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Abelian varieties over Fp

TOMMASO GIORGIO CENTELEGHE AND JAKOB STIX

Abstract — We assign functorially a Z-lattice with semisimple Frobenius action to
each abelian variety over Fp. This establishes an equivalence of categories that describes
abelian varieties over Fp avoiding √p as an eigenvalue of Frobenius in terms of simple
commutative algebra. The result extends the isomorphism classification of Waterhouse
and Deligne’s equivalence for ordinary abelian varieties.
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1. Introduction

1.1. Let p be a prime number, Fp an algebraic closure of the prime field Fp with p elements,
and Fq ⊂ Fp the subfield with q elements, where q = pe is a power of p. The category

AVq

of abelian varieties over Fq is an additive category where for all objects A, B the abelian
groups HomFq(A,B) are free of finite rank. Even though the main result of this paper concerns
abelian varieties over the prime field Fp, the general theme of our work is describing suitable
subcategories C of AVq by means of lattices T (A) functorially attached to abelian varieties A of
C. In contrast to the characteristic zero case, if we insist that

rkZ(T (A)) = 2 dim(A) (1.1)

then it is not possible to construct T (A) on the whole category AVq (see Section §1.6). However,
if we take C to be the full subcategory

AVord
q

of ordinary abelian varieties, Deligne has shown that a functor A 7→ T (A) satisfying (1.1) exists
and gives an equivalence between AVord

q and the category of finite free Z-modules T equipped
with a linear map F : T → T satisfying a list of axioms easy to state (cf. [De69] §7).

Inspired by a result of Waterhouse (cf. [Wa69], Theorem 6.1), in the present work we show
that a description in the style of Deligne can in fact be obtained, when q = p, for a considerably
larger subcategory C of AVp, which excludes only a single isogeny class of simple objects of AVp
from occuring as an isogeny factor (see Theorem 1). Deligne’s method is an elegant application
of Serre–Tate theory of canonical liftings of ordinary abelian varieties, whereas our method,
closer to that used by Waterhouse, does not involve lifting abelian varieties to characteristic

Date: December 5, 2014.
The first author was supported by a project jointly funded by the DFG Priority Program SPP 1489 and the

Luxembourg FNR.
1



2 TOMMASO GIORGIO CENTELEGHE AND JAKOB STIX

zero. Even if the main result of this paper generalizes the q = p case of Deligne’s theorem, it is
unlikely that a proof generalizing Deligne’s lifting strategy be possible.

1.2. A Weil q–number π is an algebraic integer, lying in some unspecified field of characteristic
zero, such that for any embedding ι : Q(π) ↪→ C we have

|ι(π)| = q1/2,

where |−| is the ordinary absolute value of C. Two Weil q–numbers π and π′ are conjugate to
each other if there exists an isomorphism Q(π)

∼−→ Q(π′) carrying π to π′, in which case we write
π ∼ π′. We will denote by

Wq

the set of conjugacy classes of Weil q–numbers. A Weil q–number is either totally real or totally
imaginary, hence it makes sense to speak of a non-real element of Wq.

Let A be an object of AVq, denote by πA : A→ A the Frobenius isogeny of A relative to Fq.
If A is Fq–simple then EndFq(A) ⊗ Q is a division ring, and a well known result of Weil says
that πA is a Weil q–number inside the number field Q(πA). Let

A ∼
∏

1≤i≤r
Aeii (1.2)

be the decomposition of A up to Fq–isogeny into powers of simple, pairwise non–isogenous factors
Ai. The Weil support of A is defined as the subset

w(A) = {πA1 , . . . , πAr} ⊆Wq

given by the conjugacy classes of the Weil numbers πAi attached to the simple factors Ai. By
Honda–Tate theory, the conjugacy classes of the πAi are pairwise distinct, moreover any class in
Wq arises as πA, for some Fq–simple abelian variety A, uniquely determined up to Fq–isogeny
(cf. [Ta68], Théorème 1).

1.3. Consider now the case q = p. Using Honda–Tate theory it is easy to see that for a simple
object A of AVp the ring EndFp(A) is commutative if and only if πA 6∼

√
p, i.e., if and only if the

Frobenius isogeny πA : A→ A defines a non-real Weil p–number (cf. [Wa69], Theorem 6.1). Let

AVcom
p

be the full subcategory of AVp given by all objects A such that w(A) does not contain the
conjugacy class of √p. Equivalently, AVcom

p is the largest full subcategory of AVp closed under
taking cokernels containing all simple objects whose endomorphism ring is commutative. Since
the Weil p–number √p is associated to an Fp–isogeny class of simple, supersingular abelian
surfaces (cf. [Ta68], exemple (b) p. 97), we have a natural inclusion AVord

p ⊂ AVcom
p .

The main result of this paper, proven at the end of Section §5.3, is the following.

Theorem 1. There is an ind-representable contravariant functor

A 7→ (T (A), F )

which induces an anti-equivalence between AVcom
p and the category of pairs (T, F ) given by a

finite, free Z-module T and an endomorphism F : T → T satisfying the following properties.
(i) F ⊗Q is semisimple, and its eigenvalues are non-real Weil p–numbers.
(ii) There exists a linear map V : T → T such that FV = p.
Moreover, the lattice T (A) has rank 2 dim(A) for all A in AVcom

p , and F is equal to T (πA).

In order to prove the theorem we consider in Section §2 a family of Gorenstein rings

Rw = Z[F, V ]/(FV − p, hw(F, V ))

indexed by the finite subsets w ⊆ Wp, where hw(F, V ) is a certain symmetric polynomial built
out of the minimal polynomials over Q of the elements of w. An object (T, F ) in the target
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category of the functor T (−) of Theorem 1 is nothing but an Rw-module, for w ⊂ Wp large
enough, that is free of finite rank as a Z-module. In this translation, the linear map F : T → T
is given by the action of the image of F in Rw, and the relation hw(F, V ) in Rw encodes
precisely that F ⊗ Q acts semisimply and with eigenvalues given by Weil p-numbers lying in
w (see Sections §2.4, §2.5 and §3.2). Thanks to the Gorenstein property, these Rw-modules
are precisely the reflexive Rw-modules, the category that they form will be denoted by (see
Section §3)

Refl(Rw).

For v ⊆ w, the corresponding rings are linked by natural surjective maps prv,w : Rw −→ Rv.
We denote by Rcom

p the pro-system (Rw, prv,w) with w ⊆ Wp ranging over the finite subsets
avoiding the conjugacy class of √p. We further set

Refl(Rcom
p ) = lim−→

w⊆Wp\{
√
p}

Refl(Rw).

We refer to Section §3.2 for details.
In this language, Theorem 1 can be stated as saying that

T : AVcom
p → Refl(Rcom

p )

is an anti–equivalence of categories. While this formulation of the main result is closer to the
perspective we adopted in its proof, the more concrete statement we chose to give above allows
an immediate comparison to Deligne’s result in [De69].

1.4. The rings Rw studied in Section §2 are in fact defined for any finite subset w ⊆Wq. They
appear naturally in connection to abelian varieties, in that for any A in AVq the natural map

Z[F, V ]/(FV − q) −→ EndFq(A) (1.3)

sending F to πA and V to the Verschiebung isogeny q/πA induces an identification between Rw(A)

and the subring Z[πA, q/πA] of EndFq(A), which has finite index in the center (see Section 2.1).
The rings Rw have been already considered in [Wa69] and [Ho95] for example, however, to
our best knowledge, our observation that they are almost1 always Gorenstein remained so far
unnoticed (see Theorem 11).

An Rcom
p -linear structure on AVcom

p can be deduced from the map (1.3) (see Section §2.3). The
requirement that F = T (πA) precisely means that the functor T (−) is an Rcom

p -linear functor
(see Section §3.2).

1.5. The proof of the theorem consists of two steps. First, for any finite subset w ⊆ Wp not
containing the conjugacy class of √p, we construct a certain abelian variety Aw isogenous to the
product of all simple objects attached to the elements of w via Honda–Tate theory. The object
Aw is chosen in its isogeny class with the smallest possible endomorphism ring, i.e., such that
the natural map

Rw → EndFp(Aw)

is an isomorphism (see Proposition 21). In order to show the existence of such an Aw, which
already appears in [Wa69] Theorem 6.1 if w consists of a single element, the assumption q = p
plays an important role. Exploiting the Gorenstein property of Rw, in Theorem 25 we show that
the functor HomFp(−, Aw) gives a contravariant equivalence

HomFp(−, Aw) : AVw
∼−→ Refl(Rw)

where AVw is the full subcategory of AVp given by all abelian varieties A with w(A) ⊆ w.

1When [Fq : Fp] = e is even we must require that the set w either contains both or none of the two rational
Weil q–numbers ±qe/2. In particular, Rw is Gorenstein for a cofinal subsystem of the finite subsets w ⊆Wq with
respect to inclusion.
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The second step consists in showing that the abelian varieties Aw previously constructed can
be chosen in such a way that the functors HomFp(−, Aw) interpolate well, and define a functor
on AVcom

p . More precisely we show the existence of an ind-system

A = (Aw, ϕw,v), (1.4)

indexed by finite subsets w ⊆ Wp not containing the conjugacy class of √p, such that the
corresponding direct limit of finite free Z–modules

T (A) = lim−→
w

HomFp(A,Aw)

stabilizes. The contravariant functor T (−) ind-represented by A will produce the required anti–
equivalence.

1.6. As Serre has observed, it is not possible to functorially construct a lattice T (A) satisfying
the expected rkZ(T (A)) = 2 dim(A) on the category of abelian varieties over Fp. This is due
to the existence of objects like supersingular elliptic curves E over Fp. As is well known, the
division ring EndFp(E) ⊗ Q is a non-split quaternion algebra over Q and has no 2-dimensional
Q–linear representation that can serve as T (E)⊗Q. That just described is the same obstruction
that prevents the existence of a Weil–cohomology for varieties over finite fields with rational
coefficients.

Using the same argument one can show the non-existence of a lattice T (A) as above on the
category AVq, where q is a square. When q is not a square, the correct instance of Serre’s
observation, which prevents Theorem 1 from extending to all of AVp, is given by the isogeny
class of Fq-simple, supersingular abelian surfaces associated via Honda–Tate theory to the real,
non rational, Weil q–number √q. The endomorphism ring of any such surface A is an order of
a quaternion algebra over Q(

√
q) = Q(

√
p) which is ramified at the two real places (cf. [Wa69]

p. 528). It follows that EndFq(A) ⊗ R ' H × H is a product of two copies of the Hamilton
quaternions H. Thus it admits no faithful representation on a 4-dimensional real vector space,
such as T (A)⊗ R would give rise to.

1.7. The dual abelian variety establishes an anti–equivalence A 7→ At of AVq which preserves
Weil supports and has the effect of switching the roles of Frobenius and Verschiebung endomor-
phisms relative to Fq. This is to say that

(πA)t = q/πAt

as isogenies from At to itself. On the module side, we define a covariant involution of Refl(Rcom
p )

denoted by M 7→M τ which interchanges the roles of F and V , i.e., such that

(T, F )τ = (T, p/F ).

Using these two dualities we can exhibit a covariant version of the functor T (−) of Theorem 1.
More precisely, define

T∗(A) = T (At)τ

as the pair given by the Z–module T (At) equipped with the linear map p/T (πAt). In the notation
as pairs T∗(A) takes the form

(T (At), p/T (πAt)) = (T (At), T ((πA)t)) = (T∗(A), T∗(πA)).

The functor T∗(−) gives a covariant, Rcom
p –linear equivalence

T∗ : AVcom
p → Refl(Rcom

p ) (1.5)

which is pro-represented by the system At = (Atw, ϕ
t
w′,w) dual to (1.4). In the definition of T∗(−)

it is necessary to apply the involution τ to T (At) in order to guarantee that T∗ be Rcom
p –linear.

In Section §7.4 we compare T∗(−) restricted to AVord
p with Deligne’s functor from [De69] §7

that we denote by TDel,p(−). The comparison makes use of a compatible pro-system of projective
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Rw-modules Mw of rank 1 for all finite subsets w ⊆ Wp consisting only of conjugacy classes of
ordinary Weil p–numbers. Proposition 44 then describes, for all abelian varieties A over Fp with
w(A) ⊆ w, a natural isomorphism

TDel,p(A)⊗Rw Mw
∼−→ T∗(A).

Furthermore, by choosing a suitable ind-representing system A = (Aw, ϕv,w) we may assume
that Mw = Rw for all w, i.e., the anti-equivalence of Theorem 1 may be chosen to extend in its
covariant version Deligne’s equivalence, see Proposition 45 for details.

1.8. Finally, we indicate how to recover the `-adic Tate module T`(A), for a prime ` 6= p,
and the contravariant Dieudonné module Tp(A) (cf. [Wa69] §1.2) from the module T (A). This
involves working with the formal Tate module T`(A) and the formal Dieudonné module Tp(A)
of the direct system A, respectively defined as the direct limit of T`(Aw) and the inverse limit of
the Tp(Aw), with transition maps obtained via functoriality of T` and Tp. More concretely we
have natural isomorphisms

T`(A) ' HomR`(T (A)⊗ Z`, T`(A)),

Tp(A) ' (T (A)⊗ Zp)⊗̂RpTp(A),

see Proposition 27 and 28 for notation and proofs. In this respect the functor T (−) can be
interpreted as an integral lifting of the Dieudonné module functor Tp(−).

In a forthcoming paper we will apply the method used here to study certain categories of
abelian varieties over a finite field which is larger that Fp. Therefore, although Theorem 1 deals
with abelian varieties over Fp, we only restrict to the case q = p when it becomes necessary.

Acknowledgments. The authors would like to thank Gebhard Böckle for stimulating discus-
sions and for his suggestion of the symmetric polynomial hπ(F, V ). We thank Filippo Nuccio
for valuable comments on an earlier version of the manuscript, and Hendrik Lenstra for his
interesting observations on local complete intersections. Special thanks go to Brian Conrad and
Frans Oort for their attentive reading of a preliminary version of our work, and for the prompt
and interesting feed back they gave us. Finally we thank the anonymous referees for their quick
work in reviewing the paper.

2. On the ubiquity of Gorenstein rings among minimal central orders

2.1. Minimal central orders. Let w ⊆ Wq be any finite set of conjugacy classes of Weil q–
numbers. Choose Weil q–numbers π1, . . . , πr representing the elements of w, and consider the
ring homomorphism

Z[F, V ]/(FV − q) −→
∏

1≤i≤r
Q(πi) (2.1)

sending F to (π1, . . . , πr) and V to (q/π1, . . . , q/πr).

Definition 2. The minimal central order Rw is the quotient

Z[F, V ]/(FV − q)→ Rw (2.2)

by the kernel of the homomorphism (2.1). The image of F in Rw will be denoted by Fw, and
the image of V by Vw.

The construction of the ring Rw is independent of the chosen Weil q–numbers in their respec-
tive conjugacy classes. When w consists of a single conjugacy class of a Weil number π, the ring
R{π}, isomorphic to the order of Q(π) generated by π and q/π, will sometimes be denoted sim-
ply by Rπ. Since the representatives π1, . . . , πr are pairwise non–conjugate, there is a canonical
finite index inclusion

Rw ⊆
∏
π∈w

Rπ,
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in particular

Rw ⊗Q =
∏
π∈w

Q(π). (2.3)

Moreover, for finite subsets v ⊆ w ⊆Wq we have a natural surjection

prv,w : Rw −→ Rv.

Our main goal in this section is showing that, under a mild assumption on w, the ring Rw
is a one dimensional Gorenstein ring. This will be proved in Section 2.5, where we obtain a
description of Rw by identifying the relations between the generators F and V .

Example 3. The equality of closed subschemes

Spec(Rw) =
⋃
π∈w

Spec(Rπ) ⊆ Spec
(
Z[F, V ]/(FV − q)

)
shows that the spectrum of Rw is obtained by glueing the spectra of the rings Rπ along their
various intersections inside Spec

(
Z[F, V ]/(FV − q)

)
. This roughly means that it is the congru-

ences between Weil q-numbers who are responsible for Rw differing from the product of the Rπ
for all π ∈ w.

We measure in a special situation the deviation of Rw from being isomorphic to
∏
π∈w Rπ.

Let πi for i = 1, 2 be quadratic Weil q-numbers with minimal polynomial

x2 − βix+ q,

where βi ∈ Z, and set ∆ = β1 − β2. Since q/πi = βi − πi we have

Rπi = Z[πi] ' Z[x]/(x2 − βix+ q),

moreover the subring Rw ⊆ Z[π1]× Z[π2] is generated as a Z-algebra by

(0,∆), (π1, π2) ∈ Z[π1]× Z[π2],

since it is generated by (π1, π2) and (β1 − π1, β2 − π2). Because β1 ≡ β2 modulo ∆, there are
isomorphisms of quotients

Z[π1]/∆Z[π1] ' Z[π2]/∆Z[π2] =: R0

and Rw becomes the fibre product

Rw = Z[π1]×R0 Z[π2],

which is an order of index ∆2 in the product Rπ1 × Rπ2 . The congruences between π1 and π2

are encoded by the closed subscheme of Spec
(
Z[F, V ]/(FV − q)

)
given by

Spec(R0) = Spec(Rπ1) ∩ Spec(Rπ2).

Note that the minimal polynomials x2 − βi + q yield Weil q-numbers if and only if

β2
i < 4q.

In particular, by letting q range over the powers of the prime p, the Weil q-numbers πi may be
chosen so as to have ∆ divisible by an arbitrary integer.
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2.2. Connection to abelian varieties. We proceed to link Rw to abelian varieties over Fq.
Any such A has two distinguished isogenies given by the Frobenius πA and the Verschiebung
q/πA relative to Fq. The Q–algebra EndFq(A) ⊗ Q is semi–simple, and its center is equal to
the sub–algebra Q(πA) generated by πA (cf. [Ta66], Theorem 2). It follows that any isogeny
decomposition of A, as in (1.2), induces the isomorphism

Q(πA) '
∏

πAi∈w(A)

Q(πAi), (2.4)

sending πA to (πA1 , . . . , πAr), where πA1 , . . . , πAr are the Weil q–numbers defined by the simple
factors of A, and w(A) is the Weil support of A as defined in the introduction.

From (2.4) we deduce that the ring homomorphism

rA : Z[F, V ]/(FV − q) −→ EndFq(A)

sending F to πA and V to q/πA gives an identification between Rw(A) and the image of rA,
namely the subring

Z[πA, q/πA]

which sits inside the center of EndFq(A) with finite index. In this way we see that Rw(A) plays
the role of a lower bound for the center of EndFq(A). This justifies the terminology we chose in
its definition.

Remark 4. One can raise the question of whether there exists an abelian variety A with Weil
support w such that the natural map Rw → EndFp(A) induced by rA gives an isomorphism
between Rw and the center of EndFp(A). In Proposition 21 below, generalizing a result of
Waterhouse, we obtain a partial result in this direction.

2.3. Linear structures over minimal central orders. For a finite subset w ⊆ Wq the full
subcategory

AVw ⊆ AVq

consists of all abelian varieties A such that w(A) ⊆ w or, equivalently, such that rA factors
through the quotient Z[F, V ]/(FV − q) → Rw. Since for any morphism f : A → B in AVq and
any η ∈ Z[F, V ]/(FV − q) the diagram

A
f //

rA(η)
��

B

rB(η)
��

A
f // B

(2.5)

is commutative, as follows from the naturality of the Frobenius and Verschiebung isogenies, we
deduce an Rw–linear structure on the category AVw. Furthermore, for finite subsets v ⊆ w the
Rw–linear structure on AVv induced by the fully faithful inclusion AVv ⊆ AVw is compatible, via
the surjection prv,w, with the Rv–linear structure on AVv.

Remark 5. If W ⊆Wq is now any subset, denote by RW the projective system (Rw, prw,v) as w
ranges through all finite subsets of W , and by

AVW

the full subcategory of AVq whose objects are all abelian varieties A with w(A) ⊆ W . We will
treat AVW as the direct 2-limit of the categories AVw, for w a finite subsets ofW . The collection
of Rw–linear structures on the subcategories AVw ⊆ AVW , which are linked by the compatibility
conditions described above, form what we will refer to as an RW –linear structure on AVW .
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2.4. The symmetric polynomial. Let π be a Weil q–number. If Q(π) has a real place then
π2 = q, so that Q(π) is totally real, and [Q(π) : Q] is either 2 or 1 according to whether the
degree e = [Fq : Fp] is odd or even, respectively. In the first case there is only one conjugacy
class of real Weil q–numbers, in the second one there are two of them, given by the rational
integers qe/2 and −qe/2. In the general case where π is not real, the field Q(π) is a non-real CM
field, with complex conjugation induced by π 7→ q/π.

The degree 2d = [Q(π) : Q] is even, except for the two rational Weil q–numbers occurring for
e even. Set

Pπ(x) = x2d + a2d−1x
2d−1 + . . .+ a1x+ a0 ∈ Z[x]

for the normalized minimal polynomial of π over Q, and accept that d = 1/2 in case π ∈ Z. The
polynomial Pπ(x) depends only on the conjugacy class of π. The following lemma is well known
(cf. [Ho95], Prop. 3.4).

Lemma 6. Let π be a non-real Weil q–number. For r ≥ 0, we have ad−r = qrad+r.

Proof. We can arrange the roots α1, . . . , α2d of Pπ(x) so that αi and α2d+1−i are complex con-
jugates of each other, which is to say αiα2d+1−i = q. For a subset I ⊆ {1, . . . , 2d} we set
Ic = {1, . . . , 2d} \ I, and I = {i ; 2d+ 1− i ∈ I}, and moreover we use the multiindex notation
αI =

∏
i∈I αi. Then with summation over subsets of {1, . . . , 2d} we compute

(−1)d+rad−r =
∑
|I|=d+r

αI =
( 2d∏
i=1

αi
)
·
∑
|I|=d+r

1

αIc

= qr ·
∑
|J |=d−r

qd−r

αJ
= qr ·

∑
|J |=d−r

αJ = qr(−1)d−rad+r,

and this proves the lemma. �

We next construct a symmetric polynomial hπ(F, V ) ∈ Z[F, V ]. The idea is to consider the
rational function Pπ(F )/F d ∈ Z[F, q/F ] (at least when d ∈ Z), and then formally set V = q/F .

Definition 7. We define the symmetric polynomial hπ(F, V ) attached to a Weil q–number
π as follows:

(1) If π is a non-real Weil q–number, then we set in Z[F, V ]

hπ(F, V ) = F d + a2d−1F
d−1 + . . .+ ad+1F + ad + ad+1V + . . .+ a2d−1V

d−1 + V d.

(2) If π = ±pm√p is real but not rational, then we set

hπ(F, V ) = F − V ∈ Z[F, V ].

(3) If π = ±pm is rational, then we set

h±pm(F, V ) = F 1/2 ∓ V 1/2 ∈ Z[F 1/2, V 1/2].

The polynomial hw(F, V ) just defined appears already in [Ho95], §9.

Lemma 8. (1) If π is a non-real Weil q–number, then we have hπ(π, q/π) = 0.
(2) If π is a real, but not rational Weil q-number, then hπ(F, V ) = F−V and hπ(π, q/π) = 0.
(3) If π = ±pm is rational, then hpm(F, V ) · h−pm(F, V ) = F − V is again contained in

Z[F, V ], and vanishes for F = π and V = q/π.

Proof. Assertion (1) follows from hπ(π, q/π) = Pπ(π)/πd = 0 which is based on Lemma 6.
Assertion (2) and (3) are trivial. �

Definition 9. An ordinary Weil q–number is a Weil q–number π such that exactly half of the
roots of its minimal polynomial Pπ(x) in an algebraic closure of Qp are p-adic units. Equivalently,
the isogeny class of abelian varieties over Fq associated to π by Honda–Tate theory is ordinary.
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If π is ordinary then Q(π) is not real, and precisely half of the roots of the even degree
polynomial Pπ(x) are p-adic units.

Lemma 10. Let w ⊆ Wq be a finite subset of non-real conjugacy classes of Weil q–numbers.
Then w consists of ordinary conjugacy classes, if and only if hw(0, 0) is not divisible by p.

Proof. Let α1, . . . , αd, q/α1, . . . , q/αd be the roots of
∏
π∈w Pπ(x). Then

hw(F, V ) ≡
d∏
i=1

(F − (αi + q/αi) + V ) mod (FV − q)

so that

hw(F, V ) ≡ (−1)d
d∏
i=1

(αi + q/αi) mod p.

This integer is not divisible by p if and only if for all i the algebraic integers αi+ q/αi are p-adic
units. This happens if and only if for all i either αi or q/αi are p-adic units, hence if w consists
of ordinary conjugacy classes. �

2.5. Structure of the minimal central orders. In what follows we will define for a finite
subset w ⊆Wq the degree of w by

deg(w) = rkZ(Rw) =
∑
π∈w

[Q(π) : Q].

So w is of even degree if and only if w either contains none or both rational Weil q–numbers
±qe/2, which only show up when e = [Fq : Fp] is even. Extending this notion, we will say that
an arbitrary subset W ⊆ Wq is of even degree if either none or both rational conjugacy classes
of Weil q-numbers belong to W .

If w ⊆Wq is any finite subset we set

hw(F, V ) =
∏
π∈w

hπ(F, V ),

which is contained in Z[F, V ] as soon as w is of even degree.

Theorem 11. Let w ⊆Wq be a finite set of Weil q–numbers of even degree.
(1) We have Rw = Z[F, V ]/(FV − q, hw(F, V )).
(2) The ring Rw is a 1-dimensional complete intersection, in particular it is a Gorenstein ring.

Proof. The ring Rw is reduced as it injects into a product of number fields. Moreover, Rw is a
finite Z-algebra, because it is generated by F and V that satisfy integral relations in Rw. Thus
Rw is free of finite rank as a Z-module and of Krull dimension 1. More precisely, by (2.3) we
have

rkZ(Rw) =
∑
π∈w

[Q(π) : Q] =: 2D

The ring Z[F, V ]/(FV − q) is a normal ring with at most one rational singularity in p =
(F, V, p). Hence, hw(F, V ) is a non-zero divisor in Z[F, V ]/(FV − q) and it remains to show (1)
to conclude the proof of (2).

We now show assertion (1). By Lemma 8 the evaluation of hw(F, V ) in Rπ vanishes for all
π ∈ w. Hence we obtain a surjection

ϕ : S = Z[F, V ]/(FV − q, hw(F, V )) � Rw.

We are done if we can show that S is generated by 2D elements as a Z-module.
By construction, hw(F, V ) is a product of polynomials of the form

fπ(F ) + gπ(V )
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with fπ, gπ ∈ Z[X] monic (or −gπ monic). The degrees are deg(fπ) = deg(gπ) = [Q(π) : Q]/2
if π is non-rational, and 1 if π is rational. Having a representative of the form f(F ) + g(V ) for
monic polynomials f, g (or −g) of the same degree is preserved under taking products:(

f1(F ) + g1(V )
)(
f2(F ) + g2(V )

)
= f1f2(F ) + g1g2(V ) + lower degree terms in F, V ,

where the mixed terms are of lower degree, because FV = q necessarily leads to cancellations.
Hence the same holds for the product: hw(F, V ) = f(V ) + g(V ) with deg(f) = deg(g) = D.

In particular
FD, FD−1, . . . , F, 1, V, . . . , V D−1

generate S as a Z-module. �

Part (1) of Theorem 11 has already been observed by Howe, at least for w ordinary (cf. [Ho95],
Prop. 9.1). On the other hand the Gorensteinness of Rw, so crucial in the present work, seems
to have remained unnoticed so far.

Since Theorem 1 deals with abelian varieties over Fp, our main concern in this paper are
the commutative algebra properties of Rw for finite subsets of Wp. Here Theorem 11 covers all
cases. In order to complete the picture we answer what happens if w ⊆Wq contains exactly one
rational conjugacy class of Weil q–numbers.

Theorem 12. Let q be the square of a positive or negative integer √q ∈ Z. Let v ⊆ Wq be
a finite set containing no rational conjugacy class, and set w = v ∪ {√q}. Then the following
holds.
(1) We have Rw = Z[F, V ]/(FV − q, hv(F, V )(F −√q), hv(F, V )(V −√q)).
(2) The ring Rw is Gorenstein if and only if all conjugacy classes of Weil q-numbers in v are

ordinary.

Proof. Reasoning as in Lemma 8, we see that the defining quotient map Z[F, V ]/(FV −q)→ Rw
factors as a surjective map

S = Z[F, V ]/(FV − q, hv(F, V )(F −√q), hv(F, V )(V −√q)) � Rw.

As in Theorem 11 the ring Rw as a Z-module is free of rank

rkZ(Rw) = 1 +
∑
π∈v

[Q(π) : Q] =: 2D + 1.

It is easy to see that S is generated as a Z-module by

FD, FD−1, . . . , F, 1, V, . . . , V D.

This shows assertion (1) as above.
For assertion (2) we first note that after inverting one of the elements p, F or V the three

relations can be reduced to two relations, so that outside of (p, F, V ) the ring Rw is a local
complete intersection and hence Gorenstein. It remains to discuss the local ring in p = (p, F, V ).

There is a unique polynomial h ∈ Z[X] such that

hv(F, V ) = h(F )− h(0) + h(V ) ∈ Z[F, V ],

and for this h we have h(0) = hv(0, 0). Since Z is regular (hence Gorenstein) and Rw is a flat
Z-algebra, it follows from [Ma89] Theorem 23.4 that Rw is Gorenstein in p if and only if

Rw/pRw = Fp[F, V ]/(FV, h(F )F, h(V )V )

is Gorenstein in p̄ = (F, V ). The ring Rw/pRw is Artinian, hence of dimension 0, so that by
[Ma89] Theorem 18.1 the ring (Rw/pRw)p̄ is Gorenstein if and only if

1 = dimFp Hom(κ(p̄), Rw/pRw).

The space of homomorphisms has the same dimension as the socle, i.e., the maximal submodule
annihilated by (F, V ). The socle is the intersection of the kernels of F and V as Fp-linear maps
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of Rw, that can be easily evaluated in the basis FD, FD−1, . . . , F, 1, V, . . . , V D. The intersection
is 1-dimensional if p - h(0) and it is 2-dimensional otherwise. Due to Lemma 10 this completes
the proof. �

3. Remarks on reflexive modules

3.1. Reflexive versus Z-free. Let S be a noetherian ring. Recall that a finitely generated
S-module M is reflexive (resp. torsion less) if the natural map

M → HomS(HomS(M,S), S)

is an isomorphism (resp. injective). We denote the category of finitely generated reflexive S-
modules by

Refl(S).

Lemma 13. Let w ⊆Wq be a finite set of Weil q–numbers such that Rw is Gorenstein, and let
` be a prime number. Let M be a finitely generated Rw-module (resp. Rw ⊗ Z`-module). The
following are equivalent:
(a) M is reflexive.
(b) M is torsion less.
(c) M is free as a Z-module (resp. Z`-module).

Proof. Assertions (a) and (b) are equivalent by [Ba63] Theorem 6.2 (4), since Rw is Gorenstein
and of dimension 1.

For a uniform treatment, we set S = Rw ⊗ Λ with Λ = Z (resp. Λ = Z`). Since S is finite
flat over Λ, the dual module HomS(M,S) is free as a Λ-module. The same holds for every
submodule of HomS(M,S) which shows assertion (b) implies (c).

For the converse direction we introduce the total ring of fractions S ⊂ K = S ⊗Z Q, which is
a product of fields. Therefore, assuming (c), the composite map

M →M ⊗Z Q = M ⊗S K → HomS(HomK(M ⊗S K,K),K)

is injective. And since it factors over the natural map M → HomS(HomS(M,S), S), the latter
is also injective and hence M torsion less. This completes the proof. �

3.2. The main theorem with reflexive modules. Let w ⊆ Wq be a finite set of conjugacy
classes of Weil q–numbers of even degree (see §2.5), so that, in particular, Rw is Gorenstein (see
Theorem 11). For an objectM of Refl(Rw), let (M0, FM ) be the pair consisting of the Z–module
M0 underlying M and of the linear map FM : M0 →M0 given by the action of Fw ∈ Rw on M .

Proposition 14. The functor M 7→ (M0, FM ) gives an equivalence between Refl(Rw) and the
category of pairs (T, F ) consisting of a finite, free Z-module T , and of an endomorphism F :
T → T satisfying the following conditions:
(i) F ⊗Q is semi-simple with eigenvalues given by Weil q–numbers in w;
(ii) there exists V : T → T such that FV = q.
A morphism between two such pairs (T, F ) and (T ′, F ′) is a linear map f : T → T ′ such that
fF = F ′f .

Proof. Thanks to Lemma 13, an Rw–module belongs to Refl(Rw) if and only if it is finite and
free as a Z–module. Moreover, the linear map FM : M0 → M0 satisfies in the ring EndZ(M0)
the polynomial

F d · hw(F, q/F ) =
∏
π∈w

Pπ(F ),

which is square free. Therefore FM⊗Q is semi-simple with eigenvalues given by Weil q–numbers
whose conjugacy classes belong to w. The map VM : M0 →M0 induced by the action of Vw ∈ Rw
onM satisfies VMFM = q. Essential surjectivity of the functor follows easily from Lemma 13. �
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Let now v ⊆ w be a finite subset which is also of even degree. By Lemma 13, the natural
projection prv,w : Rw → Rv gives a fully faithful embedding

Refl(Rv) ⊆ Refl(Rw)

by means of which Refl(Rv) can be regarded as the full subcategory whose objects are those for
which the Rw–action factors over prv,w : Rw → Rv. Using the description of Proposition 14,
we easily see that an object M of Refl(Rw) lies in Refl(Rv) if and only if the eigenvalues of
FM ⊗Q : M0 ⊗Q→M0 ⊗Q define conjugacy classes of Weil q–numbers in v.

Definition 15. Let W ⊆Wq be a subset of even degree, and RW = (Rw) be the pro–ring with
w ranging over all finite subsets of W of even degree. The category

Refl(RW ) := lim−→
w⊆W

Refl(Rw)

is the full subcategory of the category of Z[F, V ]–modules given by all M such that:
(1) there exists wM ⊆ W such that the structural action of Z[F, V ] on M factors through

Z[F, V ]→ RwM (and hence through Z[F, V ]→ Rw for all w containing wM );
(2) for any finite w ⊆ W of even degree containing wM the module M is reflexive as an

Rw–module.

Notice that condition (2) is equivalent to asking that M be a reflexive module over Rw for
some w ⊆W of even degree such that the action of Rw on M is defined (see Lemma 13).

Remark 16. For any finite w ⊆ W of even degree, the category Refl(RW ) contains the Rw–
linear category Refl(Rw) as a full subcategory. Moreover, if v ⊆ w are finite subsets of W of
even degree, then the Rv–linear structure on Refl(Rv) induced from the fully faithful embedding
Refl(Rv) ⊆ Refl(Rw) is compatible, via the surjection prv,w : Rw → Rv, with the natural Rw–
linear structure. Formally we are in a situation analogous to that described in Remark 5, where
the category AVW played the role of Refl(RW ). We will then say that Refl(RW ) has a RW –linear
structure.

The category Refl(RW ) can be given a concrete description in terms of pairs (T, F ) given by
a finite free Z-module T and a linear map F : T → T such that
(i) F ⊗Q is semi-simple and its eigenvalues are Weil q-numbers in W ;
(ii) there exists V : T → T with FV = q.
The notion of morphism between two such pairs is clear. This can be seen reasoning as in
Proposition 14, and using the compatibility of linear structures described in Remark 16.

Denote now the set Wp \ {
√
p} of non–real conjugacy classes of Weil p-numbers simply by

W com
p , and the corresponding pro-ring RW com

p
by Rcom

p . Theorem 1 then claims the existence of
a contravariant, RW com

p
-linear, ind-representable equivalence

T : AVcom
p → Refl(Rcom

p ),

such that T (A) is a lattice of rank 2 dim(A). By definition, the RW com
p

-linearity of T (−) is the
requirement that for any finite w ⊆ W com

p the restriction of T to AVw has values in Refl(Rw)
and is Rw–linear. These conditions amounts precisely to the equality F = T (πA), for all A in
AVcom

p .

3.3. Further remarks. The following piece of homological algebra is used later.

Lemma 17. Let S be a 1-dimensional Gorenstein ring. For any finitely generated reflexive
S-module M , we have

Ext1
S(M,S) = 0.
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Proof. We use a free presentation of the dual HomS(M,S) and dualize again. This yields an
embedding of M into a free S-module and then a short exact sequence

0→M → Sn →M ′ → 0.

The Ext-sequence, and the fact that S has injective dimension 1, cf. [Ba63] §1, yields

0 = Ext1
S(Sn, S)→ Ext1

S(M,S)→ Ext2
S(M ′, S) = 0

from which the lemma follows. �

Finally, here is a criterion for invertible reflexive modules in terms of their endomorphism
algebra.

Proposition 18. Let S be a reduced Gorenstein ring of dimension at most 1, and let M be a
reflexive module. Then the following are equivalent.

(a) M is locally free of rank 1.
(b) The natural map S → EndS(M) is an isomorphism.

Proof. If M is locally free of rank 1, then EndS(M) 'M∨ ⊗M ' S where M∨ = HomS(M,S)
and (b) holds.

For the converse, we may assume that S is a complete local ring by passing to the completion.
Since EndS(M) = S we have M 6= 0, and moreover, M cannot be a module (extending the
S-module structure) for a strictly larger subring of the total ring of fractions of S. Now [Ba63]
Proposition 7.2 shows thatM has a non-zero projective direct summandM0. WithM = M0⊕M1

we find
S × EndS(M1) = EndS(M0)× EndS(M1) ⊆ EndS(M) = S

and therefore EndS(M1) = 0. This forces M1 = 0 and M is projective. Then EndS(M) is
projective of rank the square of the rank of M (as a locally constant function on Spec(S)).
Therefore M is of rank 1 and the proof is complete. �

4. Abelian varieties with minimal endomorphism algebra

Before restricting to the case q = p, we recall the following classical result of Tate (cf. [Ta66]
§1 for ` 6= p, [WM71] including ` = p: Theorem 6, also [ChCO13] §A.1) which will be used
frequently. For A an abelian variety over Fq and ` a prime number, denote by A[`∞] the `-
divisible group corresponding to A.

Theorem 19 (Tate). Let A,B be abelian varieties over Fq, and ` a prime number. The natural
map f 7→ f [`∞] induces an isomorphism

HomFq(A,B)⊗ Z`
∼−→ Hom(A[`∞], B[`∞]).

As is well known, the isomorphism of Tate’s theorem takes a more concrete form as follows. If
` 6= p, it can be formulated in terms of Galois representations, and says that the functor `-adic
Tate-module T`(−) induces an isomorphism

HomFq(A,B)⊗ Z`
∼−→ HomZ`[GalFq ](T`(A), T`(B)).

If ` = p, using the language of Dieudonné modules, Tate’s theorem translates into the fact
that the functor contravariant Dieudonné-module Tp(−) induces an isomorphism

HomFq(A,B)⊗ Zp
∼−→ HomDFq (Tp(B), Tp(A)),

where DFq is the Dieudonné ring of Fq.
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Remark 20. For any prime ` the Rw-linear structure on the category AVw defined in Section §2.1
induces an enrichment of the functor T`(−) to left Rw ⊗ Z`-modules for ` 6= p, and to right2
Rw ⊗ Zp-modules for ` = p.

For any A ∈ AVw, and any ` 6= p, the action of the arithmetic Frobenius of Fq on T`(A) agrees
with the action of Fw ⊗ 1 ∈ Rw ⊗ Z`, and we have a natural identification

HomZ`[GalFp ](T`(A), T`(B)) = HomRw⊗Z`(T`(A), T`(B)) for ` 6= p,

for all A,B ∈ AVw. In the special case where q = p, and only in this case, the Dieudonné ring
DFq is commutative, hence the theory of Dieudonné modules of abelian varieties over the prime
field Fp does not involve semi-linearity aspects. For any A ∈ AVw the action of DFp on Tp(A)
factors through the quotient DFp � Rw ⊗ Zp, and Tate’s theorem reads as

HomDFp (Tp(A), Tp(B)) = HomRw⊗Zp(Tp(B), Tp(A)),

for all A,B ∈ AVw. So that, roughly, the Dieudonné theory of abelian varieties over the prime
field is analogous to the theory of Tate modules at primes ` 6= p, up to replacing variancy with
covariancy.

For any π ∈ Wp, we choose a simple abelian variety Bπ over Fp whose associated Weil p–
number represents π.

Proposition 21. Let w ⊆ Wp be a finite set of conjugacy classes of Weil p–numbers not con-
taining √p. There exists an abelian variety Aw over Fp isogenous to

∏
π∈w Bπ and such that

T`(Aw) is free of rank one over Rw ⊗ Z`, for all primes `. Furthermore, for any such Aw, the
natural map

Rw → EndFp(Aw)

is an isomorphism.

Remark 22. In the case where w consists of just one Weil p–number, the abelian variety Aw as
in Proposition 21 was already considered by Waterhouse (cf. [Wa69] Theorem 6.1). We observe
that the product

∏
π∈w A{π} of the varieties constructed for each singleton {π} ⊂ w may well

fail to serve as the Aw satisfying the properties of Proposition 21. This failure is explained by
a phenomenon analogous to congruences between Weil q-numbers, discussed in example 3.

Proof. Let B be any abelian variety over Fp isogenous to
∏
π∈w Bπ. For any π ∈ Wp with

π 6∼ √p, it is straightforward to verify using Honda–Tate theory (cf. [Ta68], Théorème 1 ii))
that:
(i) all local invariants of the division ring End0

Fp(Bπ) are trivial;
(ii) [Q(π) : Q] = 2 dim(Bπ).
In fact each of these conditions is equivalent to EndFp(Bπ) being commutative.

Since the abelian varieties Bπ, for π ∈ w, are pairwise non–isogenous, we have that EndFp(B)
is also commutative, and isomorphic to an order of the product of CM–fields

∏
π∈wQ(π). We

deduce the chain of equalities

rkZ(EndFp(B)) =
∑
π∈w

[Q(π) : Q] =
∑
π∈w

2 dim(Bπ) = 2 dim(B).

From the injectivity of the isomorphism of Theorem 19, and using the language of Dieudonné
modules if ` = p, it follows that the action of Rw ⊗Q` =

∏
π∈wQ(π)⊗Q` on

V`(B) = T`(B)⊗Z` Q`

is faithful. Hence V`(B) has rank one over
∏
π∈wQ(π) ⊗ Q`, since they both have dimension

2 dim(B) over Q` (notice that dimQp(Vp(B)) = 2 dim(B) because we work over Fp).

2We employ the contravariant Dieudonné theory, therefore the left Rw-module structure of the Hom-groups
in AVw turns into a right Rw ⊗ Zp-modules structure on the corresponding Dieudonné modules. However Rw is
commutative, hence for A in AVw we can safely treat Tp(A) as a left Rw ⊗ Zp-module.
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Therefore, for every `, we can choose an Rw ⊗ Z`-lattice
Λ` ⊂ V`(B)

which is free of rank one, and which contains T`(B) if ` 6= p, and is contained in Tp(B) if ` = p.
If Rw⊗Z` is the maximal order of

∏
π∈wQ(π)⊗Q`, as for almost all `, then T`(B) is necessarily

free of rank one over Rw ⊗ Z` and we take Λ` = T`(B).
Now, if ` 6= p then the finite subgroup

N` = Λ`/T`(B) ⊂ B[`∞],

being an Rw-submodule, is stable under Frobenius and hence is defined over Fp. The corre-
sponding isogeny ψ` : B → B/N` induces an identification Λ` ' T`(B/N`) of Rw ⊗ Z`-modules.

Similarly, the p-power degree isogeny ψp : B → B/Np, where Np is the Fp-subgroup-scheme of
B corresponding to the Dieudonné module Tp(B)/Λp, induces an identification Tp(B/Np) ' Λp
of Rw⊗Zp-modules. Therefore, after applying a finite sequence of isogenies to B, we obtain the
abelian variety Aw with the desired property.

Lastly, by Theorem 19, the natural map

Rw → EndFp(Aw)

is an isomorphism after −⊗Z` for all prime numbers `, since T`(Aw) ' Rw ⊗Z`. Therefore the
last statement of the proposition follows. �

Remark 23. One can show that there is a free and transitive action of the Picard group Pic(Rw)
on the set of isomorphism classes of abelian varieties Aw satisfying the conditions of Proposi-
tion 21 (cf. [Wa69] Theorem 6.1.3 for the case of simple abelian varieties, i.e., w = {π}). We
will discuss this below in Section §7.3.

The Gorenstein property of Rw allows one to give the following useful characterization of the
abelian varieties Aw satisfying the property of Proposition 21 (cf. also [ST68] end of §4).

Proposition 24. Let w ⊆Wp be a finite set of conjugacy classes of Weil p–numbers not contain-
ing √p, and let A be an abelian variety over Fp isogenous to

∏
π∈w Bπ. The following conditions

are equivalent:
(a) T`(A) is free of rank one over Rw ⊗ Z`, for all primes `.
(b) EndFp(A) is equal to the minimal central order Rw.

Proof. Thanks to Proposition 21, we only need to show that (b) implies (a). Since Rw is
Gorenstein by Theorem 11, also its completion Rw ⊗ Z` is Gorenstein. It follows from [Ba63]
Theorem 6.2 that the torsion free Rw ⊗ Z`-module T`(A) is reflexive.

By (b) and Theorem 19 we have EndRw⊗Z`(T`(A)) = Rw ⊗ Z`, so Proposition 18 yields that
T`(A) is projective of rank 1. Since Rw ⊗ Z` is a finite Z`-algebra, hence a product

Rw ⊗ Z` =
∏
λ

Rλ

of complete local rings Rλ, its Picard group is trivial and T`(A) is free of rank 1 as an Rw ⊗Z`-
module. �

We conclude the section observing that if A is an abelian variety over Fq, for q arbitrary,
the Dieudonné module Tp(A) has rank 2 dim(A) over the Witt vectors W (Fq) of Fq. It follows
that the naive analogue of (a) can never be attained if q > p for rank reasons, and the above
proposition is peculiar to the q = p case.

5. Construction of the anti-equivalence

In this section we give a proof of Theorem 1. Recall from Remark 5 that for a subsetW ⊆Wq

of conjugacy classes of Weil q-numbers, the category AVW is the full subcategory of AVq consisting
of all abelian varieties A over Fq whose support w(A) is contained in W .
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5.1. Finite Weil support. We begin by defining the lattice T (A) and its endomorphism F on
the increasing family of subcategories

AVw ⊆ AVcom
p

for finite subsets w ⊆W com
p .

Let us then assume that √p /∈ w, and pick an abelian variety Aw satisfying the condition
of Proposition 21 for w. For any object A of AVw there is a natural Rw = EndFp(Aw)-module
structure on

Mw(A) := HomFp(A,Aw).

This is the same Rw-structure as that described in Remark 5.

Theorem 25. Let w ⊆Wp be a finite set of non-real conjugacy classes of Weil p–numbers. The
functor Mw(A) induces an anti-equivalence

AVw → Refl(Rw).

The Z-rank of Mw(A) is 2 dim(A).

Proof. We begin by showing that Mw(−) is fully faithful. The map

f : HomFp(A
′, A′′) −→ HomRπ(Mw(A′′),Mw(A′))

is a homomorphism of finitely generated Z-modules, hence it is an isomorphism if and only if it
is an isomorphism after scalar extension −⊗ Z` for all primes `.

We first treat the case ` 6= p. For N ∈ Refl(Rw ⊗ Z`), set

N∨ = HomRw⊗Z`(N,T`(Aw))

which is isomorphic to the Rw ⊗Z`-dual of N , in view of our choice of Aw. The isomorphism of
Theorem 19 gives a natural isomorphism of contravariant functors

(T`(−))∨ = HomRw⊗Z`(T`(−), T`(Aw)) ' Mw(−)⊗ Z` (5.1)

on AVw (see Remark 20). This translates into the following commutative diagram:

HomFp(A
′, A′′)⊗ Z`

' //

f⊗Z`
��

HomRw⊗Z`(T`(A
′), T`(A

′′))

(−)∨

��

HomRw(Mw(A′′),Mw(A′))⊗ Z`
' // HomRw⊗Z`(T`(A

′′)∨, T`(A
′)∨)

where both horizontal maps are isomorphisms as a consequence of Theorem 19. Since Rw ⊗ Z`
is a completion of a Gorenstein ring by Theorem 11, it is itself Gorenstein. Because T`(Aw) is
free of rank 1, this implies that N 7→ N∨ is an contravariant autoequivalence of Refl(Rw ⊗ Z`),
see [Ba63] Theorem 6.2. Therefore the right vertical map in the diagram is an isomorphism and
we conclude that f ⊗ Z` is an isomorphism as well.

Concerning the case ` = p, for any N ∈ Refl(Rw ⊗ Zp) we set

N∨ = HomRw⊗Zp(Tp(Aw), N).

The isomorphism of Theorem 19 then gives a natural isomorphism of contravariant functors

(Tp(−))∨ = HomRw⊗Zp(Tp(Aw), Tp(−)) ' Mw(−)⊗ Zp (5.2)
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on AVw, which translates into the following commutative diagram:

HomFp(A
′, A′′)⊗ Zp

' //

f⊗Zp
��

HomRw⊗Zp(Tp(A
′′), Tp(A

′))

(−)∨
��

HomRw(Mw(A′′),Mw(A′))⊗ Zp
' // HomRw⊗Zp(Tp(A

′′)∨, Tp(A
′)∨).

The horizontal maps are isomorphisms by Theorem 19. Since Tp(Aw) is free of rank 1 over
Rw ⊗ Zp, the right vertical map in the diagram is an isomorphism. We conclude that f ⊗ Zp is
an isomorphism as well.

We have now established that the functor A 7→ Mw(A) from AVw to the category Refl(Rw) is
fully faithful.

In order to show that Mw(−) is an equivalence we must now show that this functor is essen-
tially surjective. Let M ∈ Refl(Rw) be a reflexive module. Since Rw is Gorenstein, the natural
map M → HomRw(HomRw(M,Rw), Rw) is an isomorphism. Dualizing a presentation of the
dual HomRw(M,Rw), leads to a co-presentation

0→M → (Rw)n
ψ−→ (Rw)m.

Since Mw(Aw) = EndFp(Aw) = Rw we find by fully faithfulness of Mw(−) a homomorphism

Ψ : (Aw)m → (Aw)n

with ψ = Mw(Ψ). The cokernel
B = coker(Ψ)

exists and is an abelian variety B ∈ AVw. By definition of the cokernel, the functor Mw(−) is
left-exact, hence

0→ Mw(B)→ Mw((Aw)n)
Mw(Ψ)−−−−→ Mw((Aw)m)

and so
M ' Mw(B)

as Rw-modules. This completes the proof of essential surjectivity.
We are only left with showing that rkZ(HomFp(A,Aw)) = 2 dim(A), for all A in AVw. The

statement is additive in A and depends only on the isogeny class of A and Aw. Recall that
for any π ∈ Wp, we have chosen a simple abelian variety Bπ over Fp whose associated Weil
p–number represents π. Because Aw is isogenous to

∏
π∈w Bπ, it is enough to show that for any

π ∈ w we have
rkZ(HomFp(Bπ,

∏
π′∈w

Bπ′)) = 2 dim(Bπ).

This follows from rkZ(EndFp(Bπ)) = 2 dim(Bπ) for all Weil p–numbers π 6∼ √p (cf. [Ta68],
Théorème 1 ii)), and the proof of the theorem is complete. �

5.2. The direct system. In order to prove Theorem 1 we construct a direct system A = lim−→Aw
consisting of abelian varieties Aw indexed by finite sets w of Weil p–numbers not containing √p,
and having the property stated in Proposition 21.

Let v ⊆ w be two finite sets of non-real Weil p–numbers. By means of the canonical surjection

prv,w : Rw � Rv,

we may consider Rv-modules as Rw-modules such that the action factors over prv,w. Lemma 13
shows that

Refl(Rv) ⊆ Refl(Rw)
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is a full subcategory. After choosing abelian varieties Av and Aw as in Proposition 21 associated
to the sets v and w respectively, we obtain a diagram of functors

AVw
HomFp (−,Aw)

// Refl(Rw)

AVv

⋃
HomFp (−,Av)

// Refl(Rv).

⋃ (5.3)

where the vertical functors are natural full subcategories. The diagram (5.3) need not commute
for arbitrary unrelated choices Aw and Av. The next proposition shows that for every Aw there is
a canonical abelian subvariety Av,w ⊆ Aw that leads to a choice of Av for which (5.3) commutes.

Proposition 26. Let w be a set of non-real conjugacy classes of Weil p–numbers, let Aw be
an abelian variety over Fp such that EndFp(Aw) = Rw, and let v ⊆ w be any subset. Then the
subgroup generated by all images

Av,w := 〈im(f) ; f : B → Aw, B ∈ AVv〉 ⊆ Aw
satisfies the following:
(1) Av,w belongs to AVv and is an abelian subvariety of Aw.
(2) T`(Av,w) is free of rank one over Rv ⊗ Z`, for all primes `.
(3) The diagram (5.3) commutes by choosing Aw as the abelian variety associated to w and

Av = Av,w as that associated to v.
(4) Av,w is the image of any map f : B → Aw such that w(B) = v and w(coker(f)) = w \ v.

Proof. Assertion (1) is obvious and assertion (3) follows from the natural equality

HomFp(B,Av,w) = HomFp(B,Aw)

for every B ∈ AVv, since every morphism f : B → Aw takes values in the subvariety Av,w ⊆ Aw.
Assertion (4) is obvious once we pass to the semisimple category of abelian varieties up to

isogeny. Therefore f(B) and Av,w have the same dimension. Since by definition f(B) ⊆ Av,w
we deduce the claimed equality.

It remains to verify assertion (2), which by Proposition 24 is equivalent to EndFp(Av,w) = Rv.
The natural map

Rw = EndFp(Aw) = Mw(Aw) −→ Mw(Av,w) = EndFp(Av,w) (5.4)

factors through the quotient map prv,w : Rw � Rv. In order to prove (2), it is enough to show
that (5.4) is surjective. It suffices to verify surjectivity after −⊗ Z` for every prime number `.

Assume first that ` 6= p. Let C be the quotient abelian variety C = Aw/Av,w. There is an
exact sequence of reflexive Rw ⊗ Z`-modules

0→ T`(Av,w)→ T`(Aw)→ T`(C)→ 0,

and its Ext-sequence contains

HomRw⊗Z`(T`(Aw),T`(Aw))→ HomRw⊗Z`(T`(Av,w),T`(Aw))→ Ext1
Rw⊗Z`(T`(C),T`(Aw)).

The Ext1-term vanishes by Lemma 17. Therefore Theorem 19 shows the surjectivity of

Mw(Aw)⊗Z` = HomRw⊗Z`(T`(Aw),T`(Aw)) � HomRw⊗Z`(T`(Av,w),T`(Aw)) = Mw(Av,w)⊗Z`.
If ` = p, then the inclusion Av,w ⊆ Aw gives a surjection of reflexive Rw ⊗ Zp-modules

Tp(Aw) � Tp(Av,w).

Since Tp(Aw) is free over Rw ⊗ Zp, we deduce a surjection

HomRw⊗Zp(Tp(Aw), Tp(Aw)) � HomRw⊗Zp(Tp(Aw), Tp(Av,w)),



Abelian varieties over Fp 19

which, by Theorem 19, says that Mw(Aw)⊗ Zp → Mw(Av,w)⊗ Zp is surjective. This completes
the proof of the proposition. �

5.3. Proof of the main result. We are now ready to prove our main result. We must show that
the abelian varieties Aw that exist by Proposition 21 for each w, and which yield equivalences
of the desired type on the respective full subcategories AVw by Theorem 25, can be chosen in
a compatible way for every v ⊆ w. This requires a two step process. We use the notation of
Proposition 26.

• First, we establish compatibility on the set theoretic level: we must fix isomorphism
classes for each Aw, such that Av ' Av,w for every v ⊆ w.
• Secondly, we categorize the first choice: one must choose isomorphisms Av ' Av,w such
that the inclusions ϕw,v : Av ' Av,w ⊆ Aw obey the cocyle condition ϕw,v ◦ ϕv,u = ϕw,u
for u ⊆ v ⊆ w and thus construct an ind-system A = (Aw, ϕw,v).

Proof of Theorem 1. For any finite set w ⊆ Wp that avoids √p, let Z(w) be the set of isomor-
phism classes [A] of abelian varieties A in AVw such that the natural map Rw → EndFp(A) is
an isomorphism. The elements of Z(w) all belong to the same isogeny class, and so Z(w) is
finite, since there are only finitely many isomorphism classes of abelian varieties over a finite
field lying in a given isogeny class (in fact, finiteness holds for isomorphism classes of abelian
varieties of fixed dimension, cf. [Mi86] Corollary 18.9). Moreover, the set Z(w) is non-empty by
Proposition 21.

For any pair v ⊆ w of finite sets of non-real Weil p–numbers, we construct a map

ζv,w : Z(w) −→ Z(v)

by ζv,w([A]) = [B] where B is the abelian subvariety of A generated by the image of all f : C → A
with w(C) ⊆ v. Proposition 26 states that ζv,w indeed takes values in Z(v).

These maps satisfy the compatibility condition

ζu,w = ζu,vζv,w,

for all tuples u ⊆ v ⊆ w, hence they define a projective system

(Z(w), ζv,w)

indexed by finite subsets w ⊆ Wp with √p /∈ w. Since the sets Z(w) are finite and non-empty,
a standard compactness argument shows that the inverse limit is not empty:

Z = lim←−
w

Z(w) 6= ∅.

We choose a compatible3 system z = (zw) ∈ Z of isomorphism classes of abelian varieties.
Now we would like to choose abelian varieties Aw in each class zw and inclusions

ϕw,v : Av → Aw

for every v ⊆ w that are isomorphic to the inclusion from Proposition 26 in a compatible way:
for u ⊆ v ⊆ w we want

ϕw,u = ϕw,vϕv,u.

Because the set of Weil numbers is countable, we may choose a cofinal totally ordered sub-
system of finite subsets of W com

p

w1 ⊆ w2 ⊆ . . . ⊆ wi ⊆ . . . .
Working first with this totally ordered subsystem, we can construct a direct system

A0 = (Awi , ϕwj ,wi)

3We will see later in Remark 40 that ζv,w is always surjective. This extra piece of information simplifies
the construction of the system marginally. However, we find it conceptually easier to deduce this fact from the
anti-equivalence of Theorem 1, hence the order of the assertions and proofs.
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of abelian varieties as desired by induction. If Awi is already constructed, then we choose Awi+1

in zwi+1 and deduce from ζwi,wi+1(zwi+1) = zwi that there is an inclusion ϕwi+1,wi : Awi → Awi+1

as desired.
Once this is achieved, we may identify all transfer maps of the restricted system A0 with

inclusions. Then we can define for a general w the abelian variety Aw by w ⊆ wi for large
enough i by means of the construction of Proposition 26 as the abelian subvariety

Aw := Aw,wi ⊆ Awi ,
This choice is well defined, i.e., independent of i� 0. Furthermore, there are compatible transfer
maps ϕv,w : Av → Aw for all v ⊆ w that lead to the desired direct system

A = (Aw, ϕw,v).

In the sense of ind-objects we have A0 ' A and so A0 would suffice for Theorem 1, but we
wanted to restore symmetry and have Aw for all finite subsets w ⊆W com

p .
Let A be any element of AVcom

p , set

T (A) = HomFp(A,A) = lim−→
w

HomFp(A,Aw) = lim−→
w

Mw(A).

The groups HomFp(A,Aw) are stable when w is large enough. More precisely, if w, w′ are finite
sets of Weil p–numbers with w(A) ⊆ w ⊆ w′, then the map

ϕw′,w ◦ − : HomFp(A,Aw)→ HomFp(A,Aw′)

is an isomorphism (cf. Proposition 26). Moreover, T (−) restricted to AVw recovers the functor
Mw(−) of Theorem 25 constructed using the object Aw of A, and induces an anti-equivalence
between AVw and Refl(Rw).

Observe that, by the naturality of the Frobenius isogeny, for any finite w ⊆Wp avoiding √p,
and for any f ∈ HomFp(A,Aw) the diagram

A
πA //

f
��

A

f
��

Aw
πAw // Aw

is commutative. This implies that, for w sufficiently large, the action of Fw ∈ Rw on T (A) is
given by T (πA), the morphism induced by the Frobenius isogeny πA via functoriality of T .

Compatibility in w shows that T (−) induces an anti-equivalence

T = lim−→Mw : AVcom
p = lim−→

w

AVw
∼−→ lim−→

w

Refl(Rw) = Refl(Rcom
p ).

Due to the remarks of Section §3.2 this is precisely the claim of Theorem 1 and so its proof is
complete. �

6. Properties of the functor T

6.1. Recovering Tate and Dieudonné module. Let A be an abelian variety over Fp, and
set w = w(A). We explain here how the Rw ⊗Z`-modules T`(A) can be recovered from the pair
(T (A), F ) attached to A by Theorem 1. We set for all prime numbers `

R` = lim←−
w

(Rw ⊗ Z`),

where in the projective limit w ranges through all finite subsets of W com
p , and define

T`(A) =

{
lim−→w

T`(Aw) ` 6= p

lim←−w Tp(Aw) ` = p
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as the direct limit if ` 6= p and the projective limit if ` = p of the system obtained by applying
T`(−) to the direct system A = (Aw)w constructed in the proof of Theorem 1.

We first discuss the `-adic Tate module and assume ` 6= p. Since for v ⊆ w the map Av → Aw
is an inclusion of abelian varieties, the induced map T`(Av)→ T`(Aw) is the inclusion of a direct
summand, at least as Z`-modules. Hence T`(A) is a free Z`-module of countable infinite rank.

Proposition 27. Let A be an abelian variety over Fp with √p /∈ w(A). There is a natural
isomorphism of R`-modules

T`(A)
∼−→ HomR`(T (A)⊗ Z`, T`(A)).

Proof. Let w ⊆ W com
p be a finite set containing w(A). Since Rw ⊗ Z` is Gorenstein, dualizing

(5.1) yields the first equality in

T`(A) = HomRw⊗Z`(Mw(A)⊗ Z`, T`(Aw)) = HomR`(T (A)⊗ Z`, T`(A)).

The second equality holds, because T`(Aw) ⊆ T`(A) is the maximal submodule on which R`
acts through its quotient R` → Rw ⊗ Z`. �

Now we address the contravariant Dieudonné module Tp(A). We endow Tp(A) with the
projective limit topology. If M is a topological Rp–module which is finite and free over Zp then
the action of Rp on M factors through Rp → Rw⊗Zp for some large enough w, by compactness
of M . We denote by

M⊗̂RpTp(A) = lim←−
w�∅

M ⊗Rw⊗Zp Tp(Aw)

the continuous tensor product.

Proposition 28. Let A be an abelian variety over Fp with √p /∈ w(A). There is a natural
isomorphism of Rp-modules

Tp(A) = (T (A)⊗ Zp)⊗̂RpTp(A).

Proof. Let w ⊆ W com
p be a finite set containing w(A). We deduce from (5.2) a natural identifi-

cation

Tp(A) = HomRw⊗Zp(Tp(Aw), Tp(A))⊗Rw⊗Zp Tp(Aw)

= Mw(A)⊗Rw Tp(Aw) = (T (A)⊗ Zp)⊗̂RpTp(A),

because for w(A) ⊆ w ⊆ w′ the natural maps

(T (A)⊗ Zp)⊗Rw′⊗Zp Tp(Aw′)→ (T (A)⊗ Zp)⊗Rw⊗Zp Tp(Aw)

are isomorphisms. �

6.2. Isogenies and inclusions. We discuss how the functor T (−) detects isogenies and inclu-
sions.

Proposition 29. Let A and B be abelian varieties in AVcom
p .

(1) The map f : B → A is an isogeny, if and only if T (f)⊗Q is an isomorphism.
(2) For an isogeny f : B → A the map T (f) is injective and the image is of index

deg(f) = | coker(T (f))|.

Proof. (1) An isogeny f has an inverse up to a multiplication by nmap for n = deg(f). Therefore
T (f) is an isomorphism after inverting deg(f).

Conversely, if f is not an isogeny, then either ker(f) or coker(f) have a non-trivial abelian
variety as a direct summand up to isogeny. In the presence of such a direct summand the map
T (f)⊗Q cannot be an isomorphism.

(2) We indicate the `-primary part by an index `. Then using Proposition 27, for ` 6= p, we
have

| coker(T (f))|` = | coker(T (f))⊗ Z`| = | coker(T`(f)∨ : T`(A)∨ → T`(B)∨)|.
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The duals here are Hom(−, Rw ⊗ Z`). Since Rw ⊗ Z` is reduced Gorenstein of dimension 1, we
can use [Ba63] Theorem 6.3 (4) and induction on the length to see that

| coker(T`(f)∨ : T`(A)∨ → T`(B)∨)| = | coker(T`(f) : T`(B)→ T`(A))| = | ker(f)|`.

If ` = p, using Proposition 28 yields

| coker(T (f))|p = | coker(T (f))⊗ Zp| = | coker(Tp(f) : Tp(A)→ Tp(B))| = | ker(f)|p,

where the last equality follows from Dieudonné theory. �

Proposition 30. Let A and B be abelian varieties in AVcom
p . For a map f : B → A the following

are equivalent.

(a) T (f) : T (A) � T (B) is surjective.
(b) The map f can be identified with the inclusion of an abelian subvariety.

Proof. If T (f) is surjective, Proposition 27 shows that the induced map T`(B) → T`(A) is
injective. Therefore ker(f) is at most a finite group scheme. We may therefore replace A by the
image A0 of B → A and thus reduce to the case of the isogeny f0 : B → A0. Here Proposition 29
implies that deg(f0) = 1, hence B = A0 and f is indeed an inclusion of an abelian subvariety.

Conversely, if f : B → A is an inclusion, then there is a map g : A→ B such that gf : B → B
is an isogeny. Therefore T (f) has at least an image of finite index. The image of T (f) is a
reflexive submodule in the image of the equivalence T (−), so that there is an abelian variety C
and a factorization B → C → A with T (A) � T (C) surjective and T (C) ⊆ T (B) an inclusion.

We have already proven that C → A is an abelian subvariety, and it is easy to see that B → C
is an isogeny. Therefore B → C is an isomorphism and the proof is complete. �

As an application we prove a variant for objects of AVp of Waterhouse’s theorem on possible
endomorphism rings of Fp-simple abelian varieties over Fp, see [Wa69] Theorem 6.1.2.

Theorem 31. Let w be a set of conjugacy classes of non-real Weil p–numbers. Then the fol-
lowing are equivalent.

(a) S is an order in Rw ⊗Q containing Rw.
(b) S is isomorphic as an Rw-algebra to EndFp(B) for an abelian variety B with w(B) = w

and such that all its simple factors up to isogeny occur with multiplicity 1.

Proof. Since Rw is the minimal central order for abelian varieties B with w(B) = w, it is clear
that (b) implies (a).

Conversely, if S is an order containing Rw, then S is a reflexive Rw-module and thus cor-
responds to an abelian variety B. Let Aw be the abelian variety occuring in the ind-system
pro-representing T (−), so that T (Aw) = Rw. The inclusion Rw ⊆ S corresponds to an isogeny
ϕ : B → Aw by Proposition 29, so that B has the required Weil support and product structure
up to isogeny. Moreover,

EndFp(B) = EndRw(S) = {λ ∈ Rw ⊗Q ; λS ⊆ S} = S

shows (a) implies (b). �

7. Ambiguity and comparison

The construction of the functor T (−) in Section §5.3 depends on the choice of an ind-abelian
variety A. For the sake of distinguishing the different choices we denote in this section

TA(−) = HomFp(−,A).
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7.1. Continuous line bundles.

Definition 32. Let W ⊆ Wq be a subset. Let us denote by RW the pro-ring (Rw) where w
ranges over the finite subsets of W .

(1) An RW -module is a pro-system M = (Mw) with w ranging over the finite subsets of
W , such that Mw is an Rw-module and the maps Mw → Mv for v ⊆ w are Rw-module
homomorphisms (where Rw acts on Mv via the projection Rw → Rv). Homomorphisms
ofM are levelwise Rw-module homomorphisms.

(2) An RW -moduleM is invertible if for all w ⊆ W the Rw-module Mw is invertible and
for v ⊆ w the mapsMw →Mv are surjective (equivalently: induce a natural isomorphism
Mw ⊗Rw Rv 'Mv).

(3) The set of isomorphism classes of invertible RW -modules forms a group under levelwise
tensor products that we denote by Pic(RW ), the Picard group of RW .

For a finite set w of conjugacy classes of Weil q-numbers, we set Xw = Spec(Rw) and consider
the ind-schemes

X = lim−→
w

Xw

and for a subset W ⊆Wq the ind-scheme

XW = lim−→
w⊆W

Xw.

with closed immersions as transfer maps, all denoted i, induced by the projections prv,w : Rw �
Rv. The invertible RW -modules are nothing but line bundles on XW and

Pic(RW ) = Pic(XW ) = H1(XW ,O×).

Since O×XW
= lim←−w⊆W i∗O×Xw we find an exact sequence

0→ lim←−
w⊆W

1 R×w → Pic(RW )→ lim←−
w⊆W

Pic(Rw)→ 0.

The quotient of Pic(RW ) given by lim←−w Pic(Rw) parametrizes the choices of a compatible system
of isomorphism classes of rank one Rw-modules Mw. The lim←−

1-term parametrizes all choices of
transfer maps to obtain an invertible RW -moduleM = (Mw) from a given compatible choice of
isomorphism classes of invertible Rw-modules at every level.

Proposition 33. Let V ⊆W ⊆Wq be subsets. Then the natural restriction map

Pic(RW ) � Pic(RV )

is surjective.

Proof. For v ⊆ w define Zariski sheaves Kv,w on XW by the short exact sequence

0→ Kv,w → i∗O×Xw → i∗O×Xv → 0

Then KV,W = lim←−w⊆W Kw∩V,w is the kernel ofO×XW
� i∗O×XV

. The Zariski cohomology sequence
yields an exact sequence

Pic(RW )→ Pic(RV )→ H2(XW ,KV,W )

and it remains to show vanishing of H2(XW ,KV,W ). The pro-structure of KV,W leads to a short
exact sequence

0→ lim←−
w⊆W

1 H1(Xw,Kw∩V,w)→ H2(XW ,KV,W )→ lim←−
w⊆W

H2(Xw,Kw∩V,w)→ 0.

The lim←−-term on the right vanishes by cohomological dimension because dim(Xw) = 1. The
lim←−

1-term on the left vanishes, because we claim that (H1(Xw,Kw∩V,w))w⊆W is a surjective



24 TOMMASO GIORGIO CENTELEGHE AND JAKOB STIX

system, and hence a Mittag–Leffler system. Indeed, for finite subsets w ⊆ w′ ⊆W , the cokernel
Cw,w′ of

Kw′∩V,w′ → Kw∩V,w
is a sheaf with support in at most the finitely many points of Xw′ that are contained in more
than one irreducible component and so H1(Xw′ ,Cw,w′) = 0 . Since H1(Xw′ ,−) is right exact,
we have an exact sequence

H1(Xw′ ,Kw′∩V,w′)→ H1(Xw,Kw∩V,w)→ H1(Xw′ ,Cw,w′) = 0

from which we deduce the claim. �

7.2. Mixed tensor products. We recall Serre and Tate’s well known tensor product construc-
tion (see [Gi68] for the parallel Hom-construction explaining a construction of Shimura and
Taniyama). Let A be an abelian variety over Fq and M be a finitely generated Rw-module
for some w(A) ⊆ w ⊂ Wq. The Rw-action on A induces an Rw-module structure on the set
of U -valued points for any Fq-scheme U . The fppf-sheafification ˜M ⊗Rw A of the functor on
Fq-schemes

U 7→M ⊗Rw A(U)

is representable by an abelian variety. Indeed, let

Rmw
ϕ−→ Rnw →M → 0

be a finite presentation. The m× n-matrix ϕ also defines a map ϕA : Am → An, and

M ⊗Rw A(U) = coker(ϕ⊗ idA(U)) = coker(ϕA : A(U)m → A(U)n) = coker(ϕA(U))

so that
˜M ⊗Rw A = coker(ϕA)

and this is representable by an abelian variety. We denote the representing object by

M ⊗Rw A.
If w ⊆ w′ and M ′ is a finitely presented Rw′-module with M = M ′⊗Rw′ Rw, then there is an

obvious identification
M ′ ⊗Rw′ A = M ⊗Rw A.

In particular, if W ⊆ Wq is a subset and w(A) ⊆ W , then for any invertible RW -module
M = (Mw) we have a well defined tensor product by

M⊗RW A := Mw ⊗Rw A
for all sufficiently large finite w(A) ⊆ w ⊆W .

7.3. Choices of ind-representing objects. Before we describe our choices, we need three
propositions of independent interest.

Proposition 34. Let W ⊆ Wq be a subset, A be an abelian variety with w(A) ⊆ W , and let
M = (Mw) be an invertible RW -module. Then there is a natural isomorphism

HomFq(−,M⊗RW A) 'M⊗RW HomFq(−, A)

of functors AVW → Refl(RW ).

Proof. We set w = w(A) and must show for any abelian variety X over Fq naturally

HomFq(X,Mw ⊗Rw A) = Mw ⊗Rw HomFq(X,A).

We extend this claim to projective Rw-modules M of finite rank. Since the tensor construction
is compatible with direct sums, clearly the claim is additive in M in the sense that it holds for
M ′ and M ′′ if and only if it holds for M = M ′ ⊕M ′′. This reduces the claim to free modules
M = Rnw and with the same argument to M = Rw. Now the claim trivially holds. �
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Proposition 35. Let W ⊆ Wq be a subset containing no rational Weil q–number. Any RW -
linear contravariant equivalence

S : AVW → Refl(RW )

is ind-representable, i.e., of the form

S(−) = HomFp(−,B)

for an ind-system B = (Bw, ϕw,v) such that for all finite subsets v ⊆ w ⊆W the following holds.
(i) w(Bw) = w.
(ii) The natural map Rw → EndFq(Bw) is an isomorphism.
(iii) Bw is isogenous to the product of its simple factors with multiplicity 1.
(iv) The maps ϕw,v : Bv → Bw are inclusions.

Proof. The pro-system RW = (Rw,prv,w) can be considered as the pro-system of the free rank 1
modules Rw ∈ Refl(Rw) ⊆ Refl(RW ). As such there is a unique ind-system B = (Bw, ϕw,v) with
S(B) = (S(Bw)) = RW . Yoneda’s lemma assigns to the compatible elements 1 ∈ Rw = S(Bw)
a natural transformation

Φ : HomFq(−,B) = lim−→
w

HomFq(−, Bw) −→ S(−).

For every A ∈ AVW the map Φ is the composition of the two isomorphims

lim−→
w

Hom(A,Bw)
S−→ lim−→

w

HomRw(Rw, S(A))
ev1−−→ S(A)

where ev1 denotes the evaluation map at 1. It remains to prove the finer claims on the ind-
representing system B.

Since S is an RW -linear equivalence, RW acts on Bw through Rw as on S(Bw) = Rw. Here
we use that Rw is commutative and so we can forget to pass to the opposite ring due to S being
contravariant. Since Fw acts on Bw by the Frobenius isogeny πBw , and on Rw = S(Bw) by
Fw ∈ Rw it follows that w(Bw) = w.

The natural map Rw → EndFw(Bw) is an isomorphism, because applying the RW -linear S(−)
transforms it to the map Rw → EndRw(Rw) which is an isomorphism indeed. We deduce from
this also assertion (iii).

It remains to show that ϕw,v : Bv → Bw is isomorphic to an inclusion for all v ⊆ w. We
denote the image of ϕw,v by C. Since S is ind-representable, the surjection Bv → C becomes
an inclusion

S(C) ↪→ S(Bv).

Since by construction S(Bw) → S(Bv) is the surjective map prv,w : Rw → Rv we conclude the
in fact S(C) ' S(Bv) is an isomorphism. Consequently, because S is an equivalence, we have
C ' Bv and assertion (iv) holds. �

The third proposition is related to Proposition 24.

Proposition 36. Let W ⊆Wq be a subset containing no rational Weil q–number, and let

S : AVW → Refl(RW )

be an RW -linear contravariant equivalence.
Let w ⊆ W be a finite set of conjugacy classes of Weil q–numbers, and let A be an abelian

variety over Fq with w = w(A). The following are equivalent.
(a) The natural map Rw → EndFq(A) is an isomorphism.
(b) S(A) is a projective Rw-module of rank 1.
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Proof. Since S(−) is an equivalence of categories, the map Rw → EndFp(A) is an isomorphism
if and only if the map

Rw → EndRw(S(A))

is an isomorphism (S is contravariant but the rings are commutative here). Since Rw is a
reduced Gorenstein ring of dimension 1 by Theorem 11, this is equivalent by Proposition 18 to
S(A) being a projective Rw-module of rank 1. �

We define the tensor product of an invertible RW -module M = (Mw) and an ind-system
A = (Aw, ϕw,v) of abelian varieties indexed by finite subsets of W and with w(Aw) = w by

M⊗A := (Mw ⊗Rw Aw).

Theorem 37. Let W ⊆Wq be a subset containing no rational Weil q–number.
Let A = (Aw, ϕw,v) be an ind-system of abelian varieties over Fq indexed by finite subsets of

W such that
(i) w(Aw) = w.
(ii) The natural map Rw → EndFq(Aw) is an isomorphism.
(iii) Aw is isogenous to the product of its simple factors with multiplicity 1.
(iv) The maps ϕw,v : Av → Aw are inclusions.

For an invertible RW -moduleM, the ind-systemM⊗RW A has the same properties (i)–(iv),
and the group Pic(RW ) acts freely and transitively by

A 7→M⊗RW A
on the set of isomorphism classes of such ind-systems.

Remark 38. If q = p and W = {π} consists of a single Weil p-number, then in this case
Theorem 37 is a special case of [Wa69], Theorem 6.1.3, from which the above result is inspired.

Proof of Theorem 37. By aW -version of the proof of Theorem 1 for any ind-system A satisfying
(i)–(iv) the functor

TA = HomFq(−,A) : AVW → Refl(RW )

is a contravariant RW -linear anti-equivalence AVW → Refl(RW ). The effect of the action by
M∈ Pic(RW ) on the represented functors is described by Proposition 34 as

TM⊗RWA(−) =M⊗RW TA(−).

SinceM = (Mw) is invertible, the functorM⊗RW − is an auto-equivalence of AVW . We thus
have natural isomorphisms

Rw = EndFq(Aw) = EndFq(M⊗RW Aw) = TM⊗RWA(M⊗RW Aw).

Moreover, sinceM = (Mw) is invertible, the functor TM⊗RWA(−) is an anti-equivalence as well,
and

TM⊗RWA(M⊗RW A) = RW
as pro-systems. It follows from the proof of Proposition 35 thatM⊗RWA also satisfies properties
(i)–(iv). This shows that Pic(RW ) indeed acts on isomorphism classes of such A.

LetM be an invertible RW -module and let A be a pro-system as above such that there is an
isomorphismM⊗RW A ' A. Evaluating the resulting natural isomorphism

M⊗RW TA(−) ' TA(−).

in A itself yields an isomorphismM⊗RW RW ' RW and henceM must be trivial in Pic(RW ).
This shows that the action is free.

Let now A and B be two pro-systems of the type considered. The RW -module

M = TB(A) = (HomFp(Aw, Bw))
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(note that all maps of pro-objects A → B are levelwise maps due to w(Aw) = w = w(Bw))
is levelwise an invertible Rw-module Mw = TB(Aw) by Proposition 36. The transfer maps
Mw → Mv agree with TB(ϕw,v) which is surjective. Indeed, the image corresponds to an
abelian variety C such that ϕw,v factors as

Av → C → Aw.

Now the same argument as in the proof of Proposition 35 shows that w(C) ⊆ w and C → Aw
an inclusion. Since ϕw,v is an inclusion we necessarily have Av = C and TB(ϕw,v) is indeed
surjective. Consequently, the RW -moduleM = (Mw) is invertible.

There is a natural map defined by composition of maps

M⊗RW TA(−) = Hom(A,B)⊗Hom(−,A) −→ Hom(−,B) = TB(−).

This is an isomorphism, because for every X in AVW we have with w large enough

M⊗RW TA(X) = HomFp(Aw, Bw)⊗Rw HomFp(X,Aw)

= TB(Aw)⊗Rw HomRw(TB(Aw), TB(X))

= TB(X).

Here we have used again the assumption that TB(−) is an equivalence and the fact that TB(Aw)
is invertible as an Rw-module by Proposition 36. �

Corollary 39. There is a free and transitive action of Pic(Rcom
p ) on the isomorphism classes

of ind-systems A that represent Rcom
p -linear anti-equivalences Acom

p → Refl(Rcom
p ).

Proof. This is immediate from Theorem 37, the proof of Theorem 1 and Proposition 35. �

Remark 40. With the notation of Section §5.3, for finite sets v ⊆ w ⊆ Wp avoiding √p the
transfer map

ζv,w : Z(w)→ Z(v)

in the pro-system of isomorphism classes occuring in the proof of Theorem 1 is in fact surjective.
This follows immediately from Theorem 37 and the surjectivity of Pic(Rw) → Pic(Rv) from
Proposition 33.

Corollary 41. Let V ⊆ W ⊆ Wp be subsets avoiding √p and let AV = (Av, ϕw,v) be an
ind-system of abelian varieties over Fp indexed by finite subsets of V as in Theorem 37 such that

TAV = HomFp(−,AV ) : AVV → Refl(RV )

is an RV -linear anti-equivalence of categories. Then AV can be extended to an ind-system
AW = (Aw, ϕv,w) of abelian varieties over Fp indexed by finite subsets of W as in Theorem 37.
In particular the anti-equivalence

TAW = HomFp(−,AW ) : AVW → Refl(RW )

naturally extends TAV .

Proof. We start by choosing an auxiliary ind-system BW indexed by finite subsets of W as in
Theorem 37. The restriction

HomFp(−,BW ) : AVV → Refl(RV )

is anRV -linear anti-equivalence and ind-represented by the restriction BV = BW |V of the indices
to finite subsets of V . By Theorem 37 there is anMV ∈ Pic(RV ) such that

AV =MV ⊗RV BV .
By Proposition 33 we can findMW ∈ Pic(RW ) such thatMV =MW ⊗RW RV . Then

AW =MW ⊗Rw BW
obviously extends AV in the desired manner. �
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7.4. Comparison with Deligne’s functor for ordinary abelian varieties over Fp. Let
w ⊆W com

p be a finite subset, and let τ : Rw → Rw be the automorphism interchanging Fw and
Vw. Denote by Rτw the Rw–module obtained by letting Rw operate onto itself via τ . Similarly,
for an object M of Refl(Rw) denote by M τ the Rw–module M ⊗Rw Rτw.

We fix a contravariant equivalence T as in Theorem 1 and an ind-representing system A =
(Aw, ϕw′,w) for T = TA. The covariant functor on AVcom

p

T∗(A) = T (At)τ = lim−→
w

Hom(Atw, A),

is pro-representable by the dual system At = (Atw, ϕ
t
w′,w) and a version of Theorem 1 with a

covariant equivalence
T∗ : AVcom

p → Refl(Rcom
p )

holds. Notice that T∗ is Rcom
p -linear, since the dual of the Frobenius isogeny πA : A→ A is the

Verschiebung isogeny p/πAt : At → At.
We recall that Deligne’s functor TDel on AVord

q is defined as

TDel(A) = H1(Ã(C),Z),

where Ã/W (Fp) is the Serre–Tate canonical lift of A ⊗Fq Fp to characteristic 0 over the Witt-
vectors W (Fp), and where the C-valued points are taken with respect to an a priori fixed em-
bedding W (Fp) ↪→ C. The lattice TDel(A) comes equipped with a natural Frobenius action by
F = TDel(πA).

Note that the functor depends on the chosen embedding W (Fp) ↪→ C.
We denote by W ord

q the set of conjugacy classes of ordinary Weil q-numbers, i.e., of Weil
q-numbers such that at least half of the roots of the characteristic polynomial are p–adic units,
when regarded inside an algebraic closure of Qp. With the abbreviation Rord

q = RW ord
q

the main
result of [De69] can be stated as follows.

Theorem 42 ([De69] §7). The covariant functor TDel induces an Rord
q -linear equivalence of

categories
TDel : AVord

q → Refl(Rord
q ).

We now compare T∗(−) with TDel when both are restricted to AVord
p .

Proposition 43. The functor TDel(−) is pro-representable by a pro-system ADel and

TDel(ADel) = Rord
q .

The dual ind-system AtDel satisfies (i)–(iv) of Proposition 35.

Proof. This follows from Proposition 35 applied to the functor X 7→ TDel(X
t). �

Let T ord
∗ (resp. TDel,p) denote the restriction of T∗ (resp. TDel) to AVord

p . The functor T ord
∗

is pro-represented by the dual Aord,t of the ind-system Aord which is defined as A restricted to
indices in W ord

p .

Proposition 44. There is an invertible Rord
p -module M = (Mw)w∈W ord

p
and a natural isomor-

phism
M⊗Rord

p
TDel,p(−)

∼−→ T ord
∗ (−)

of covariant equivalences AVord
p → Refl(Rord

p ), and a natural isomorphism of ind-systems

M⊗Rord
q
AtDel ' Aord.

Proof. This follows from Theorem 37 applied to W = W ord
q . �
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Proposition 45. For an appropriate choice of ind-system A = (Aw, ϕv,w), the covariant functor
T∗ associated to the functor T = TA of Theorem 1 extends a given choice of Deligne’s functor

TDel,p ' T∗|Aord
p

: AVord
p → Refl(Rord

p ).

Proof. This follows from Proposition 44 together with the argument of Corollary 41 based on
the surjectivity Pic(Rcom

p )→ Pic(Rord
p ) of Proposition 33. �
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