
The étale topos reconstructs varieties over sub-p-adic fields

MAGNUS CARLSON AND JAKOB STIX

Abstract. Let K be a sub-p-adic field. We show that the functor sending a finite type K-
scheme to its étale topos is fully faithful after localizing at the class of universal homeomorphisms.
This generalizes a result of Voevodsky, who proved the analogous theorem for fields finitely
generated over Q. Our proof relies on Mochizuki’s Hom-theorem in anabelian geometry, and a
study of point-theoretic morphisms of fundamental groups of curves.

1. Introduction

In his 1983 letter to Faltings [Gro97], Grothendieck conjectured as one of his anabelian
conjectures that, for fields K finitely generated over their prime field, any scheme X of finite
type over K can be reconstructed, up to universal homeomorphism, from its étale topos Xét.
Voevodsky proved in [Voe90] that Grothendieck’s conjecture is true when X is normal and
K is finitely generated of characteristic zero, and Carlson–Haine–Wolf [CHW24], building on
techniques of Voevodsky, proved Grothendieck’s conjecture in characteristic zero, and also proved
the conjecture in the case when K is a finitely generated field of positive transcendence degree
and positive characteristic. In this paper, we show that Grothendieck’s anabelian conjecture for
étale topoi holds whenever K is a sub-p-adic field, i.e., K is a subfield of a finitely generated
extension of Qp. This reproves Voevodsky’s result.

We now state our results more precisely. Let Schft
K be the category of schemes of finite type over

K, and let Schft
K [UH−1] be the localization along the universal homeomorphims. Write RToppin

K
for the category of topoi over the étale topos Spec(K)ét and pinned geometric morphisms, i.e.,
morphisms such that the induced map |X | → |Y| on topological spaces takes closed points to
closed points.

Theorem A (see Theorem 4.1). Let K be a sub-p-adic field. Then the functor

(−)ét : Schft
K [UH−1] −→ RToppin

K

sending a scheme X → Spec(K) of finite type to its étale topos Xét → Spec(K)ét is fully faithful.

For any two seminormal schemes X and Y of finite type over a field K of characteristic zero,
any universal homeomorphism is in fact an isomorphism. If we denote by Schsn

K the category
of seminormal schemes of finite type over K, the inclusion Schsn

K → SchK admits a right
adjoint, which induces an equivalence Schft

K [UH−1] → Schsn
K , see [CHW24, Theorem 1.13]. Thus,

Theorem A can be translated as follows (Hompin
K denotes the Hom-groupoid in RToppin

K , see §2).

Theorem B. Let K be a sub-p-adic field. Let X and Y be schemes of finite type over K and
assume that X is seminormal. Then the natural map

(−)ét : HomK(X,Y ) −→ Hompin
K (Xét, Yét)

is an equivalence of groupoids.

Following [CHW24], we know that Hompin
K (Xét, Yét) is equivalent to a set, and moreover, we

reduce the proof of Theorem B to showing that the natural map

HomK(X,P1
K ∖ {0, 1,∞}) −→ Hompin

K (Xét, (P1
K ∖ {0, 1,∞})ét)
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is bijective whenever X is a smooth, connected, affine K-scheme. The main task is to show that
a pinned morphism is either constant, or induces an open map on étale fundamental groups. In
the latter case, we use Mochizuki’s Hom-theorem to conclude [Moc99, Theorem A]. Generalizing
an argument of Creutz and Voloch [CV22, Theorem 1.5], we establish the dichotomy by proving
the following.

Proposition C (see Proposition 3.17). Let X and Y be geometrically connected hyperbolic
curves over a Kummer-faithful field K. Suppose f : π1(X) → π1(Y ) is a point-theoretic map over
GalK . Then either f is open, or the image is contained in a single decomposition group.

Acknowledgments. The first author thanks Eric Ahlqvist, Clark Barwick, Peter Haine, and
Sebastian Wolf for helpful discussions. He especially wishes to thank Peter Haine and Sebastian
Wolf, from whom he learned a lot on the topic of étale reconstruction, particularly through their
joint work [CHW24]. Both of the authors of this paper gratefully acknowledge support from the
Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Centre TRR 326
“Geometry and Arithmetic of Uniformized Structures”, project number 444845124.

2. Preliminaries on topoi

We recall some well-known results on étale topoi of schemes. Much of the material here is
already recollected in [CHW24, Section 2], to which we refer the reader for more details.

2.1. Topoi and pinned morphisms. Let RTop denote the (2, 1)-category of topoi with
geometric 1-morphisms. We recall the relative notion of the (2, 1)-category RTopS of topoi
sliced over a particular topos S:

(i) Objects of RTopS are geometric 1-morphisms of topoi p∗ : X → S.

(ii) Given p∗ : X → S and q∗ : Y → S, the Hom-groupoid HomS
(
p∗, q∗

)
has as object pairs

(φ∗, α) where φ∗ : X → Y is a geometric morphism and α : q∗φ∗ ∼−−→ p∗ is a natural
isomorphism. The morphisms from (φ∗, α) : X → Y to (ψ∗, β) : X → Y are the natural
isomorphisms ϑ : φ∗ ∼−−→ ψ∗ such that

q∗ψ∗

q∗φ∗ p∗

β

α

q∗ϑ

commutes.
To a topos X one can functorially associate a topological space |X |, by considering the locale

of subobjects of the terminal object [CHW24, §2.4]. Given a map φ : X → Y of topoi, the
natural map |φ| : |X | → |Y| is continuous. Call a geometric morphism φ : X → Y pinned
if the underlying map of topological spaces takes closed points to closed points. Given topoi
X ,Y ∈ RTopS , write

Hompin
S (X ,Y) ⊆ HomS(X ,Y)

for the full subgroupoid spanned by the pinned geometric morphisms. Define RToppin
S as the

(2, 1)-category with the same objects as RTopS , pinned geometric morphisms as 1-morphisms
and 2-morphisms natural isomorphisms between pinned geometric morphisms.

For us, the topos S will always be the étale topos S = Spec(K)ét of a field K that we
abbreviate by Két. We then use the shorthand

RToppin
K := RToppin

Spec(K)ét
and Hompin

K (X ,Y) := Hompin
Spec(K)ét

(X ,Y).

As is shown in [CHW24, Proposition 2.22], for X and Y locally of finite type over K, the
groupoid Hompin

K (Xét, Yét) is equivalent to a set. Thus, the (2, 1)-category spanned by pinned
geometric morphisms between étale topoi of schemes locally of finite type over K is equivalent
to a 1-category.
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2.2. Base points of topoi. Recall [Joh77, Section 8.4] that given a connected topos X and a
point p : Set → X , one has a Galois category Xfét, the full subcategory of X consisting of objects
of X which are locally constant constructible, and the fiber functor is given by p∗ : Xfét → Set.
Further, a geometric morphism φ : X → Y gives rise to a map φ∗ : (Y, p∗◦φ∗) → (X , p∗) of Galois
categories. In the case that Xét and Yét are étale topoi of connected schemes and φ : Xét → Yét
is a geometric morphism of étale topoi, and x is a basepoint for X, one gets, by considering
automorphisms groups of fiber functors, a map

φ∗ : π1(X,x) → π1(Y, x ◦ φ)
of fundamental groups.

Recollection 2.1. Suppose that X and Y are of finite type over a perfect field K and that
φ : Xét → Yét is a pinned morphism of étale topoi. Then for any algebraic extension L/K and
any morphism x : SpecL→ X over K, the composite

φ ◦ xét : Lét −→ Yét

comes from a unique morphism of schemes SpecL→ Y over K [CHW24, Proposition 3.6]. This
implies that we have, for every algebraic extension L/K, a map φ(L) : X(L) → Y (L). In the
colimt over all L we obtain a unique map

φ(K) : X(K) −→ Y (K)

such that for all points a ∈ X(L) ⊆ X(K) we have φ ◦ aét = bét for b = φ(L)(a).
Further, for any quasi-compact and separated étale open j : U → Y , we know by [CHW24,

Theorem A.8] that φ∗U ∈ Xét is represented by a quasi-compact and separated étale open
j′ : φ∗U → Y . By taking slice topoi, we get a geometric morphism (φ∗U)ét → Uét, the restriction
of φ, which is again pinned. This follows from the fact that φ, jét and j′ét are pinned, and the
fact that, since j : U → Y is étale and quasicompact, it is quasi-finite.

3. Morphisms between étale topoi and fundamental groups

The purpose of this section is to show (Proposition 3.18) that given a non-constant map
φ : Uét → Vét over Két between the étale topoi of smooth geometrically connected curves U and
V over a Kummer-faithful field K, see Definition 3.8, that the induced map of fundamental
groups φ∗ : π1(U, ū) → π1(V, v̄) is open, where v̄ = φ(ū).

Throughout §3, we fix a field K with a fixed algebraic closure K, i.e. a base point for Spec(K).
As soon as we have defined the notion of a Kummer-faithful field, the field K will be assumed
to be Kummer-faithful. We will further assume for the main result of this section that K has
characteristic 0.

3.1. Quasi-sections and point-theoretic maps. Let X/K be a geometrically connected
scheme of finite type and endow X with a geometric point x̄ compatible with K. For any finite
extension L/K inside K the group GalL = Gal(K/L) is an open subgroup of GalK = Gal(K/K).
We denote by

SX/K(L) := {s : GalL → π1(X, x̄) ; over GalK}/π1(XK̄ ,x̄)

the set of π1(XK̄ , x̄) conjugacy classes of L-rational quasi-sections (i.e., sections only defined
on the open subgroup GalL). Functoriality of the étale fundamental group yields the non-abelian
Kummer map

X(L) −→ SX/K(L), a 7→
(
π1(a) : GalL → π1(X, x̄)

)
.

We may pass to the limit over all L ⊆ K that are finite over K and obtain

κ : X(K) −→ SX/K(K) := colim
L

SX/K(L),

the non-abelian Kummer map from K-rational points to the set of quasi-sections. The quasi-
sections in the image of κ are called geometric quasi-sections.
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Remark 3.1. (1) Any L-rational geometric quasi-section defines a π1(XK̄ , x̄)-conjugacy class
of closed subgroups of π1(X, x̄) as the image of the section. The maximal subgroups among
these images are nothing but the (conjugacy classses of) decomposition subgroups associated
to closed points of X (or rather some choice of universal covering).

(2) Note that the sets of quasi-sections SX/K(L) and SX/K(K) do not depend on the choice of
a base point of X up to canonical and compatible bijections.

Definition 3.2. Let X and Y be geometrically connected schemes of finite type over K. A
homomorphism ψ : π1(X, x̄) → π1(Y, ȳ) over GalK is called point-theoretic if composition
with ψ preserves geometric quasi-sections. In other words, for all finite L/K inside K and all
points a ∈ X(L) there is a finite extension L′/L inside K and a point b ∈ Y (L′) such that
π1(b) = (ψ ◦ π1(a))|GalL′ .

Lemma 3.3. Let φ : Xét → Yét be a pinned morphism of topoi over Két between two geometrically
connected varieites over K. Then the induced map φ∗ : π1(X, x̄) → π1(Y, ȳ) is point-theoretic.

Proof. Indeed, by Recollection 2.1, for every finite extension L/K and every point a ∈ X(L) the
composite

φ ◦ aét : (SpecL)ét −→ Xét −→ Yét
is induced by a morphism of schemes b : SpecL→ Y . Hence also

φ∗ ◦ π1(a) = (φ ◦ aét)∗(bét)∗ = π1(b). □

3.2. Galois sections of the generalized Jacobian. In this subsection we ask the field K to
be of characteristic zero. We extend a construction proposed in [Sti13, §13.5] only in the case of
smooth projective curves.

Remark 3.4. (1) If X is a disjoint union X = ⨿iXi of geometrically connected schemes of
finite type Xi, then we can extend the definition of the sets of geometric quasi-sections as

SX/K(L) := ⨿iSXi/K(L)

and similarly with coefficients in K.

(2) Let X and Y be geometrically connected schemes of finite type over K. The Künneth-formula
yields an isomorphism

(pr1 ∗, pr2,∗) : π1(X ×K Y, (x̄, ȳ)) ∼−−→ π1(X, x̄)×GalK π1(Y, ȳ).

It follows that the projection maps induce canonical bijections

SX×KY/K(L) ∼−−→ SX/K(L)× SY/K(L),

and similarly with coefficients in K.

Recollection 3.5. Let U be a smooth geometrically connected curve over K with smooth
projective completion X/K. The generalized Picard scheme Jac•U := PicX,D parametrizes line
bundles on X, together with a trivialization along D = X ∖ U . The connected components
of Jac•U are the subschemes JacdU of line bundles of degree d ∈ Z. For d = 0 we recover the
generalized Jacobian JacU = Jac0U of U .

Tensor product of line bundles defines an abelian algebraic group structure on Jac•U . Therefore

SJac•U /K
(K)

is an abelian group. The degree map defines a short exact sequence

0 → SJacU (K) → SJac•U /K
(K)

deg−−→ Z → 0.

For all integers d taking d-th tensor powers yields a map Jac1U → JacdU that induces an isomor-
phism

d∗
(
π1(Jac

1
U )

) ∼−−→ π1(Jac
d
U )
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over GalK , where d∗
(
π1(Jac

1
U )

)
is the pushout of the extension

1 → π1((Jac
1
U )K̄) → π1(Jac

1
U ) → GalK → 1

along the multiplication by d map on the abelian group π1((Jac1U )K̄). Note that for d = 0, the
resulting base point in Jac0U is 0, and the extension of fundamental groups is canonically split.

Recollection 3.6. The generalized Abel-Jacobi map,

jU : U −→ Jac1U , P 7→ OX(P ),

is the universal map into a torsor under a semi-abelian variety, the semi-abelian Albanese
morphism. The non-abelian Kummer map is compatible with the Abel-Jacobi map. It moreover
factors over the group of 0-cycles on UK̄ as follows:

U(K)

κ

��

// Z0(UK̄)
jU // Jac•U (K)

κ

��

SU/K(K)
jU,∗ // SJac•U /K

(K)

From [KL81, Section II] we deduce that π1(jU ) induces an isomorphism

π
(ab)
1 (U, ū) → π1(Jac

1
U , ū1),

where π(ab)1 (U, ū) denotes the geometric abelianization of π1(U, ū), and ū1 = jU (ū). It follows
from the description of π1(JacdU ) given above, that for all integers d the extension π1(JacdU ) can
be reconstructed from π1(U, ū). This proves the following lemma.

Lemma 3.7. Let U, V be smooth, geometrically connected curves over K, and let

ψ : π1(U, ū) → π1(V, v̄)

be a homomorphism over GalK . Then there are unique group homomorphisms

ψab,d : π1(Jac
d
U , ūd) → π1(Jac

d
V , v̄d)

over GalK , where ūd = d(jU (ū)) and similarly v̄d such that

ψab,1 ◦ π1(jU ) = π1(jV ) ◦ ψ

and the ψab,d’s are compatible with the maps induced by multiplication on Jac•U and Jac•V .
In particular, we obtain a commutative diagram

SU/K(K)
ψ //

jU,∗
��

SV/K(K)

jV,∗
��

SJac•U /K
(K)

ψab,• // SJac•V /K(K)

in which the bottom map is a group homomorphism.

3.3. Sections over Kummer-faithful fields. We recall the definition [Moc15, Definition 1.5]
for characteristic 0, see [Hos17, Definition 1.2] for a version over perfect fields.

Definition 3.8. A Kummer-faithful field in characteristic 0 is a field K of characteristic 0
such that for all semi-abelian varieties B/K the following equivalent conditions hold.
(a) The Kummer map B(K) → H1(K,πab1 (BK̄)) is injective.
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(b) The intersection
⋂
n≥1 nB

′(K) = 0 is trivial, i.e. B(K) does not contain arbitrarily divisible
elements.

The equivalence is a consequence of the exact sequence of Kummer theory.

Remark 3.9. (1) Note that the Kummer map of Kummer theory applied to B/K agrees (by
comparing with the 0-section) with the non-abelian Kummer map of the section conjecture

B(K) → SB/K(K) = H1(K,π1(BK̄)) = H1(K,πab1 (BK̄)),

see for example [Sti13, Corollary 71].

(2) Sub-p-adic fields are Kummer-faithful, but not conversely, see for example [Moc15, Remark
1.5.4], [Hos17, Remark 1.2.3] and [Oht22; Oht23].

(3) Weil restriction shows that finite extensions of Kummer-faithful fields are Kummer-faithful.

From now on K is assumed to be a Kummer-faithful field.

Lemma 3.10. Let X/K be a geometrically connected scheme of finite type that admits an
injective map X →W into a torsor W/K under a semiabelian variety B/K. Then for any finite
extension L/K (inside K) the non-abelian Kummer map

κ : X(L) −→ SX/K(L)

is injective and induces a bijection of X(L) with the set of geometric L-rational quasi-sections.

Proof. This follows at once from the naturality of the non-abelian Kummer map, and the semi-
abelian analogue of [Sti13, Proposition 73]. □

The proof of the following is immediate in view of Lemma 3.10.

Corollary 3.11. Let X and Y be a geometrically connected schemes of finite type over K such
that Y admits an injective map Y → W into a torsor W/K under a semiabelian variety B/K.
Then for any point-theoretic homomorphism ψ : π1(X, x̄) → π1(Y, ȳ) over GalK there is a unique
map of sets

ψ(K) : X(K) −→ Y (K),

which is the colimit of the maps ψ(L) : X(L) −→ Y (L) defined for all a ∈ X(L) by the equality
π1(b) = ψ ◦ π1(a) for b = ψ(L)(a), i.e., ψ(K) agrees with ψ ◦ − on geometric quasi-sections.

Proposition 3.12. Let X and Y be geometrically connected schemes of finite type over K such
that Y admits an injective map Y → W into a torsor W/K under a semiabelian variety B/K.
Let φ : Xet → Yet be a pinned morphism of topoi over K. Then the two maps

φ(K), φ∗(K) : X(K) −→ Y (K)

agree, where φ∗ : π1(X, x̄) → π1(Y, ȳ) is the map induced by φ, and ȳ = x̄ ◦ φ.

Proof. By Lemma 3.3 the homomorphism φ∗ is point-theoretic, so that φ∗(K) is well defined
by Corollary 3.11. The proof of Lemma 3.3 actually shows directly the apparently stronger
statement of the claim in view of the functoriality of the étale fundamental group. □

3.4. Point-theoretic maps and the Abel-Jacobi map. We remind the reader that we assume
that K is a Kummer-faithful field of characteristic 0.

Lemma 3.13. Let U be a geometrically connected smooth curve over K. Then the non-abelian
Kummer map

κ : Jac•U (K) −→ SJac•U /K
(K)

is injective.

Proof. This follows from the definition of Kummer-faithful in combination with Remark 3.9 since
the generalized Jacobian Jac0U is a semi-abelian variety over K. □
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Proposition 3.14. Let U and V be smooth, geometrically connected curves over K, and suppose
that π1(VK , v̄) is non-trivial. Given a point-theoretic morphism

ψ : π1(U, ū) → π1(V, v̄)

over GalK , then there is a unique group homomorphism

ψab(K) : Jac•U (K) → Jac•V (K)

which makes the diagram

U(K) V (K)

Jac•U (K) Jac•V (K)

ψ(K)

jU jV

ψab(K)

commutative.

Proof. From Recollection 3.6 we know that the top and bottom parts commute in the diagram

U(K)
κ

&&

//

ψ(K)

��

Z0(UK̄)
jU // //

Z[ψ(K)]

��

Jac•U (K)
κ

((

ψab(K)

��

SU/K(K)
jU,∗ //

ψ

��

SJac•U /K
(K)

ψab,•

��

V (K)
κ

&&

// Z0(VK̄)
jV // Jac•V (K)

� u

κ

((

SV/K(K)
jV,∗ // SJac•V /K(K) .

As π1(VK) is non-trivial by assumption, the map jV : V → Jac1V is injective. Therefore, since ψ
is point-theoretic and K is Kummer-faithful, Corollary 3.11 provides the map ψ(K) such that
the left face commutes.

The map ψab,• was constructed in Lemma 3.7 such that the front face commutes.
The map Z[ψ(K)] is the unique group homomorphism extending the map ψ(K). By [Ser88,

Chapter V, Proposition 3], the natural map jU : Z0(UK) → Jac•U (K) is surjective. Furthermore,
the bottom maps κ on the right hand side is injective by Lemma 3.13. Thus a simple diagram
chase, using that Z0(UK̄) is the free abelian group on U(K), shows the existence and uniqueness
of the claimed homomorphism ψab(K). □

We will now essentially follow the argument of Creutz and Voloch [CV22, Theorem 1.5] to
show that, any point-theoretic map ψ : π1(U, ū) → π1(V, v̄) of hyperbolic curves is either open,
or the image of ψ is contained in a single decomposition group.

For a geometrically connected curve U over K with smooth projective compactification X,
let gU be the (geometric) genus of X, and let nU = deg(XK ∖ UK) the degree of the boundary
divisor. Finally, set εU = 1 if U is affine and 0 otherwise. The ℓ-adic Euler characteristic of UK̄ is

χU := χ(UK̄ ,Qℓ) = 2− 2gU − nU .

By [Ser88, Chapter V, Theorem 1], the dimension of Jac0U is

rU := dimJac0U = gU + nU − εU = 1− εU +
1

2
(nU − χU ). (3.15)

Proposition 3.16. Let U and V be geometrically connected smooth curves over a Kummer-
faithful field K of characteristic zero, and assume that π1(VK , v̄) is non-trivial. Let

ψ : π1(U, ū) → π1(V, v̄)
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be a point-theoretic morphism over GalK .
Then, if χV ≤ −4gU − 4nU , the image of ψ(K) : U(K) → V (K) is finite.

Proof. We use (3.15) to translate the numerical assumption into

2rU − rV = 2(gU + nU − εU ) +
1

2
(χV − nV ) + εV − 1 ≤ −2εU − 1

2
nV + εV − 1 < 0,

so that the estimate 2rU < rV holds.
We may replace the base points by ū ∈ U(K) and v̄ = ψ(K)(ū) ∈ V (K). Moreover, we

consider the Abel-Jacobi maps with respect to these base points

jū : UK̄ → Jac0U,K̄ , z 7→ jU (z)− ū and jv̄ : VK̄ → Jac0V,K̄ , z 7→ jV (z)− v̄.

Then the diagram of Proposition 3.14 gives rise to a commutative diagram

U(K) V (K)

Jac0U (K) Jac0V (K)

ψ(K)

jx jy

ψab,0

where the map ψab,0 is a group homomorphism.
We further know by [Ser88, Chapter V, Theorem 1], that the natural map from the rU -fold

product U rU
K̄

→ Jac0
U,K̄

is dominant. Since in a connected algebraic group any dense open subset
generates the whole group by a sum of two elements, this implies that any element of Jac0U (K)
is a sum of at most 2rU many elements in the image of jū. It follows that the image of ψab,0

is contained in the image of the natural map from the 2rU -fold product V 2rU
K̄

→ Jac0
V,K̄

. By
assumption and the calculation above, this map is not dominant. Thus the Zariski closure B of
ψab,0(Jac0U (K)) in Jac0

V,K̄
is a proper subgroup (note that ψab,0 is a group homomorphism and

thus this Zariski closure is a group).
Now the image of ψ(K) : U(K) → V (K) is contained in j−1

v̄ (B). As jv̄(V ) generates Jac0
V,K̄

and B is a proper subgroup, the intersection B ∩ jv̄(V ) must be finite, and so ψ(K) has finite
image. □

Proposition 3.17. Let U and V be geometrically connected smooth curves over a Kummer-
faithful field of characteristic zero, and assume that π1(VK , v̄) is non-trivial. Let

ψ : π1(U, ū) → π1(V, v̄)

be a point-theoretic morphism over GalK .
Then either ψ is open, or the image of ψ is contained in a single decomposition group and a

fortiori ψ(K) is constant.

Proof. Let us suppose that ψ is not open: then

ψ(π1(U, ū)) =
⋂
i∈I

π1(Vi, v̄i) ⊆ π1(V, v̄)

for pointed finite étale coverings Vi → V with Vi geometrically connected the degree of Vi → V
becomes arbitrarily large. Then, by the Riemann–Hurwitz formula, the Euler characteristic

χVi = deg(Vi → V ) · χV
of the Vi becomes an arbitrarily “large” negative number. The induced map ψi : π1(U, ū) →
π1(Vi, v̄i) is still point-theoretic. Hence, by Proposition 3.16 the image of ψi(K) is finite, and
thus also the image of ψ(K) is finite.

By choosing ū and v̄ as in the proof of Proposition 3.16 we can view V (K) as embedded in
Jac0V (K). From what we just showed, the subgroup generated by the image of ψ(K)

⟨im
(
ψ(K) : U(K) → V (K)

)
⟩ ⊂ Jac0V (K)



The étale topos reconstructs varieties over sub-p-adic fields 9

is finitely generated. However, it is also a quotient of the divisible group Jac0U (K). Thus, it must
be trivial, which in turn implies that the image of ψ(K) is just one point, namely v̄.

For any open subgroupH ⊂ π1(V, v̄) the same conclusion holds for the induced map f−1(H) →
H interpreted as the point-theoretic map between fundamental groups of respective finite étale
covers. This implies that any decomposition group Dx̃ ⊂ π1(U, ū) has image contained in the
same, fixed decomposition group Dṽ of π1(V, v̄).

Let ∆ ⊂ π1(U, ū) be the (closure) of the subgroup generated by all decomposition groups of
π1(U, ū). We see that ψ(∆) is open in Dṽ. Furthermore, for any γ ∈ π1(U, ū), we have

ψ(γ)ψ(∆)ψ(γ)−1 = ψ(∆).

This implies that ψ(γ) lies in the normalizer Nπ1(U,ū)(ψ(∆)) of the image ψ(∆). But, for any
open subgroup D ⊂ Dṽ, it is known1 that

Nπ1(U,ū)(D) ⊂ Dṽ,

see [Moc05, Theorem 1.3]. Thus, ψ(π1(U, ū)) is contained in Dṽ, and clearly Dṽ is not open. □

Proposition 3.18. Let U and V be geometrically connected smooth curves over a Kummer-
faithful field. Suppose φ : Uet → Vet is a pinned morphism of sites over Két such that the map

φ(K) : U(K) → V (K)

is non-constant. Then the induced map

φ∗ : π1(U, ū) → π1(V, v̄)

is open.

Proof. Lemma 3.3 shows that φ∗ : π1(U, ū) → π1(V, v̄) is point-theoretic. We first assume that
V is hyperbolic. Then jV : V → Jac1V is an embedding into a torsor under the semi-abelian
variety JacV , so that Proposition 3.12 shows that φ and φ∗ induce the same map on K-points.
Therefore φ∗(K) is also non-constant. Hence Proposition 3.17 applies and concludes the proof.

In the general case, we may reduce to V being hyperbolic as follows. For a sufficiently small
Zariski open j′ : V ′ → V we consider j : U ′ = φ−1(V ′) → U , which is also Zariski open. The
pinned map φ of topoi induces a pinned map φ′ : U ′

ét → V ′
ét of topoi over Két. There is a

commutative diagram

π1(U
′, ū′) π1(V

′, v̄′)

π1(U, ū) π1(V, v̄)

φ′
∗

j′∗ j∗

φ∗

with surjective vertical maps. The upper horizontal map is open by the hyperbolic case, and so
is the lower map. □

4. Étale reconstruction for sub-p-adic fields

The category Schft
K of schemes of finite type over a field K localized along the class of universal

homeomorphisms is denoted by
Schft

K [UH−1].

We now prove Theorem A, the main result, stated again for the convenience of the reader.

Theorem 4.1. Let K be a sub-p-adic field. Then the functor

(−)ét : Schft
K [UH−1] −→ RToppin

K

sending an X/K of finite type to its étale topos Xét → Két is fully faithful.

1Mochizuki proves the required claim for local fields, but the same proof goes through for Kummer-faithful
fields.
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Recall that the inclusion of the category of seminormal schemes of finite type over K into
Schft

K has a right-adjoint, the semi-nomalization. This functor seminormalization realizes the
localization functor

Schft
K −→ Schft

K [UH−1]

since K has characteristic 0, see [CHW24, Corollary 1.15.1]. Semi-normalization agrees with
absolute weak normalization in characteristic 0, therefore [CHW24, Theorem 4.18.1/5] reduces
the proof of Theorem 4.1 to the following statement (we omit the assumption of a K-rational
point, because we do not need it).

Proposition 4.2. Let K be a sub-p-adic field, and let X be a smooth connected scheme of
finite type over K. Then for any pinned morphism φ : Xét → A1

K,ét over Két there is a map
f : X → A1

K over K such that

f(K) : X(K) → A1
K(K) = K

agrees with the map φ(K).

We now replace A1
K by the hyperbolic curve P1

K ∖ {0, 1,∞} in Proposition 4.2.

Lemma 4.3. Let K be a sub-p-adic field. Theorem 4.1 follows from Proposition 4.5 below.

Proof. Suppose given a pinned morphism φ : Xét → A1
K,ét. We cover A1

K by two Zariski opens
U1 = A1

K ∖ {0, 1} and U2 = A1
K ∖ {2, 3}, both of which are isomorphic to P1

K ∖ {0, 1,∞}. The
preimages Xi = φ∗(Ui) form a Zariski open cover X = X1 ∪X2 of X and φ restricts to pinned
morphisms φi : Xi,ét → Ui,ét. By assumption, Proposition 4.5 yields morphisms fi : Xi → Ui
over K that agree with φi(K) on K-points. It follows that f1 and f2 agree on X1 ∩ X2 and
thus glue to a map f : X → A1

K with f(K) = φ(K). This verifies the criterion for Theorem 4.1
provided by Proposition 4.2. □

Lemma 4.4. Let X be a smooth geometrically connected scheme of finite type over the field K.
On X(K) we consider the equivalence relation generated by pairs of points being equivalent if
there is a geometrically connected smooth curve C over K and a map g : C → X over K with
x, y ∈ g(C(K)). Then any two points are equivalent.

Proof. In order to connect x, y ∈ X(K) we consider their Galois orbits, which is Z(K) for a
0-cycle Z ⊆ X. By [CP16, Corollary 1.9] there is a geometrically irreducible curve C ′ ⊆ X
that passes through Z. Let C → C be the normalization. Then C is smooth and geometrically
connected over K, and x and y are in g(C(K)) for g : C → C ′ → X. □

Proposition 4.5. Let K be a sub-p-adic field, and let X be a smooth connected scheme of finite
type over K. Then for any pinned morphism φ : Xét → (P1

K ∖ {0, 1,∞})ét over Két there is a
map f : X → P1

K ∖ {0, 1,∞} over K such that

f(K) : X(K) → P1
K ∖ {0, 1,∞}(K)

agrees with the map φ(K).

Proof. By Lemma 3.3 the homomorphism

φ∗ : π1(X, x̄) → π1(P1
K ∖ {0, 1,∞},−→01)

is point-theoretic, so that φ∗(K) is well defined by Corollary 3.11 and agrees with φ(K) by
Proposition 3.12. Therefore we will search for a map f with f(K) = φ∗(K).

If φ∗ is open, then the celebrated theorem of Mochizuki [Moc99, Theorem A] shows that there
is a map f : X → P1

K ∖ {0, 1,∞} over K such that φ∗ equals π1(f) up to conjugation by an
element of the geometric fundamental group of P1

K ∖ {0, 1,∞}. In particular, then f(K) equals
φ∗(K), and the proof is complete in this case.
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We may now assume that φ∗ is not open, and we are going to prove that φ(K) is constant.
We first show that φ(K) is constant on the image of a map g : C → X from a geometrically
connected smooth curve C over K. The map φ ◦ gét : Cét → (P1

K ∖ {0, 1,∞})ét is pinned as a
composition of pinned maps. The induced map

(φ ◦ gét)∗ = φ∗ ◦ π1(g) : π1(C, c̄) → π1(P1
K ∖ {0, 1,∞},−→01)

is not open because its image is contained in the image of φ∗. Hence, by Proposition 3.18 applied
to φ ◦ gét, the map

φ(K) ◦ gét(K) = (φ ◦ gét)(K) : C(K) → P1
K ∖ {0, 1,∞}(K)

is constant. If X is geometrically connected, then Lemma 4.4 shows that φ(K) is constant. If X
is not geometrically connected, then no such map g : C → X exists.

Assume first that X is geometrically connected. By what we just proved then φ(K) is constant,
lets say with image a ∈

(
P1
K∖{0, 1,∞}

)
(K). Pick any of the maps g : C → X used in the previous

paragraph. Then φ∗ ◦ π1(g) factors over one of the decompositon groups Da in the conjugacy
class of decomposition subgroups associated to the point a. As C is geometrically connected over
K the composition

π1(C, c̄)
φ∗◦π1(g)−−−−−→ Da ⊂ π1(P1

K ∖ {0, 1,∞},−→01) pr∗−−→ GalK

is surjective. This implies that a ∈ X(K) is a K-rational point. Hence there is a map

f : X −→ Spec(K) = Spec(k(a)) −→ P1
K ∖ {0, 1,∞},

which agrees with φ(K) on K-points. Thus, we have proven our statement when X is geometri-
cally connected.

On the other hand, if X is not geometrically connected, then by a base change to some finite
Galois extension L/K contained in K, we can assume that all connected components of the base
change XL have an L-rational point and therefore are geometrically connected over L. Hence,
by performing the above argument to each connected component, we can construct a map

fL : XL −→ P1
L ∖ {0, 1,∞}

such that φL(K̄) = fL(K̄), where φL is the base change (XL)ét → (P1
L ∖ {0, 1,∞})ét of φ. Now

φL is invariant under Gal(L/K), so also fL(K) is Galois invariant and thus, moreover, the map
fL is Galois invariant. By Galois descent, the map fL descends to a map f : X → P1

K ∖ {0, 1,∞}
such that φ(K̄) = f(K̄).

This also completes the proof of Theorem 4.1 and thus the main result of the paper. □
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