k − 1)− `′

)
· (y − 1)T̃ `

′

G/e(x, y)

=
∑

A′∈(E(G/e)
k−1 )

(y − 1)T̃(G/e)(A′)(x, y) .
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Combining the last two equations we can conclude using suitable identifications, for instance identifying
the A ∈

(
E(G)
k

)
with e ∈ A with A′ ∈

(
E(G\e)
k−1

)
via A 7→ A′ = A \ {e} and using

(G \ e)(A′) = G(A) \ e and (G/e)(A′) = G(A)/e .

Then we see that (26) equals∑
A∈(E(G\e)

k )
T̃(G\e)(A)(x, y) +

∑
A′∈(E(G\e)

k−1 )
T̃(G\e)(A′)(x, y) + (y − 1)T̃(G/e)(A′)(x, y)

=
∑

A∈(E(G)
k )

e 6∈A

T̃G(A)(x, y) +
∑

A∈(E(G)
k )

e∈A

T̃G(A)(x, y)

=
∑

A∈(E(G)
k )

T̃G(A)(x, y) .

Using theorem 75 we can now present combinatorial interpretations of the specialisation of T kG(x, y) to
some individual points.

Chromatic Polynomial

For x = 1− c, y = 0 the modified Tutte polynomial T̃G(x, y) encodes the chromatic polynomial χG(c) (see,
for instance, [49, Chapter 2]), so we see that the T̃ `G(1− c, 0) (for 0 ≤ ` ≤ k) contain the information of
the number of pairs (A, σ) with A ⊆ E(G) with #A = k and σ a c-colouring on G(A).

k∑
`=0

(
#E(G)− `

k − `

)
· T̃ `G(1− c, 0) = #

{
(A, σ) : A ∈

(
E(G)
k

)
, σ c-coloring on G(A)

}
.

Acyclic Orientations

For x = 2, y = 0 the Tutte polynomial TG(x, y) specializes to the number of acyclic orientations of G.
We have T̃ kG(2, 0) = (−1)#V (G)T kG(2, 0). Thus the T̃ `G(2, 0) (for 0 ≤ ` ≤ k) contain the information of the
number of pairs (A, ~η) where A ⊆ E(G) with #A = k and ~η is an acyclic orientation on G(A). Indeed,
multiplying (24) with (−1)#V (G) we obtain

k∑
`=0

(
#E(G)− `

k − `

)
· T `G(2, 0)

= #
{

(A, ~η) : A ∈
(
E(G)
k

)
, ~η acyclic orientation on G(A)

}
.

k-Edge Sets Inducing an Even Number of Components

Proposition 76. Given a graph G and a positive integer k, we have

1
2

((
#E(G)

k

)
+ (−1)k(E(G))T kG(0, 2)

)
= # {A ⊆ E(G) : #A = k ∧ k(A) = 0 mod 2} .
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Proof. Let E = E(G). We have

1
2

((
#E
k

)
+ (−1)k(E)T kG(0, 2)

)
= 1

2

(#E
k

)
+ (−1)k(E)

∑
A∈(E

k)
(−1)k(A)+k(E)


= 1

2

 ∑
A∈(E

k)
1 + (−1)k(A)

 .

But observe that the summand above is 0 for k(A) odd and 2 for k(A) even. Thus after summing and
dividing by 2 we count the subsets A with the graph G(A) having an even number of components.

k-Edge Sets of Even Betti Number

The (first) Betti number34 of a graph is defined as b1(G) = k(E(G)) + #E(G)−#V (G) (cf. [7, Chapt. 4]).

Proposition 77. Given a graph G and a positive integer k, we have

1
2

((
#E(G)

k

)
+ T kG(2, 0)

)
= # {A ⊆ E(G) : #A = k ∧ b1(G(A)) = 0 mod 2} .

Proof. We have

1
2

((
#E(G)

k

)
+ T kG(2, 0)

)
= 1

2

(#E(G)
k

)
+

∑
A∈(E(G)

k )
(−1)k(A)+#A−#V (G)


= 1

2

 ∑
A∈(E(G)

k )
1 + (−1)b1(G(A))

 ,

where we use b1(G(A)) = k(A) + #A−#V (G). But observe that the summand above is 0 for b1(G(A))
odd and 2 for b1(G(A)) even. Thus after summing and dividing by 2 we count the subsets A with G(A)
having even Betti number.

9.2 Classification for Rational Coordinates
We now classify the complexity of computing T kG(x, y) for each pair of rational coordinates x and y.
Formally, for each such pair, we consider the parameterized problem which expects as input G and k and
outputs the value T kG(x, y); the parameterization is given by k. Let us start with the following easy fact:

Lemma 78. For any y ∈ Q, the problem of computing T kG(1, y) is fixed-parameter tractable.

Proof. Observe that T kG(1, y) = 0 unless there is A ⊆ E(G) of size k such that k(A) = k(E(G)). In other
words, G has a spanning subgraph of k edges. Consequently, G can have at most 2k vertices, implying
that G has at most

(2k
2
)
≤ 4k2 many edges. Therefore an algorithm for computing T kG(1, y) is obtained as

34The first Betti number is also called the circuit rank, cyclomatic number, cycle rank, or nullity.
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follows: Given G and k, first check whether |V (G)| > 2k, and output 0 in that case. Otherwise, obtain
T kG(x, y) by naively computing the sum, which takes time

O

((
4k2

k

)
· |G|

)
,

concluding the proof.

Next, similarly to the classical counter-part [49], we obtain a trivial algorithm for coordinates x and y
that lie on the hyperbola (x− 1)(y − 1) = 1:

Lemma 79. Let x and y denote rational numbers such that (x− 1)(y − 1) = 1. Then the problem of
computing T kG(x, y) is solvable in polynomial time (and thus fixed-parameter tractable as well).

Proof. Observe that, given (x− 1)(y − 1) = 1, and setting V = V (G) and E = E(G), we have

T kG(x, y) =
∑
A∈(E

k)
(x− 1)k(A)−k(E) · (y − 1)k(A)+k−#V = (x− 1)−k(E)(y − 1)k+#V

(
#E
k

)
,

which can be computed trivially.

In what follows, we show that computing T kG(x, y) is #W[1]-hard for all remaining rational coordinates x
and y. First, it is convenient to rewrite the quantity k(A) as follows: given an edge-subset A of a graph G,
recall that G[A] is the graph obtained from (V (G), A) by deleting isolated vertices. Let us write cc(H)
for the number of connected components of a graph H.

Fact 80. Let G denote a graph and let A denote a subset of edges of G. We have

k(A) = cc(G[A]) + #V (G)−#V (G[A]) .

Similarly as in case of #EdgeSub(Φ), our goal is to reduce from a linear combination of (colour-
preserving) homomorphism counts. For this reason, we again consider an easy modification by excluding
the term (x− 1)#V (G)−cc(G); more precisely, consider

T̂ kG(x, y) :=
∑

A⊆(E(G)
k )

(x− 1)cc(G[A])−#V (G[A]) · (y − 1)cc(G[A])−#V (G[A])+k ,

and observe that

T kG(x, y) = (x− 1)#V (G)−cc(G) · T̂ kG(x, y) .

In particular T̂ kG(x, y) is trivially interreducible with T kG(x, y) if x 6= 1. Next we introduce an (H-)coloured
version of the parameterized Tutte polynomial; given an edge-subset A of a k-edge-coloured graph, we
write cful(A) if A contains each of the k colours precisely once.

Definition 81 (Colourful Parameterized Tutte Polynomial). Let G denote a k-edge-coloured graph. We
define

col-T̂ kG :=
∑

A⊆(E(G)
k )

cful(A)

(x− 1)cc(G[A])−#V (G[A]) · (y − 1)cc(G[A])−#V (G[A])+k

as the colourful Parameterized Tutte Polynomial.
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The next lemma allows us to reduce the colourful version to the uncoloured version.

Lemma 82. Let G denote a k-edge-coloured graph and assume that the set of colours is [k]. For each
pair (x, y) we have

col-T̂ kG(x, y) =
∑
J⊆[k]

(−1)#J · T̃ kG\J(x, y) ,

where G \ J is the graph obtained from G by deleting all edges coloured with an element of J .

Proof. Follows by the inclusion-exclusion principle (similarly as in theorem 31) and the fact that, given a
k-edge-subset A of G, deleting edges in E(G) \A does not change the quantity

(x− 1)cc(G[A])−#V (G[A]) · (y − 1)cc(G[A])−#V (G[A])+k .

Next, we express col-T̂ kG as a linear combination of colour-preserving homomorphisms counts. More
precisely, given an H-coloured graph G such that H has k edges, we implicitly assume the k-edge-
colouring of G induced by its H-colouring. Further, given a fracture ρ of a graph H, we set r(σ) :=
cc(H] σ)−#V (H] σ).

Lemma 83. Let H denote a graph with k edges. For every H-coloured graph G, we have

#col-T̂ kG(x, y) =
∑

σ∈L(H)

(x− 1)r(σ) · (y − 1)r(σ)+k ·
∑
ρ≥σ

µ(σ, ρ) ·#Homcp(H] ρ→H G) ,

where the relation ≤ and the Möbius function µ are over the lattice of fractures L(H).

Proof. Every colourful k-edge-subset A of G induces a fracture of H, similarly as we have seen in Section 4.
In particular, if A and A′ induce the same fracture σ, then G[A] ∼= G[A′] ∼= H] σ. Writing [σ] for the
equivalence class of the induced fracture σ, we obtain:

#col-T̂ kG(x, y) =
∑

σ∈L(H)

(x− 1)r(σ) · (y − 1)r(σ)+k ·#[σ] .

Next observe that #[σ] = #ColEdgeSub(H] σ →H G). Finally, we have already seen in (the proof of)
theorem 25 that

#ColEdgeSub(H] σ →H G) =
∑
ρ≥σ

µ(σ, ρ) ·#Homcp(H] ρ→H G) ,

which concludes the proof.

The following lemma establishes that the coefficient of the torus does not vanish apart from a few
exceptions; which eventually allows us to prove #W[1]-hardness.

Lemma 84. Let ` > 2 denote a prime and let (x, y) ∈ Q2. There is a unique and computable function
a`(x,y) from fractures of }}}` to rational numbers such that

col-T̂ 2`2
? =

∑
ρ∈L(}}}`)

a`(x,y)(ρ) ·#Homcp(}}}`] ρ→}}}`
?) .
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Moreover, if both the denominators of x, y and the numerators35 of x− 1 and (x− 1)(y − 1)− 1 are not
divisible by `, then a`(x,y)(>) 6= 0.

Proof. The first claim follows immediately from the previous lemma. For the second claim, we rely on
the following fact from commutative algebra.

Fact 85. Let q ∈ Z denote a nonzero integer, then the localization Z[1/q] of Z at q is the set

Z[1/q] =
{
u ∈ Q : ∃v ∈ Z,m ∈ N with u = v

qm

}
of rational numbers which can be brought to a denominator which is a power of q. The subset Z[1/q] of Q
is closed under addition and multiplication. Let furthermore ` denote a prime not dividing q, implying
that q has an inverse q−1 mod `. Then there is a well-defined map

Z[1/q]→ Z`,
v

qm
7→ v · (q−1)m,

and this map is compatible with addition and multiplication.

Let us now collect the coefficients of #Homcp(}}}` →}}}`
?) in the sum appearing in theorem 83. Completely

similar to theorem 27 we obtain

a`(x,y)(>) =
∑

σ∈L(}}}`)

(x− 1)r(σ)(y − 1)r(σ)+2`2
∏

v∈V (}}}`)

(−1)|σv|−1(|σv| − 1)! ∈ Q. (27)

Note that in this expression we have for the exponents of x− 1 and y − 1 that r(σ) ≤ 0 but r(σ) + k ≥ 0.
Let q denote the least common multiple of the denominators of x, y and the numerator of x − 1, then
we have that (x− 1)±1 and (y − 1) are elements in Z[1/q]. By the assumption that ` does not divide q
together with theorem 85 above, we can see these expressions (and thus the entire sum (27)) as an element
of Z`. Now recall the 15 fixed-points of the action of Z2

` on the fractures of }}}` as given by theorem 35.
Counting modulo ` allows us to rely on the same analysis as presented in the proof of theorem 38, which
yields that a`(x,y)(>) is, modulo `, equal to

−6R(M2`2) + 4R(M`2 + `C`) + 8R(`2P2)−R(2`C`)− 2R(`C2`)− 4R(`S`) +R(}}}`) ,

where R(H) := (x− 1)cc(H)−#V (H) · (y − 1)2`2+cc(H)−#V (H).
Consequently, we have

a`(x,y)(>) =− 6(x− 1)2`2−4`2 · (y − 1)2`2+2`2−4`2

+ 4(x− 1)`
2+`−3`2 · (y − 1)2`2+`2+`−3`2

+ 8(x− 1)`
2−3`2 · (y − 1)2`2+`2−3`2

− 1(x− 1)2`−2`2 · (y − 1)2`2+2`−2`2

− 2(x− 1)`−2`2 · (y − 1)2`2+`−2`2

− 4(x− 1)`−2`2 · (y − 1)2`2+`−2`2

+ 1(x− 1)1−`2 · (y − 1)2`2+1−`2 mod `

35 In both cases, we refer to denominators and numerators of the corresponding shortened fractions.
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The first simplification is obtained by observing that the first and the third term, and the second, fifth
and sixth term, respectively, contain the same monomial. Consequently, we have that (modulo `):

a`(x,y)(>) = + 2(x− 1)−2`2

− 2(x− 1)−2`2+` · (y − 1)`

− (x− 1)−2`2+2` · (y − 1)2`

+ (x− 1)1−`2 · (y − 1)`
2+1

Using Fermat’s little theorem, we obtain

a`
(x,y)(>)

=2(x− 1)−2 − 2(x− 1)−2 · (y − 1)− (y − 1)2 + (y − 1)2 mod `

=2(x− 1)−2 · (1− (x− 1) · (y − 1)) mod `

The assumption that the denominator of x (which is the numerator of (x− 1)−2) and the numerator of
(x−1)(y−1)−1 are not divisible by ` implies that each factor in the product 2(x−1)−2 ·(1−(x−1) ·(y−1))
gives a nonzero residue class mod `. Since ` is a prime, their product is still nonzero in Z`, and thus the
original rational number a`(x,y)(>) is likewise nonzero, concluding the proof.

We are thus able to rely on Complexity Monotonicity to establish hardness as promised.

Lemma 86. Let (x, y) denote a pair of rational numbers such that (x− 1)(y− 1) 6= 1 and x 6= 1. Then
the problem of computing T kG(x, y) is #W[1]-hard.

Proof. Let H[x, y] denote the set of all }}}` such that ` is prime and both the denominators of x and y as
well as the numerators of x− 1 and (x− 1)(y − 1)− 1 are not divisible by `. Since x and y are fixed, the
latter is true for infinitely many primes ` and thus H[x, y] contains tori of unbounded size. In particular,
it contains graphs with arbitrary large grid minors and has thus unbounded treewidth [74], and hence,
the problem #Hom(H[x, y]) is #W[1]-hard by the classification of Dalmau and Jonsson [28].

Completely analogously to the proof of theorem 32, the problem #Hom(H[x, y]) reduces to computing
col-T̂ kG(x, y) via Complexity Monotonicity (theorem 30), since the coefficients of the tori do not vanish by
the previous lemma.

Next, reducing to the uncoloured version T̂ kG(x, y) can be done via theorem 82, and, finally, T̂ kG(x, y) is
trivially interreducible with T kG(x, y) whenever x 6= 1.

At last, we are able to prove this section’s dichotomy theorem.

Theorem 87. Let (x, y) denote a pair of rational numbers. The problem of computing T kG(x, y) is
fixed-parameter tractable if x = 1 or (x− 1)(y − 1) = 1, and #W[1]-hard otherwise.

Proof. The fixed-parameter tractable cases follow from theorems 78 and 79, and the #W[1]-hard cases
follow from the previous lemma.

As an immediate consequence, the computation of each individual point considered in Section 9.1 is
#W[1]-hard. Moreover, observe that the transformation

k∑
`=0

(
#E(G)− `

k − `

)
· T̃ `G(x, y) =

∑
A∈(E(G)

k )
T̃G(A)(x, y) ,
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given by theorem 75, is invertible in the sense that the numbers∑
A∈(E(G)

` )
T̃G(A)(x, y)

for ` = 0, . . . , k reveal T̃ kG(x, y). Consequently, we obtain #W[1]-hardness of the information encoded in
all considered individual points as well:

Corollary 88. The following problems are #W[1]-hard when parameterized by k:

Given G and k, compute the number of k-edge subsets A of G such that G(A) has an even number of
components.
Given G and k, compute the number of pairs (A, σ) such that A is a k-edge subset of G and σ is a
c-colouring of G(A). Here c ≥ 2 is a fixed integer.
Given G and k, compute the number of pairs (A, ~η) such that A is a k-edge subset of G and ~η is an
acyclic orientation of G(A).
Given G and k, compute the number of k-edge subsets A of G such that G(A) has even Betti number.

9.2.1 Comparison to the Classical Dichotomy and Real FPT Cases
In this section, we ask which of the fixed-parameter tractable cases allow for a polynomial-time algorithm.
We can answer this question under the assumption P 6= #P by considering the classical dichotomy of
Jaeger, Vertigan and Welsh:36

Theorem 89 ([49]). Let (x, y) be a pair of rational numbers. Then computing TG(x, y) is solvable in
polynomial time if (x, y) ∈ {(1, 1), (−1,−1), (0,−1), (−1, 0)} or if (x− 1)(y − 1) = 1. In all other cases
the problem is #P-hard.

First, we observe that the parameterized dichotomy coincides with the classical dichotomy, except for the
three points (−1,−1), (0,−1), and (−1, 0), in which the parameterized Tutte polynomial is (#W[1]-)hard
to compute, but the non-parameterized one is polynomial-time solvable. The latter indicates that taking
the sum only over the k-edge subsets can, in fact, make the problem harder.

However, the non-parameterized Tutte polynomial always reduces to the parameterized Tutte polyno-
mial via polynomial-time Turing reductions, since we can compute T 0

G(x, y) + · · ·+ T
#E(G)
G (x, y) which is

equal to TG(x, y). Thus any point (x, y) in which the non-parameterized Tutte polynomial is #P hard
and in which the parameterized Tutte polynomial is fixed-parameter tractable, constitutes a “real” FPT
case. In particular, the latter shows that each point on the line x = 1 yields a real FPT case, except for
the point (1, 1), which needs special treatment. More precisely, we have to determine whether computing
T kG(1, 1) is not only fixed-parameter tractable (see theorem 78), but also polynomial-time solvable. To
this end, observe that

T kG(1, 1) =
{
TG(1, 1) k = #V (G)− k(E(G))
0 k 6= #V (G)− k(E(G))

,

since, for x = y = 1, we have

(x− 1)k(A)−k(E(G))(y − 1)k(A)+#A−#V (G) = 0 ,

36We state their classification only for rational numbers, but point out that the full dichotomy includes all complex pairs.
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unless #A = #V (G)−k(E(G)). Thus, in point (1, 1), the parameterized Tutte polynomial can be computed
in polynomial time by relying on the algorithm given by theorem 89 in case k = #V (G)− k(E(G)), and
outputting 0, otherwise.

Finally, recall that by theorem 79, the case (x− 1)(y − 1) = 1 allows for a polynomial-time algorithm.
The complete picture is hence given by the following refined classification; consider fig. 1 for a depiction
of the tractable cases.

Main Theorem 7. Let (x, y) denote a pair of rational numbers. The problem of computing T kG(x, y) is
solvable in polynomial-time if x = y = 1 or (x− 1)(y − 1) = 1, fixed-parameter tractable, but #P-hard, if
x = 1 and y 6= 1, and #W[1]-hard otherwise.

9.3 Approximating the Parameterized Tutte Polynomial
In the very last part of this paper, we identify rational points (x, y) for which T kG(x, y) can be approximated
efficiently. Recall from theorem 61, that an FPTRAS for a parameterized counting problem (P, κ) is a
(randomized) algorithm A which, on input I, ε, and δ, outputs a value z with probability

Pr[ (1− ε)P (I) ≤ z ≤ (1 + ε)P (I) ] ≥ 1− δ ,

in time f(κ(I)) · poly(|I|, ε−1, log(1/δ)) for some computable function f . If f is a polynomial as well, then
A is called an FPRAS “fully polynomial-time randomized approximation scheme” (cf. [68, Def. 11.2]).

We have to be careful when speaking about approximating T kG(x, y) since the latter can have negative
values. One way of dealing with negative valued functions is to require that an FPTRAS/FPRAS outputs
a pair (z, s), such that z is an approximation of the absolute value and s is the sign, that is, we require
that with probability at least (1− δ), we have

(1− ε)|T kG(x, y)| ≤ z ≤ (1 + ε)|T kG(x, y)| and s = sign(T kG(x, y)) .

We are now able to establish a region of rational points for which the parameterized Tutte Polynomial
admits an FPTRAS or even an FPRAS; the proof is a simple consequence of the work of Anari et al. on
approximate counting via log-concave polynomials [5].

Main Theorem 8. Let (x, y) denote a pair of rational numbers satisfying the condition 0 ≤ (x− 1)(y−
1) ≤ 1. Then T kG(x, y) has an FPTRAS. If additionally x 6= 1 or y = 1 then T kG(x, y) even has a fully
polynomial-time randomized approximation scheme (FPRAS).

Proof. The case x = 1 is a trivial consequence of Main Theorem 7. If x = 1, then exact counting is
fixed-parameter tractable and thus there is an FPTRAS. We consider two cases for the remaining points.
First, consider y = 1. If x = 1 as well, then we obtain by Main Theorem 7 a polynomial-time algorithm
for exact counting, and thus an FPRAS. Otherwise, we have that T kG(x, 1) is equal to∑

A∈(E(G)
k )

(x− 1)k(A)−k(E(G)) · 0k(A)+k−#V (G) =
∑

A∈(E(G)
k )

G(A) acyclic

(x− 1)k(A)−k(E(G)) ,

since k(A) + k −#V (G) = 0 if and only if G(A) is acyclic. Recall that k(A) is the number of connected
components of G(A)(= (V (G), A)) and observe that for acyclic sets of edges A with |A| = k, we have
k(A) = #V (G)− k. Consequently,

T kG(x, 1) = (x− 1)#V (G)−k−k(E(G)) ·#{A ⊆ E(G) | #A = k ∧ G(A) acyclic} .
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Since computing the number of acyclic edge-subsets of size k admits an FPRAS [5, 4], we can conclude
this case.

In the remaining case, we have x 6= 1 and y 6= 1 (and thus 0 < (x−1)(y−1) ≤ 1). Let q = (x−1)(y−1)
and let G denote a graph with edges E = [m], that is, G has m edges labelled with 1, . . . ,m. Consider
the polynomial

fG,k,q(x1, . . . , xm) :=
∑
A∈(E

k)
q−rk(A)

∏
i∈A

xi ,

where rk(A) := #V (G) − k(A) is the rank of A with respect to the graphic matroid of G. Anari et al.
have established the existence of an FPRAS for evaluating fG,k,q(1m) whenever 0 < q ≤ 1 [5, Section 1.2].
Now observe that

T kG(x, y) = (x− 1)#V (G)−k(E(G))(y − 1)k · fG,k,q(1m) .

Since neither x = 1 nor y = 1, we conclude that an FPRAS for fG,k,q(1m) yields the desired FPRAS for
T kG(x, y).
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