
Lifting Galois sections along torsors

NIELS BORNE, MICHEL EMSALEM, AND JAKOB STIX

Abstract — Associated to a smooth curve X/k and an effective étale divisor D ⊆ X,
we construct torus torsors FD and ED over X. If the base field k is Q and D is a union
of torsion packets, we show unconditionally that every Galois section lifts to π1(FD).

1. Introduction

Let k̄ be a fixed separable closure of an arbitrary field k, and let Galk = Gal(k̄/k) be the
absolute Galois group of k. For a variety X/k, let Xk̄ = X ×k k̄ be the base change of X to k̄.

1.1. Section conjecture and cuspidalization conjecture. The étale fundamental group
π1(X, x̄) of X with base point x̄ fits into the following exact sequence, denoted by π1(X/k):

1→ π1(Xk̄, x̄)→ π1(X, x̄)→ Galk → 1. (1.1)

By functoriality, any rational point x ∈ X(k) induces a section sX(x) : Galk → π1(X, x̄), well
defined in the set Sπ1(X/k) of sections of (1.1) up to conjugation by an element of π1(Xk̄, x̄).

In his 1983 anabelian letter to Faltings (see [Gro97]), Grothendieck formulated the section
conjecture, namely: if k is a field of finite type over Q, and X is a smooth proper curve of genus
at least 2 over k, then the section map

sX : X(k)→ Sπ1(X/k)

is a bijective correspondence. He also explained how to deduce the fact that sX is injective from
the Mordell-Weil theorem.

Grothendieck’s original vision also contains a version of the section conjecture for a nonempty
open subset U of X. It is however easy to see that the direct analogue fails: the section map
sU : U(k) → Sπ1(U/k) is still injective, but not surjective in general. Indeed for each rational
point x ∈ (X\U)(k) at infinity, one can consider the local extension π1(Ux/k) associated to a
punctured formal neighbourhood Ux = Spec(ÔX,x) \ {x} of x in U . This gives rise to a non-
empty packet Sπ1(Ux/k) ⊂ Sπ1(U/k) of cuspidal sections. The generalized section conjecture now
asserts that if U is a hyperbolic smooth curve over a field k of finite type over Q, then sections
in Sπ1(U/k) either come from rational points of U , or are cuspidal.

The direct observation that the local extensions π1(Ux/k) split has the following striking con-
sequence: if the section conjecture holds for X, then the map Sπ1(U/k) → Sπ1(X/k) is surjective.
This consequence of the section conjecture we are fond of calling the cuspidalization conjecture.

Besides being a test for the section conjecture, the cuspidalization conjecture is also a signif-
icant part of various strategies to prove the section conjecture itself. For example, by working
with a fixed and very specific open subset U , namely the complement

U = X\X(k)

of the set of rational points of X, the cuspidalization conjecture enables to reduce the section
conjecture to the statement: if a smooth curve has no rational points, every section is cuspidal.
This version of the section conjecture should be more tractable, considering the fact that cuspidal
sections have been characterized among all sections by Nakamura (see [Nak90, Sti13]) as those
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sections that cyclotomically normalize an inertia subgroup. We emphasize that X(k) ⊆ X is a
union of torsion packets in the sense to be described below.

1.2. Main result. Our main result concerns lifting of sections in Sπ1(X/k) to the cuspidally
central fundamental group πcc1 (U), which is an intermediate quotient

π1(U) � πcc1 (U) � π1(X)

introduced by Mochizuki (see [Moc07], we recall the original profinite definition in §3.2. Saïdi
considered πcc1 (U) in the context of the cuspidalization conjecture, see [Saï12]), and we will
compare below how Saïdi’s approach relates to ours.

The main novelty of this article is that one can relate the geometry of the complement D =
X\U to this lifting problem. Following Baker-Poonen (see [BP01]), we will say that a reduced
divisor D is a torsion packet if geometrically the difference of any two points in the support of
D is torsion in the Picard group (see Definition 3). We can now state:

Theorem (Theorem 27). Let X/Q be a smooth projective curve of positive genus, let D ⊂ X
be a union of torsion packets, and set U = X\D. Then every Galois section s : GalQ → π1(X)
lifts to a section GalQ → πcc1 (U).

We want to stress that Theorem 27 seems to be the first unconditional result of lifting to
πcc1 (U): we make no assumption on the section, in contrast to the setup in [Saï12], which defines
"good" sections and shows that these are precisely the ones that can be lifted. An unconditional
but weaker result had been obtained by the first two authors in [BE13].

Let us now explain the main ideas of the proof of our result. The first step consists of
introducing a torsor FD over X under the torus TD = RD/kGm whose étale fundamental group
π1(FD) identifies with πcc1 (U) (see Proposition 12).

The torsor FD is itself obtained as a Gm-torsor over an intermediate torsor ED over X under
the torus SD = TD/Gm. In §2, we prove that D is a torsion packet if and only if ED is torsion
(see Proposition 5), a fact that will be crucial in the last step of the proof.

We then study the obstruction of lifting a Galois section along a general torsor E over X
under a torus T . We show in Proposition 8 that, if X has πét

2 (X, x̄) = 0, the morphism E → X
gives rise to a natural fibration short exact sequence, denoted by π1(E/X). The next step
identifies the class of the extension π1(E/X) with the arithmetic first Chern class c1(E) of E
(see Proposition 16).

Returning to the specific situation of Theorem 27, and given a section s of X, the last
and most delicate step consists of killing the obstruction s∗(c1(FD)). This is the aim of §5.
Besides the fact that the torsor ED is torsion, we use crucially that the relative Brauer group
Br(X/k) = ker(Br(k) → Br(X)) vanishes when k = Q in presence of a section, a statement
proven by the third author in [Sti10]. It is this result that limits the scope of Theorem 27 to
the base field k = Q, a limitation that may be seen as an indication that the section conjecture
could be more accessible for the base field Q (like many other results in arithmetic).

1.3. Notation and conventions. The notation RS′/S(−) denotes Weil restriction of scalars
along the finite flat map S′ → S which is implicit in the notation.

By XS′ we will denote the base change X ×S S′ of an S scheme X by S′ → S. However, we
would like to direct the kind reader’s attention to the following exceptions. The notation SD, TD
(resp. ED, FD) introduced in Section §2 denote a certain torus (resp. torus torsor) associated to
a divisor D.

When talking about torsors, one has to fix a topology in which the torsors trivialize locally.
This will be the étale topology always without further mention.

For a map X → S, denote by PicX/S the relative Picard scheme. The isomorphism class of a
line bundle L will be denoted by [L].
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2. Torsors associated to a divisor on a curve

Let X be a smooth curve defined over S = Spec(k).

2.1. Definition of torsors ED and FD. Let ∆ : X → X ×S X be the diagonal embedding.
This is a Cartier divisor, defining an invertible sheaf OX×SX(∆). Let D be an effective, étale
Cartier divisor on X. We will always assume that D 6= 0.

Definition 1. We define torsors
(1) FD = RD×SX/X

(
IsomD×SX(OX×SX(∆)|D×SX ,OD×SX)

)
→ X under the torus

TD = RD/S(Gm),

(2) ED = FD/Gm → X under the quotient torus SD = TD/Gm, the cokernel of the adjoint
map Gm → RD/SGm.

Remark 2. The torsor ED can also be introduced in a natural way via Picard schemes. Namely,
let XD be the curve obtained from X by pinching D into a single rational point. One can check
that the torsor ED → X is the pullback of PicXD/k → PicX/k via the morphism X → PicX/k
given by ∆. The construction of FD is somewhat more subtle: one remarks that the morphism
X → PicX/k (thus resp. ED → PicXD/k) factors through the Picard stack PicX/k (resp.
PicXD/k). Since the canonical rational point of XD gives rise to a morphism PicXD/k → BGm,
one gets by composition a morphism ED → BGm and one verifies easily that the corresponding
Gm-torsor is FD → ED.

2.2. Torsion packets and torsion criterion. Let X be a smooth, proper, geometrically con-
nected curve over S = Spec(k), where k is a field of characteristic 0.

Definition 3 ([BP01]). A (reduced) effective divisor D is a torsion packet if any degree 0 divisor
on Xk̄ with support in Dk̄ is torsion.

Remark 4. (1) Any rational point defines a torsion packet.
(2) If D is a torsion packet, then any degree 0 divisor on X with support in D is torsion,

because PicX ↪→ PicXk̄ is injective.
(3) However, it is not true that if any degree 0 divisor on X with support in D is torsion,

then D is a torsion packet. For instance, if D is irreducible, then any degree 0 divisor
on X with support in D is even trivial. But D does not need to be a torsion packet.
Indeed, according to [BP01], Corollary 3, if char k = 0 and X is of genus at least 2,
the size of torsion packets is bounded. It is thus enough to choose D of degree strictly
larger than this size, which is possible if k has an infinite absolute Galois group, to get
a counterexample.

Proposition 5. Let X be a smooth, proper, geometrically connected curve over S = Spec(k).
The torsor ED → X is torsion if and only if the étale divisor D ⊆ X is a torsion packet.

Proof. The Hochschild-Serre spectral sequence gives the following exact sequence:

0→ H1(k, SD)→ H1(X,SD)→ H1(Xk̄, SD)Galk

Moreover, the first group is torsion by Lemma 7 below, thus ED is torsion if and only if (ED)k̄
is torsion. As the formation of ED also commutes with base change, we can assume that k is
algebraically closed. The group of characters Hom(SD,Gm) of SD is the group

(
⊕D(k)Z

)∑=0 of
divisors δ of degree 0 with support in D. Since it is free of finite rank, it is enough to show that
for such divisor δ, the Gm-torsor obtained by reduction of the structure group of ED is torsion.
But this Gm-torsor is nothing else than Isom(OX ,OX(δ)), and the result follows. �
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Definition 6. (1) For any k-scheme Y , we define the relative Brauer group Br(Y/k) as the
kernel of the natural morphism Br(k)→ Br(Y ).

(2) For any k-scheme Y of finite type, we define the index

ind(Y ) = gcd {deg(y) ; y is a closed point of Y } ,
where deg(y) = [κ(y) : k] is the degree of the residue field extension at y.

Lemma 7. We have
H1(k, SD) = Br(D/k),

and, in particular, H1(k, SD) is torsion and killed by ind(D).

Proof. This follows from the Galois cohomology exact sequence associated to

0→ Gm → TD = RD/S(Gm)→ SD → 0, (2.1)

Shapiro’s Lemma and Hilbert’s Theorem 90. For an extension k′/k and x ∈ D(k′), the pullback

x∗ :
(

RD/S(Gm)
)
k′
→ Gm,k′

splits (2.1) and so
Br(D/k) ↪→ Br(k′/k)

which by a corestriction argument is killed by [k′ : k]. Hence Br(D/k) is killed by ind(D). �

3. Extensions of fundamental groups associated to torsors

3.1. Extensions of fundamental groups associated to fibrations. Following [AM69] and
[Fri82] a noetherian scheme X with a geometric point x̄ has étale homotopy groups

πét
i (X, x̄)

for i ≥ 0. If X is geometrically unibranch, then πét
1 (X, x̄) = π1(X, x̄). It is well known that

smooth geometrically connected curves X over any field k such that Xk 6' P1
k
are algebraic

K(π, 1) spaces, which in particular means that πét
2 (X, x̄) = 0.

Proposition 8. Let k be a field of characteristic 0. Let X/k be a geometrically connected and
geometrically unibranch variety, let T/k be a torus and E → X a torsor under T . Let ȳ be a
geometric point of E with image x̄ ∈ X.

If πét
2 (X, x̄) = 0, then the sequence

1→ π1(Ex̄, ȳ)→ π1(E, ȳ)→ π1(X, x̄)→ 1 (3.1)

is exact.

Proof. Because of the exact sequence (1.1) for E and X, we may assume that k is algebraically
closed. Then T ' Gr

m is a trivial torus, and E → X is Zariski locally isomorphic to the trivial
Gr

m-torsor. Therefore E → X is a geometric fibration in the sense of [Fri82] Definition 11.4. By
[Fri82] Theorem 11.5 we have an exact homotopy sequence

πét
2 (X, x̄)→ πét

1 (Ex̄, ȳ)→ πét
1 (E, ȳ)→ πét

1 (X, x̄)→ πét
0 (Ex̄, ȳ)

and the claim follows from πét
2 (X, x̄) = 0 and πét

0 (Ex̄, ȳ) = 0. �

Remark 9. The vanishing assumption for πét
2 (X, x̄) is indeed important. As an example, we

consider an algebraically closed field k̄, some n ≥ 1, and the Gm-torsor

An+1
k̄
\ {0} → Pnk̄

associated to the line bundle O(1). Then by Zariski-Nagata purity of the branch locus we have
π1(An+1

k̄
\ {0}) = 0 and the sequence

π1(Gm,k̄)→ π1(An+1
k̄
\ {0})→ π1(Pnk̄)→ 1

is not injective on the left. Indeed, the group πét
2 (Pn

k̄
) 6= 0 does not vanish.
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Remark 10. In the situation of Proposition 8, the choice of ȳ defines an isomorphism Tx̄ ' Ex̄
by translation, and the group

π1(Tx̄, 1) ' π1(Ex̄, ȳ)

is the fundamental group of an algebraic group (in characteristic 0, see [Sti13] §13.1) and hence
abelian (so that we can neglect base points). The conjugation action of π1(E, ȳ) on π1(Ex̄, ȳ)
thus defines a π1(X, x̄)-module structure on π1(Ex̄, ȳ).

Proposition 11. Let X be a geometrically connected and geometrically unibranch variety over
S = Spec(k) of characteristic 0, and assume that πét

2 (X, x̄) = 0. Let T/S be a torus and
E → X a torsor under T . Then the π1(X, x̄)-action on π1(Ex̄, ȳ) factors over the projection
π1(X, x̄)→ Galk and translation is an isomorphism

τ : T(T ) ' π1(Tk̄, 1) = π1(TX,x̄, 1) ' π1(Ex̄, ȳ)

where T(T ) denotes the Tate module of T .

Proof. The π1(X, x̄)-module structure on π1(Tk̄, 1) = π1(TX,x̄, 1) associated to TX → X comes
by functoriality from the action associated to T → Spec(k). The action thus factors through the
projection π1(X, x̄) → Galk. The identification T(T ) ' π1(Tk̄, 1) as Galk-modules is classical,
see for example [Sti13] Section §13.1.

We consider the isomorphism Φ : TX ×X E → E ×X E over X defined by multiplication
T ×X E → E and second projection T ×X E → E. By Proposition 8, we obtain an isomorphism
of extensions

0 // π1

(
(TX ×X E)x̄, (1, ȳ)

)
'
��

// π1(TX ×X E, (1, ȳ))

π1(Φ)

��

// π1(X, x̄)

id

��

// 0

0 // π1

(
(E ×X E)x̄, (ȳ, ȳ)

)
// π1(E ×X E, (ȳ, ȳ)) // π1(X, x̄) // 0

Since Φ is a map over E via second projection, we obtain an isomorphism of π1(X, x̄)-modules

π1(Tk̄, 1) = ker
(
π1

(
(TX ×X E)x̄, (1, ȳ)

) π1(pr2)−−−−→ π1(Ex̄, ȳ)
)

' ker
(
π1

(
(E ×X E)x̄, (ȳ, ȳ)

) π1(pr2)−−−−→ π1(Ex̄, ȳ)
)

= π1(Ex̄, ȳ)

induced by Φ. This completes the proof. �

3.2. Comparison with the maximal cuspidally central quotient. The aim of this para-
graph is to mention the following interpretation of π1(FD, ȳ). Let U = X \D be the complement
of the support of the divisor and set

N = Ker(π1(U, x̄)→ π1(X, x̄)).

Recall the notion of the maximal cuspidally central quotient πcc1 (U, x̄) due to Mochizuki
[Moc07] Definition 1.5(i): the biggest quotient πcc1 (U, x̄) = π1(U, x̄)/Ncc by a normal subgroup
Ncc ⊆ N such that one gets an exact sequence

1→ N cc → πcc1 (U, x̄)→ π1(X, x̄)→ 1

where N cc = N/Ncc is abelian, and the action of π1(Xk̄, x̄) by conjugation on N cc is trivial.

Proposition 12. The canonical lift U → FD of the inclusion U ⊂ X induces an isomorphism

πcc1 (U, x̄) ' π1(FD, x̄).

Proof. If D is totally split, this follows from [Moc07], Proposition 1.8 iii). Since the claim is of
geometric nature, the general case follows. �
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4. Obstructions to lifting Galois sections along torsors under tori

In this section, we fix a smooth, proper, geometrically connected curve X of genus at least 1
over a field k of characteristic 0, and T/k a torus. Let E → X be a torsor under the torus
T . Then E is also geometrically connected and therefore defines a fundamental exact sequence
analogous to (1.1). The issue we want to address is: does a given section s : Galk → π1(X, x̄) of
(1.1) lift to a section Galk → π1(E, ȳ)?

4.1. Arithmetic first Chern class. We introduce in this paragraph the notion of arithmetic
first Chern class of a torsor under a torus. The relevance of this notion for anabelian issues has
been pointed out by Mochizuki in the case of line bundles (see [Moc99] Definition 0.3). Our
definition is the straightforward generalization.

The most logical way to proceed is to use Jannsen’s cohomology (see [Jan88]), that is, co-
homology defined on the category of inverse systems of étale sheaves of abelian groups on the
small étale site of the base scheme X. In this context, the Kummer short exact sequence takes
the following form, for a pair of integers (m,n) such that m|n:

0 // T [n]

n
m
·

��

// T

n
m
·

��

n· // T

id
��

// 0

0 // T [m] // T
m· // T // 0

(4.1)

Let us define T(T ) (resp. (T, nm ·)) as the inverse system given by the left (resp. middle) column
of diagram (4.1). Note that the Jannsen cohomology of the right column is the usual étale
cohomology of T .

Definition 13. The first arithmetic Chern class of a T -torsor E → X is the image of its class
by the coboundary morphism

c1 : H1(X,T )→ H2(X,T(T ))

in the Jannsen cohomology long exact sequence associated to the short exact sequence (4.1).

Proposition 14.
(1) The following morphism is an isomorphism:

H2(X,T(T ))→ lim←−
n∈N

H2(X,T [n]).

(2) For a torus T over a field k, the following sequence is exact:

0→ H1(k, T )
c1−→ H2 (k,T(T ))→ T

(
H2(k, T )

)
→ 0.

Proof. (1) The short exact lim←−-sequence (see [Jan88], (3.1))

0→ lim←−
n∈N

1 H1(X,T [n])→ H2 (X,T(T ))→ lim←−
n∈N

H2(X,T [n])→ 0

reduces assertion (1) to the vanishing of the lim←−
1-term. The Kummer sequence provides the

exact sequence
0→ T (X)/nT (X)→ H1(X,T [n])→ H1(X,T )[n]→ 0,

which by Mittag–Leffler and lim←−
2
n∈N = 0 leads to an exact sequence

0 = lim←−
n∈N

1 T (X)/nT (X)→ lim←−
n∈N

1 H1(X,T [n])
∼−→ lim←−

n∈N

1 H1(X,T )[n]→ 0.

The restriction to n-torsion of the short exact sequence of low degree terms of the Hochschild–
Serre spectral sequence for X → Spec(k) and coefficients T yields exactness of

0→ H1(k, T )[n]→ H1(X,T )[n]→ H1(Xk̄, T )[n]Galk .
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By Hilbert’s Theorem 90, the groups H1(k, T )[n] have bounded exponent and thus the system
T(H1(k, T )) is Mittag–Leffler zero ([Jan88], 1.10). Since Tk̄ ∼= Gd

m for d = dimT we find non-
canonically

H1(Xk̄, T ) ∼= Pic(Xk̄)
d

which has finite n-torsion. Thus the projective system (H1(X,T )[n]) is an extension of a system
of finite levels (

im(H1(X,T )[n]→ H1(Xk̄, T )[n]Galk
)

by a Mittag–Leffler zero system. Therefore its lim←−
1
n∈N vanishes and the proof is complete.

(2) The Kummer sequences for T induces exact sequences

0→ H1(k, T )/nH1(k, T )→ H2(k, T [n])→ H2(k, T )[n]→ 0.

Since by Hilbert’s Thereom 90 the group H1(k, T ) has bounded exponent, we have

lim←−
n

H1(k, T )/nH1(k, T ) = H1(k, T )

lim←−
n∈N

1 H1(k, T )/nH1(k, T ) = 0.

Therefore assertion (2) follows by passing to the limit and (1) for X = Spec(k). �

Remark 15. Because the morphism H2(X,T(T )) → lim←−n∈N H2(X,T [n]) is an isomorphism, it
will be often sufficient to consider only Chern classes modulo n, denoted by c1(E)n, and defined
as the image of c1(E) by the morphism H2(X,T(T ))→ H2(X,T [n]).

4.2. Class of the fibration. Let h : E → X be a T -torsor, and consider the exact sequence

1→ π1(Tk̄, 1)→ π1(E, ȳ)→ π1(X, x̄)→ 1 (4.2)

from Proposition 8 where we use the isomorphism π1(Tk̄, 1) ' π1(Ex̄, ȳ) of Proposition 11. This
yields an abelian cohomology class

π1(E/X) ∈ H2(π1(X, x̄), π1(Tk̄, 1)).

The section s lifts to (a Galois section of) E if and only if s∗(π1(E/X)) = 0 in H2(Galk, π1(Tk̄, 1)).
We are therefore interested in an explicit description of the class π1(E/X).

Proposition 16. Let X be a geometrically connected and geometrically unibranch variety over
a field k of characteristic 0. Assume that πét

2 (X, x̄) = 0.
Then the morphism H2(π1(X, x̄), π1(Tk̄, 1)) → H2(X,T(T )) is an isomorphism and sends

π1(E/X) to c1(E).

Proof. Let X̃ét be the universal covering of the étale homotopy type Xét with respect to the
geometric point x̄ ∈ X. Then for any locally constant constructible torsion sheaf F we have
isomorphisms

H0(X̃ét,F ) ' Fx̄,

H1(X̃ét,F ) = 0,

H2(X̃ét,F ) ' Hom(πét
2 (X, x̄),Fx̄).

The exact sequence of low degree terms for the Leray spectral sequence for X̃ét → Xét yields

H1(π1(X, x̄),Fx̄) ' H1(X,F )

and the exact sequence

0→ H2(π1(X, x̄),Fx̄)→ H2(X,F )→ Homπ1(X,x̄)(π
ét
2 (X, x̄),Fx̄).

For F = T [n], using the short exact lim←−-sequence (see [Jan88], (3.1)) shows that

H2(π1(X, x̄), π1(Tk̄, 1)) ' H2(π1(X, x̄),T(T ))→ H2(X,T(T ))
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is an isomorphism.
We now prove the second claim based on ideas by Mochizuki [Moc03] Lemma 4.4+5. Denote

by Et(X) the small étale site of X, and by FEt(X) the finite étale site of X. The natural
morphism γ : Et(X) → FEt(X) induces for each sheaf F on FEt(X) and the corresponding
locally constant sheaf γ∗F on Et(X) and each i ≥ 0 a morphism

Hi(π1(X, x̄),Fx̄)→ Hi(X, γ∗F )

via the usual identification of sheaves on FEt(X) and representations of π1(X, x̄). Note that
this coincides with the edge map of the spectral sequence used above.

Now the fibration E → X gives rise to a commutative diagram of sites:

Et(E) //

��

FEt(E)

��
Et(X) // FEt(X)

This diagram induces in turn a morphism of Leray-Serre spectral sequences associated to the
sheaf T(T ) corresponding to the π1(E)-representation π1(Tk̄, 1) (we omit base points for read-
ability sake):

Hp(π1(X),Hq(π1(Tk̄), π1(Tk̄)))
//

��

Hp(X,Hq(Tk̄,T(T )))

��
Hp+q(π1(E), π1(Tk̄))

// Hp+q(E,T(T ))

The transgression morphisms d0,1
2 : E0,1

2 → E2,0
2 are thus compatible in the sense that the

following diagram commutes:

EndGalk(π1(Tk̄))
' //

d0,1
2
��

Endk(T(T ))

d0,1
2
��

H2(π1(X), π1(Tk̄))
// H2(X,T(T ))

The top arrow is induced by π1(Tk̄) ' T(T ), in particular it sends id to id. Now the profinite
version of [HS53, III, Theorem 4] implies that the left vertical map sends id to −π1(E/X) and a
similar argument with Cech cocycles shows that the right vertical map sends id to −c1(E). �

4.3. Killing torsion obstructions. By Proposition 16 we associate to a T -torsor E → X and
a section s : Galk → π1(X, x̄) a class

s∗(c1(E)) := s∗(π1(E/X)) ∈ H2(k,T(T )).

Lemma 17. s∗(c1(E)) = 0 if and only if s lifts to π1(E, ȳ).

Proof. This follows from Proposition 16. �

We can make this obstruction more tractable thanks to the following lemma.

Lemma 18. The Tate module T(A) of an abelian group A is torsion free.

Proof. This is clear from the expression T(A) = Hom(Q/Z, A). �

If E → X is torsion, so is s∗(c1(E)), and Proposition 14 together with Lemma 18 show that
the obstruction s∗(c1(E)) lives in fact in H1(k, T ).
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5. Lifting to FD over the rationals

In this section, k will be a field of characteristic 0 and X/k a smooth, projective, geometrically
connected curve of genus ≥ 1. Let D ⊂ X be an effective reduced Cartier divisor and U = X \D.
We consider the associated torsors FD → X and ED → X from Definition 1 and study the lifting
obstruction for sections s : Galk → π1(X, x̄) to the fundamental group of the respective torsors.

5.1. Vanishing of Brauer obstructions. The short exact sequence of low degree terms of the
Leray spectral sequence for X → Spec(k) and Gm reads

0→ Pic(X)→ PicX/k(k)
b−→ Br(k)→ Br(X). (5.1)

By definition the map b is the Brauer obstruction map with values in the relative Brauer group
Br(X/k), see Definition 6, that measures the failure of a rational point of the Picard variety to
describe an actual line bundle.

Proposition 19. Let X/k be a smooth projective curve of positive genus such that π1(X/k)
admits a section. Then the following holds.

(1) b(L) = 0 for all torsion points L ∈ PicX/k(k)tors.
(2) If k/Qp is a finite extension, then # Br(X/k) is a power of p.
(3) If k = R, then Br(X/k) = 0.

Proof. Assertion (1) is [Sti10] Proposition 12, and (2) is proven in [Sti10] Theorem 15.
Assertion (3) follows from the real section conjecture, see [Sti13] §16.1. Indeed, any section

s : GalR → X comes from a point x ∈ X(R), and evaluation in x yields a retraction to
Br(k)→ Br(X), showing Br(X/k) = 0. �

Corollary 20. Let X/Q be a smooth projective curve of positive genus such that π1(X/Q) admits
a section. Then the relative Brauer group Br(X/Q) vanishes.

Proof. The Hasse–Brauer–Noether theorem shows that

Br(X/Q) ↪→ ker
(⊕

v

Br(X ×Q Qv/Qv)

∑
v invv−−−−−→ Q/Z

)
is injective, where v ranges over all places of Q. Base change of sections implies that for all
places v of Q the extension π1(X ×Q Qv/Qv) splits. By Proposition 19 then Br(X ×Q R/R) = 0
and Br(X ×Q Qp/Qp) is cyclic of p-power order. This forces Br(X/Q) = 0. �

5.2. Divisibility of line bundles. Let us recall the definition of a neighbourhood of a section.

Definition 21. A neighbourhood of a section s : Galk → π1(X, x̄) is a connected finite étale
cover h : X ′ → X together with a lift

s′ : Galk → π1(X ′, x̄′) ⊆ π1(X, x̄)

of s. A short notation for a neighbourhood is (X ′, s′).

Neighbourhoods are geometrically connected over k, because π1(X ′, x̄′)→ Galk is surjective.

Example 22. A wealth of neighbourhoods are constructed as follows. Let ϕ : π1(Xk̄, x̄) � G be
a characteristic finite quotient. Then ker(ϕ) is a normal subgroup in π1(X, x̄) and

π1(Xϕ, x̄) = 〈ker(ϕ), s(Galk)〉 = {γs(σ) ; ϕ(γ) = 1, σ ∈ Galk} ⊆ π1(X, x̄)

together with the obvious lift describes a neighbourhood of s. Moreover, we have π1(Xϕ,k̄, x̄) =

ker(ϕ), so that
deg(Xϕ → X) = #G.

Since π1(Xk̄, x̄) is topologically finitely generated, the neighbourhoods Xϕ form a cofinal system
in the system Xs = (X ′) of all neighbourhoods.
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Proposition 23. Let X/k be a smooth projective curve of positive genus. Let s : Galk →
π1(X, x̄) be a section and let L be a line bundle on X. Then the following holds.

(1) For every n ≥ 1 there is a neighbourhood (X ′, s′) of s, such that there is a M ∈ PicX′(k)
with

[L|X′ ] = M⊗n.

(2) If, moreover, for every neighbourhood (X ′, s′) of s, the relative Brauer group Br(X ′/k)
vanishes, then for every n ≥ 1 there is a neighbourhood (X ′, s′) of s, such that there is a
line bundleM on X ′ with

L|X′ 'M⊗n.

Definition 24. If the conclusion (2) of Proposition 23 holds, then we say that the line bundle
L is divisible locally in neighbourhoods of s.

Proof of Proposition 23. Let Picn∗X/k denote the subgroup of the Picard variety of line bundles
of degree divisible by n. The boundary map to

0→ PicX/k[n]→ PicX/k → Picn∗X/k → 0,

namely
Picn∗X/k(k)→ H1(k,PicX/k[n]),

describes the obstruction to being divisible by n in the Picard variety for line bundles of degree
divisible by n. This obstruction is natural under pullback.

We first prove assertion (1). Since n | #π1(Xk̄, x̄) we find a neighbourhood (X1, s1) of s with
n | deg(X1/X). Then [L|X1 ] ∈ Picn∗X1/k

(k) because

deg(L|X1,k̄
) = deg(X1/X) · deg(L).

Let (X2, s2) be the neighbourhood of s1 associated to the maximal abelian quotient of expo-
nent n of π1(X1,k̄, x̄1). Then the induced map

PicX1/k[n] = Hom
(
π1(X1,k̄, x̄1),Z/nZ(1)

)
→ Hom

(
π1(X2,k̄, x̄2),Z/nZ(1)

)
= PicX2/k[n]

is the zero map. Thus the obstruction for [L|X1 ] to divisibility by n in the Picard variety vanishes
after restriction to X2. This proves (1).

Let M ∈ PicX2/k(k) be an nth root of [L|X2 ]. In order to prove (2) we have to investigate the
Brauer obstruction for M to come from an actual line bundle. But this is the class b(M) for the
map b in (5.1) for X2/k and b vanishes by assumption. This concludes the proof of (2). �

Proposition 25. Let X/k be a smooth projective curve of positive genus, let s : Galk → π1(X, x̄)
be a Galois section, and let L be a line bundle on X. Then L is locally divisible in neighbourhoods
of s if and only if s∗(c1(L)) = 0.

Proof. Let Xs be the projective limit of the pro-system of all neighbourhoods of s. Then L is
locally divisible in neighbourhoods of s if and only if L|Xs is divisible in Pic(Xs).

The Kummer sequence on Xs yields the exact sequence

Pic(Xs)
n·−→ Pic(Xs)

c1()n−−−→ H2(Xs,Z/nZ(1)),

so that L|Xs is divisible by n on Xs if and only if c1(L|Xs)n = 0.
Naturality of the first Chern class and the isomorphism

H2(Xs,Z/nZ(1)) = H2(π1(Xs, x̄),Z/nZ(1))
s∗−→ H2(k,Z/nZ(1))

show that c1(L|Xs)n = 0 if and only if s∗(c1(L)n) = 0. Moreover, s∗(c1(L)n) = 0 for all n ≥ 1 if
and only if s∗(c1(L)) = 0, because by Proposition 14 (1) for T = Gm and X = Spec(k) we have

H2(k, Ẑ(1)) ' lim←−
n∈N

H2(k,Z/nZ(1)). �
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Proposition 26. Let X/k be a smooth projective curve of positive genus, and let s : Galk →
π1(X, x̄) be a Galois section. Consider the following assertions.

(a) All line bundles L on X are locally divisible in neighbourhoods of s.
(b) s∗ ◦ c1 : Pic(X)→ H2(k, Ẑ(1)) vanishes.
(c) The relative Brauer group Br(X/k) vanishes.
(c’) The relative Brauer group Br(X ′/k) vanishes for all neighbourhoods X ′ of s.

Then the following implications hold:

(c′) =⇒ (a) ⇐⇒ (b) =⇒ (c).

Proof. (c’) =⇒ (a) was proven in Proposition 23 (2). The equivalence of (a) with (b) follows
from Proposition 25.

For (a) =⇒ (c) we have to show that b(L) = 0 for all L ∈ PicX/k(k). Since b(L) ∈ Br(X/k)

is torsion, there is an n ≥ 1 such that L⊗n = [M] for a line bundle M on X. By assumption
(a), there is a neighbourhood (X ′, s′) of s such thatM|X′ admits an nth root

M|X′ = L′⊗n

with a line bundle L′ on X ′. The difference ∆ = L|X′−[L′] is an n-torsion element in PicX′/k(k).
By Proposition 19 (1) we compute

b(L) = b(L|X′) = b(∆) + b([L′]) = 0,

and this proves (c). �

5.3. Lifting to FD over Q. In this section we study the lifting problem over the field Q.

Theorem 27. Let X/Q be a smooth projective curve of positive genus, and let D ⊂ X be a
union of torsion packets. Then every Galois section s : GalQ → π1(X, x̄) lifts to a section
GalQ → π1(FD, ȳ).

Proof. Let D =
⋃n
i=1Di be the decomposition into torsion packets Di ⊂ X. The torsor FD is

the product (over X) of the FDi , and similarly π1(FD) is the fibre product (over π1(X)) of the
π1(FDi), so we can assume that D is a single torsion packet.

The section s lifts if and only if s∗(c1(FD)) = 0. Since TD is the restriction of scalars of Gm,
Shapiro’s Lemma and Hilbert’s Theorem 90 imply H1(k, TD) = 0. Using Proposition 14 and
Lemma 18, we find that s∗(c1(FD)) takes values in the torsion free group

H2(k,T(TD)) ' T
(

H2(k, TD)
)
.

Hence, we may replace FD by a multiple. The result follows from a diagram chase in

H1(X,Gm) c1
//

i∗

vv

H2(X, Ẑ(1))

vv
s∗

��

H1(X,TD) c1
// H2(X,T(TD))

s∗

��

H2(k, Ẑ(1))

i∗

vv
0 // H1(k, TD) = 0 // H2(k,T(TD)) // T(H2(k, TD))

Namely, since D is a torsion packet, we can apply Proposition 5 and choose an integer N ≥ 1
so that N · ED is trivial. Then N · FD comes from a Gm-torsor, and the result follows from
Proposition 26 and Corollary 20. �
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Corollary 28. Let X/Q be a smooth projective curve of positive genus, and let U = X \X(Q) be
the complement of the set of all Q-rational points. Then every Galois section s : GalQ → π1(X, x̄)
lifts to a section GalQ → πcc1 (U, x̄).

Proof. If X(Q) is infinite (at most for X of genus 1), then we understand πcc1 (U, x̄) as the
natural projective limit of πcc1 (X \D, x̄) with D ranging over all finite subsets D ⊆ X(Q). We
may therefore restrict to the case of U = X \D and D ⊆ X(Q) a finite set.

The divisor D ⊂ X is a union of torsion packets. Therefore the section s lifts to a section
GalQ → π1(FD, ȳ) by Theorem 27, and since πcc1 (U, x̄) ' π1(FD, ȳ) by Proposition 12, this
completes the proof. �

Remark 29. Note that similar arguments enable to show over a local field k a prime to p version of
Theorem 27, with π1(FD, ȳ) replaced by its quotient by the p-part of the geometric fundamental
group π1((TD)k̄).
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