
Convex Fujita numbers are not determined by the fundamental group
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Abstract — We study effective global generation of adjoint line bundles on smooth
projective varieties. To measure the effectivity we introduce the concept of the convex
Fujita number of a smooth projective variety and compute its value for a class of varieties
with prescribed dimension d ě 2 and an arbitrary projective group as fundamental group.
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1. Introduction

1.1. History and Motivation. Our aim is to study the relation between the topology of alge-
braic varieties and effective positivity results for line bundles on them. The model statement we
consider is Lefschetz’ theorem for ample line bundles on abelian varieties: the tensor square of
an ample line bundle is globally generated, the tensor cube is very ample, independently of the
dimension of the underlying manifold. In our current work, we will look at the question how the
fundamental group of an algebraic variety influences the positivity of adjoint line bundles.

Constructing global sections of line bundles or having effective control over such is an ancient
and consistently difficult problem in algebraic geometry. In the last decades, much of the effort
directed towards this problem was guided by the conjectures of Fujita (for global generation and
very ampleness [Fuj87]) and Mukai (for the study of higher syzygies, see [EL93b, Conjecture 4.2]).

The main purpose of our work is to study effective global generation of convex integral linear
combinations of ample divisors while being able to determine precise Fujita-type bounds in a
number of cases. In particular, we succeed in constructing examples with the following prescribed
parameters: dimension, fundamental group, and global generation behavior. We essentially ex-
haust the range of these invariants simultaneously given the global generation behavior predicted
by Fujita’s freeness conjecture.

Fujita’s conjectures on global generation anticipate that given a smooth projective variety X
equipped with an ample Cartier divisor L, the adjoint divisor KX `mL should be base point
free provided m ě dimpXq` 1. This is a classical consequence of Riemann–Roch if dimpXq “ 1,
and has been demonstrated for dimpXq ď 5 [Rei88,EL93a,Kaw97,Hel97,YZ20]. For arbitrary
dimension, there exist non-trivial global generation results due to Angehrn–Siu [AS95], Heier
[Hei02], and Ghidelli and Lacini [GL21]. It is important to remember that these bounds are
uniform but nevertheless not linear in dimpXq.

Effective global generation behavior of divisors on a given variety has not been explicitly
known except in a handful of cases. Fujita’s freeness conjecture is sharp for hyperplane divisors
on projective spaces Pn; on the other end of the spectrum, a classical result of Lefschetz shows
that given an ample divisor L on an abelian variety X, the divisor 2L is globally generated
independently of the dimension of X. Related results have been obtained by Pareschi–Popa
[PP03, Theorem 5.1] on the global generation of 2KX ` 2L for a nef and big divisor L on an
irregular variety X with finite Albanese morphism. In the context of varieties S with numerically
trivial canonical divisors, there are results for the Hilbert scheme Hilb2pSq of subschemes of length
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2, by Riess [Rie21] when S is a K3 surface of degree 2, and by Küronya–Mustopa [KM22] when
S is an abelian surface.

In order to be able to talk about intermediate bounds on effective global generation and treat
global generation in higher codimensions, the authors of [KM22] introduced Fujita numbers for
coherent sheaves with a view towards the codimension of the base locus. It is this line of thought
that we follow, except that we focus solely on the Fujita number describing global generation
itself — being the closest in spirit to the freeness conjecture — while introducing the (topological)
fundamental group of the variety as an extra parameter, and concentrating on the finer variant
using convex linear combinations instead of multiples of a given ample divisor.

1.2. Convex Fujita numbers. As mentioned above, we will measure effective positivity of line
bundles via the global generation of the associated sequence of adjoint ones, as suggested by
Fujita’s conjectures. Throughout this paper we will work with varieties over C.

Definition 1.1. The convex Fujita number of a smooth projective variety X is the minimal
m ě 0 such that for all s ě m and any ample divisors L1, . . . , Ls on X the adjoint divisor

KX ` L1 ` . . .` Ls

is globally generated. We will denote the convex Fujita number by FupXq, or, if no suchm exists,
then we set FupXq “ 8 (but this does not occur, see Proposition 2.5).

Fujita conjectured in [Fuj87] that for a smooth projective variety X of dimension n and any
ample divisor L onX the multiple adjoint divisormpKX`tLq is globally generated ifm`t ą n`1
and KX ` tL is nef. Fujita moreover shows in the same paper that KX ` tL is nef for t ě n` 1.
As a result, only the case m “ 1 has been traditionally referred to as follows.

Conjecture 1.2 (Fujita’s freeness conjecture [Fuj87]). Let X be a smooth projective variety
and let L be an ample divisor on X. Then for all m ě dimpXq` 1 the adjoint divisor KX `mL
is globally generated.

Fujita’s freeness conjecture follows directly from the Riemann–Roch theorem for curves; for
surfaces it is a quick consequence of Reider’s theorem obtained by vector bundle techniques
[Rei88], Ein and Lazarsfeld in [EL93a] showed it for threefolds, Kawamata in [Kaw97] for 4-folds
and Ye and Zhu in [YZ20] for 5-folds. All results for dimpXq ě 3 rely on vanishing theorems
and non-klt center methods. The conjecture is currently open in dimensions six and above.

Uniform bounds for m have been proven such that KX ` mL is globally generated for all
ample divisors L on all smooth projective varieties X of a given dimension n. Angehrn and Siu
show in [AS95, Theorem 0.1] that m ě pn2 ` n` 2q{2 suffices, while Heier [Hei02, Theorem 3.1]
improved the bound to m ě pe ` 1{2qn4{3 ` 1{2n2{3 ` 1, where e “ expp1q is Euler’s number.
More recently, Ghidelli and Lacini proved in [GL21, Theorem 1.1] an asymptotically much better
bound of

m ě maxtn` 1, nplog logpnq ` 2.34qu.

We will discuss in §2.1 the impact on the convex Fujita number of some of the methods and
results on Fujita’s freeness conjecture as recalled above.

A numerical version of Conjecture 1.2 was proposed by Helmke [Hel97, Conjecture 1.2] as
follows.

Conjecture 1.3 (numerical Fujita’s freeness conjecture [Hel97]). Let X be a smooth pro-
jective variety of dimension dimpXq “ n and let L be an ample divisor on X such that
(i) pLnq ą nn, and
(ii) for all irreducible cycles Z Ď X of dimension dimpZq “ d ă n we have pLd ¨ Zq ě nd.
Then the adjoint divisor KX ` L is globally generated.

The numerical Fujita’s freeness conjecture implies FupXq ď dimpXq ` 1 for all X (see Propo-
sition 2.5 for the elementary argument showing a weaker but unconditional bound), and this
bound in turn obviously implies Fujita’s freeness conjecture. We may wonder whether

FupXq ď dimpXq ` 1
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always holds. As we will see, it holds for all the examples constructed in this paper whose convex
Fujita number is calculated precisely.

1.3. Varieties with prescribed convex Fujita numbers.

Definition 1.4 (Fujita simple and Fujita extreme varieties). We say that a smooth projective
variety X is

‚ Fujita simple if FupXq “ 0, and
‚ Fujita extreme provided FupXq ě dimpXq ` 1.

Example 1.5. For X “ Pn all ample line bundles are isomorphic to Opaq for some a ą 0. It
follows at once that FupPnq “ n` 1, so Fujita extreme varieties exist in all dimensions.

Example 1.6. Riemann-Roch implies that all smooth projective curves C have FupCq “ 2 re-
gardless of the genus of C. The line bundles L on C such that ωC bL is not globally generated
are precisely the line bundles L “ OCpP q for an arbitrary point P P C.

Remark 1.7. The canonical bundle of a Fujita simple variety is by definition globally generated
and thus nef. In particular, Fujita simple varieties are minimal.

Example 1.8. Its a classical theorem of Lefschetz that on an abelian variety A already L b2 is
globally generated for any ample line bundle L . The proof of Lefschetz’s theorem generalizes
to estimate the convex Fujita number of abelian varieties by FupAq ď 2 This was proved in
[BS96, Theorem 1.1]. It is based on an application of the theorem of the square

L b2 » t˚xL b t˚´xL ,

Kodaira vanishing and Riemann-Roch h0pA,L q “ χpA,L q “ 1
g!pL

gq ą 0 (applied to the
translates t˚xL and t˚´xL instead of L ), and the product map

à

xPA

H0pA, t˚xL q bH0pA, t˚´xL q Ñ H0pA,L b2q.

We recall that a group π is called projective if it is isomorphic to the (topological) funda-
mental group π1pXq of a smooth projective variety X.

Theorem A (see Proposition 4.1 and Proposition 4.7). Let π be a projective group, and let n ě 2
be an integer. There is a Fujita simple smooth connected projective variety X of dimension n
with
(i) X is of general type, and
(ii) π1pXq is isomorphic to π.

The varieties X that prove Theorem A are constructed in two ways. The first method starts
with the surface case n “ 2 (dealt with in Proposition 4.1) and then takes the product of a Fujita
simple surface and a simply connected Fujita simple variety, more precisely a hypersurface in
Pn´1 of degree at least n` 1. This covers dimensions n ě 4.

The second method covers n ě 3 and constructs X as a cyclic cover f : X Ñ Y that totally
ramifies along a smooth ample divisor, such that the degree d “ degpfq is sufficiently large.
The variety Y is a complete intersection of the correct dimension n in S ˆ Pn with a smooth
projective variety S that has the correct fundamental group π1pSq “ π. Such an S exists because
π is assumed to be a projective group.

More precisely, analyzing complete intersections in PN leads to examples for n ě 3 and for
pn, kq “ p2, 0q of the following theorem. The remaining examples in dimension n “ 2 are obtained
as the blow-up of P2 in 3´ k points.

Theorem B (see Theorem 3.3). Let n ě 2 be an integer, and let 0 ď k ď n ` 1. There is
a simply connected smooth connected projective variety X of dimension n with convex Fujita
number FupXq “ k. Moreover, if k “ 0, then X can be chosen to be of general type.

The behavior of convex Fujita numbers in products is mysterious in general, but easy in the
following special case. It will be applied in the case of a simply connected variety Y .
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Proposition C (see Corollary 2.8). Let X be a smooth projective variety, and let Y be a smooth
projective variety with H1pY,OY q “ 0. Then

FupX ˆ Y q “ maxtFupXq,FupY qu.

The Künneth formula for π1, Proposition C and the case k “ 0 of Theorem B reduce Theo-
rem A to the case of dimension n “ 2 and 3. Even more follows by combining of Theorem A
with the full version of Theorem B.

Our next result indicates that the topological invariant π1pXq alone is not sufficient to control
positivity properties of adjoint line bundles.

Theorem D (see Theorem 4.9). Let π be a projective group, and let n ě 2 be an integer, and
let 0 ď k ď n ´ 1. There is a smooth connected projective variety X of dimension n with the
following properties:
(i) π1pXq is isomorphic to π, and
(ii) FupXq “ k.

The surface with prescribed fundamental group and convex Fujita number 1 is obtained as the
blow up in one point of a carefully chosen surface with the same fundamental group and Fujita
number 0. The threefold with convex Fujita number FupXq “ 2 arises as X “ S ˆ P1 with a
surface S with the same fundamental group and convex Fujita number FupSq ď 2. The threefold
X 1 with convex Fujita number FupX 1q “ 1 arises as a branched double of the threefold X with
FupXq ď 2.

Theorem D has the following obvious corollary.

Corollary E. The precise value of the Fujita number FupXq is not determined by the fundamental
group π1pXq alone.

1.4. Acknowledgements. The authors acknowledge support by Deutsche Forschungsgemein-
schaft (DFG) through the Collaborative Research Centre TRR 326 "Geometry and Arithmetic
of Uniformized Structures", project number 444845124. Part of this work was done while the
third author attended the workshop "Birational Complexity of Algebraic Varieties" at the Si-
mons Center for Geometry and Physics, and he would like to thank the organizers and staff for
the hospitality and stimulating atmosphere.

2. Preliminaries on convex Fujita numbers

2.1. Finiteness. We first show that convex Fujita numbers are finite. We start with surfaces,
3-folds and toric varieties in order to review that the typical techniques in the Fujita freeness
conjecture specific to these dimensions also bound the convex Fujita number.

Proposition 2.1. Let X be a smooth projective surface.
(1) The convex Fujita number of X is bounded by FupXq ď 3.
(2) If FupXq “ 3, then there exist an ample divisor L on X with pL2q “ 1.
(3) If the intersection pairing on the Néron-Severi lattice NSpXq is even, then FupXq ď 2.
(4) If the canonical divisor is numerically equal to 2D with D P DivpXq, then FupXq ď 2.

Proof. By the Riemann-Roch formula, the assumption in (4) implies the assumption in (3) and
clearly thus both then follow from (1) and (2).

Let us prove (1). We have to show a bound on m such that for ample divisor L1, . . . , Lm the
adjoint divisor KX ` L with L “ L1 ` . . . ` Lm is globally generated. If m ě 3, then pL2q ě 9
and by [Rei88, Theorem 1 (i)] base points can only occur if there is an effective divisor C such
that pC2q ď 0 and pL ¨ Cq ´ pC2q “ 1. But pL ¨ Cq ě m since the Li are ample, contradiction.

For (2) we must have a base point of KX ` L when m “ 2. Reider’s method as in the proof
of (1) still works unless pL2q ď 4, which implies pLi ¨ Ljq “ 1 for all i, j. This shows (2). �

The following consequence of Reider’s method will be used in our proof of Theorem A.
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Proposition 2.2. Let X be a smooth projective surface. If the intersection pairing on the Néron-
Severi lattice NSpXq takes values in dZ for some d ě 5, then the convex Fujita number of X is
bounded by FupXq ď 1.

Proof. We must show that for any ample divisor L on X the adjoint divisor KX ` L is globally
generated. Since by assumption pL2q ě d ě 5, we can apply [Rei88, Theorem 1 (i)] and must
exclude the exceptional case: there is an effective divisor C such that pC2q ď 0 and pL¨Cq´pC2q “

1. But by assumption d divides pL ¨ Cq ´ pC2q, so we are done. �

Proposition 2.3. Let X be a smooth projective threefold. Then the convex Fujita number is
bounded by FupXq ď 4.

Proof. Let L be a sum L1 ` . . .` Lm of m ě 4 ample divisors Li on X. Then for all i, j, k and
all surfaces S and all curves C in X we have

pLi ¨ Lj ¨ Lkq ě 1, pLi ¨ Lj ¨ Sq ě 1, pLi ¨ Cq ě 1,

so that
pL3q ě m3 ą 27, pL2 ¨ Sq ě m2 ě 9, pL ¨ Cq ě m ě 3.

The estimate FupXq ď 4 now follows from [Hel97, Theorem 5.2]. �

Fujita’s freeness conjecture has been proved for toric varieties in [Lat96, Theorem 0.3]. The
bound for the convex Fujita number of toric varieties has also been established.

Proposition 2.4. For a toric variety X the convex Fujita number is bounded by

FupXq ď dimpXq ` 1.

Equality holds only for X “ Pn.

Proof. In view of ωX “ OXp´
ř

iDiq with Di being the torus invariant prime divisors, the result
follows at once from [Mus02, Theorem 0.3]1. �

An explicit finiteness statement for the convex Fujita number follows from work of Angehrn
and Siu. It is noteworthy that the bound is uniform in the dimension.

Proposition 2.5. For a smooth projective variety of dimension n the convex Fujita number is
bounded as

FupXq ď
1

2
pn2 ` n` 2q.

Proof. Let L “ L1 ` . . . ` Lm be a sum of m ě 1
2pn

2 ` n ` 2q ample divisors on X. For any
irreducible cycle W on X of dimension d and any map σ : t1, . . . , du Ñ t1, . . . ,mu we thus find

pLσp1q ¨ . . . ¨ Lσpdq ¨W q ě 1,

so that pLd ¨W q ě md. It follows that the criterion of [AS95, Theorem 0.1] for global generation
of KX ` L is satisfied. �

2.2. Fujita numbers of products. Let X and Y be smooth projective varieties. For ample
line bundles L on X and M on Y the line bundle L b M on X ˆ Y is ample. Let Li (resp.
Mi) be ample line bundles on X (resp. on Y ) for i “ 1, . . . ,m. If the line bundle

ωXˆY b
m
â

i“1

pLi b Miq “ pωX b
m
â

i“1

Liqb pωY b
m
â

i“1

Miq (2.1)

is globally generated, then also its restriction ωX b
Âm

i“1 Li (resp. ωY b
Âm

i“1 Mi) to the fiber
of the projection X ˆY Ñ X (resp. X ˆY Ñ Y ) is globally generated. This immediately shows
the following lemma.

1Mustaţă describes this theorem as a strong version of Fujita’s freeness conjecture. The notion of convex Fujita
number provides a conceptual framework for this kind of strengthening of Fujita’s conjecture. The result can also
be extracted from [Lat96], but the chosen reference is more direct.
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Lemma 2.6. Let X and Y be smooth projective varieties. Then

FupX ˆ Y q ě maxtFupXq,FupY qu.

The estimate can be improved to an equality in some favorable cases.

Proposition 2.7. Let X and Y be smooth projective varieties such that the abelian varieties
Pic0X and Pic0Y have no common nontrivial isogeny factor. Then the following holds.
(1) PicpX ˆ Y q “ PicpXq ˆ PicpY q, and
(2) FupX ˆ Y q “ maxtFupXq,FupY qu.

Proof. We first show that (1) implies (2). The product decomposition for Picp´q is natural by
restriction to fibers, hence also the nef cones and its interior, the ample cone, are products of the
respective cones of the factors. Now arguing as in the proof of Lemma 2.6, it remains to see that
ωXˆY b

Âm
i“1pLibMiq is globally generated if the restrictions to the fibers of both projections

are globally generated. This follows at once by the Künneth formula applied to (2.1).
For (1) we analyze the Leray spectral sequence for Gm along the projection pr : X ˆ Y Ñ X.

The low degree terms yield an exact sequence

0Ñ PicpXq
pr˚
ÝÝÑ PicpX ˆ Y q Ñ H0pX,R1pr˚Gmq

d0,12
ÝÝÑ H2pX,Gmq

pr˚
ÝÝÑ H2pX ˆ Y,Gmq.

Since the choice of a point y P Y and the map ipxq “ px, yq splits the projection, the map pr˚

admits a retraction. Hence the boundary map d0,12 is the zero map and we have a short exact
sequence

0Ñ PicpXq
pr˚
ÝÝÑ PicpX ˆ Y q Ñ H0pX,R1pr˚Gmq Ñ 0.

The sheaf R1pr˚Gm is represented by the Picard variety of Y , hence

H0pX,R1pr˚Gmq “ HompX,PicY q.

Now we fix a point x P X. Evaluation in x and constant maps, as well as the Albanese property
describe a canonical splitting

HompX,PicY q “ PicpY q ˆHomppX,xq, pPicX , 0qq “ PicpY q ˆHompAlbX ,Pic
0
Y q.

Because Albanese and Pic0 are dual abelian varieties and thus share the same isogeny factors,
our assumption is precisely that the second factor vanishes. This proves (1). �

We now prove Proposition C from the introduction.

Corollary 2.8. Let X be a smooth projective variety, and let Y be a smooth projective variety
with H1pY,OY q “ 0. Then

FupX ˆ Y q “ maxtFupXq,FupY qu.

Proof. Since H1pY,OY q “ 0, we have that Pic0Y is trivial, so Proposition 2.7 proves the claim. �

3. Simply connected varieties

3.1. Complete intersections. In this section let X be a smooth complete intersection in Pn`r
of dimension n ě 2 of hypersurfaces of degree di for i “ 1, . . . , r.

Proposition 3.1. If n ě 3, then the complete intersection X ãÑ Pn`r of multidegree pd1, . . . , drq
has convex Fujita number

FupXq “ max
 

0, pn` r ` 1q ´
r
ÿ

i“1

di
(

.

Proof. By the Lefschetz hyperplane theorem for Picp´q, see [SGA 2, Exp. XII Cor. 3.6], the
group PicpXq is generated by Op1q|X . The line bundle L “ Opaq|X is ample if and only if
a ě 1, and it is globally generated if and only if a ě 0.
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The adjoint bundle ωX bL for a product L “ L1 b . . . bLm of ample line bundles Li “

Opaiq|X is by adjunction

ωX bL “ O
`

´ pn` r ` 1q `
m
ÿ

i“1

ai `
r
ÿ

i“1

di
˘

For a fixed m all possible ai ě 1 lead to globally generated adjoint bundles if and only if the
special case ai “ 1 for all i “ 1, . . . ,m leads to a globally generated line bundle, equivalently if

m ě pn` r ` 1q ´
r
ÿ

i“1

di.

This translates into the claimed formula for FupXq. �

3.2. Simply connected surfaces. While complete intersections can treat dimension ě 3, for
surfaces we argue with explicit examples.

Proposition 3.2. Let 0 ď k ď 3 be an integer. Then there is a simply connected smooth
projective surface X with convex Fujita number k.
(1) More concretely, for 1 ď k ď 3 the blow up of P2 in 3´ k points has FupXq “ k.
(2) A very general hypersurface X in P3 of degree d ě 5 is simply connected, has convex Fujita

number FupXq “ 0 and is of general type.

Proof. (1) These blow up surfaces are simply connected by birational invariance of π1. For k “ 3
we deal with X “ P2 that has FupP2q “ 3 because of the ample line bundle Op1q.

For k “ 2 we consider the blow up X Ñ P2 in one point. This is the Hirzebruch surface
PpO‘Op´1qq, and PicpXq is generated by the class of a fiber F and the class of a section S with
self intersection pS2q “ ´1. A divisor L “ aS` bF is nef if and only if b ě a ě 0. Consequently,
a divisor L “ aS ` bF is ample, i.e. in the interior of the nef cone, if and only if b ą a ą 0.
Moreover, as Hirzebruch surfaces are toric varieties, aS ` bF is globally generated if and only
it is nef, see [Mus02, Theorem 3.1]. The canonical class is K “ ´2S ´ 3F . For ample divisors
Li “ aiS ` biF , i “ 1, . . . ,m, we find that

K `

m
ÿ

i“1

Li “ p´2`
m
ÿ

i“1

aiqS ` p´3`
m
ÿ

i“1

biqF.

For Li “ S ` 2F this becomes pm´ 2qS ` p2m´ 3qF , and that is nef, hence globally generated,
if and only if m ě 2. When m ě 2, for general ample divisor Li, then

´3`
m
ÿ

i“1

bi ě ´3`
m
ÿ

i“1

pai ` 1q ą ´2`
m
ÿ

i“1

ai ě 0,

and so the corresponding adjoint divisor is globally generated. This shows that FupXq “ 2.
For k “ 1 we consider the blow up X Ñ P2 in two points. This is a del Pezzo surface of degree

7, and PicpXq is generated by the pullback H of the line and the two exceptional fibers E1 and
E2. A divisor L “ dH ´ a1E1 ´ a2E2 is nef, if and only if

d ě a1 ` a2 and ai ě 0, for i “ 1, 2.

Consequently, L being ample means that all inequalities are strict. Since we may think of
X as being the blow up in two torus invariant points, X is a toric variety and so again by
[Mus02, Theorem 3.1] a divisor L is globally generated if and only if L is nef. The canonical
divisor is K “ ´3H ` E1 ` E2 and not globally generated, hence FupXq ě 1. For any ample
divisor L “ dH ´ a1E1 ´ a2E2, i.e. d ě a1 ` a2 ` 1 and ai ě 1, the adjoint divisor

K ` L “ pd´ 3qH ´ pa1 ´ 1qE1 ´ pa2 ´ 1qE2

has pai ´ 1q ě 0 and

d´ 3 ě a1 ` a2 ` 1´ 3 “ pa1 ´ 1q ` pa2 ´ 1q,

hence K ` L is globally generated. This shows that FupXq “ 1.
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(2) The hyperplane is simply connected due to Lefschetz hyperplane theorem for the funda-
mental group. By Noether-Lefschetz [Lef21] and degree d ě 4 (see also [SGA 7II , Exp. XIX
Théorème 1.2]), the Picard group PicpXq is generated by Op1q|X . This is the reason to restrict
to very general hyperplanes. The convex Fujita number is then calculated as in the proof of
Proposition 3.1. Since the degree is at least d ě 5, the canonical bundle ωX “ Opd ´ 4q|X is
very ample. �

3.3. Convex Fujita numbers for simply connected varieties. We now prove Theorem B.

Theorem 3.3. Let n ě 2 be an integer, and let 0 ď k ď n ` 1. There is a simply connected
smooth projective variety X of dimension n with convex Fujita number FupXq “ k. Moreover, if
k “ 0, then X can be chosen to be of general type.

Proof. We remark first that n-dimensional complete intersections in Pn`r are simply connected
by the Lefschetz hyperplane theorem as long as n ě 2. For n ě 3 thus the proof reduces to
Proposition 3.1, because all values of k can be obtained, e.g. by r “ 1 and d1 “ n ` 2 ´ k. If
k “ 0, then we choose r “ 1 and d1 ą n ` 2 which forces ωX to be very ample and X to be of
general type.

The case n “ 2 is nothing but Proposition 3.2. �

4. Varieties with prescribed fundamental group

In this section we construct smooth projective varieties with a given fundamental group and
varying dimension and convex Fujita number.

4.1. Fujita simple surfaces with prescribed fundamental group. We now prove the sur-
face case of Theorem A.

Proposition 4.1. Let π be a projective group. Then there is a smooth projective surface X of
general type with fundamental group isomorphic to π and convex Fujita number FupXq “ 0.

Proof. Let Y be a smooth projective variety with π1pY q “ π. Upon replacing Y by its product
with some projective space, we may assume dimpY q ě 3. Passing to a smooth complete intersec-
tion of dimpY q ´ 3 very ample divisors if necessary, we assume going forward that dimpY q “ 3.

Fixing an ample divisor H on Y and an integer p ě 5 such that KY ` pH is ample and
globally generated, we choose X to be a very general smooth hypersurface in the linear system
|pH|. By the Lefschetz hyperplane theorem, π1pXq is isomorphic to π. By Noether-Lefschetz
for arbitrary 3-folds, see [Jos95] and more effectively using global generation of KY ` pH by
[RS09, Theorem 1], we have

PicpXq “ PicpY q

via restriction. This means that for all L1,L2 P PicpXq there are extensions M1,M2 P PicpY q
with Li “ Mi|X and thus

pL1 ¨L2qX “ pM1 ¨M2 ¨OY ppHqqY P pZ

is divisible by p. This shows FupXq ď 1 by Proposition 2.2.
By adjunction, the canonical bundle of X is ωX “ pωY b OY ppHqq|X . Since ωY b OY ppHq

is ample and globally generated, its restriction to X is also ample and globally generated, so
FupXq “ 0 as desired. �

Theorem A now follows easily with the exception of dimension n “ 3. Indeed, given a pro-
jective group π we first choose a Fujita simple surface S of general type with π1pSq “ π as in
Proposition 4.1. If n “ 2 we are done. Otherwise by Theorem B, since we excluded n “ 3, we
have a complete intersection Y of general type and dimension n´ 2 which is Fujita simple and
simply connected. By Proposition C the variety X “ S ˆ Y is Fujita simple, it is of general
type and dimension n, and with π1pXq “ π by the Künneth formula for π1. This constructs the
variety asked for in Theorem A.
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4.2. Totally branched cyclic covers. It remains to construct a threefold that satisfies the
needs of Theorem A. Since the construction is not particularly different in all dimensions n ě 3,
we do not specialize in threefolds now. We dealt with surfaces first in Proposition 4.1 because we
wanted to highlight how far one gets by only invoking Reider’s method instead of the analytic
methods of Angehrn-Siu [AS95].

Remark 4.2. We first recall the construction of the cyclic and totally branched covering X Ñ Y
of a smooth projective variety Y with respect to a line bundle L P PicpY q, a degree d ě 1, and
a smooth divisor B (branch locus) in the linear system associated to L bd, more precisely to an
isomorphism

s : L bd „
ÝÑ OY pBq.

The µd-torsor X Ñ Y is constructed as the relative spectrum

f : X “ SpecY
`

Sym‚pL ´1q{L b´d “ OY p´Bq
˘

Ñ Y.

which, locally with an equation ts “ 0u for the Cartier divisor B, solves the equation td “ s
inside the line bundle L globally. The variety X is again smooth projective by Abhyankar’s
lemma, and also R “ f´1pBqred (ramification locus) is smooth, in fact isomorphic to B. We
have the well known relations

OXpRq » f˚L ,

f˚B “ d ¨R,

ωXpRq » f˚pωY pBqq.

It follows that
ωX » f˚pωY pBqq bOXp´Rq » f˚

`

ωY bL bpd´1q
˘

. (4.1)

The next lemmas record the effect of various Lefschetz theorems applied to functors evaluated
at the following diagram showing the cyclic totally branched covering constructed above.

R �
� //

f |R
��

»

��

X

f
��

B � � // Y.

(4.2)

Lemma 4.3. Let f : X Ñ Y be the branched µd-cover constructed above associated to L and
B. If L is ample and the dimension dimpY q is at least 3, then f induces an isomorphism

f˚ : π1pXq
„
ÝÑ π1pY q.

Proof. Since L is ample, both B in Y and R in X are ample. By the Lefschetz hyperplane
theorem, the functor π1 applied to diagram (4.2) has isomorphisms for all but the map induced
by f . Hence also f˚ is an isomorphism. �

Remark 4.4. Lemma 4.3 also holds in case dimpY q “ 2 and then with the weaker assumption
that B2 ą 0. This is proven in [KK14, Proposition 1] based on a result by Nori.

Lemma 4.5. Let f : X Ñ Y be the branched µd-cover constructed above associated to L and
B. If L is ample and the dimension dimpY q is at least 4, then f induces an isomorphism

f˚ : PicpY q
„
ÝÑ PicpXq.

Moreover, if d " 0 is sufficiently large and in addition B is chosen to be very general, then the
same conclusion holds when dimpY q ě 3.

Proof. Again, since L is ample, both B in Y and R in X are ample.
Let first dimpY q be at least 4. By the Lefschetz hyperplane theorem for Picp´q, see [SGA

2, Exp. XII Cor. 3.6], the functor Pic applied to diagram (4.2) has isomorphisms for all but the
map induced by f . Hence also f˚ is an isomorphism.

For dimpY q “ 3 and very general B we use again the Noether-Lefschetz theorem of [Jos95]
to deduce that the restriction PicpY q Ñ PicpBq is an isomorphism. We cannot use the same
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argument for the restriction PicpXq Ñ PicpRq, since we do not control whether R is very general
in X, and most likely it is not. But by the Lefschetz hyperplane theorem for Picp´q, see [SGA
2, Exp. XII Cor. 3.6], the restriction PicpXq ãÑ PicpRq is still injective, and that is sufficient to
conclude as in the proof before when dimpY q ě 4. �

Proposition 4.6. Let f : X Ñ Y be the branched µd-cover constructed above associated to an
ample line bundle L and a smooth divisor B. We assume that the dimension dimpY q is at least
3, where if dimpY q “ 3 we ask d " 0 to be large and B to be very general. Then the convex
Fujita number is bounded as follows:

FupXq ď maxt0,FupY q ` 1´ du.

Moreover, if d´ 2 ě FupY q, then ωX is ample and globally generated.

Proof. Let L1, . . . ,Ls be ample line bundles on Y . Due to Lemma 4.5 there are line bundles
Mi on X with Li “ f˚Mi. Moreover, as f is finite, the line bundles Mi are also ample. Since

ωX b pL1 b . . .bLsq » f˚
`

ωY bL bpd´1q bM1 b . . .bMs

˘

,

and because being globally generated pulls back under morphisms, the left hand side is globally
generated as soon as s` d´ 1 ě FupY q. The estimate for FupXq follows.

If d´ 2 ě FupXq, then ωY bL bpd´2q is globally generated. The tensor product of an ample
line bundle L with a globally generated line bundle ωY bL bpd´2q is again ample, hence ωX is
ample as the pull back of ωY bL bpd´1q. �

4.3. Fujita simple varieties with prescribed fundamental group and dimension. The
proof of Theorem A begun in Proposition 4.1 will now be completed by the following proposition.

Proposition 4.7. Let π be a projective group and n ě 3. Then there is a smooth projective
variety X of general type and dimension n with fundamental group isomorphic to π and convex
Fujita number FupXq “ 0.

Proof. We can argue as in the proof of the surface case Proposition 4.1 that there is a smooth
projective variety Y of general type with π1pY q “ π and dimension n. Now we choose an ample
line bundle L on Y .

By Proposition 2.5, the convex Fujita number FupY q is finite. We choose d ě FupY q ` 2
large enough such that by Bertini we find a smooth divisor B in the linear system associated
to L bd. Let f : X Ñ Y be the branched µd-cover constructed above associated to L and
B. If dimpY q “ 3 we moreover ask d " 0 to be sufficiently large and B very general, so that
the conclusion of Lemma 4.5 holds. Then Proposition 4.6 shows that X is Fujita simple and of
general type. �

In a certain range we may improve on Theorem A by even imposing the value of the Kodaira
dimension.

Theorem 4.8. Let π be a projective group, let n ě 4 and let n ´ 2 ě m ě 2. Then there is a
smooth projective variety X of Kodaira dimension m and dimension n with fundamental group
isomorphic to π and convex Fujita number FupXq “ 0.

Proof. We construct X as a product X “ Y ˆZ. Theorem A provides a smooth projective Y of
general type and dimension m with π1pY q isomorphic to π and FupY q “ 0.

The factor Z is obtained as a smooth hypersurface Z ãÑ Pn`1´m of degree n ` 2 ´m that,
moreover, we require to be very general if n ´m “ 2. If dimpZq “ 2, then Z is a very general
smooth quartic in P3, hence a K3 surface with Picard group generated by Op1q|Z . The argument
of Proposition 3.1 applies to show FupZq “ 0. If dimpZq ě 3, then Proposition 3.1 applies
directly to show FupZq “ 0, too.

By the Lefschetz hyperplane theorem for the fundamental group we have π1pZq “ 0 so that
π1pXq is isomorphic to π1pY q » π. Being simply connected, Z also has vanishing H1pZ,OZq and
so Corollary 2.8 yields FupXq “ maxtFupY q,FupZqu “ 0.

As Z has trivial canonical bundle, we have ωX “ pr˚ωY with pr : X “ Y ˆZ Ñ Y the projec-
tion map. Therefore X and Y have the same Kodaira dimension, namely m by construction. �
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4.4. Convex Fujita numbers with prescribed fundamental group and dimension. We
now aim to prove Theorem D of the introduction.

Theorem 4.9. Let π be a projective group, and let n ě 2 be an integer, and let 0 ď k ď n´ 1.
There is a smooth connected projective variety X of dimension n with the following properties:
(i) π1pXq is isomorphic to π, and
(ii) FupXq “ k.

Proof. The case k “ 0 is the content of Theorem A, so that case is done. Let S be such a Fujita
simple surface with π1pSq “ π.

Let first n be at least 4. If 0 ď k ď n ´ 1, then there exists a simply connected variety Y of
dimension n ´ 2 ě 2 and convex Fujita number k by Theorem B. By the Künneth formula the
product X “ S ˆ Y has π1pXq “ π1pSq “ π, and, since H1pY,OY q “ 0 for the simply connected
variety Y , we have from Corollary 2.8 that FupXq “ maxt0, ku “ k.

If n “ 3 and k “ 2, then we can take Y “ P1 with FupY q “ 2 and again conclude that
X “ S ˆ Y has the required fundamental group and convex Fujita number 2.

The only cases missing now are the case pn, kq “ p2, 1q and p3, 1q which we deal with separately
in Proposition 4.10 and Proposition 4.11 below. �

Proposition 4.10. Let π be a projective group. There exists a smooth projective surface S such
that the blow-up S1 Ñ S in a point yields a smooth projective surface with FupS1q “ 1 and
π1pS

1q “ π.

Proof. We can argue as in the proof of Proposition 4.1 that there is a smooth projective variety
Y of general type with π1pY q “ π and dimension 3. Now we choose a very ample line bundle
Op1q on Y and choose S a very general smooth divisor in the linear system of Op24q by Bertini’s
theorem. Upon replacing Op1q by a multiple initially, we may assume by Noether-Lefschetz, see
[Jos95], that PicpSq “ PicpY q. The choice of the power 24 then forces all intersection numbers
of line bundles on S to be divisible by 24.

By the Lefschetz hyperplane theorem and the birational invariance of the fundamental group
the blow up σ : S1 Ñ S in a choice of a point P on S is a smooth projective surface S1 with

π1pS
1q “ π1pSq “ π1pY q “ π.

Since S1 is not minimal the canonical divisorKS1 is not nef and a fortiori not globally generated.
Thus FupS1q ě 1. It remains to show that for all ample divisors L on S1 the adjoint divisorKS1`L
is globally generated.

Since PicpS1q equals PicpSq ‘ Z, with the summand Z spanned by the exceptional divisor
E “ σ´1pP q, we find that L “ σ˚M ´ aE for some divisor M on S and a P Z. We compute

pL2q “ pM2q ´ a2 ą 0,

so modulo 24 it’s the negative of a square. Squares modulo 24 are 0, 1, 4, 9, 12, 16, hence

pL2q ě 8.

Reider’s theorem [Rei88, Theorem 1 (i)] implies that KS1 `L is globally generated unless we are
in the exceptional case: there is an effective divisor C 1 on S1 such that pC 12q “ 0 and pL ¨C 1q “ 1.
Since L is ample and C 1 is effective, it follows from pL ¨ C 1q “ 1 that C 1 must be irreducible
and reduced. As pE2q “ ´1 we can exclude C 1 “ E. Hence C 1 is the strict transform of an
irreducible and reduced curve C on S. Let mC be the multiplicity of C in P . Then

0 “ pC 12q “ pC2q ´m2
C ” ´m

2
C pmod 24q.

It follows that 12 divides mC . On the other hand, we have pM ¨ Cq ” 0 pmod 24q and so

1 “ pL ¨ C 1q “ pM ¨ Cq ´ amC ” 0 pmod 12q,

a contradiction. �
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Proposition 4.11. Let π be a projective group, and let S be a smooth projective surface with
FupSq ď 2. Let M be a very ample line bundle on S, and set L “M bOp1q on Y “ S ˆ P1.
Then the double cover f : X Ñ Y branched in a very general smooth divisor B of the linear
system associated to L b2 is a smooth projective threefold with FupXq “ 1 and π1pXq “ π.

Proof. Let pr : Y Ñ S be the projection map. Since FupSq ď 2, the line bundle

ωY pBq “
`

ωS bMb2
˘

b
`

ωP1p2q
˘

“ pr˚pωS bMb2q

is globally generated. Therefore the effective version of the Noether-Lefschetz theorem proved in
[RS09, Theorem 1] applied to OY p1q– L b2 shows that the restriction map

PicpY q
„
ÝÑ PicpBq

is an isomorphism. This suffices to show as in Lemma 4.5 that

f˚ : PicpY q Ñ PicpXq

is an isomorphism. By Proposition C we have FupY q “ 2, and by Proposition 4.6 we have
FupXq ď 1. It remains to show that ωX is not globally generated. We compute its global
sections using f˚OX “ OY ‘L ´1 as

H0pX,ωXq “ H0pX, f˚pωY bL qq “ H0pY, ωY bL q ‘H0pY, ωY q.

Furthermore, by the Künneth formula and the product structure of Y and ωY bL

H0pY, ωY bL q “ H0pS, ωS bM q bH0pP1,Op´1qq “ 0,

H0pY, ωY q “ H0pS, ωSq bH0pP1,Op´2qq “ 0,

both vanish. Hence ωX has no global sections and the proof is complete. �

Remark 4.12. A result similar in nature to Theorem 4.9 can be found in [Deb05, Proposition 26].
Based on earlier ideas and results due to Bogomolov, Debarre proves that for every projective
group π there is a smooth projective surface with ample cotangent bundle and fundamental
group isomorphic to π.
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