Arithmetic in the fundamental group of a p-adic curve
— On the p-adic section conjecture for curves —

FLORIAN POP AND JAKOB STIX

Abstract — We establish a valuative version of Grothendieck’s section conjecture for curves over p-adic local fields. The image of every section is contained in the decomposition subgroup of a valuation which prolongs the p-adic valuation to the function field of the curve.

1. Introduction

This note addresses the arithmetic of rational points on curves over p-adic fields with ramification theory of general valuations and the étale fundamental group as the principal tools.

1.1. The fundamental group. Let k be a fixed separable closure of an arbitrary field k, and let $\text{Gal}_k := \text{Gal}(\overline{k}/k)$ be the absolute Galois group of k.

Let X/k be a geometrically connected variety, and let $\overline{X} := X \times_k \overline{k}$ be the base change of X to \overline{k}. The étale fundamental group $\pi_1(X, \overline{x})$ with base point \overline{x} is an extension

\begin{equation}
1 \to \pi_1(\overline{X}, \overline{x}) \to \pi_1(X, \overline{x}) \to \text{Gal}_k \to 1,
\end{equation}

where $\pi_1(\overline{X}, \overline{x})$ is the geometric fundamental group of X with base point \overline{x}. In the sequel, we denote the extension (1.1) by $\pi_1(X/k)$ and ignore the base points \overline{x}, because they will be irrelevant for our discussion.

1.2. The conjecture. To a rational point $a \in X(k)$ the functoriality of π_1 gives rise to a section

$s_a : \text{Gal}_k \to \pi_1(X)$

of $\pi_1(X/k)$. The functor π_1 depends a priori on a pointed space but yields a well defined $\pi_1(\overline{X})$-conjugacy class $[s_a]$ of sections. The section conjecture of Grothendieck gives a conjectural description of the set of all the sections in an arithmetic situation as follows.

Conjecture 1 (see Grothendieck [Gr83]). Let X be a smooth, projective and geometrically connected curve of genus ≥ 2 over a number field k. Then the map $a \mapsto [s_a]$ is a bijection from the set of rational points $X(k)$ onto the set of $\pi_1(\overline{X})$-conjugacy classes of sections of $\pi_1(X/k)$.

Actually, Grothendieck originally made a more general conjecture allowing k to be a finitely generated extension of \mathbb{Q}. Moreover, Grothendieck noticed that $a \mapsto [s_a]$ is injective if k is a number field as a consequence of the Mordell-Weil Theorem, see [Sx11a] §10 for details. We refer to [Sx11a] for a general overview on the section conjecture.

The focus of the present paper is the following local version of Grothendieck’s section conjecture.

Date: August 11, 2011.
2000 Mathematics Subject Classification. 14H30, 11G20 Primary; 14G05 Secondary.
Key words and phrases. Section Conjecture, Rational points, Anabelian Geometry.

The first author was supported by the NSF Grant DMS-0801144 and also received support from MATCH of the University of Heidelberg. Both authors would like to thank the Isaac Newton Institute Cambridge, UK, for the support and the excellent working conditions during the NAG Programme in 2009.
Conjecture 2 (p-adic version of the section conjecture). Let k/\mathbb{Q}_p be a finite extension, and let X/k be a smooth, projective and geometrically connected curve of genus ≥ 2. Then the map $a \mapsto [s_a]$ is a bijection from the set of rational points $X(k)$ onto the set of $\pi_1(\overline{X})$-conjugacy classes of sections of $\pi_1(X/k)$.

To prove the section conjecture for curves over a field k as above, it suffices to show that for all finite étale geometrically connected covers $X' \to X$, if $\pi_1(X'/k)$ has a section, then $X'(k)$ is non-empty. This follows by a well known limit argument used already in the work of Neukirch, and introduced to anabelian geometry by Nakamura, while Tamagawa [Ta97] Prop 2.8 emphasized its significance to the section conjecture, see [Ko05] Lem 1.7 or [Sx10] App. C.

1.3. Evidence for the section conjecture. The first known examples of curves over number fields that satisfy the section conjecture were probably given in [Sx10] and later [HS09], and also [Sx11b]. More recently, Hain [Ha11] succeeds to verify the section conjecture for the generic fields that satisfy the section conjecture were probably given in [Sx10] and later [HS09], and for every section s of $\pi_1(X/k)$.

Before announcing the main result, let us give a valuation theoretic perspective of the section conjectures above.

First, recall that for every complete normal curve X/k, its closed points $a \in X$ are in bijection with the set $\text{Val}_k(K)$ of equivalence classes of non-trivial k-valuations w_a of the function field $K = k(X)$ of X in such a way that the residue field $\kappa(w_a)$ of the valuation w_a associated to $a \in X$ equals $\kappa(a)$. Precisely, the local ring $\mathcal{O}_{X,a}$ at a closed point $a \in X$ is a discrete k-valuation ring of K with valuation $w_a \in \text{Val}_k(K)$. Conversely, if w is a non-trivial k-valuation of K, then by the valuative criterion of properness, the valuation ring R_w of w dominates the local ring $\mathcal{O}_{X,a}$ of a unique point $a \in X$. Since $R_w \neq K$, we have $\mathcal{O}_{X,a} \neq K$ and $a \in X$ is a closed point.

Hence $R_w = \mathcal{O}_{X,a}$, and R_w is a discrete k-valuation ring of K.

Let $\tilde{K} = k(\overline{X})$ be the function field of the universal pro-étale cover \tilde{X} of X. The extension \tilde{K}/K is Galois with Galois group identified with $\pi_1(X)$. For every k-valuation w on K and every prolongation \tilde{w} to \tilde{K} we denote by $D_{\tilde{w}}$ the decomposition subgroup of \tilde{w} in $\pi_1(X)$. If $w = w_a$ with $a \in X(k)$ then the projection $D_{\tilde{w}_a} \to \text{Gal}_k$ is an isomorphism. Hence its inverse gives rise to a section of $\pi_1(X/k)$, the $\pi_1(\overline{X})$-conjugacy class of which agrees with $[s_a]$.

Conjecture 3 (Val$_k(K)$ section conjecture). Let k be a number field or a finite extension of \mathbb{Q}_p. Let X/k be a smooth, projective and geometrically connected curve X/k of genus ≥ 2. Then in the above notations, for every section $s : \text{Gal}_k \to \pi_1(X)$ of $\pi_1(X/k)$ there exists a valuation $w \in \text{Val}_k(K)$ with $\kappa(w) = k$ and a prolongation \tilde{w} of w to \tilde{K} with $s(\text{Gal}_k) \subseteq D_{\tilde{w}}$.

Conjecture 3 is in fact equivalent to Conjecture 1 for k a number field and to Conjecture 2 for k a finite extension of \mathbb{Q}_p.

1.4. The valuative section conjecture. Before announcing the main result, let us give a valuation theoretic perspective of the section conjectures above.

1.5. The main result. Let k be a finite extension of \mathbb{Q}_p with valuation ring $\sigma \subset k$ and p-adic valuation v. The following richer birational geometric picture unfolds, see Appendix A for more details and precise references.
1.5.1. Geometry. For a smooth, projective, geometrically connected curve X/k we consider the set of all its proper flat normal models $\mathcal{X}_i \to \text{Spec}(\mathcal{O})$. The set $\{\mathcal{X}_i\}_i$ is partially ordered with respect to the domination relation (inducing the identity in X/k). We consider $\varprojlim \mathcal{X}_i$ as an abstract set. There is a canonical identification

$$\text{Val}_\mathcal{O}(K) = \varprojlim \mathcal{X}_i$$

where $\text{Val}_\mathcal{O}(K)$ is the subspace of the Riemann–Zariski space (see Appendix A for details) of the field K consisting of the \mathcal{O}-valuations, i.e., valuations w whose valuation ring R_w satisfies $\mathcal{O} \subseteq R_w$. Indeed, for $(x_i) \in \varprojlim \mathcal{X}_i$ the ring $R = \varinjlim \mathcal{O}_{\mathcal{X}_i,x_i}$ is a valuation ring of K that contains \mathcal{O}, because the x_i lie on models over $\text{Spec}(\mathcal{O})$. Conversely, for $w \in \text{Val}_\mathcal{O}(K)$ with valuation ring R_w the valuation criterion of properness yields for every proper model \mathcal{X}_i a unique point x_i such that R_w dominates $\mathcal{O}_{\mathcal{X}_i,x_i}$. The points x_i form a compatible system $(x_i) \in \varprojlim \mathcal{X}_i$ and $R_w = \varinjlim \mathcal{O}_{\mathcal{X}_i,x_i}$ holds.

1.5.2. Valuations. The set $\text{Val}_\mathcal{O}(K)$ of \mathcal{O}-valuations of K is a disjoint union

$$\text{Val}_\mathcal{O}(K) = \text{Val}_k(K) \sqcup \text{Val}_v(K),$$

where $\text{Val}_\mathcal{O}(K)$ is the set of valuations w of K which prolong v from k to K. We notice that there is a canonical embedding

$$\text{Val}_k(K) \hookrightarrow \text{Val}_\mathcal{O}(K)$$

as follows. Let $w_\alpha \in \text{Val}_k(K)$ be the k-valuation, corresponding to a closed point $\alpha \in X$. Then the residue field $\kappa(w_\alpha) = \kappa(\alpha)$ is a finite extension of k, hence v has a unique prolongation $v_{\kappa(\alpha)}$ to $\kappa(w_\alpha)$. The valuation theoretic composition $w := v_{\kappa(\alpha)} \circ w_\alpha$ yields a valuation of K which prolongs v, thus w lies in $\text{Val}_\mathcal{O}(K)$. Conversely, if $w \in \text{Val}_\mathcal{O}(K)$ is a valuation with valuation ring R, then $R[1/p]$ is a valuation ring of K that contains $k = \mathcal{O}[1/p]$. In particular, if $R[1/p] \neq K$, then $R[1/p] = R_{w_\alpha}$ for some $w_\alpha \in \text{Val}_k(K)$. For $v_{\kappa(\alpha)}$ as above, the valuation theoretic composition $v_{\kappa(\alpha)} \circ w_\alpha$ is exactly the valuation w we started with.

We say that $w \in \text{Val}_\mathcal{O}(K)$ originates from a k-rational point, if there exists $\alpha \in X(k)$ such that either $w = w_\alpha$ or w is the image of w_α under the canonical embedding $\text{Val}_k(K) \hookrightarrow \text{Val}_\mathcal{O}(K)$.

1.5.3. The main result. The main result of the present paper is the following positive answer to the $\text{Val}_\mathcal{O}(K)$ variant of the section conjecture instead of the $\text{Val}_k(K)$ section conjecture above.

Main Result. Let k be a finite extension of $\mathcal{O}_\mathcal{O}$. Let X/k be a smooth, projective, geometrically connected curve of genus ≥ 2, and let $s : \text{Gal}_k \to \pi_1(X/k)$ be a section of $\pi_1(X/k)$.

1. There exists an \mathcal{O}-valuation $w \in \text{Val}_\mathcal{O}(K)$ of $K = k(X)$ and a prolongation \tilde{w} to the function field $\tilde{K} = k(X)$ of the universal pro-étale cover \tilde{X} such that $s(\text{Gal}_k)$ is contained in the decomposition group $D_{\tilde{w}}$ of \tilde{w} in $\pi_1(X)$, see Section 5.

2. The valuations w to sections s as given by (1) have arithmetic properties as explained in Section 6 and satisfy uniqueness properties as explained in Section 7.

In Theorem 26 we will prove actually a more general assertion concerning hyperbolic curves X/k that are not necessarily projective. A smooth, geometrically connected curve X/k is called hyperbolic, if X has negative k-adic Euler-characteristic $\chi(\overline{X}) = 2 - 2g - r$. Here r is the number of geometric points needed to smoothly compactify \overline{X} over \overline{k} and g is the genus of the smooth compactification. Recall that in characteristic zero, X being hyperbolic is equivalent to $\pi_1(\overline{X})$ being non-abelian.

The section conjecture for hyperbolic curves asserts that every conjugacy class of sections of $\pi_1(X/k)$ is defined as indicated above by a k-rational point of the smooth compactification of X, or equivalently by a k-valuation v of K with residue field $\kappa(v) = k$.

In some sense the Main Result and Theorem 26 give an optimal local version of the section conjecture, were Conjecture 2 to fail. Indeed, if Conjecture 2 fails, then it fails for a good reason, namely that the projection map $D_{\tilde{w}} \to \text{Gal}_k$ from a decomposition subgroup $D_{\tilde{w}} \subset \pi_1(X)$ of
some valuation \(w \in \text{Val}_K(K) \) admits a section, although the valuation \(w \) does not originate from a \(k \)-rational point. In this respect the Main Result above reduces the \(p \)-adic section conjecture to a completely local problem, namely to confirm that \(D \bar{w} \rightarrow \text{Gal}_k \) does not split if \(w \) does not originate from a \(k \)-rational point. The proof of the birational version of the \(p \)-adic section conjecture as in [P10] follows the above strategy with \(\pi_1(X) \) replaced by \(\text{Gal}_K \).

Finally, it was pointed out by Kedlaya that in yet another interpretation of the Main Result above a section of \(\pi_1(X/k) \) gives — if not a \(k \)-rational point as predicted by Conjecture \(2 \) — at least a \(k \)-Berkovich point which is responsible for the section. In light of the above explanations, it remains to be studied, which \(k \)-Berkovich points might contribute sections of \(\pi_1(X/k) \).

1.6. Relation to a tempered analogue

Yves André and Shinichi Mochizuki raised the question of relating the main result of the present paper to work of Mochizuki [Mz06] concerning the tempered fundamental group as defined by André in [An03]. For a geometrically connected variety \(X \) over a finite extension \(k \) of \(\mathbb{Q}_p \) the tempered fundamental group \(\pi_1^\text{temp}(X, \pi) \) with base point \(\pi \) is a pro-discrete group and forms an extension

\[
1 \rightarrow \pi_1^\text{temp}(X, \pi) \rightarrow \pi_1^\text{temp}(X, \pi) \rightarrow \text{Gal}_k \rightarrow 1
\]

that we denote by \(\pi_1^\text{temp}(X/k) \), see [An03] §4. For \(X \) a curve, there is a natural inclusion \(\pi_1^\text{temp}(X) \rightarrow \pi_1(X) \) that turns out to be the inclusion into the continuous pro-finite completion of \(\pi_1^\text{temp}(X) \). Again, to a \(k \)-rational point of \(X \) we can associate a conjugacy class of sections

\[
\text{Gal}_k \rightarrow \pi_1^\text{temp}(X).
\]

The authors learnt from Mochizuki that, based on [Mz06], he could prove that a **tempered section**, i.e., a section \(s \) of \(\pi_1^\text{temp}(X/k) \), always fixes a compatible system \(a_i \) of vertices or edges of the dual graphs of stable models \(\mathscr{X}_i \) of Galois finite étale covers \(X_i \rightarrow X \). The corresponding inductive limit \(\tilde{\mathcal{O}} = \lim_{\rightarrow i} \mathcal{O}_{\mathscr{X}_i, a_i} \) of local rings \(\mathcal{O}_{\mathscr{X}_i, a_i} \) is a local ring of \(K \) stabilized by \(s(\text{Gal}_k) \).

If the answer to our Question \(14 \) is positive, then, in view of Appendix A.1.2, the limit \(\tilde{\mathcal{O}} \) is necessarily a valuation ring. Nevertheless, at the present state of knowledge, one cannot infer that. On the other hand, Mochizuki provides an ad hoc argument to indeed find a valuation ring fixed by \(s(\text{Gal}_k) \) and dominating \(\tilde{\mathcal{O}} \).

In light of the above, it is natural to ask to what extent tempered sections are different from pro-finite sections, i.e., sections of \(\pi_1(X/k) \), more precisely: is every section \(s : \text{Gal}_k \rightarrow \pi_1(X) \) conjugate to a section with image in the subgroup \(\pi_1^\text{temp}(X) \)? Although this property of pro-finite sections would easily follow from Conjecture \(2 \), we are unable to prove it directly. In [Mz06] page 306, Mochizuki speculates that for tempered sections useful arithmetic insights can be provided that are not available in the pro-finite case (in particular the result used in the tempered analogue above). The results of the present note disprove this to some extent.

1.7. Outline of the paper

Since the decomposition group \(D_{\bar{w}} \) is the stabilizer of the valuation \(\bar{w} \) under the action of \(\pi_1(X) \), the property \(s(\text{Gal}_k) \subset D_{\bar{w}} \) for a section \(s \) translates into the existence of a fixed point under the Galois action by \(\text{Gal}_k \) via \(s \), see Section 5.

The starting point of our search for a fixed point comes from the Brauer group method, see Section 4, which relies only on the \(\ell \)-part of \(\pi_1(X) \). The results on the \(\ell \)-part of \(\pi_1(X) \) provided in Sections 2–3 suffice to show the existence of a fixed point. This is done in Section 5 with the help of the combinatorial Lemma 31. In some sense, the existence of the valuation \(\bar{w} \) fixed by \(s(\text{Gal}_k) \) is related to tame phenomena.

In Sections 6 and 7 we address the question about arithmetic and uniqueness properties of the valuations obtained from sections. For the latter we make use in a subtle way of the \(p \)-part in \(\pi_1(X) \), in particular Tamagawa’s non-resolution [Ta04], see Section 7.1, in order to move apart the \(\ell \)-parts of inertia groups corresponding to different prime divisors. In some sense, uniqueness turns out to be related to wild phenomena.
For the convenience of the reader, in Appendix A we provide a complete geometric description of the valuation theory for p-adic curves, which is otherwise not sufficiently documented in the literature. Appendix B adds a geometric description of the valuation theoretic Hilbert Zerlegungstheorie. The notation of the appendix will be used throughout the note.

Contents

1. Introduction 1
2. Detecting inertia of type 1v in the kernel of specialisation 5
3. The logarithmic point of view towards inertia 8
4. Sections and the Brauer group method 13
5. Proof of the main result 17
6. Arithmetic properties of the valuations given by sections 21
7. Uniqueness properties of the valuations given by sections 22
Appendix A. The zoo of valuations for 2-dimensional semilocal fields 25
Appendix B. Unramified Hilbert Zerlegungstheorie 29
References 31

Hypothesis. From now on, if not explicitly stated otherwise, we will work under the hypothesis that k is a finite extension of \mathbb{Q}_p, hence in particular the residue field $\kappa = F$ of the p-adic valuation v of k is a finite field. Further, all finite extensions of k are locally compact fields.

Notation. For notation and terminology of valuation theory and Hilbert Zerlegungstheorie we refer to Appendix A and B.

Acknowledgements. We would like to thank Yves André and Shinichi Mochizuki for pointing out potential relations with analogous questions in the context of the tempered fundamental group. Especially, in light of Shinichi Mochizuki’s comments, our exposition gained in clarity and our pro-finite result was put in the right perspective. We further like to thank Jordan Ellenberg, Hélène Esnault, Kiran Kedlaya, Minhyong Kim, Mohamed Saidi, Tamás Szamuely, Akio Tamagawa, and Olivier Wittenberg for their interest in our work.

2. Detecting inertia of type 1V in the kernel of specialisation

2.1. The kernel of sp. Let \mathcal{X}/\mathcal{O} be a model of the smooth, projective, geometrically connected curve X/k as defined in A.1.1. The reduced special fibre $Y = \mathcal{X}_{\mathcal{F},\text{red}}$ is by assumption a strict normal crossing divisor on \mathcal{X}. Let $Y = \bigcup \alpha Y_\alpha$ be the decomposition into irreducible components Y_α which are smooth, projective curves with field of constants F_α. The specialisation map of fundamental groups is a surjection

$$sp : \pi_1(X) \twoheadrightarrow \pi_1(\mathcal{X}) = \pi_1(Y)$$

the kernel of which we denote by $\mathcal{N}_{X|\mathcal{X}}$. The inertia group I_w of a valuation $w \in \text{Val}_0(K)$ lies in $\mathcal{N}_{X|\mathcal{X}}$. Those for valuations of type 1v, see Appendix A.2.2, generate $\mathcal{N}_{X|\mathcal{X}}$ as a pro-finite group by Zariski-Nagata purity of the branch locus.

2.2. Cohomology on the model. Let $n \in \mathbb{N}$ be invertible on \mathcal{X}. Let $i : Y \hookrightarrow \mathcal{X}$ be the closed immersion of the reduced special fibre. Standard computations in étale cohomology show $R^q i_! \mu_n = 0$ for $q = 0, 1$, and yield the local cycle class map

$$\bigoplus \alpha \mathbb{Z}/n\mathbb{Z}_{Y_\alpha} \xrightarrow{\sim} R^2 i_! \mu_n$$

It follows that $H^1_Y (\mathcal{X}, \mu_n)$ vanishes and

$$H^2_Y (\mathcal{X}, \mu_n) = \bigoplus \alpha H^0 (Y_\alpha, \mathbb{Z}/n\mathbb{Z}).$$
By proper base change we have \(H^2(\mathcal{X}, \mu_n) = H^2(Y, \mu_n)\), and the relevant part of the localisation sequence reads

\[
0 \to H^1(\mathcal{X}, \mu_n) \to H^1(X, \mu_n) \xrightarrow{\text{res}} \bigoplus_{\alpha} H^0(Y_\alpha, \mathbb{Z}/n\mathbb{Z}) \xrightarrow{\rho_n} H^2(Y, \mu_n).
\]

Unraveling the definitions for the map \(\rho_n\) yields the composite

\[
\bigoplus_{\alpha} \mathbb{Z}/n\mathbb{Z} \to \text{Pic}(\mathcal{X}) \otimes \mathbb{Z}/n\mathbb{Z} \xrightarrow{c_1} H^2(\mathcal{X}, \mu_n) \xrightarrow{\iota^*} H^2(Y, \mu_n)
\]

which maps \((n_\alpha)\) to \(i^* c_1(\mathcal{O}_\mathcal{X}(\sum n_\alpha Y_\alpha))\). The map \(\text{res}_\alpha\), the \(\alpha\) component of \(\text{res}\), can be computed by excision and functoriality of the localisation sequence as follows. By abuse of notation, we denote by \(\alpha\) also the valuation of type \(1v\) in \(\text{Val}_\mathcal{X}(K)\) corresponding to \(Y_\alpha\). Let \(\overline{\alpha}\) be a geometric point localised in the generic point of \(Y_\alpha\). Then, using the notation of Appendix B.1 and the tame character, see Section 3.1, we get a commutative diagram with isomorphisms as indicated.

\[
\begin{array}{ccc}
\text{H}^1(\pi_1(X), \mu_n) & \xrightarrow{\sim} & \text{H}^1(X, \mu_n) \\
\downarrow & & \downarrow \\
\text{H}^1(I_\alpha, \mu_n) & \xrightarrow{\text{inf}} & \text{H}^1(\mathcal{Y}_\alpha^{\text{sh}}, \mu_n) \\
\downarrow & & \downarrow \\
\text{H}^2(\mathcal{X}, \mu_n) & \xrightarrow{\text{pr}_\alpha} & \text{H}^2(Y_\alpha^{\text{sh}}, \mu_n) \\
\end{array}
\]

The inflation map \(\text{inf}\) in the diagram is an isomorphism because the map \(\pi_1(\mathcal{Y}_\alpha^{\text{sh}}) \to I_\alpha\) is an isomorphism on the prime to \(p\) part due to enough tame ramification along each \(Y_\alpha\), see Proposition 8 (3) below. Consequently, the map \(\text{res}_\alpha\) is essentially the map induced by restriction from \(\pi_1(X)\) to \(I_\alpha\).

2.3. Cohomology of the special fibre. Let \(\overline{Y} = Y \times_F \mathbb{F}_\alpha\text{alg}\) be the geometric reduced special fibre. Let \(\mathcal{I}_{\alpha, n}\) be the permutation module \(\mathbb{Z}/n\mathbb{Z}[\text{Hom}_F(\mathcal{Y}_\alpha^{\text{sh}}, \mathbb{F}_\alpha\text{alg})]\) as a \(\text{Gal}_F = \text{Gal}(\mathbb{F}_\alpha\text{alg}/F)\)-module. The degree maps of the components describe a \(\text{Gal}_F\)-equivariant isomorphism

\[
\text{H}^2(\overline{Y}, \mu_n) = \bigoplus_{\alpha} \mathcal{I}_{\alpha, n}.
\]

The relevant cohomology of \(Y\) computes via the Leray spectral sequence as

\[
0 \to \text{H}^1(F, \text{H}^1(\overline{Y}, \mu_n)) \to \text{H}^2(Y, \mu_n) \xrightarrow{\text{deg}_\alpha} \bigoplus_{\alpha} \text{H}^0(F, \mathcal{I}_{\alpha, n}) \to 0,
\]

where \(\text{deg}_\alpha\) is the degree map on the component \(Y_\alpha\). If we fix an \(F\)-embedding \(\mathbb{F}_\alpha \subset \mathbb{F}_\alpha\text{alg}\), then

\[
\mathcal{I}_{\alpha, n} = \text{Ind}_{\mathbb{F}_\alpha/n\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z})
\]

becomes canonically isomorphic to the induced module with respect to \(\text{Gal}_{\mathbb{F}_\alpha} \subset \text{Gal}_F\).

2.4. Unramified extensions of the base. Now we perform the limit of the above computations over unramified extensions \(k'/k\) viewing the result as \(\text{Gal}_{k'} = \pi_1(\alpha)\)-modules. In other words, we take the stalk at \(\text{Spec}(\mathbb{F}_\alpha) \to \text{Spec}(\alpha)\) of the higher direct images for \(\mathcal{X}/\alpha\). The unramified base changes do not destroy the good properties that \(\mathcal{X}\) has by assumption as a model, see Appendix A.1.1, and no modification by blow-ups is necessary. We get an exact sequence of \(\text{Gal}_{k'}\)-modules as follows.

\[
0 \to \text{H}^1(\overline{Y}, \mu_n) \to \text{H}^1(X \times_k k'^{nr}, \mu_n) \to \bigoplus_{\alpha} \text{Ind}_{\mathbb{F}_\alpha/n\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}) \xrightarrow{\rho_n} \bigoplus_{\alpha} \text{Ind}_{\mathbb{F}_\alpha/n\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}).
\]

The map \(\rho_n = (\text{deg}_\alpha) \circ \rho_n\) is a matrix with entries from \(\text{End}(\mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/n\mathbb{Z}\) with rows and columns indexed by the \(\text{Gal}_{k'}\)-set of irreducible components of \(\overline{Y}\). This is nothing but the intersection matrix for the reduced geometric special fibre modulo \(n\).
2.5. ℓ-adic coefficients. The local cycle class (2.1) is compatible with change of coefficients $\mu_n \subset \mu_{nd}$ with $p \nmid d$ via the commutative diagram

$$
\prod_{\alpha} \mathbb{Z}/n\mathbb{Z}_Y \xrightarrow{\sim} R^2 \nu^* \mu_n \\
\downarrow d \\
\prod_{\alpha} \mathbb{Z}/nd\mathbb{Z}_Y \xrightarrow{\sim} R^2 \nu^* \mu_{nd}.
$$

Taking the direct limit of (2.3) for $n = \ell^r$, $r \geq 0$ we obtain an exact sequence of Gal$_\mathbb{Q}$-modules

$$
(2.4) \quad 0 \to H^1(\mathcal{Y}, \mathbb{Q}_\ell/\mathbb{Z}_\ell(1)) \to H^1(X_{k_{nr}}, \mathbb{Q}_\ell/\mathbb{Z}_\ell(1)) \to \bigoplus_{\alpha} \text{Ind}_{\mathbb{Z}_Y}^\mathbb{Z}(\mathbb{Q}_\ell/\mathbb{Z}_\ell) \xrightarrow{\bar{\mathcal{F}}} \bigoplus_{\alpha} \text{Ind}_{\mathbb{Z}_Y}^\mathbb{Z}(\mathbb{Q}_\ell/\mathbb{Z}_\ell)
$$

Here \mathcal{F} is a matrix with entries from End$(\mathbb{Q}_\ell/\mathbb{Z}_\ell) = \mathbb{Z}_\ell$ with rows and columns indexed by the Gal$_\mathbb{Q}$-set of reducible components of \mathcal{Y}, which is the intersection matrix for the reduced geometric special fibre, and moreover takes values in $\mathbb{Z} \subseteq \mathbb{Z}_\ell$. As an integral matrix, the matrix of \mathcal{F} is symmetric, negative semi-definite with radical given by the rational multiples of the divisor of the special fibre with its multiplicities, see Mumford [Mu61] §1.

2.6. Unramified extensions of the model. We compute the limit of (2.4) over all finite étale covers \mathcal{X}' of \mathcal{X}. The comments on the preservation of the good properties of the model still hold true, so we can use (2.4) for all covers. With X' the generic fibre and Y' the special fibre of \mathcal{X}' as above we have

$$
\lim_{\mathcal{X}' \to \mathcal{X}} H^1(\mathcal{Y}', \mathbb{Q}_\ell/\mathbb{Z}_\ell(1)) = 0
$$

and

$$
\lim_{\mathcal{X}' \to \mathcal{X}} H^1(X' \times_k \mathbb{Q}_\ell/\mathbb{Z}_\ell(1)) = H^1(\mathcal{M}_{X|\mathcal{X}}, \mathbb{Q}_\ell/\mathbb{Z}_\ell(1))
$$

by compatibility of cohomology of pro-finite groups and discrete coefficients with limits. If \mathcal{X}' corresponds to an open subgroup $H \subset \pi_1(\mathcal{X})$, then the part of $H^2(\mathcal{X}', \mathbb{Q}_\ell/\mathbb{Z}_\ell(1))$ due to components of Y' above Y_α is given by

$$
\text{Maps}_{\pi_1(Y_\alpha)}(\pi_1(Y)/H, \mathbb{Q}_\ell/\mathbb{Z}_\ell) = \left[\text{Maps}_{\pi_1(Y_\alpha)}(\pi_1(Y), \mathbb{Q}_\ell/\mathbb{Z}_\ell)\right]^H.
$$

In the limit over all $\mathcal{X}' \to \mathcal{X}$ we obtain the smooth induction

$$
\text{Ind}_{\pi_1(Y_\alpha)}^{\pi_1(Y)}(\mathbb{Q}_\ell/\mathbb{Z}_\ell) = \bigcup_H \left[\text{Maps}_{\pi_1(Y_\alpha)}(\pi_1(Y), \mathbb{Q}_\ell/\mathbb{Z}_\ell)\right]^H.
$$

The transfer maps in the limit $\lim H^2(\mathcal{Y}', \mathbb{Q}_\ell/\mathbb{Z}_\ell(1))$ multiply by the respective degrees. All components of positive genus are dominated by components with degree an arbitrary high power of ℓ, even abelian covers, as $\pi_1^{ab}(\mathcal{Y}') \otimes \mathbb{Z}_\ell \to \pi_1^{ab}(\mathcal{Y} \otimes \mathbb{Z}_\ell)$ shows. Therefore in the limit only the components Y_β of genus $g_\beta = 0$ survive. Alltogether, we get the sequence

$$
(2.5) \quad 0 \to H^1(\mathcal{M}_{X|\mathcal{X}}, \mathbb{Q}_\ell/\mathbb{Z}_\ell(1)) \to \bigoplus_{\alpha} \text{Ind}_{\pi_1(Y_\alpha)}^{\pi_1(Y)}(\mathbb{Q}_\ell/\mathbb{Z}_\ell) \xrightarrow{\mathcal{F}} \bigoplus_{\beta, \ g_\beta = 0} \text{Ind}_{\pi_1(Y_\beta)}^{\pi_1(Y)}(\mathbb{Q}_\ell/\mathbb{Z}_\ell).
$$

Let $\text{I}^{\text{ab}} = \text{I}^{\text{ab}} \otimes \mathbb{Z}_\ell$ be the ℓ-Sylow group of I^{ab}. Taking Pontrjagin duality with Tate-twist, i.e., Hom$(-, \mathbb{Q}_\ell/\mathbb{Z}_\ell(1))$, and using (2.2) we get the exact sequence of pro-finite $\pi_1(Y)$-modules

$$
(2.6) \quad \bigoplus_{\beta, \ g_\beta = 0} \text{I}^{\text{ab}}_{\beta, \ g_\beta = 0}[[\pi_1(Y)/\pi_1(Y_\beta)]] \xrightarrow{\mathcal{F}^{(1)}} \bigoplus_{\alpha} \text{I}^{\text{ab}}_{\alpha}[[\pi_1(Y)/\pi_1(Y_\alpha)]] \to \mathcal{M}_{X|\mathcal{X}}^{\text{ab}} \otimes \mathbb{Z}_\ell \to 0.
$$
Here we have used the notation $M[[G/G_0]]$ for a finitely generated \mathbb{Z}_ℓ-module M and a closed subgroup G_0 of a profinite group G to denote

$$M[[G/G_0]] = \lim_H M \otimes_{\mathbb{Z}_\ell} \mathbb{Z}_\ell[H \setminus G/G_0],$$

where H ranges over the open normal subgroups of G and $\mathbb{Z}_\ell[H \setminus G/G_0]$ is the permutation module on the set $H \setminus G/G_0$ with coefficients in \mathbb{Z}_ℓ. The dual of the induced module $\text{Ind}^G_T(\mathbb{Q}_\ell/\mathbb{Z}_\ell)$ equals $\mathbb{Z}_\ell[[G/G_0]]$ due to the identification

$$(\mathbb{Z}/\mathfrak{l}^n\mathbb{Z})[H \setminus G/G_0] = \text{Hom}(\text{Maps}_{G_0}(G/H, \frac{1}{\mathfrak{l}^n}\mathbb{Z}/\mathbb{Z}), \mathbb{Q}_\ell/\mathbb{Z}_\ell)$$

mapping $HgG_0 \in H \setminus G/G_0$ to the evaluation $f \mapsto f(g^{-1})$ for $f \in \text{Maps}_{G_0}(G/H, \frac{1}{\mathfrak{l}^n}\mathbb{Z}/\mathbb{Z})$.

The composition of $\mathcal{R}^\vee(1)$ in (2.6) with the projection to the part of components of genus zero yields a map, which is a projective limit indexed over finite étale covers $Y' \to Y$ of maps as follows

$$\bigoplus_{\beta, g_\beta = 0} \Gamma_{\beta, \ell}^\text{ab}([\pi_1(Y')/\pi_1(Y)/\pi_1(Y_\beta)]) \to \bigoplus_{\beta, g_\beta = 0} \Gamma_{\beta, \ell}^\text{ab}([\pi_1(Y')/\pi_1(Y)/\pi_1(Y_\beta)]).$$

For each $Y' \to Y$ the map is given by a matrix with the intersection pairing of $Y' \subset \mathcal{R}'$ restricted to the genus zero components. If in Y at least one component has genus at least 1, then this matrix is negative definite, see Mumford [Mu61] §1, and hence the map is injective and remains so in the projective limit over all Y'.

Proposition 4. Let $\alpha_1, \ldots, \alpha_r \in \text{Val}_v(K)$ be valuations of type $1v$ which belong to distinct components of Y with positive genus. Then the natural map

$$\bigoplus_{i=1}^r \Gamma^\text{ab, \ell}_{\alpha_i} \hookrightarrow \mathcal{N}_{X|^\text{\ell} Y}^\text{ab} \otimes \mathbb{Z}_\ell$$

is injective and the ℓ-Sylow subgroups of any two distinct I_{α_i} intersect trivially in $\pi_1(X)$.

Proof: The computation above shows that the images of the natural map

$$\bigoplus_{i=1}^r \Gamma^\text{ab, \ell}_{\alpha_i} \to \bigoplus_{\alpha} \Gamma^\text{ab, \ell}_{\alpha}([\pi_1(Y)/\pi_1(Y_\alpha)])$$

and of $\mathcal{R}^\vee(1)$ meet only trivially. \hfill \square

3. The logarithmic point of view towards inertia

3.1. The tame character

Let Γ_w be the value group of $w \in \text{Val}_v(K)$. Let $\mathcal{Z}'(1)$ be the prime to p Tate module of roots of unity in the separable closure $\kappa(w)^\text{sep}$ of $\kappa(w)$. The **tame character** at w is the surjective homomorphism

$$\chi : \text{Gal}_{K_{ab}} \to \text{Hom}(\Gamma_w, \mathcal{Z}'(1))$$

that maps $\sigma \in \text{Gal}_{K_{ab}}$ to the homomorphism

$$\chi_\sigma : \gamma \mapsto (\sigma(\sqrt[p]{\gamma})/\sqrt[p]{\gamma})_w$$

with t_γ being an arbitrary element of value $w(t_\gamma) = \gamma$. The kernel of the tame character χ is the p-Sylow group of $I_w = \text{Gal}_{K_{ab}}$.
Section conjecture over p-adic fields

3.2. Enters the logarithmic fundamental group. A model \(\mathcal{X} \), see Appendix A.1.1, can be naturally equipped with a log-regular fs-log structure by the divisor \(\mathcal{X}_{\text{F,red}} \). We obtain a quotient
\[
\pi_1(X, \bar{\eta}) \to \pi_1^\log(\mathcal{X})
\]
which has a tractable group structure by a logarithmic van Kampen theorem applied to the logarithmic special fibre.

Proposition 5. (1) For a map \(f : \mathcal{X}' \to \mathcal{X} \) between models of \(X \) the induced map
\[
\pi_1^\log(f) : \pi_1^\log(\mathcal{X}') \to \pi_1^\log(\mathcal{X})
\]
is an isomorphism.

(2) Let \(X \) admit a stable model \(\mathcal{X}_{\text{stable}} \). Then \(\mathcal{X}_{\text{stable}} \) admits an fs log structure which is log regular, and for any model \(\mathcal{X} \) of \(X \) the natural map \(f : \mathcal{X} \to \mathcal{X}_{\text{stable}} \) the induced map
\[
\pi_1^\log(f) : \pi_1^\log(\mathcal{X}) \to \pi_1^\log(\mathcal{X}_{\text{stable}})
\]
is an isomorphism.

Proof: In both cases \(f \) is a composition of blow-ups which can be enriched to logarithmic blow-up maps. A logarithmic blow-up map yields an isomorphism of log fundamental groups by [FK95] 2.4, see also [Il02] Thm 6.10 or [Sx02] Cor 3.3.11. \(\square \)

3.3. Logarithmic inertia groups. We denote by \(I_\log(w) \) (resp. \(I_\log(y) \)) the image of \(I_\log \) (resp. \(I_\log(y) \)) in \(\pi_1^\log(\mathcal{X}) \), which is a pro-finite group of order prime to \(p \). The log structure on \(\mathcal{X} \) induces a log structure on \(\mathcal{X}_{\text{sh}} \) for every \(y \). The group \(I_\log(y) \) is nothing but the image of \(\pi_1^\log(\mathcal{X}_{\text{sh}}, \bar{\xi}_y) \to \pi_1^\log(\mathcal{X}, \bar{\eta}) \).

Lemma 6. Let \(y \) be a geometric point of \(\mathcal{X} \) which lies above a point of the special fibre.

(1) The natural map
\[
\pi_1^\log(\mathcal{X}^{\text{sh}}, \bar{\xi}_y) \to \text{Hom}\left(\mathcal{O}^*(\mathcal{X}^{\text{sh}})/\mathcal{O}^*(\mathcal{X}_{\text{sh}}^{\text{sh}}), \hat{\mathbb{Z}}'(1)\right)
\]
induced by the tame character is an isomorphism.

(2) Let \(y \) lie over the generic point of the component \(Y_\alpha \) of the special fibre associated to a valuation \(\alpha \) of type 1v. Then we have canonically
\[
\hat{\mathbb{Z}}'(1) = \text{Hom}\left(\mathcal{O}^*(\mathcal{X}^{\text{sh}})/\mathcal{O}^*(\mathcal{X}^{\text{sh}}_{\alpha}), \hat{\mathbb{Z}}'(1)\right) = \pi_1^\log(\mathcal{X}^{\text{sh}}, \bar{\xi}_\alpha)
\]

(3) Let \(y \) lie over a closed point of the special fibre. Then the canonical map
\[
\bigoplus_{\alpha \colon y \in Y_\alpha} \hat{\mathbb{Z}}'(1) \to \pi_1^\log(\mathcal{X}^{\text{sh}}, \bar{\xi}_y),
\]
given essentially by (2) above and restriction of units is an isomorphism. Here \(\alpha \) ranges over the valuations associated to components \(Y_\alpha \) of the special fibre with \(y \in Y_\alpha \).

Proof: This standard result in log geometry follows from Abhyankar’s Lemma and Zariski–Nagata purity of the branch locus, see [Il02] Example 4.7 or [Sx02] Cor 3.1.11. \(\square \)

The following lemma describes the behaviour of logarithmic inertia groups under changes of the model.

Lemma 7. Let \(f : \mathcal{X}' \to \mathcal{X} \) be a blow-up of a closed point of the model \(\mathcal{X} \), above which we have the geometric point \(y \). Let \(\alpha \) denote the valuation associated to a component \(Y_\alpha \) of the special fibre of \(\mathcal{X} \) which contains \(y \), and let \(\varepsilon \) denote the valuation associated to the exceptional divisor \(E \) of the blow-up on \(\mathcal{X}' \). Let \(z \) (resp. \(x \)) be geometric points of \(\mathcal{X}' \) which lift \(y \) and lie...
on E, such that z also lies on the strict transform of Y_α (resp. such that x lies in the smooth locus of the reduced special fibre of \mathcal{X}'). The map f yields maps

$$f_{x,y} : \pi^\log_1(\mathcal{X}^{'sh}_x, \xi_x) \to \pi^\log_1(\mathcal{X}^{'sh}_y, \xi_y) \text{ and } f_{x,y} : \pi^\log_1(\mathcal{X}^{'sh}_x, \xi_x) \to \pi^\log_1(\mathcal{X}^{'sh}_y, \xi_y)$$

with the following description in terms of the canonical coordinates provided by Lemma 6 (2).

(1) Let y be a node of the reduced special fibre of \mathcal{X} with the other component through y besides Y_α being the component Y_β associated to the valuation β. Then $f_{x,y}$ is the isomorphism

$$\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right) : \hat{\mathcal{Z}}'(1) \cong \hat{\mathcal{Z}}'(1) \cong \hat{\mathcal{Z}}'(1)$$

with respect to the ordering (α, ε) and (α, β). And $f_{x,z}$ is the diagonal injection

$$\hat{\mathcal{Z}}'(1) \hookrightarrow \hat{\mathcal{Z}}'(1) \oplus \hat{\mathcal{Z}}'(1)$$

(2) Let y be a smooth point of the reduced special fibre of \mathcal{X}. Then $f_{x,y}$ is the surjection given by the sum

$$\hat{\mathcal{Z}}'(1) \oplus \hat{\mathcal{Z}}'(1) \to \hat{\mathcal{Z}}'(1),$$

and $f_{x,y}$ is the identity isomorphism

$$\hat{\mathcal{Z}}'(1) \cong \hat{\mathcal{Z}}'(1).$$

Proof: It all comes down to compute the valuations of the pull back to \mathcal{X}' of local parameters at y. Let the center of the blow up be the ideal (u, v) with $u = 0$ describing Y_α and, if present $v = 0$ describing Y_β. Then near z we find that $v = 0$ describes E while $u/v = 0$ describes the stric transform of Y_α. Hence $\varepsilon(u) = \varepsilon(v) = 1$ which leads to the matrix in (1). The remaining calculations are of the same kind but simpler.

Let I_k (resp. $I_k^{\text{tame}} = \hat{\mathcal{Z}}'(1)$) be the inertia (resp. tame inertia) group of Gal_k (resp. its tame quotient $\text{Gal}_k^{\text{tame}}$). The projection $\pi_1(X, \eta) \to \text{Gal}_k$ maps the inertia (resp. the log inertia) groups associated to points or valuations to I_k (resp. I_k^{tame}).

Proposition 8. Let $w \in \text{Val}_\alpha(K)$ be a valuation. The structure of I^{\log}_w is as follows.

(1) If w is of type 1h, then $I^{\log}_w = 1$.

(2) If w is of type 2h with $w = v_y \circ \alpha$, then $I^{\log}_w = \hat{\mathcal{Z}}'(1)$ with the natural map $I^{\log}_w \to I^{\text{tame}}_k$ being multiplication by the ramification index $e(v_y/v)$.

(3) If w is of type 1v, then $I^{\log}_w = \hat{\mathcal{Z}}'(1)$ with the natural map $I^{\log}_w \to I^{\text{tame}}_k$ being multiplication by the ramification index $e(w/v)$.

(4) If w is a valuation of type 2 and on some model \mathcal{X}', the center x_w lies only on one component of the special fibre associated to the valuation α, then $I^{\log}_w \cong I^{\log}_\alpha = \hat{\mathcal{Z}}'(1)$. This applies in particular to valuations of type 2h, $2u_{\text{um}}$ and $2u_{\text{alt}}$.

(5) If the center of a valuation w of type 2 is a node of the reduced special fibre on all models, then

$$\hat{\mathcal{Z}}'(1) \oplus \hat{\mathcal{Z}}'(1) \to I^{\log}_w = (I^{\log}_\alpha, I^{\log}_\beta)$$

where α, β are the valuations of type 1v which correspond to the components through the center of w on a given model \mathcal{X}' of X/k, and appropriate base points have been chosen.

Proof: All assertions follow from Proposition 5 and Lemma 7.

We would like to stress, that if in (5) in fact we have equality $\hat{\mathcal{Z}}'(1) \oplus \hat{\mathcal{Z}}'(1) = I^{\log}_w$, then the decomposition as a direct sum depends on the choice of model according to Lemma 7 (1).

Proposition 9. Let X/k have stable reduction $\mathcal{X}_{\text{stable}}/\mathcal{O}$. Let $f : \mathcal{X} \to \mathcal{X}_{\text{stable}}$ be the minimal regular resolution of the stable model. Let $y \in \mathcal{X}_{\text{stable}}$ be a node with singularity of type A_n in the intersection of the two distinct components $Y_{\alpha_1}, Y_{\alpha_2}$, such that $f^{-1}(y)$ equals a chain of irreducible divisors E_1, \ldots, E_{n-1}, that links the strict transforms E_0, E_n of $Y_{\alpha_1}, Y_{\alpha_2}$, i.e., such that
(i) \(E_i \) meets \(E_{i-1} \) and \(E_{i+1} \) each in a single node for \(i = 1, \ldots, n-1 \),
(ii) and \(E_i \cong \mathbb{P}^1 \) for \(i = 1, \ldots, n-1 \).

Let \(\varepsilon_i \) be the valuation of type \(1v \) associated to \(E_i \) for \(i = 1, \ldots, n-1 \). Then for \(i = 1, \ldots, n-1 \) the natural map

\[
\mathbb{Z}_\ell(1) = \mathbb{Q}_\ell \otimes \mathbb{Z}_\ell \rightarrow \mathbb{Q}_\ell^\log \otimes \mathbb{Z}_\ell \subset \left(\mathbf{1}_{\alpha_1}^\log + \mathbf{1}_{\alpha_2}^\log \right) \otimes \mathbb{Q}_\ell = \mathbb{Q}_\ell(1) \oplus \mathbb{Q}_\ell(1)
\]

is given by multiplication with \(\left(\frac{n}{n-i}, \frac{n-i}{n} \right) \) and thus remains injective after projection to each component.

Proof: Étale locally around \(y \) the situation is as follows. The local ring is \(R = \mathfrak{O}[u,v]/(uv-\pi^n) \) with \(u \) and \(v \) parameters along \(Y_{\alpha_1} \) and \(Y_{\alpha_2} \) and \(n \) is the thickness of the double point singularity, that equals the length of the chain of \(E_i \)'s connecting the strict transforms \(E_0, E_n \) in the minimal resolution \(f: \mathcal{X} \rightarrow \mathcal{X}' \).

The map \(f \) enhances to a log blow up and thus has a combinatorial description within the fs monoid \(Q = \mathbb{N}_y = R[1/\pi]^* / R^* \) which is spanned by \(u, v \) and \(\pi \). We give a description of the dual monoids because in the end \(\text{Hom}(Q, \mathcal{Z}'(1)) \) equals the tame inertia \(\mathbf{1}_y^\log \) at \(y \). In coordinates dual to \(u, v \) we find

\[
\mathbb{Q}^\vee = \{(a, b) \in \mathbb{Q}(\mathbb{N}_0)^2 ; a + b \in \mathbb{Z} \}
\]

The log blow up corresponds to a subdivision of \(\mathbb{Q}^\vee \) as follows. The component \(E_i \) comes from the dual of the submonoid \(P_i^\vee \subset Q^\vee \) generated by \((\frac{i}{n}, \frac{n-i}{n}) \) and hence the node \(E_i \cap E_{i+1} \) is given by the dual of

\[
(((\lambda, n+i), (\lambda+i, n-i-1)) \subset Q^\vee,
\]

for \(i = 0, \ldots, n-1 \). From the fact, that this monoid is isomorphic to \(\mathbb{N}^2 \) we see again that \(\mathcal{X} \) is indeed regular in the nodes \(E_i \cap E_{i+1} \). Moreover, using the special values \(i = 0 \) and \(i = n-1 \) it follows that indeed

\[
\mathbf{1}_y^\log \otimes \mathbb{Z}_\ell = Q^\vee \otimes \mathbb{Z}_\ell(1) \subset \left(\mathbf{1}_{\alpha_1}^\log + \mathbf{1}_{\alpha_2}^\log \right) \otimes \mathbb{Q}_\ell = \mathbb{Q}_\ell(1) \oplus \mathbb{Q}_\ell(1)
\]

with respect to the identity map on coordinates \((a, b) \in Q^\vee \otimes \mathbb{Z}_\ell(1) \mapsto (a, b) \in \mathbb{Q}_\ell(1) \oplus \mathbb{Q}_\ell(1) \).

The proposition now follows from the identification

\[
\mathbf{1}_{\alpha_i}^\log \otimes \mathbb{Z}_\ell = P_i^\vee \otimes \mathbb{Z}_\ell(1) = (\frac{i}{n}, \frac{n-i}{n}) \cdot \mathbb{Z}_\ell(1) \subset Q^\vee \otimes \mathbb{Z}_\ell(1) = \mathbf{1}_y^\log \otimes \mathbb{Z}_\ell.
\]

Corollary 10. Let \(X \) admit a stable model \(\mathcal{X}'_{\text{stable}} \), and let \(\mathcal{X} \) be a model of \(X \) with natural map \(f: \mathcal{X} \rightarrow \mathcal{X}'_{\text{stable}} \). Let \(\tilde{w} \) be a prolongation of the valuation \(w \in \text{Val}_3(K) \) of type \(2 \), and let \(y \in \mathcal{X}'_{\text{stable}} \) be the image \(f(x_w) \) of the center of \(w \) under \(f \). The logarithmic inertia \(\mathbf{1}_{\tilde{w}|w} \) is a subgroup of \(\mathbf{1}_y^\log \) and the intersection

\[
\mathbf{1}_{\tilde{w}|w}^\log \cap \bigoplus_{\alpha} \mathbf{1}_{\tilde{\alpha}|\alpha}^\log
\]

is of finite index in \(\mathbf{1}_{\tilde{w}|w}^\log \), where \(\alpha \) ranges over the valuations of type \(1v \) associated to irreducible components of the special fibre of \(\mathcal{X}'_{\text{stable}} \) that contain \(y \), and the \(\tilde{\alpha} \) are prolongations to \(\tilde{K} \) such that \(\mathbf{1}_{\tilde{\alpha}|\alpha}^\log \subset \mathbf{1}_{\tilde{w}|w}^\log \). More precisely, on every log étale cover of \(\mathcal{X}'_{\text{stable}} \) the center of \(\tilde{\alpha} \) is determined as the generic point of a component of the special fibre passing through the point above \(y \) which determines the embedding \(\mathbf{1}_y^\log \subset \mathbf{1}_{\tilde{w}|w}^\log \).

Proof: This all follows from Proposition 5 and Proposition 9 except for the claim that \(\bigoplus_{\alpha} \mathbf{1}_{\tilde{\alpha}|\alpha}^\log \) with \(\tilde{\alpha}|\alpha \) as in the statement is indeed a subgroup in \(\mathbf{1}_y^\log \). The latter is a consequence of Proposition 4 and Lemma 16 below. \(\square \)
3.4. Visible valuations of type $1v$. We first recall a useful property of the dual graph of the special fibre in the tower of all finite étale covers.

3.4.1. Disentangling the dual graph. For a proper model \mathcal{X}/\mathfrak{o} the reduced special fibre $Y = \mathcal{X}_{\text{red}}$ has a dual graph $\Gamma = \Gamma_Y$ which describes the combinatorics of the components Y_α of Y with their mutual intersection. The completely split fundamental group $\pi_{1}^{cs}(Y)$ is the quotient of $\pi_1(Y)$ which describes mock covers of Y, i.e., those finite étale covers which are geometrically completely split over every generic point of Y.

Lemma 11. Two different components of the cover of Y corresponding to the maximal geometrically abelian exponent 2 quotient of $\pi_{1}^{cs}(Y)$ intersect at most once.

Proof: This is simply topological covering theory of finite graphs. \hfill \Box

Remark 12. Lemma 11 says that any two components of the reduction disentangle after taking a finite étale cover, even with good completely split reduction, which by definition means that any chosen preimages intersect at most once.

3.4.2. Visible valuations.

Definition 13. A valuation of type $1v$ is **visible** if the associated component of the special fibre is covered by a component of positive genus in the reduction of a model of a suitable finite étale cover of the generic fibre. In this case we also call the associated component visible. A valuation of type $1v$ is **invisible** if it is not visible.

Question 14. An old question of the first author that resists all our efforts to resolve it asks whether all components are visible.

Remark 15. (1) The important work of Tamagawa [Ta04] towards this Question 14 only guarantees that over any closed point $y \in \mathcal{X}_{\text{stable}}$ of the stable model any fine enough model $f : \mathcal{X} \rightarrow \mathcal{X}_{\text{stable}}$ has non-stable rational components in $f^{-1}(y)$ which are visible, see also Section 7.1.

(2) For a given finite étale cover of the generic fibre there are only finitely many components of the special fibre which have positive genus. As $\pi_1(X, \bar{\eta})$ is topologically finitely generated, the category of all finite étale covers has up to scalar extension only countably many isomorphism classes. Hence, there are at most countably many visible components on each model. As in our case the residue field of k is finite, every X/k admits only countably many components of the special fibres of its models up to taking strict transforms, so that we have no cardinality reason to argue that not all components are visible.

Let α be a valuation of type $1v$ and let Y_α be its associated component of the reduced special fibre \mathcal{X}_{red} of a model \mathcal{X} of X/k. When we endow \mathcal{X} with the vertical log structure coming from the special fibre $Y \hookrightarrow \mathcal{X}$ and moreover Y_α by the induced log structure, then we know from Lemma 11 and [Mz96] Prop 4.2 or [Sx02] Prop 6.2.11, that $\pi_{1}^{\log}(Y_\alpha) \hookrightarrow \pi_{1}^{\log}(\mathcal{X}, \bar{\eta})$ is injective, whenever Y_α is a stable component, i.e, the strict transform of a component from the stable model of X. In particular every stable component acquires positive genus in a finite Kummer étale logarithmic cover of \mathcal{X}. The lemma below is an immediate consequence.

Lemma 16. For a valuation α of type $1v$ the following are equivalent.

(a) α is visible.

(b) Y_α is dominated by a component of the stable model of a finite étale cover of the generic fibre.

(c) The genus of a component from a model of a finite étale cover of the generic fibre which dominate Y_α tends to infinity in a cofinal tower of all finite étale covers of the generic fibre. \hfill \Box
3.5. The kernel of (log-)specialisation prime-to-\(p \).

Proposition 17. Let \(j : X \subset \mathcal{X} \) be the inclusion of a smooth, projective curve \(X/k \) as an open subset a model \(\mathcal{X} \). The natural map
\[
\mathcal{N}_X|\mathcal{X} \rightarrow \mathcal{N}_X^{\log}|\mathcal{X}
\]
induced by \(\pi_1(j) : \pi_1(X) \rightarrow \pi_1^{\log}(\mathcal{X}) \) from the kernel \(\mathcal{N}_X|\mathcal{X} = \ker \left(\text{sp} : \pi_1(X) \rightarrow \pi_1(\mathcal{X}) \right) \) to the kernel \(\mathcal{N}_X^{\log}|\mathcal{X} \) of the ‘forget log map’ \(\pi_1(\varepsilon) : \pi_1^{\log}(\mathcal{X}) \rightarrow \pi_1(\mathcal{X}) \) induces an isomorphism on the maximal prime-to-\(p \) quotients.

Proof: The log scheme \(\mathcal{X} \) is log regular and has \(X \) as its locus of trivial log structure. The map \(\pi_1(j) : \pi_1(X) \rightarrow \pi_1^{\log}(\mathcal{X}) \) induces an isomorphism on maximal prime-to-\(p \) quotients by Fujiwara–Kato’s purity for the log fundamental group \([FK95]\) Thm 3.1, see also \([Il02]\) Thm 7.6. The proposition follows in the limit from this reasoning applied to arbitrary finite étale covers \(\mathcal{X}' \rightarrow \mathcal{X} \) and the corresponding generic fibre \(\mathcal{X}' \subset \mathcal{X}' \).

4. Sections and the Brauer group method

4.1. Local–global principles for the Brauer group. Lichtenbaum constructs for a smooth projective curve \(X \) over the \(p \)-adic field \(k \) a perfect duality pairing \([Li69]\) §5 Thm 4
\[
\text{Br}(X) \times \text{Pic}(X) \rightarrow \text{Br}(k) = \mathbb{Q}/\mathbb{Z}.
\]
The vanishing of the left kernel of (4.1) translates into the injectivity of the map
\[
\text{Br}(X) \hookrightarrow \prod_{a \in X_0} \text{Br}(\kappa(a)),
\]
which evaluates a Brauer class on \(X \) in every closed point \(a \in X \).

Let \(\mathcal{X} \) be a model of \(X/k \). A closed point \(a \in X \) has the henselian local scheme \(Z_a \subset \mathcal{X} \) as its Zariski-closure in \(\mathcal{X} \). The unique closed point of \(Z_a \) is the topological intersection \(y_a = Z_a \cap \mathcal{X}_y \) with the special fibre of the model. Because \(Z_a \) is henselian, its inclusion to \(\mathcal{X} \) lifts to the scheme of nearby points \(\mathcal{X}_{y,a} \), and the lift induces a map \(\text{Spec}(\kappa(a)) \rightarrow \mathcal{X}_{y,a}^h \) that lifts the point \(a \in X \). It follows immediately from (4.2) that we also have a local global principle
\[
\text{Br}(X) \hookrightarrow \prod_{y \in \mathcal{X}_0} \text{Br}(\mathcal{X}_{y,a}^h)
\]
with respect to the nearby points \(\mathcal{X}_{y,a}^h \) associated to the closed points \(y \in \mathcal{X}_0 \) of a model. In the direct limit over all models of \(X/k \) we find the composition
\[
\text{Br}(X) \hookrightarrow \lim_{\mathcal{X}} \prod_{y \in \mathcal{X}_0} \text{Br}(\mathcal{X}_{y,a}^h) \rightarrow \prod_{w \in \text{Val}(K)} \text{Br}(K_w^h).
\]
The last map follows from the restriction map
\[
\lim_{\mathcal{X}} \text{Br}(\mathcal{X}_{x,w}^h) \sim \text{Br}(\mathcal{X}_{y,w}^h) \rightarrow \text{Br}(K_w^h),
\]
and is injective by purity for the Brauer group. Moreover, if \(w \) is not of type \(2h \), the map (4.5) is an isomorphism by the compatibility of henselisation and the Brauer group with direct limits.

Proposition 18. Let \(\mathcal{X} \) be a model of \(X/k \). Let \(A \in \text{Br}(X) \) be a Brauer class. Then the set
\[
\{ y \in \mathcal{X}_{y,\text{red}} : A \text{ is nontrivial in } \text{Br}(\mathcal{X}_{y,a}^h) \}
\]
is closed in the constructible topology \(\mathcal{X}_{\text{cons}} \).
Proof: We only have to argue that if \(A \) vanishes in \(\Br(\mathcal{U}_y^h) \) for some generic point \(\alpha \) of \(\mathcal{X}_{\text{red}} \), then \(A \) vanishes in \(\Br(\mathcal{U}_y^h) \) for all but finitely many closed points \(y \) in the closure of \(\alpha \). But if \(A \) vanishes in \(\Br(\mathcal{U}_y^h) \), then this occurs already on \(V = \mathcal{V} \times \mathcal{X} \) for some strict étale neighbourhood \(\mathcal{V} \to \mathcal{X} \) of \(\alpha \). For almost all \(y \) in question the natural map \(\mathcal{U}_y^h \to \mathcal{X} \) factors over \(V \) and therefore \(A \) also vanishes in those \(\Br(\mathcal{U}_y^h) \).

Corollary 19. Let \(A \in \Br(X) \) be a Brauer class. Then the set
\[\{ w \in \Val_s(K) : A \text{ is nontrivial in } \Br(K^h_{\omega}) \} \]
is closed in the patch topology on \(\Val_s(K) \).

Proof: Corollary 19 follows at once from Proposition 18 because \(\Val_s(K) \) with the patch topology is homeomorphic to \(\lim_{\rightarrow} \mathcal{X}_{\text{cons}} \). Proposition 18 and the fact that a projective limit of nonempty compact spaces is nonempty shows that the composite map in (4.4) is also injective [P88] Thm 4.5. More precisely, by taking limits and exploiting the compactness of the patch topology we find the following generalization of (4.4):

Theorem 20 ([P88] Thm 4.5). Let \(M/k \) be a function field of transcendence degree 1 over \(k \). Then the following restriction map is injective
\[\Br(M) \hookrightarrow \prod_{w|v} \Br(M^h_{\omega}), \]
where the product ranges over all valuations \(w \) of \(M \) extending the \(p \)-adic valuation \(v \) on \(k \).

4.2. Computation of the Brauer group of a henselisation — case of type 2. We are interested in controlling the kernel of \(\Br(k) \to \Br(K^h_{\omega}) \) for a valuation \(w \in \Val_s(K) \). We will compute for each model \(\mathcal{X} \) a relevant subgroup of \(\Br(\mathcal{U}_y^h) \) and take the limit over all models as in (4.5).

Let \(y \in \mathcal{X} \) be a closed point of a model. The cohomology sheaves with support of \(\mathcal{G}_m \) for \(i : Y^h_y := \mathcal{X}^h_y \setminus \mathcal{U}_y^h \hookrightarrow \mathcal{X}^h_y \) are \(R^j i_*^! \mathcal{G}_m = 0 \) for \(j = 0, 2 \) and
\[R^1 i_*^! \mathcal{G}_m = j_* \mathcal{G}_m / \mathcal{G}_m \cong \bigoplus_i \mathcal{V}_\alpha \cdot \mathbb{Z} \]
with the isomorphism induced by the valuation \(w_\alpha \) on the function field \(K \) of \(\mathcal{X} \) defined by the components \(i_\alpha : Y_\alpha \hookrightarrow \mathcal{X}_y^h \) of \(Y^h_y \). Moreover, \(i_\alpha^! R^3 j_* \mathcal{G}_m = R^2 j_* \mathcal{G}_m \) with open immersion \(j : \mathcal{U}_y^h \subset \mathcal{X}_y^h \) has stalk \(\bigoplus \mathbb{Z} \mathcal{G}_m \) of classes in \(\Br(\mathcal{U}_y^h) \) which die when restricted to \(\mathcal{U}_y^h \). In the limit over all models we get \(\Br(\mathcal{U}_y^h / \mathcal{U}_w^h) \subset \Br(K^h_{\omega}) \). By the computation of \(\Br(k) \) along \(i : \Spec(F) \hookrightarrow \Spec(o) \) as
\[\Br(k) = H^2_{\Spec(F)}(\Spec(o), \mathcal{G}_m) = H^2(F, R^1 i_*^! \mathcal{G}_m) = \Hom(\Gal_F, v(k) \otimes \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Q}/\mathbb{Z} \]
the subgroup \(\Br(\mathcal{U}_y^h / \mathcal{U}_w^h) \) receives the image of the restriction map \(\Br(k) \to \Br(\mathcal{U}_y^h) \). Let \(\Gal_s \) be the absolute Galois group of the residue field \(\kappa(y) \) at \(y \). Using \(\Br(\mathcal{X}_y^h) = \Br(k(y)) = 0 \) and \(H^3(\mathcal{X}_y^h, \mathcal{G}_m) = H^3(\kappa(y), \mathcal{G}_m) = 0 \), the relative cohomology sequence for \((\mathcal{X}_y^h, \mathcal{U}_y^h) \) yields an isomorphism of \(\Br(\mathcal{U}_y^h / \mathcal{U}_w^h) \) with
\[H^2(Y^h_y, R^1 i_*^! \mathcal{G}_m) = \bigoplus_{\alpha} \Hom(\Gal_y, w_\alpha(K) \otimes \mathbb{Q}/\mathbb{Z}) = \Hom(\Gal_y, \mathcal{G}_m(\mathcal{U}_y^h) / \mathcal{G}_m(\mathcal{U}_y^h)). \]

In the limit over all models we obtain the following proposition:
Proposition 21. Let \(w \in \text{Val}_v(K) \) be a valuation of type 2. The map \(\text{Br}(k) \to \text{Br}(U_{w}^{\text{sh}}/U_{w}^{\text{h}}) \) is isomorphic to the map:

1. If \(w \) is not of type 2h, then
\[
\text{Hom}(\text{Gal}_v, v(k) \otimes \mathbb{Q}/\mathbb{Z}) \to \text{Hom}(\text{Gal}_v(w(K) \otimes \mathbb{Q}/\mathbb{Z})
\]

2. If \(w = v_{\kappa(a)} \circ w_{\alpha} \) is of type 2h refining \(w_{\alpha} \) of type 1h for a closed point \(a \in X \) and \(v_{\kappa(a)} \) the \(p \)-adic valuation of the residue field \(\kappa(a) \), then
\[
\text{Hom}(\text{Gal}_v, v(k) \otimes \mathbb{Q}/\mathbb{Z}) \to \text{Hom}(\text{Gal}_v(w(K)), v(\kappa(a)) \otimes \mathbb{Q}/\mathbb{Z})
\]

where the maps are defined by the inclusion map \(v(k) \to w(K) \), resp. \(v(k) \to v(\kappa(a)) \), of value groups and the restriction map \(\text{Gal}_v(w) \to \text{Gal}_v \).

Corollary 22. The class of invariant \(1/\ell \) survives in \(\text{Br}(K_{\alpha}^{h}) \) for a valuation \(w \) of type 2 if and only if the degree of the residue field extension \(\kappa(w)/F \) is prime to \(\ell \) and the value \(w(\pi) \) of a uniformizer \(\pi \) of \(k \) is not divisible by \(\ell \) in the value group \(w(K) \).

4.3. Local–semilocal principle for the Brauer group. Let \(\alpha \) be a valuation of type 1v, and let \(Y_{\alpha} \) be the associated divisor in suitably fine models. The scheme \(Y_{\alpha} \) is a smooth projective curve over a finite extension \(F_{\alpha}/F \) as field of constants. We define \(\text{Br}'(K_{\alpha}^{h}) \) as the preimage of \(H^{1}(\pi_{1}(Y_{\alpha}), \mathbb{Q}/\mathbb{Z}) \subset H^{1}(\kappa(\alpha), \mathbb{Q}/\mathbb{Z}) = H^{2}(\kappa(\alpha), R^{1}\pi_{*}\mathbb{A}_{\eta}) \) under the natural map
\[
\text{Br}(K_{\alpha}^{h}) \to H^{2}(\mathbb{A}_{\eta}, \mathbb{G}_{m})
\]

from the relative cohomology sequence and the local to global spectral sequence associated to the regular embedding \(i : \text{Spec}(\kappa(\alpha)) \to \mathbb{A}_{\eta}^{h} \). The subgroup \(\text{Br}'(K_{\alpha}^{h}) \) receives the image of the restriction map \(\text{Br}(k) \to \text{Br}(K_{\alpha}^{h}) \). By \(H^{3}(\mathbb{A}_{\eta}^{h}, \mathbb{G}_{m}) = H^{3}(\kappa(\alpha), \mathbb{G}_{m}) = 0 \), we can extract from the relative cohomology sequence the exact sequence
\[
0 \to \text{Br}(\kappa(\alpha)) \to \text{Br}'(K_{\alpha}^{h}) \to H^{1}(\pi_{1}(Y_{\alpha}), \mathbb{Q}/\mathbb{Z}) \to 0.
\]

A valuation \(w_{\eta} = v_{y} \circ \alpha \) which refines \(\alpha \) by means of a closed point \(y \in Y_{\alpha} \) has henselisation \(K_{\eta}^{h} \). The restriction map \(\text{Br}(K_{\alpha}^{h}) \to \text{Br}(K_{\eta}^{h}) \) respects the respective subgroups \(\text{Br}'(K_{\eta}^{h}) \to \text{Br}(U_{\eta}^{sh}/U_{\eta}^{h}) \). The value group of \(w \) sits in an exact sequence of torsion free groups
\[
0 \to v_{y}(\kappa(\alpha)) \to w_{\eta}(K) \to w_{\alpha}(K) \to 0,
\]

which therefore remains exact after applying \(\text{Hom}(\text{Gal}_{y}, (-) \otimes \mathbb{Q}/\mathbb{Z}) \). The restriction maps on Brauer groups for all such \(w_{\eta} := v_{y} \circ w_{\alpha} \) fit into a map
\[
\begin{array}{ccccccccc}
0 & \to & \text{Br}(\kappa(\alpha)) & \to & \text{Br}'(K_{\alpha}^{h}) & \to & \text{Hom}(\pi_{1}(Y_{\alpha}), \mathbb{Q}/\mathbb{Z}) & \to & 0 \\
\downarrow \lambda_{1} & & \downarrow \lambda_{2} & & \downarrow \lambda_{3} & & & & \\
0 & \to & \prod_{y \in Y_{\alpha}} \text{Hom}(\text{Gal}_{y}, \mathbb{Q}/\mathbb{Z}) & \to & \prod_{y \in Y_{\alpha}} \text{Br}(U_{\eta}^{sh}/U_{\eta}^{h}) & \to & \prod_{y \in Y_{\alpha}} \text{Hom}(\text{Gal}_{y}, \mathbb{Q}/\mathbb{Z}) & \to & 0
\end{array}
\]

of exact sequences. The homomorphism \(\lambda_{1} \) is injective by the local–global principle for the Brauer group of the function field \(\kappa(\alpha) \). The homomorphism \(\lambda_{3} \) restricts an unramified character to the decomposition group of \(y \in Y_{\alpha} \) and is injective because the set of Frobenius elements is dense in \(\pi_{1}(Y_{\alpha}) \). Hence by the 5-Lemma we deduce the following local–semilocal principle:

Proposition 23. The restriction map
\[
\text{Br}'(K_{\alpha}^{h}) \to \prod_{y \in Y_{\alpha}} \text{Br}(U_{\eta}^{sh}/U_{\eta}^{h})
\]
is injective.

4.4. The Brauer group of the decomposition pro-cover of a section. In this section we fix a section \(s : \text{Gal}_{k} \to \pi_{1}(X, \eta) \) of the fundamental group extension \(\pi_{1}(X/k) \).
4.4.1. The decomposition pro-cover of a section. The section s induces a right action of Gal_k on the universal pro-étale cover \tilde{X} of the curve X/k. The corresponding quotient
\[\tilde{X}^s = \tilde{X}/s(\text{Gal}_k) \]
is the maximal subcover X'/X of \tilde{X}/X such that the section s lifts to a section of the composition $\pi_1(X') \subset \pi_1(X, \tilde{\eta}) \rightarrow \text{Gal}_k$. In fact, $\pi_1(\tilde{X}^s)$ is nothing but the image $s(\text{Gal}_k)$ in $\pi_1(X, \tilde{\eta})$.

4.4.2. Relative Brauer groups and sections. The relative Brauer group $\text{Br}(X/k)$ of the p-adic curve X/k is the kernel of the pullback map $\text{Br}(k) \rightarrow \text{Br}(X)$. By a theorem of Roquette and Lichtenbaum, see [Li69] Thm p.120, we know that $\text{Br}(X/k)$ is cyclic of order the index of X. The index of X is defined as $\text{gcd}(\text{deg}(D))$, where D ranges over all k-rational divisors on X.

Proposition 24. For a section s of $\pi_1(X/k)$ and any $\ell \neq p$ the natural map
\[\text{Br}(k) \otimes \mathbb{Z}_\ell \rightarrow \text{Br}(\tilde{X}^s) \otimes \mathbb{Z}_\ell \]
is an isomorphism.

Proof: The Leray spectral sequence yields an exact sequence
\[0 \rightarrow \text{Br}(X/k) \rightarrow \text{Br}(k) \rightarrow \text{Br}(X) \rightarrow H^1(k, \text{Pic}_X^0). \tag{4.10} \]

For every finite subcovers $X' \rightarrow X$ of \tilde{X}^s the section s lifts canonically to a section of $\pi_1(X'/k)$. The presence of a section implies that the index is a power of p, see [Sx10] Thm 15, so that $\text{Br}(X'/k)$ is a cyclic p-group. In the limit over all finite subcovers X'/X of \tilde{X}^s of (4.10) we therefore find the exact sequence
\[0 \rightarrow \text{Br}(k) \otimes \mathbb{Z}_\ell \rightarrow \text{Br}(\tilde{X}^s) \otimes \mathbb{Z}_\ell \rightarrow \lim_{X'/X} H^1(k, \text{Pic}_{X'}) \otimes \mathbb{Z}_\ell. \]

The degree sequence on every X' gives an exact sequence
\[0 \rightarrow \mathbb{Z}/ \text{period}(X') \mathbb{Z} \rightarrow H^1(k, \text{Pic}_{X'})^0 \rightarrow H^1(k, \text{Pic}_{X'}) \rightarrow H^1(k, \mathbb{Z}) = 0. \]

The period, i.e., the order of $[\text{Pic}^1] \in H^1(k, \text{Pic}^0)$, divides the index and thus is a power of p for any subcover $X' \rightarrow X$ of \tilde{X}^s. We therefore find in the limit
\[\lim_{X'/X} H^1(k, \text{Pic}_{X'}) \otimes \mathbb{Z}_\ell \cong \lim_{X'/X} H^1(k, \text{Pic}_{X'})^0 \otimes \mathbb{Z}_\ell \cong H^1(k, \lim_{\mathbb{Z}/X'} \text{Pic}_{X'}) \otimes \mathbb{Z}_\ell \cong 0 \]
because $\lim_{\mathbb{Z}/X'} \text{Pic}_{X'}^0$ is uniquely divisible. Indeed, for every finite subcover X'/X of \tilde{X}^s and every $n \in \mathbb{N}$ we have a further subcover $X^0_{X'}$ of \tilde{X}^s, such that $\text{Pic}_{X'} \rightarrow \text{Pic}_{X^0_{X'}}^0$ factors over the multiplication by n map of $\text{Pic}_{X'}^0$. Namely, if X' corresponds to $H \cdot s(\text{Gal}_k) \subset \pi_1(X)$ with $H \subset \pi_1(X \times_k k^{a_{\nu}^0})$ open, then $X^0_{X'}$ corresponds to $[H, H][H^2] \cdot s(\text{Gal}_k)$. \hfill \Box

4.5. Detecting a valuation from a section.

Theorem 25. Let $s : \text{Gal}_k \rightarrow \pi_1(X)$ be a section. There is a valuation $w \in \text{Val}_v(K)$ with prolongation \tilde{w} to K such that

(i) the image $s(\text{Gal}_{k, \ell})$ of an ℓ-Sylow subgroup $\text{Gal}_{k, \ell}$ of Gal_k is contained in $D_{\tilde{w}|w}$, and

(ii) the image $s(\text{I}_{k, \ell})$ of the ℓ-Sylow subgroup $\text{I}_{k, \ell} = \text{Gal}_{k, \ell} \cap \text{I}_k$ is contained in $D_{\tilde{w}|w}$.

Proof: Let $M = k(\tilde{X}^s)$ be the function field of the decomposition pro-cover \tilde{X}^s of the section s. By Theorem 20 and Proposition 24 there is a valuation $w \in \text{Val}_v(M)$, such that the Brauer class of invariant $1/\ell$ in $\text{Br}(k)$ is nontrivial in the Brauer group of the henselisation M^h_{w}.

We claim, that $s(\text{Gal}_{k, \ell})$ is contained in $D_{\tilde{w}|w}$ for an appropriate prolongation $\tilde{w} \in \text{Val}_v(\tilde{K})$ of w.

With $\Lambda = \tilde{K} \cap M^h_{w}$ the claim is equivalent to the degree of Λ/M being prime to ℓ in the sense of supernatural numbers. By construction of M there is an algebraic extension Λ/k such that $\Lambda = \lambda M$ and the degree of Λ/M equals the degree of Λ/k. The defining property of w implies
that \(\text{Br}(k) \otimes \mathbb{Z}_\ell \to \text{Br}(\lambda) \otimes \mathbb{Z}_\ell \) is injective, which forces the degree of \(\lambda/k \) to be prime to \(\ell \). This proves the claim and we have found a valuation \(w \) such that (i) holds.

In order to enforce property (ii), let us first assume that the valuation \(w \) constructed above is of type 2. In the commutative diagram

\[
\begin{array}{cccccc}
1 & \longrightarrow & I_{\tilde{w}|w} & \longrightarrow & D_{\tilde{w}|w} & \longrightarrow & \text{Gal}_{\kappa(w)} & \longrightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
1 & \longrightarrow & I_k & \longrightarrow & \text{Gal}_k & \longrightarrow & \text{Gal}_F & \longrightarrow & 1
\end{array}
\]

the rightmost vertical map injective. Hence the \(\ell \)-Sylow subgroup \(s(I_{k,\ell}) = s(\text{Gal}_{k,\ell}) \cap I_k \) of \(s(I_k) \) is automatically contained in \(I_{\tilde{w}|w} \).

It remains to discuss the case where a priori \(w = \alpha \) is a valuation of \(M \) of type 1v and \(A \), the Brauer class of invariant \(1/\ell \) in \(\text{Br}(k) \), vanishes in \(\text{Br}(M^{h_{v,y}}) \) for all valuations \(w_{y,a} = v_y \circ \alpha \) of type 2. The exact sequence (4.7) yields in the limit an exact sequence

\[
0 \to \text{Br}(\kappa(\alpha)) \to \text{Br}(M^{h_{v,y}}) \to H^1(\kappa(\alpha), \alpha(M) \otimes \mathbb{Q}/\mathbb{Z}).
\]

The local–global principle for the Brauer group of \(\kappa(\alpha) \) yields an injection

\[
\text{Br}(\kappa(\alpha)) \hookrightarrow \prod_y \text{Hom}(\text{Gal}_{\kappa(w_{y,a})}, \mathbb{Q}/\mathbb{Z}) \hookrightarrow \prod_y \text{Br}(M^{h_{v,y}})
\]

where \(y \) ranges over the closed points of \(Y_\alpha \) and so the composite valuations \(w_{y,a} = v_y \circ \alpha \) are the refinements of type 2v of \(\alpha \). Hence the restriction of \(A \) in \(\text{Br}(M^{h_{v,y}}) \) is a ramified class, i.e., it induces a nontrivial character \(\chi_A \in H^1(\kappa(\alpha), \alpha(M) \otimes \mathbb{Q}/\mathbb{Z}) \). In fact \(\chi_A \) is the character

\[
\chi_A : \text{Gal}_{\kappa(\alpha)} \to \text{Gal}_F \xrightarrow{\text{Frob} \circ v(\pi) \otimes 1/\ell} v(\kappa) \otimes \mathbb{Q}/\mathbb{Z} \to \alpha(M) \otimes \mathbb{Q}/\mathbb{Z},
\]

where \(\pi \) is a uniformizer of \(\sigma \). For \(\chi_A \) to be nontrivial means that the image of

\[
D_{\tilde{\alpha}|\alpha} = \text{Gal}(\widetilde{K}/M^{h_{\alpha}}) \subset \text{Gal}(\widetilde{K}/M) = s(\text{Gal}_k) \to \text{Gal}_k \to \text{Gal}_F
\]

contains the \(\ell \)-Sylow subgroup of \(\text{Gal}_F \), and the ramification index \(e(\alpha/v) \) is prime to \(\ell \).

Let \(L/M \) be a subextension of \(\widetilde{K}/M \) with an unramified prolongation \(\alpha_L \) of \(\alpha \) and such that the residue field of \(\alpha_L \) has Galois group

\[
\text{Gal}(\kappa(\tilde{\alpha})/\kappa(\alpha_L)) \subset \text{Gal}(\kappa(\tilde{\alpha})/\kappa(\alpha))
\]

that projects isomorphically to the \(\ell \)-Sylow subgroup \(\text{Gal}_{F,\ell} \) of \(\text{Gal}_F \). Consequently, the restriction of \(A \) to \(\text{Br}(L^{h_{\alpha_L}}) \) still does not vanish because the restriction of the character \(\chi_A \) remains nontrivial. By construction we have a short exact sequence

\[
1 \to I_{\tilde{\alpha}|\alpha} \to D_{\tilde{\alpha}|\alpha_L} \to \text{Gal}_{F,\ell} \to 1.
\]

The argument in the first part of the proof shows that (i) holds for \(L \) and \(\alpha_L \), thus showing that \(s(\text{Gal}_{k,\ell}) \subset D_{\tilde{\alpha}|\alpha_L} \). By a diagram chase with (4.12) we deduce that

\[
s(I_{k,\ell}) \subset I_{\tilde{\alpha}|\alpha}
\]

and so \(\alpha \) indeed also satisfies (ii). \(\square \)

5. Proof of the main result

In this section we formulate and prove a slightly stronger form of part (1) of the Main Result from the introduction.

5.1. Reformulation as a fixed point problem. The \(T^G \) be the set of fixed points for a continuous \(G \)-action on a space \(T \).
5.1.1. The action. The fundamental group $\pi_1(X, \bar{\eta})$ is anti-isomorphic to the group of covering transformations of the universal pro-étale cover \tilde{X}/X. Thus $\pi_1(X, \bar{\eta})$ acts on \tilde{X} from the right and on its function field K from the left. The action on \tilde{X} is continuous in the sense that the induced action on a finite intermediate Galois cover X'/X factors through a finite quotient of $\pi_1(X, \bar{\eta})$. Cofinally in the set of all intermediate covers X'/X and their models \mathcal{X}' we find Galois equivariant models to which the $\pi_1(X, \bar{\eta})$-action uniquely extends. The set of valuations $\text{Val}_w(K)$ of K extending v inherits a continuous $\pi_1(X, \bar{\eta})$-action from the right as the pro-finite limit of $\pi_1(X, \bar{\eta})$-spaces $$\lim_{\overset{\longrightarrow}{X'}} \mathcal{X}'_{\text{cons}},$$ where \mathcal{X}' ranges over a cofinal system of Galois equivariant models.

5.1.2. Fixed points and decomposition subgroups. The stabilizer of a valuation $\bar{w} \in \text{Val}_w(K)$ is nothing but the decomposition subgroup $D_{\bar{w}|w} \subset \pi_1(X, \bar{\eta})$. Hence for a subgroup $G \subset \pi_1(X, \bar{\eta})$ we have $G \subset D_{\bar{w}|w}$ if and only if \bar{w} belongs to the fixed points $\text{Val}_w(K)^G$ of the induced G-action.

Theorem 26. Let X be a smooth, hyperbolic, geometrically connected curve over a finite extension k of \mathbb{Q}_p. Then for any section s of $\pi_1(X/k)$ there exists a valuation $\bar{w} \in \text{Val}_w(K)$, such that the image $s(\text{Gal}_k)$ is contained in the decomposition subgroup $D_{\bar{w}|w}$.

Proof: Let Σ be the image of $s(\text{Gal}_k)$. By the above we have to show that the set of fixed points $$\left(\text{Val}_w(K)\right)^\Sigma = \left(\lim_{\overset{\longrightarrow}{X'}} \mathcal{X}'_{\text{cons}}\right)^\Sigma = \lim_{\overset{\longrightarrow}{X'}} \left(\mathcal{X}'_{\text{cons}}\right)^\Sigma$$ is non-empty, where $X' \subset \mathcal{X}'$ ranges over Galois equivariant models of the smooth projective compactifications of finite Galois étale covers X'/X in \tilde{X}. But for each Galois equivariant model the set of fixed points $\left(\mathcal{X}'_{\text{cons}}\right)^\Sigma$ is a closed subset of the pro-finite set $\mathcal{X}'_{\text{cons}}$ and thus compact. The projective limit of compact sets is non-empty if and only if each member of the limit is non-empty, which reduces the proof to the following Theorem 27. \hfill \square

Theorem 27. Let $\Sigma \subset \pi_1(X, \bar{\eta})$ be the image of a section $s : \text{Gal}_k \rightarrow \pi_1(X, \bar{\eta})$, and let X'/X be a finite Galois étale cover with a Galois equivariant model \mathcal{X}'. The induced action of Σ on $\mathcal{X}'_{\text{cons}}$ has a nonempty set of fixed points $\left(\mathcal{X}'_{\text{cons}}\right)^\Sigma$.

The proof of Theorem 27 will be given in Section 5.2 below after recalling the following preliminary lemma.

5.1.3. Sturdy reduction. We recall the following result from [Mz96] Lemma 2.9.

Lemma 28 (Mochizuki). Every model \mathcal{X} admits a finite log étale cover $\mathcal{X}' \rightarrow \mathcal{X}$ such that every strict transform of a component of the stable model in \mathcal{X}' has genus at least 2. \hfill \square

Remark 29. (1) A cover \mathcal{X}' with degeneration of its stable model as in Lemma 28 is called sturdy in [Mz96].

(2) The cover \mathcal{X}' in Lemma 28 is usually not regular, but can be turned into a model by a minimal desingularisation of rational A_w-singularities in the nodes.

5.2. The existence of fixed points: proof of Theorem 27. For fine enough finite étale covers X'/X the smooth compactification of X' will itself be hyperbolic. It thus suffices to consider the case of smooth projective curves X/k of genus at least 2.

Let $\Sigma \subset \pi_1(X, \bar{\eta})$ be the image of a section $s : \text{Gal}_k \rightarrow \pi_1(X, \bar{\eta})$, and let $\Theta \subset \Sigma$ be the image $s(I_k)$ of the inertia subgroup under the section s. Let $w \in \text{Val}_w(K)$ be a valuation as in Theorem 25 with a prolongation $\bar{w} \in \text{Val}_w(K)$ such that an ℓ-Sylow Σ_ℓ of Σ is contained in the decomposition group $D_{\bar{w}|w}$ and the ℓ-Sylow subgroup $\Theta_\ell = \Sigma_\ell \cap \Theta$ of Θ is contained in $I_{\bar{w}|w}$.
Let X'/X be a finite Galois étale cover with a Galois equivariant model \mathcal{X}'. In order to prove Theorem 27 we may pass to a characteristic cover X''/X' and a finer equivariant model $\mathcal{X}'' \to \mathcal{X}'$. Hence we may assume that X' has field of constants a finite extension k' and admits a stable model over the valuation ring \mathfrak{o} of k'. Moreover, by Lemma 11 and Lemma 28 we may assume that

(i) the stable model $\mathcal{X}'_{\text{stable}}$ of X' is sturdy, i.e., that any stable component is of genus at least 2, and

(ii) any two components of the stable model intersect at most once in the stable model.

Let now w' be the restriction of \tilde{w} to K', i.e., the extension of w to K' determined by \tilde{w}. The intersection $\Theta \cap I_{\tilde{w}|w'}$ is of finite index in $\Theta_{\tilde{w}}$ and thus isomorphic to $\mathbb{Z}_l(1)$. Let

Let $\mathcal{X}'_{\tilde{w}}$, be the kernel of the specialisation map $\text{sp} : \pi_{1}(X') \to \pi_{1}(\mathcal{X}')$, which contains $I_{\tilde{w}|w'}$. The projection $\pi_{1}(X') \to \text{Gal}_k$ induces a map $\mathcal{X}'_{\tilde{w}} / \mathcal{X}'_{\tilde{w}} \to \Pi_{k}^\text{ab} = \hat{\mathbb{Z}}(1)$, which maps $\Theta \cap I_{\tilde{w}|w'}$ to a pro-ℓ-group of finite index in the ℓ-Sylow subgroup $\mathbb{Z}_l(1)$ of Π_{k}^ab, hence to an infinite pro-ℓ-group. Consequently, the image of $\Theta \cap I_{\tilde{w}|w'}$ in $\mathcal{X}_{\tilde{w}}^\text{ab}$ is nontrivial and also isomorphic to $\mathbb{Z}_l(1)$.

For an element $\sigma \in \Sigma$ the image of $\Theta \cap I_{\tilde{w}|w'}$ in $\mathcal{X}_{\tilde{w}}^\text{ab} \otimes \mathbb{Z}_l$ meets the image of its σ-conjugate $\sigma \Theta \sigma^{-1} \cap I_{\tilde{w} \sigma(w')}$ nontrivially because both are contained in the image of $\Theta \cap \mathcal{X}_{\tilde{w}}^\text{ab}$, and we have the following well known and useful lemma.

Lemma 30. Let $H \subset \mathcal{I}_k$ be a closed subgroup of the inertia group \mathcal{I}_k of k. Then the maximal pro-ℓ quotient H^ℓ of H for an $\ell \neq p$ is a quotient of $\mathbb{Z}_l(1)$.

Proof: The wild inertia $\mathcal{P}_k \subset \mathcal{I}_k$ is the unique normal p-Sylow subgroup of \mathcal{I}_k. Thus H^ℓ is a quotient of $H / (H \cap \mathcal{P}_k)$ which is a subgroup of $\mathcal{I}_k / \mathcal{P}_k \cong \prod_{\ell \neq p} \mathbb{Z}_l(1)$.

We deduce that the images of $I_{\tilde{w}|w'}^\text{ab} \otimes \mathbb{Z}_l$ and $I_{\sigma(w') \sigma \omega(w')}^\text{ab} \otimes \mathbb{Z}_l$ in $\mathcal{X}_{\tilde{w}}^\text{ab} \otimes \mathbb{Z}_l$ intersect nontrivially. Due to Proposition 17 we may compute in the subquotient $\mathcal{X}_{\tilde{w}}^\text{log,ab} \otimes \mathbb{Z}_l$ of $\mathcal{X}_{\tilde{w}}$.

If w has type 2, Corollary 10 implies that the intersection

$$
\left(\bigoplus_{\alpha} I_{\tilde{w}|w'}^{\text{ab}} \otimes \mathbb{Z}_l \right) \cap \left(\bigoplus_{\alpha} I_{\sigma(w) \sigma \omega(w')}^{\text{ab}} \otimes \mathbb{Z}_l \right)
$$

in $\mathcal{X}_{\tilde{w}}^\text{ab} \otimes \mathbb{Z}_l$ is nontrivial, where α ranges over valuations of type 1v associated to irreducible components Y_{α} of the special fibre of $\mathcal{X}'_{\text{stable}}$ that contain the image y of the center $x_{w'} \in \mathcal{X}'_F$ of w', and the \tilde{a} are prolongations to \tilde{K} as in Corollary 10. If w is of type 1v, the same conclusion holds with just $\alpha = w$. Now Proposition 4 applies and shows that the intersection

$$\{ \alpha : y \in Y_{\alpha} \} \cap \{ \sigma(\alpha) : y \in Y_{\alpha} \}
$$

is nonempty for every $\sigma \in \Sigma$. If the set $\{ \alpha : y \in Y_{\alpha} \}$ has cardinality 1 then this α is a fixed point. Otherwise the cardinality is 2 and the combinatorics of the Σ-action on $\Sigma \cdot \{ \alpha : y \in Y_{\alpha} \}$ conforms to the following combinatorial lemma.

Lemma 31. Let G be a finite group acting on a set M. Let $x,y \in M$ be elements, such that $M = G \cdot x \cup G \cdot y$ and such that for every $g \in G$ the set $\{ x,y \}$ intersects $\{ gx, gy \}$ nontrivially, then we have one of the following three cases.

1. $M^G \neq \emptyset$, more precisely x or y is fixed under G.
2. $M = \{ x,y \}$ has two elements and G acts transitively.
3. $M = \{ x,y,z \}$ has three elements and G acts transitively.

Proof: For $z \in M$ let G_z be the stabilizer of z under the action by G. If G acts with two orbits, then $G = G_x \cup G_y$ and thus not both stabilizers are of index in G bigger than 1, hence we have case (1). The same conclusion holds if x equals y.

If G acts transitively on M and $x \neq y$, then there is a $g \in G$ with $gx = y$ and we have

$$G = G_x \cup gG_xg^{-1} \cup gG_x \cup G_xg^{-1}.$$

Because $G_x \cap gG_xg^{-1}$ contains $1 \in G$, we can estimate $\#G + 1 \leq 4 \cdot \#G_x$ and thus the index $(G : G_x)$ is at most 3. This proves the lemma.

In the situation of the proof of Theorem 27, when we let Σ act through a finite quotient on $\Sigma \cdot \{x : y \in Y_{\alpha}\}$, then we obviously have a fixed point in case (1), namely the generic point of the component Y_{α} of the special fibre of $\mathcal{X}'_{\text{stable}}$. Consequently, the generic point of the strict transform of Y_{α} in \mathcal{X}' is fixed by Σ.

Next we lead case (3) to a contradiction. In case (3) the set $\Sigma \cdot \{x : y \in Y_{\alpha}\}$ consists of three distinct valuations $\alpha_1, \alpha_2, \alpha_3$ such that by Proposition 4 we have

$$Z_\ell(1) \oplus Z_\ell(1) \oplus Z_\ell(1) = \bigoplus_{i=1}^3 I_{\alpha_i} \otimes \mathbb{Z}_\ell \subset \mathcal{N}^\text{ab}\text{_{\mathcal{X}'_{\text{stable}}, \mathcal{Y}} \otimes \mathbb{Z}_\ell}.$$

Moreover, the nontrivial images of the conjugates of $\Theta_\ell \cap I_{\tilde{w}|w'}$ in $\mathcal{N}^\text{ab}\text{_{\mathcal{X}'_{\text{stable}}, \mathcal{Y}} \otimes \mathbb{Z}_\ell}$ all agree. But on the other hand, if $\{x : y \in Y_{\alpha}\} = \{\alpha_1, \alpha_2\}$ then the image of $\sigma\Theta_\ell\sigma^{-1} \cap I_{I_{\sigma(\tilde{w})}|\sigma(w')}^{\text{ab}}$ contained in $I_{\sigma(\tilde{w})}^{\text{ab}} \otimes I_{\sigma(\tilde{w})}^{\text{ab}}$, so lies in a coordinate plane. Because Σ acts transitively, we get a contradiction.

In case (2) of the lemma we find at least a fixed point in the stable model $\mathcal{X}'_{\text{stable}}$ that is the unique node y, due to condition (ii), in which the two components Y_{α} with $y \in Y_{\alpha}$ meet. The proof of Theorem 27 will thus be completed by the following lemma.

Lemma 32. Let X/k be a smooth projective curve of genus at least 2 that admits a stable model $\mathcal{X}'_{\text{stable}}$. Let \mathcal{X}' be a model of X that allows a finite group action by G. The natural map $f : \mathcal{X}' \rightarrow \mathcal{X}'_{\text{stable}}$ to the stable model is then G-equivariant and the map on fixed points

$$\mathcal{X}'^G \rightarrow \mathcal{X}'_{\text{stable}}^G$$

is surjective.

Proof: The uniqueness of the stable model induces an action of G and forces the map f to be G-equivariant.

Let $y \in \mathcal{X}'_{\text{stable}}$ be a fixed point under G. Then $f^{-1}(y)$ is geometrically connected and consists either of just one point, which then necessarily is fixed by G, or is a tree of projective lines. Then the dual graph Γ_y of $f^{-1}(y)$ is a tree which inherits an action by G. By Lemma 33 below, we have a fixed vertex or a fixed edge in Γ_y. That translates into a fixed component or a fixed node in $f^{-1}(y)$, so anyway the set of fixed points in \mathcal{X}' above y is nonempty.

Lemma 33. Let G be a group acting on a finite nonempty graph Γ. If Γ is a tree, then the G-action on Γ has a fixed point, which can be a vertex or an edge.

Proof: This follows at once from [Se80] Prop 10 and its corollary, which unfortunately is only stated for trees of odd diameter, when the guaranteed fixed point is a vertex. We recall the argument in order to cover the case of even diameter.

For two vertices $x, y \in \Gamma$ the **distance** $d(x, y)$ is defined as the minimum over the number of edges in a connected subgraph of Γ that contains x and y, see [Se80] §I.2.2. We set

$$d_x = \max\{d(x, y) : \text{all vertices } y \in \Gamma\}$$

for any vertex $x \in \Gamma$, and call $d = \max_x\{d_x\}$ the **diameter** of Γ, see [Se80] §I.2.2. The function d_x is convex along geodesic paths in Γ, as can be seen from an easy case by case proof of $d_x + d_z \geq 2d_y$ for adjacent vertices

$$\begin{array}{ccc}
 x & y & z \\
 \bullet & \bullet & \bullet
\end{array}$$
Let $\Gamma' \subset \Gamma$ be the minimal connected subgraph of Γ that contains all vertices $x \in \Gamma$ such that $d_x < d$. By the convexity of the function d_x along geodesics, we find that Γ' does not contain vertices x with $d_x = d$. The tree Γ' is thus a G-equivariant subtree and has smaller diameter than Γ. In fact, the diameter of Γ' is $d - 2$. By induction on the diameter it suffices to treat cases, where Γ' is empty. This leaves only the case of diameter 1 and 2 which are trivial. □

6. Arithmetic properties of the valuations given by sections

In this section we would like to discuss arithmetic properties of the valuations defined by sections as given by Theorem 26.

6.1. Sections localized at type $2h$ valuations and the p-adic section conjecture. Let $s : \text{Gal}_k \to \pi_1(X)$ be a section with $s(\text{Gal}_k)$ contained in the decomposition group $D_{\tilde{w}|w}$ of a valuation $\tilde{w} \in \text{Val}_v(\tilde{K})$ of type $2h$. The valuation w is a refinement of a valuation w_a of type $1h$ corresponding to a closed point $a \in X$ of the generic fibre. It follows that

$$s(\text{Gal}_k) \subseteq D_{\tilde{w}|w} = D_{\tilde{w}|w_a} = \kappa(\text{Gal}_k(a))$$

which after projection to Gal_k implies $\text{Gal}_k \subseteq \kappa|w \subset \text{Gal}_k$, and $s = \kappa(a)$ is the section associated to the k-rational point $a \in X(k)$ as predicted by the p-adic section conjecture.

The p-adic section conjecture thus reduces to the task of eliminating valuations $w \in \text{Val}_v(K)$ of type other than $2h$ in Theorem 26.

6.2. The residue field. Let $s : \text{Gal}(k) \to \pi_1(X)$ be a section and let $\tilde{w} \in \text{Val}_v(\tilde{K})$ such that with $s(\text{Gal}_k) \subset D_{\tilde{w}|w}$. The induced map

$$\text{Gal}_k \to D_{\tilde{w}|w}/I_{\tilde{w}|w} \to \text{Gal}_F$$

is surjective. Hence the residue field F of k is relatively algebraically closed in $\kappa(w)$. Therefore, if $w = \alpha$ is of type 1ν, we find that $\kappa(\alpha)$ is a regular function field over F. And if w has type 2, then $\kappa(w)$ equals F. We conclude that the valuation w given by Theorem 26 cannot be of type $2\nu_{\text{smooth}}$.

6.3. Sections localized at valuations of type 2. Let $s : \text{Gal}(k) \to \pi_1(X)$ be a section and let $\tilde{w} \in \text{Val}_v(\tilde{K})$ be a valuation of type 2 with $s(\text{Gal}_k) \subset D_{\tilde{w}|w}$.

6.3.1. The ramification. Let X'/ν be a model of X with reduced geometric special fibre \overline{Y}. The ramification of a section $s : \text{Gal}_k \to \pi_1(X)$ with respect to the model X' is defined as the homomorphism

$$\text{ram}(s) = \text{sp} \circ s|_k : I_k \to \pi_1(\overline{Y})$$

of the composite of the restriction to the inertia subgroup $I_k \subset \text{Gal}_k$ with the specialisation map $\text{sp} : \pi_1(X) \to \pi_1(\overline{Y})$. A section s is called unramified with respect to X' if $\text{ram}(s)$ is the trivial homomorphism. A section associated to a k-rational point that extends to an ν-rational point of the model, in particular any such for proper X/k, is necessarily unramified.

Let X/k be a proper, smooth, connected hyperbolic curve. The diagram

$$(6.1) \quad 1 \longrightarrow I_{\tilde{w}|w} \longrightarrow D_{\tilde{w}|w} \longrightarrow \text{Gal}_{\kappa(w)} \longrightarrow 1$$

$$1 \longrightarrow I_k \longrightarrow \text{Gal}_k \longrightarrow \text{Gal}_F \longrightarrow 1$$

shows that for any given model X with reduced special fibre Y the ramification $\text{ram}(s)$ of the section s vanishes. Moreover, the induced section of $\pi_1(Y/F)$ is the section associated to the F-rational point given by the center x_w of the valuation w on $Y \subset X'$. Of course, this is predicted by the p-adic section conjecture, but in general this is not known for an arbitrary section.
6.3.2. The non-vanishing locus of constant Brauer classes. By the diagram (6.1) above, the section induces a splitting of the projection $I_{\tilde{w}|w} \to I_k$. By the computation of log inertia groups the section thus yields a splitting of the map
\[
\text{Hom}(w(K^*), \tilde{Z}'(1)) = I^\text{tame}_{\tilde{w}|w} \to I^\text{tame}_k = \text{Hom}(v(k^*), \tilde{Z}'(1))
\]
and this means that $v(k^*) \hookrightarrow w(K^*)$ has no cotorsion prime-to-p. By Corollary 22 it follows that for all $\ell \neq p$ the map
\[
\text{Br}(k) \otimes \mathbb{Z}_\ell \to \text{Br}(K^h_w) \otimes \mathbb{Z}_\ell
\]
is injective.

6.3.3. Independence of $\ell \neq p$. Although a valuation for which the constant Brauer class of invariant $1/\ell$ does not vanish is the starting point in the proof of Theorem 25, in the course of the proof of Theorem 27 no effort is taken to keep this property. It turns out that at least for valuations of type 2 that satisfy the claim of Theorem 26 the non-vanishing of the constant Brauer class of invariant $1/\ell$ is automatic. Moreover, the potential dependence of the choice of the auxiliary prime ℓ different from p does not play a role in the end.

7. Uniqueness properties of the valuations given by sections

7.1. Bridges and the effect of resolution of non-singularities. With regards to uniqueness of the valuation in Theorem 26, we first discuss the combinatorial structure of the union of all invisible components.

Because of Lemma 16 the invisible components are of genus 0 over some field extension F' of F and meet the rest of the special fibre in at most a divisor of degree 2 over F'. A special kind of invisible component is defined as follows.

Definition 34. A bridge element is an invisible irreducible component of the special fibre of a model \mathcal{X}, which is contained in a bridge, i.e., a chain of components $E_0 = Y_\alpha, E_1, \ldots, E_{e-1}, E_e = Y_\alpha'$ in the reduced special fibre \mathcal{X}_{red} where

(i) E_i meets E_{i-1} and E_{i+1} in a double point,
(ii) E_i is invisible for $i = 1, \ldots, e - 1$,
(iii) Y_α and Y_α' are visible and not necessarily distinct components, the bridge heads of the bridge.

A valuation of type 1v is called a bridge element if the associated irreducible component on a fine enough model is a bridge element. Valuations α, α' of type 1v which give rise to the bridge heads Y_α, Y_α' are also called bridge heads.

Remark 35. (1) Due to Lemma 16, a bridge element can only be dominated by bridge elements in refinements of models or in models of finite, generically étale covers. Hence a valuation of type 1v belongs to a bridge on every model on which its associated divisor appears.

(2) An unproven stronger form of resolution of non-singularities, see [Ta04], would imply that there are no invisible components and therefore also no bridges.

For the sake of reference we extract the following lemma from Tamagawa’s work on resolution of non-singularities [Ta04].

Theorem 36 (Tamagawa). Let y_1, y_2 be distinct closed points on a visible component Y_α of the reduced special fibre of a model \mathcal{X} of X/k. Then there is a finite étale cover $X' \to X$ and a model \mathcal{X}' of X' which allows an extension of the cover $f : \mathcal{X}' \to \mathcal{X}$, such that the following holds.

(i) We have distinct visible components $Y_{\alpha_1}, Y_{\alpha'}, Y_{\alpha_2}$ in the reduced special fibre of \mathcal{X}'.
(ii) $Y_{\alpha'}$ dominates Y_α under the map f.
(iii) $f(Y_{\alpha_i}) = y_i$ for $i = 1, 2$.

(iv) $Y_{\alpha'}$ and Y_{α_i} for $i = 1, 2$ intersect above y_i or are connected by a bridge, the bridge elements of which map to y_i under f.

Proof: That we can find a cover $X' \to X$ with a model \mathcal{X}' that satisfies (i)-(iii) follows directly from [Ta04] Thm 0.2 (v). Note that [Ta04] works with components of the stable model. By Lemma 16, an auxiliary cover allows first to replace Y_{α} by a component of the stable model.

Then, as our models are assumed to be regular, we have to resolve the singularities of the stable model, that is rational \mathbf{A}_n-singularities, which only contribute additional chains of \mathbb{P}^1's. By choosing Y_{α_i} visible and at minimal distance from $Y_{\alpha'}$, along such a chain yields the desired components.

7.2. Uniqueness of the valuation. It is a natural question whether for a given section s the valuation $\tilde{w} \in \text{Val}_v(K)$ given by Theorem 26 such that $s(\text{Gal}_k) \subseteq D_{\tilde{w}|w}$ is unique.

Proposition 37. Let w_1, w_2 be valuations of type 2 with $s(\text{Gal}_k) \subseteq D_{w_i|w_1}$ for $i = 1, 2$. Let \mathcal{X}' be a Galois equivariant model of a finite étale Galois cover $X' \to X$. Then the centers $y'_i = x_{w'_i}$ of the $w'_i = \tilde{w}_i|_{X'}$ map to the same closed point in the stable model \mathcal{X}'.

Proof: We use the notation of the proof of Theorem 27. By Lemma 11 and Lemma 28 we may assume that the stable model \mathcal{X}' of X' is sturdy, i.e., that any stable component is of genus at least 2, and any two components of the stable model intersect at most once in the stable model. In order to simplify notation we assume that $X' = X$ with stable model \mathcal{X}'.

In $\mathcal{X}'_{\text{log,ab}} \otimes \mathbb{Z}_\ell$ the log inertia groups $\mathcal{I}_i \otimes \mathbb{Z}_\ell$ meet in the image Θ_{ℓ} of an ℓ-Sylow of I_k under the section s. We argue as in the proof of Theorem 27 using Proposition 4 that the irreducible components of the special fibre Y of \mathcal{X} stable which contain $y_1 = x_{w_1}$ cannot be disjoint from those which contain $y_2 = x_{w_2}$. So there is at least one component Y_α corresponding to a valuation α of type 1 which contains both x_{w_1} and x_{w_2}.

We apply the preceding paragraph to finite étale covers $X'' \to X' \to X$ which are generic fibres of finite étale covers $\mathcal{X}'' \to \mathcal{X}'$. We deduce that the section of $\pi_1(Y/F)$ induced by s, namely $s_{y_1} = s_{y_2}$, factors as the corresponding section of $\pi_1(Y_\alpha/F)$. The injectivity of the natural map

$$Y_\alpha(F) \to \{\text{conjugacy classes of sections of } \pi_1(Y_\alpha/F)\}$$

shows thus that $y_1 = y_2$ as claimed. □

Proposition 38. Let $s : \text{Gal}_k \to \pi_1(X)$ be a section. Then there is at most one valuation $\alpha \in \text{Val}_v(K)$ of type 1 corresponding to a visible component Y_α of the special fibre of some model \mathcal{X}' such that $s(\text{Gal}_k) \subseteq D_{\tilde{w}|w_1}$ $D_{\tilde{w}|w_1}$. Moreover, if such an α exists, then there is

1. either a refinement $w = v_\alpha \circ \alpha$ of type $2v$ associated to a closed point $y \in Y_{\alpha}$ such that $s(\text{Gal}_k) \subseteq D_{\tilde{w}|w_1} \subseteq D_{\tilde{w}|w_1}$

2. or the image Θ_{ℓ} under s of an ℓ-Sylow of the inertia group $\text{I}_k \subseteq \text{Gal}_k$ is contained in $D_{\tilde{w}|w_1}$ for all ℓ.

Proof: It follows essentially from Tamagawa’s work on resolution of non-singularities [Ta04], more concretely from the assertion of Theorem 36, that the Galois extension of the residue field $\kappa(\alpha)$ at α corresponding to $\text{Gal}_{\kappa(\alpha)} \to \text{Gal}_\alpha := D_{\tilde{w}|w}/D_{\tilde{w}|w}$ has no prime-to-p extensions. Indeed, in the system of components Y_{α}' corresponding to \tilde{w} for finer and finer étale covers Y'/X the set of nodes on Y_{α}' will contain any given set of closed points. But as [Mz96] Prop 4.2 or [Sx02] Prop 6.2.11, show that with the natural log structures

$$\pi_1^{\log}(Y_{\alpha}') \to \pi_1(\mathcal{X}', \eta)$$

is injective, we see that any tamely ramified cover of Y_{α}' with ramification in the set of nodes will occur as residue extension of $\kappa(\alpha)$.

Let us now assume that Θ_{ℓ} is not contained in $D_{\tilde{w}|w_1}$, so (2) fails. The proposition then claims, that for every Galois equivariant model \mathcal{X}' of a finite étale cover X'/X there is a fixed point
under the action of $\Sigma = s(\text{Gal}_k)$ which is a closed point in the closure Y'_α of the center of α. Moreover, there is a compatible system of such fixed points as the model varies. By Lemma 11 and Lemma 28 we may assume that the stable model $\mathcal{X}'_{\text{stable}}$ of X' is sturdy, i.e., that any stable component is of genus at least 2, and any two components of the stable model intersect at most once in the stable model. Furthermore, it suffices to find such a fixed point y on the stable model $\mathcal{X}'_{\text{stable}}$.

The image Θ_{ℓ} of Θ_ℓ in $\text{Gal}_{w} = \text{Gal}(\kappa(\bar{w})|\kappa(w))$ will be a cyclotomically normalized subgroup, see [Na94] §2.1, isomorphic to $\mathbb{Z}_\ell(1)$ of $\ker(\text{Gal}_w \to \text{Gal}_F)$. The theory of the anabelian weight filtration as pioneered by Nakamura in [Na90] §3, [Na94] §2.1, see also [Sx11a] §26.6, still works in this context, because Gal_w is sufficiently big, and shows that Θ_{ℓ} is contained in an inertia subgroup of a unique node y of a suitable corresponding Y'_α. By structure transport using conjugation by elements of Gal_k through the section s we see that in fact the point y is preserved under Σ.

By passing to finer and finer covers X' and models \mathcal{X}' we deduce from the uniqueness of y which is detected by the partial image Θ_ℓ of the section in Gal_w that the collection of closed points so obtained forms a compatible system in

$$\lim_{X' \subset \mathcal{X}'} \mathcal{X}'_{\text{stable},F}$$

endowed with the constructible topology. Because the valuation α corresponds to a visible component $Y'_\alpha \subset \mathcal{X}'_{\text{stable}}$ that is fixed by Σ, and because the system of closed points given by the y lies on the Y'_α, we may conclude that the corresponding closed points on the strict transforms of the Y'_α in any model are also preserved by Σ. Hence there is a refinement $w = v_{\alpha} \circ \alpha$ of type $2v$ associated to the system of closed points $y \in Y'_\alpha$ such that $s(\text{Gal}_k) \subset D_{\bar{w}|w} \subset D_{\bar{w}|\alpha}$, as claimed by option (1).

It remains to prove the assertion on uniqueness. We can argue by Proposition 4 as in the proof of Proposition 37. Indeed, under option (1) or (2) the image Θ_ℓ will detect the corresponding valuation of type $1v$. The only problem that might occur is solved by moving apart the the two stable components Y_α, Y_β meeting in y by an application of Theorem 36. □

Proposition 39. Let \mathcal{X}' be a Galois equivariant model of a finite étale Galois cover $X' \to X$. Let w_1, w_2 be valuations with $s(\text{Gal}_k) \subseteq D_{\bar{w}_i|w}$, for $i = 1, 2$, such that the centers $x_{w'_i}$ of the $w'_i = \bar{w}_i|X'$ map to closed points y'_i in the stable model $\mathcal{X}'_{\text{stable}}$. Then y'_1 coincides with y'_2.

Proof: By assumption we have $D_{\bar{w}_i|w_1} \subset D_{\bar{w}_i|\alpha}$ whose image in $\pi_1(Y')$ under the specialisation map coincides with the image of the sections associated to the closed points y'_i in the reduced special fibre Y' of the stable model $\mathcal{X}'_{\text{stable}}$. Replacing the $1_{w'_i}^{\log}$ by the $1^{\log}_{y'_i}$ now the proof of Proposition 37 applies mutatis mutandis. □

Theorem 40. Let Σ be the image of a section $s : \text{Gal}(k) \to \pi_1(X)$. Let \mathcal{X}' be a Galois-equivariant model of a finite étale cover $X' \to X$ with stable model $\mathcal{X}'_{\text{stable}}$. Then the image of the map

$$\text{center : Val}_v(\bar{K})^\Sigma \to \mathcal{X}'_{\text{stable},F}$$

consists either

(1) of a unique closed \bar{F}-rational point, or
(2) of the generic point of a unique component together with a closed \bar{F}-rational point on that component, or
(3) of the generic point of a unique component.

Proof: Lemma 16, Proposition 38 and Proposition 39 show that the image contains at most one closed and at most one generic point, while Theorem 26 shows that the image is nonempty. It remains to argue that if the image consists of both a closed point y and a generic point α, ...
then y is in the closure of α. But this follows clearly from Proposition 4 and the discussion of the group Θ_{ℓ} in the proof of both Proposition 38 and Proposition 39.

Corollary 41. Let X/k be a smooth hyperbolic curve which has a cofinal system of finite étale covers $X' \to X$ such that X' has a model \mathcal{X}' whose components of the special fibre are visible. Let $s : \text{Gal}_k \to \pi_1(X)$ be a section. Then one of the following holds.

1. There is a unique $\tilde{\omega} \in \text{Val}_v(\tilde{K})$ with $s(\text{Gal}_k) \subset D_{\tilde{\omega}|w}$.
2. There exist a unique $\tilde{\alpha}$ of type $1v$ with a refinement $\tilde{\omega} = \tilde{v}_y \circ \tilde{\alpha}$ of type $2v$, such that $s(\text{Gal}_k) \subset D_{\tilde{\omega}|w} \subset D_{\tilde{\alpha}|\alpha}$.

Proof: This is an immediate corollary of Theorem 40 as the assumption of all components being visible leads to a bijection

$$\text{Val}_v(\tilde{K}) \xrightarrow{\sim} \varprojlim_{X' \subset \mathcal{X}'} \mathcal{X}' \xrightarrow{\sim} \varprojlim_{X' \subset \mathcal{X}'} \mathcal{X}'_{\text{stable},\mathcal{P}}$$

7.3. **Final remark.** It is conceivable that one may extend the range of uniqueness of Theorem 40 to also include the locus in bridges of suitable models. But as soon as there are invisible \mathbb{P}^1's for a curve X/k, it is also conceivable that those will contribute sections of $\pi_1(X/k)$ localized in the respective p-adic disc of the associated rigid analytic space but not localized in a k-rational point, thus ultimately failing the p-adic section conjecture.

Appendix A. The Zoo of Valuations for 2-Dimensional Semilocal Fields

Let k be a complete discrete valued field with valuation ring \mathfrak{o} and perfect residue field κ, e.g., k is a finite extension of \mathbb{Q}_p. Let v denote the canonical valuation on k.

A.1. **The Riemann–Zariski space of \mathfrak{o}-valuations.** Let K be the function field of a smooth projective geometrically connected curve X over k. In this appendix we discuss the space

$$\text{Val}_v(K) = \text{Val}_k(K) \cup \text{Val}_v(K) = \{w : \text{valuation on } K \text{ with } w(\mathfrak{o}) \geq 0\}$$

of equivalence classes of valuations w on K whose valuation ring R_w contains \mathfrak{o}, or equivalently, the restriction of w to k is either the trivial valuation or equals v.

A.1.1. **Models.** In this paper a **model** or more precisely a **regular model with strict normal crossing** of X over \mathfrak{o} is a regular scheme \mathcal{X} which is flat and proper over $\text{Spec}(\mathfrak{o})$ together with a k-isomorphism of X with the generic fibre \mathcal{X}_k such that the reduced special fibre \mathcal{X}_{red} is a divisor with strict normal crossings on \mathcal{X}. In particular, unfortunately a stable model in general is not a model in the sense of this paper. By a result of Lichtenbaum, [Li68] Thm 2.8, models are automatically projective over $\text{Spec}(\mathfrak{o})$. We denote the underlying topological space of \mathcal{X} by \mathcal{X}_{top}, whereas $\mathcal{X}_{\text{cons}}$ denotes \mathcal{X}_{top} when given the finer constructible topology.

A.1.2. **The center.** For $w \in \text{Val}_v(K)$ the valuative criterion of properness implies a canonical map $\text{Spec}(R_w) \to \mathcal{X}$ which maps the closed point of $\text{Spec}(R_w)$ to the **center** $x_w \in \mathcal{X}_{\text{cons}}$ of the valuation w on the model \mathcal{X}. Maps between different models, which are the identity on X, respect the center of a valuation. The resulting map

$$\text{center} : \text{Val}_v(K) \to \varprojlim \mathcal{X}_{\text{cons}},$$

where the projective limit ranges over all models of K, identifies $\varprojlim \mathcal{X}_{\text{cons}}$ with $\text{Val}_v(K)$ which is a subspace of the **Riemann–Zariski space** of K/k.

Section conjecture over p-adic fields 25

7.3. Final remark. It is conceivable that one may extend the range of uniqueness of Theorem 40 to also include the locus in bridges of suitable models. But as soon as there are invisible \mathbb{P}^1’s for a curve X/k, it is also conceivable that those will contribute sections of $\pi_1(X/k)$ localized in the respective p-adic disc of the associated rigid analytic space but not localized in a k-rational point, thus ultimately failing the p-adic section conjecture.

Appendix A. The zoo of valuations for 2-dimensional semilocal fields

Let k be a complete discrete valued field with valuation ring \mathfrak{o} and perfect residue field κ, e.g., k is a finite extension of \mathbb{Q}_p. Let v denote the canonical valuation on k.

A.1. The Riemann–Zariski space of \mathfrak{o}-valuations. Let K be the function field of a smooth projective geometrically connected curve X over k. In this appendix we discuss the space

$$\text{Val}_v(K) = \text{Val}_k(K) \cup \text{Val}_v(K) = \{w : \text{valuation on } K \text{ with } w(\mathfrak{o}) \geq 0\}$$

of equivalence classes of valuations w on K whose valuation ring R_w contains \mathfrak{o}, or equivalently, the restriction of w to k is either the trivial valuation or equals v.

A.1.1. Models. In this paper a **model** or more precisely a **regular model with strict normal crossing** of X over \mathfrak{o} is a regular scheme \mathcal{X} which is flat and proper over $\text{Spec}(\mathfrak{o})$ together with a k-isomorphism of X with the generic fibre \mathcal{X}_k such that the reduced special fibre \mathcal{X}_{red} is a divisor with strict normal crossings on \mathcal{X}. In particular, unfortunately a stable model in general is not a model in the sense of this paper. By a result of Lichtenbaum, [Li68] Thm 2.8, models are automatically projective over $\text{Spec}(\mathfrak{o})$. We denote the underlying topological space of \mathcal{X} by \mathcal{X}_{top}, whereas $\mathcal{X}_{\text{cons}}$ denotes \mathcal{X}_{top} when given the finer constructible topology.

A.1.2. The center. For $w \in \text{Val}_v(K)$ the valuative criterion of properness implies a canonical map $\text{Spec}(R_w) \to \mathcal{X}$ which maps the closed point of $\text{Spec}(R_w)$ to the **center** $x_w \in \mathcal{X}_{\text{cons}}$ of the valuation w on the model \mathcal{X}. Maps between different models, which are the identity on X, respect the center of a valuation. The resulting map

$$\text{center} : \text{Val}_v(K) \to \varprojlim \mathcal{X}_{\text{cons}},$$

where the projective limit ranges over all models of K, identifies $\varprojlim \mathcal{X}_{\text{cons}}$ with $\text{Val}_v(K)$ which is a subspace of the **Riemann–Zariski space** of K/k.

Section conjecture over p-adic fields 25
A.1.3. The valuation ring. The centers of a valuation $w \in \text{Val}_o(K)$ determine the valuation ring $R_w = \lim \mathcal{O}_{\mathcal{X}, x_w}$ where the direct limit ranges over all models. The inverse map to (A.1) is described as follows. To a compatible system of points $a_\mathcal{X} \in \mathcal{X}_{\text{cons}}$ on all models we associate first the ring $R_a = \lim \mathcal{O}_{\mathcal{X}, a_\mathcal{X}}$. The ring R_a is the valuation ring of a valuation w of K because for every $f \in K^*$ at least one of f and f^{-1} belongs to R_a, see [Bo98] VI §1.2. Indeed, the indeterminancy of f, that is the set of points where neither f nor f^{-1} is defined, disappears on a fine enough model.

A.1.4. The patch topology. The patch topology on $\text{Val}_o(K)$ is defined as the topology induced from the pro-finite product topology by the injective map

$$\text{sign} : \text{Val}_o(K) \hookrightarrow \prod_{f \in K^*} \{-, 0, +\}$$

that assigns to a valuation w the collection of signs of the value $w(f)$ for each $f \in K^*$, where the sign of f is $+$ if $w(f) > 0$, it is $-$ if $w(f) < 0$ and the sign is 0 if $w(f) = 0$. The condition on a collection of signs to belong to a valuation ring, namely that the subset in K of nonnegative elements forms a ring which contains at least one of f, f^{-1} for each $f \in K^*$, is a closed condition. Hence $\text{Val}_o(K)$ is a pro-finite space, in particular it is compact and Hausdorff.

The map $\text{center} : \text{Val}_o(K) \rightarrow \lim \mathcal{X}_{\text{cons}}$ defined in (A.1) is a homeomorphism from $\text{Val}_o(K)$ endowed with the patch topology to $\lim \mathcal{X}_{\text{cons}}$ with respect to the \lim-topology. The subset

$$\text{Val}_v(K) = \{w \in \text{Val}_o(K) ; w|_k = v\} \subset \text{Val}_o(K)$$

is a closed subset in the patch topology described by the condition that $w(\pi) > 0$ for a uniformizer π of o. The set $\text{Val}_v(K)$ corresponds to the subset $\lim \mathcal{X}_{K, \text{cons}} \subset \lim \mathcal{X}_{\text{cons}}$ where $\mathcal{X}_k \subset \mathcal{X}$ is the special fibre.

A.2. Types of valuations. We sketch the classification of the zoo of valuations and fix the terminology.

A.2.1. Type. We define the type of a valuation $w \in \text{Val}_o(K)$ as the well defined number $0, 1$ or 2 given by the height $ht(x_w) = \dim(\mathcal{O}_{\mathcal{X}, x_w})$ in the sense of scheme theory of its center $x_w \in \mathcal{X}$ for all sufficiently fine models \mathcal{X} with respect to the system of all models. The unique valuation of type 0 is the trivial valuation.

A.2.2. Type 1. Valuations of type 1 are the discrete valuations associated to prime divisors on an arbitrary model fine enough such that the respective divisor appears. The corresponding prime divisor is either vertical, i.e., it maps to the closed point of Spec(o), or horizontal, i.e., it maps finitely to Spec(o). The first are called of type $1v$ whereas the latter valuations are called of type $1h$.

Notation 42. The usual notation for a valuation of K of type $1v$ will be α. The corresponding prime divisor of a fine enough model will be denoted by Y_α and by abuse of notation has a generic point denoted by α again. The precise meaning of α will always be clear from the context.

A.2.3. Type 2. All the remaining valuations are of type 2 and thus have all their centers at closed points of the special fibre.

Let w be a valuation of type 2. For each valuation α of type 1 we define the distance of w to α on the model \mathcal{X} as the infimum of the number of irreducible components in a 1-dimensional connected subscheme $Z \subset \mathcal{X}$ which contains the center of α and of w. If w keeps finite distance to any valuation of type 1 as we vary over the system of all models, then there is a unique valuation α of type 1 with a closed point y on the associated divisor such that w is the composition of α with the valuation v_y on the residue field of α associated to y. So $w = v_y \circ \alpha$ is called of type $2v$ (resp. type $2h$) if α is vertical (resp. horizontal.)
The remaining valuations have centers which move away from any valuation of type 1 and are called of (coarse) type 2u \textbf{(unbounded)}.

A.3. \textbf{Rigid analytic viewpoint}. Valuations of type 2 can be understood in terms of the associated rigid analytic space X^{rig}. For a model \mathcal{X} we get a specialisation map

$$\text{sp}_\mathcal{X} : X^{\text{rig}} \to \mathcal{X}_{\kappa, \text{red}}$$

from the rigid space to the set of closed points of the special fibre. The preimage of a smooth closed point of $\mathcal{X}_{\kappa, \text{red}}$ is an open disc, the preimage of a node of $\mathcal{X}_{\kappa, \text{red}}$ is an annulus.

To a valuation w of type 2 we associate the system $C_{\mathcal{X}} = \text{sp}_X^{-1}(x_w)$ of preimages of the centers indexed by the system of all models. The system of subsets $C_{\mathcal{X}}$ is monotone decreasing with respect to inclusion when the model becomes finer. The valuation is uniquely determined by the system of the $C_{\mathcal{X}}$ as

$$R_w = \bigcup_{\mathcal{X}} \mathcal{O}_{\mathcal{X}} (C_{\mathcal{X}}) = \bigcup_{\mathcal{X}} \{ f \in K; \text{ f defined on } C_{\mathcal{X}}, \| f \|_{C_{\mathcal{X}}, \infty} \leq 1 \},$$

where $\| f \|_{C_{\mathcal{X}}, \infty}$ is the sup-norm of f on $C_{\mathcal{X}}$. The various types belong to distinctive geometric pictures of the system of the $C_{\mathcal{X}}$ as follows.

A.3.1. \textbf{Type 2h}. For fine enough models, $C_{\mathcal{X}}$ is an open disc with fixed center $x \in X^{\text{rig}}$ and radius converging to 0 with finer and finer models.

A.3.2. \textbf{Type 2v}. For fine enough models, $C_{\mathcal{X}}$ is an annulus, such that the corresponding annuli for finer and finer models share one common boundary.

A.4. \textbf{Type 2 but unbounded distance}. The valuations of type 2u can be described and arranged into types in more detail as follows.

Every closed point y in the reduced special fibre carries invariants $(e_{y, \alpha}, f_y)$ equal to the tuple $(e_{y, \alpha})$ of the multiplicities of the components on which y lies in the special fibre \mathcal{X}_κ and the residue field degree f_y of y over κ. Any closed point x in the generic fibre $X = \mathcal{X}_K$ that specialises to y has to have residue field $\kappa(x)$ with $e_{\kappa(x)} \leq m_{\alpha} e_{y, \alpha}$ with $m_{\alpha} \in \mathbb{N}_{\geq 1}$ and $f_y/f_{\kappa(x)}/k$. On the other hand, there is always an x with the minimal possible values of e, f.

A.4.1. \textbf{Type 2u\text{smooth}}. For a valuation w of type 2u the value $\sum_{\alpha} e_{x_w, \alpha}$ remains bounded if and only if for fine enough models ultimately all centers x_w belong to the smooth locus of the reduced special fibre. Such a valuation is called of \textbf{type 2u\text{smooth}} or 2u\text{sm} (ultimately smooth).

A.4.2. \textbf{Type 2u\text{node}}. We call a valuation w of \textbf{type 2u\text{node}} or 2u\text{n} (ultimately node) if for all fine enough models the center lies in a node of the reduced special fibre.
A.4.3. Type 2u\textsubscript{alt}. For a valuation of type 2u, if neither type 2u\textsubscript{node} nor type 2u\textsubscript{smooth} applies, then the center \(x_w\) in the pro-system of models alternate between the smooth locus of the reduced special fibre and its nodes, and hence these are called of type 2u\textsubscript{alternating} or 2u\textsubscript{alt} (unbounded alternating).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure3.png}
\caption{type 2u\textsubscript{alternating}}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure4.png}
\caption{type 2u\textsubscript{node}}
\end{figure}

A.4.4. Rigid analytic description of type 2u\textsubscript{smooth}. For a cofinal set of models, \(C_X\) is an open disc without common center in \(X^{\text{rig}}\). The radius of the discs converges to 0 with finer and finer models. There is a unique limit point in \(X(k^{\text{alg}}) \setminus X(k^{\text{alg}})\), where \(k^{\text{alg}}\) is the completion of \(k^{\text{alg}}\).

A.4.5. Rigid analytic description of type 2u\textsubscript{node}. For fine enough models, \(C_X\) is a \(p\)-adic annulus, such that the corresponding annuli for finer and finer models share no common boundaries.

A.5. Algebraic structure. The information on the algebraic structure associated to a valuation \(w\) according to its type is summarized in the following table. The rational rank of \(w\) or better its value group \(\Gamma_w\) is defined as \(\dim_Q(\Gamma_w \otimes \mathbb{Q})\), see [Bo98] VI \S 10.2. And the rank of \(w\), \textit{hauteur} in [Bo98] VI \S 4.4, is the Krull dimension \(\dim \text{Spec}(R_w)\) of its valuation ring \(R_w\).

<table>
<thead>
<tr>
<th>type</th>
<th>value group</th>
<th>(\mathbb{Q})-rank</th>
<th>rank</th>
<th>on (k)</th>
<th>residue field</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>trivial</td>
<td>(K)</td>
</tr>
<tr>
<td>1h</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>1</td>
<td>trivial</td>
<td>finite over (k)</td>
</tr>
<tr>
<td>1v</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>1</td>
<td>(v)</td>
<td>function field over (\kappa) of transcendence degree 1</td>
</tr>
<tr>
<td>2h</td>
<td>(\mathbb{Z} \oplus \mathbb{Z}) lex.</td>
<td>2</td>
<td>2</td>
<td>(v)</td>
<td>finite over (\kappa)</td>
</tr>
<tr>
<td>2v</td>
<td>(\mathbb{Z} \oplus \mathbb{Z}) lex.</td>
<td>2</td>
<td>2</td>
<td>(v)</td>
<td>finite over (\kappa)</td>
</tr>
<tr>
<td>2u\textsubscript{n}</td>
<td>(\mathbb{Z} \oplus \mathbb{Z} \gamma \subset \mathbb{R})</td>
<td>2</td>
<td>1</td>
<td>(v)</td>
<td>finite over (\kappa)</td>
</tr>
<tr>
<td>2u\textsubscript{sm}</td>
<td>(\mathbb{Z})</td>
<td>1</td>
<td>1</td>
<td>(v)</td>
<td>infinite, algebraic over (\kappa)</td>
</tr>
<tr>
<td>2u\textsubscript{alt}</td>
<td>(\bigcup_n \frac{1}{e_n} \mathbb{Z}) with (\lim e_n = \infty)</td>
<td>1</td>
<td>1</td>
<td>(v)</td>
<td>algebraic over (\kappa)</td>
</tr>
</tbody>
</table>

The residue field for a valuation \(w\) of type 2u\textsubscript{smooth} has to be algebraic over \(\kappa\) of infinite degree. Indeed, otherwise the extension \(\mathfrak{o} \prec R_w\) had finite residue degree \(f = [\kappa(w) : \kappa]\) and finite index of value groups \(e = (w(K) : v(k))\), which implies that \(K\) as a \(k\) vector space has \(\dim_k K = ef\), a contradiction. In particular, if we ultimately pick smooth centers \(x_w\) and the residue field degree \([\kappa(x_w) : \kappa]\) remains finite, then we actually deal with a valuation of type 2h.
A.6. Valuations of the universal cover. From now on we fix a geometric generic point $\bar{\eta} : \text{Spec}(\Omega) \to X$ of X as base point. Let \bar{K} be the function field of the associated pointed universal pro-étale cover \bar{X} of X, i.e., $\bar{K} \subset \Omega$ is the maximal algebraic extension of K which is unramified over X. We conclude that $\pi_1(X, \bar{\eta})$ equals $\text{Gal}(\bar{K}/K)$.

A.6.1. The Riemann–Zariski space of the universal cover. The prolongation $\text{Val}_o(\bar{K})$ of $\text{Val}_o(K)$ to \bar{K} endowed with the patch topology is a projective limit

$$\text{Val}_o(\bar{K}) \cong \lim_{\to} \text{Val}_o(K')$$

of the spaces $\text{Val}_o(K')$ equipped with the patch topology, where K' ranges over all finite intermediate extensions K'/K in \bar{K}/K. As above, one has a homeomorphism

$$\text{center} : \text{Val}_o(\bar{K}) \cong \lim_{\Gamma'} \mathcal{X}'_{\mathrm{cons}}$$

and the subset

$$\text{Val}_o(\bar{K}) = \{ \bar{w} \in \text{Val}_o(\bar{K}) : \bar{w}|_k = v \} \subset \text{Val}(\bar{K})$$

is a closed subset in the patch topology described by the condition that $\bar{w}(\pi) > 0$ for a uniformizer π of \mathfrak{o}. Thus $\text{Val}_o(\bar{K})$ is a compact, Hausdorff, pro-finite space which furthermore is canonically a pro-finite limit

$$\text{center} : \text{Val}_o(\bar{K}) \cong \lim_{\Gamma'_{\mathrm{cons}}} \mathcal{X}'_{\Gamma',\mathrm{cons}}$$

of the pro-finite spaces $\mathcal{X}'_{\Gamma,\mathrm{cons}}$, where $\mathcal{X}'_{\Gamma,\mathrm{cons}}$ is the reduced special fibre of \mathcal{X}' endowed with the constructible topology.

A.6.2. Types and the universal cover. The canonical restriction map $\text{Val}_o(K') \to \text{Val}_o(K)$ is surjective, and for $w' \mapsto w$, by the fundamental inequality, the residue field extension $k(w')/k(w)$ is finite and the inclusion of value groups $w(K) \subset w'(K')$ has finite index, see [Bo98] VI §8. Hence the type of a valuation is preserved under the restriction map $\text{Val}_o(K') \to \text{Val}_o(K)$, and the classification into types also applies to valuations in $\text{Val}_o(\bar{K})$.

A.6.3. Notational convenience. The map $\text{Val}_o(\bar{K}) \to \text{Val}_o(K)$ will be denoted by $\bar{w} \mapsto w = \bar{w}|_K$ which implicitly could also imply a choice of a preimage \bar{w} of the valuation w if the latter happens to appear first.

Appendix B. Unramified Hilbert Zerlegungstheorie

We keep the notation and assumptions from Appendix A.

B.1. Nearby points. For a geometric point y on a model \mathcal{X} we set $\mathcal{X}_y^h = \text{Spec}(\mathcal{O}_{\mathcal{X},y})$ for the scheme of nearby points and $\mathcal{X}_y^{sh} = \text{Spec}(\mathcal{O}_{\mathcal{X},y}^{sh})$ for the scheme of strictly nearby points. The intersection with the generic fibre we denote by

$$\mathcal{X}_y^h = \text{Spec}(\mathcal{O}_{\mathcal{X},y}^{h} \otimes_k k) \subset \mathcal{X}_y^h \quad \text{and} \quad \mathcal{X}_y^{sh} = \text{Spec}(\mathcal{O}_{\mathcal{X},y}^{sh} \otimes_k k) \subset \mathcal{X}_y^{sh}.$$

For y equal to the center x_w of a valuation $w \in \text{Val}_o(K)$, more precisely, for a choice of geometric point above the closed point of the valuation ring which induces a geometric point \bar{x}_w above each center, we abbreviate

$$\mathcal{X}_w^h := \mathcal{X}_{\bar{x}_w}^h \subset \mathcal{X}_w^h := \mathcal{X}_{\bar{x}_w}^h \quad \text{and} \quad \mathcal{X}_w^{sh} := \mathcal{X}_{\bar{x}_w}^{sh} \subset \mathcal{X}_w^{sh} := \mathcal{X}_{\bar{x}_w}^{sh}.$$

In the limit over all models \mathcal{X} of K we get

$$U_w^h = \lim_{\to} \mathcal{X}_w^h \subset X_w^h = \lim_{\to} \mathcal{X}_w^h \quad \text{and} \quad U_w^{sh} = \lim_{\to} \mathcal{X}_w^{sh} \subset X_w^{sh} = \lim_{\to} \mathcal{X}_w^{sh}. $$
We note that U^h_w (resp. U^{sh}_w) is a limit of affine p-adic curves over k (resp. k^{nr}). In particular, the cohomological dimension of U^{sh}_w for étale constructible sheaves is at most 2.

B.2. Hilbert decomposition and inertia group. Let us fix a choice of a geometric generic point ξ_y of \mathcal{Y}_y such that $\xi = (X, \eta)$ becomes a pointed map.

The decomposition group resp. inertia group in the sense of Hilbert at y is given by the image D_w, resp. I_w, of the natural map $\pi_1(\mathcal{Y}_y, \xi_y) \to \pi_1(X, \eta)$, resp. $\pi_1(\mathcal{Y}_y, \xi_y) \to \pi_1(X, \eta)$, induced by the inclusions. We suppress the choice of base points in the notation for decomposition and inertia groups.

B.3. Decomposition and inertia group of a valuation. Let us fix a choice of a geometric generic point ξ_w be a valuation of type 1 and α of type 1h the nearby points U^h_w equals the spectrum of the valuation ring the exention of α to K^h_w and moreover equals $U^h_{\alpha} = X^h_{\alpha}$. □

The decomposition group (resp. inertia group) in the sense of valuation theory of w, or more precisely the prolongation \bar{w} of w to \bar{K} by the property $K^{sh}_w = \bar{K} \cdot K^{sh}_w$ and similarly $K^h_w = \bar{K} \cdot K^h_w$ in Ω. Here K^h_w (resp. K^{sh}_w) is a (strict) henselisation of K in w, and similarly for \bar{w}. We easily observe the following lemma.

Lemma 43. For a valuation $w \in \text{Val}_p(K)$ of type 2 but not of type 2h we have $\text{Spec}(K^h_w) = U^h_w$, whereas for w type 2h refining α of type 1h the nearby points U^h_w equals the spectrum of the valuation ring the exention of α to K^h_w and moreover equals $U^h_{\alpha} = X^h_{\alpha}$. □

The dependence on \bar{w} is through the choice of a path connecting the base points ξ_w and η to the effect of conjugating $D_{\bar{w}|w}$ and $I_{\bar{w}|w}$ within $\pi_1(X, \bar{\eta})$. If no confusion arises, we will simplify the notation to $D_w = D_{\bar{w}|w}$ (resp. $I_w = I_{\bar{w}|w}$).

B.4. Reconciliation of valuation theory and arithmetic geometry. The two viewpoints of inertia and decomposition groups are related via the compliance of π_1 with affine projective limits. We may assume that ξ_w induces $\bar{\xi}_w \in \mathcal{W}_w^{sh}$ for every model of X, and then find

$$D_{\bar{w}|w} = \lim_{\bar{x}} D_{x_w} \quad \text{and} \quad I_{\bar{w}|w} = \lim_{\bar{x}} I_{x_w},$$

where the limits are in fact simply intersections of closed subgroups in $\pi_1(X, \bar{\eta})$.

Moreover, let α be a valuation of type 1 and y a geometric point localised in a closed point of the divisor Y_{α} associated to α on a suitable model \mathcal{X}. Then we have the following diagram when the corresponding geometric points are compatibly chosen.

```
\begin{tikzcd}
U^h_{\alpha} & \mathcal{X}^h_y & X \\
\mathcal{Y}^h_y & \mathcal{Y}^{\text{Nis}}_y \\
\mathcal{Y}_y \\
\Spec(\Omega) \arrow[ur, dashed]
\end{tikzcd}
```

The scheme $\mathcal{Y}^{\text{Nis}}_y$ is the generic fibre of $\mathcal{X}^{\text{Nis}}_y$ which is the maximal strict étale neighbourhood in between $\mathcal{X}^h_y \to \mathcal{X}$ which is Nisnevich at α, i.e., such that the point α splits in the image of
\(\bar{\xi}_\alpha \) after an appropriate choice is fixed. With \(D_{y,\alpha} = \text{im} \left(\pi_1(\mathbb{G}_y, \bar{\xi}_y) \to \pi_1(X, \bar{\eta}) \right) \), we find

\[
\text{(B.2)} \quad I_\alpha \subseteq I_y \subseteq D_y
\]

\[
\bigcap \quad \bigcap \quad D_\alpha \subseteq D_{y,\alpha} \subseteq \pi_1(X, \bar{\eta})
\]

Let \(w \in \text{Val}_K(K) \) be a valuation of rational rank 2, i.e. of type 2h or 2v, and a refinement of the valuation \(\alpha \), then in the limit over all models we deduce from (B.2) and (B.1) that

\[
I_\alpha \subseteq I_w \subseteq D_w \subseteq D_\alpha
\]

because \(D_\alpha = \lim_{\leftarrow \kappa} D_{xw,\alpha} \).

REFERENCES

[Ha10] Hoshi, Y., Existence of nongeometric pro-p Galois sections of hyperbolic curves, Publ. RIMS Kyoto Univ. 46 (2010), 829–848.

Florian Pop, Department of Mathematics, University of Pennsylvania, DRL, 209 S 33rd Street, Philadelphia, PA 19104, USA

E-mail address: pop@math.upenn.edu

URL: http://www.math.upenn.edu/~pop/

Jakob Stix, MATCH – Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, 69120 Heidelberg

E-mail address: stix@mathi.uni-heidelberg.de

URL: http://www.mathi.uni-heidelberg.de/~stix/