
TOPOLOGICAL RIGIDITY OF MAPS IN POSITIVE CHARACTERISTIC

AND ANABELIAN GEOMETRY
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Abstract. We study pairs of non-constant maps between two integral schemes of finite type
over two (possibly different) fields of positive characteristic. When the target is quasi-affine,
Tamagawa showed that the two maps are equal up to a power of Frobenius if and only if they
induce the same homomorphism on their étale fundamental groups. We extend Tamagawa’s
result by adding a purely topological criterion for maps to agree up to a power of Frobenius.
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1. Introduction

Anabelian geometry aims to describe geometry of schemes in terms of their étale fundamental
groups, or more generally in terms of their étale homotopy types.

Originally, Grothendieck’s anabelian geometry considered varieties over arithmetic fields of
characteristic 0. In the late 1990s, Tamagawa discovered that anabelian geometry exists also
in characteristic p > 0: for smooth affine curves over finite fields, see [Tam97], and, more
surprisingly at the time, also for smooth curves X over algebraically closed fields k ⊇ Fp. For

example, Tamagawa shows in [Tam02, Theorem 3.1] that πét
1 (X, x̄) determines the genus of X

and the degree of the divisor of a smooth compactification. It is formulated as a conjecture
[Tam02, Conjecture 2.2] that the profinite group πét

1 (X, x̄) determines the isomorphism class of
such a curve X as a scheme.

To further support his conjecture, Tamagawa [Tam02, Proposition 1.24] showed a remarkable
étale rigidity property for morphisms between integral varieties over a field. If the target is quasi-
affine then the induced map on étale fundamental groups determines non-constant maps up to
a power of Frobenius.

Unlike in characteristic 0, where the homotopy type of maps is locally constant in families,
in characteristic p > 0 finite étale covers can have continuous moduli and thus potentially
determine geometry that moves in families. The most famous example here is the family of finite
étale Artin–Schreier covers ℘t : A1

k → A1
k with ℘t(x) = xp − tx. The maps ℘t,∗ : πét

1 (A1
k, 0̄) →

πét
1 (A1

k, 0̄) vary with t ∈ k×, even when k is algebraically closed.
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In this note, we show a general topological rigidity property for morphisms between integral
varieties over a field. Non-constant maps are determined up to a power of Frobenius (the identity
if the varieties are of characteristic 0) by the map they induce on the underlying topological
spaces. The rigidity of maps (in the affine case) fits well with the result by the first author who
showed in [Ach17] that affine schemes of finite type are étale K(π, 1) spaces in characteristic
p > 0.

We once and for all fix a prime p. Furthermore, we denote by |X| the underlying set of a
scheme X. The étale fundamental group of a connected scheme X is denoted by π1(X) with
base points omitted. The maximal abelian quotient is πab

1 (X).
The goal of this note is to prove the following result.

Theorem A. Let X and Y be connected quasi-compact and quasi-separated Fp-schemes. Let
f, g : Y → X be two morphisms, and consider the following properties:

(a) The morphisms f∗, g∗ : π1(Y )→ π1(X) are equal up to conjugation.

(a′) The morphisms f∗, g∗ : πab
1 (Y )→ πab

1 (X) are equal.

(a′′) The morphisms f∗, g∗ : H1
ét(X,Fp)→ H1

ét(Y,Fp) are equal.

(b) The maps f and g induce the same map of sets |Y | → |X|.
(c) There exist integers a, b ≥ 0 such that F aX ◦ f = F bX ◦ g, where FX : X → X is the

absolute Frobenius.

Then the following implications always hold:

(c) =⇒ (a) =⇒ (a′) =⇒ (a′′) and (c) =⇒ (b).

Moreover:

(1) If Y is integral of finite type over a field and X is integral of finite type and separated
over a second field, and f(Y ) and g(Y ) have positive dimension, then (b) is equivalent
to (c).

(2) If, moreover in addition to the assumptions in (1), X is quasi-affine, then all five prop-
erties are equivalent.

Remark 1.1. Tamagawa in [Tam02, Proposition 1.24] shows that (a) ⇐⇒ (c) if Y is irreducible
of finite type over a field, and X is quasi-affine and connected. The proof of the nontrivial
direction (a) ⇒ (c) essentially uses the equality of the pullback maps

f∗, g∗ : H1
ét(X,Fq)→ H1

ét(Y,Fq)

for all p-powers q. This being a consequence of (a′′), Tamagawa’s proof in fact yields the
implication (a′′) ⇒ (c).

Although it turns out that our proof in §4 of (a′′) ⇒ (b) is similar to Tamagawa’s proof of
(a) ⇒ (c), we nevertheless decided to include our argument for completeness sake.

We start with the immediate implications: (a) ⇒ (a′) is trivial and (a′) ⇒ (a′′) follows from
the functorial isomorphism

Hom(πab
1 (X),Fp) ' H1

ét(X,Fp).

The fact that FX induces the identity on π1(X) and |FX | is the identity on |X| proves the
implication (c) ⇒ (a) and (c) ⇒ (b).

The remaining implication (b)⇒ (c) that completes the proof of Theorem A is a special case
of the following slightly more general proposition proved in §3. Here by a variety we mean a
separated scheme of finite type over a field.

Proposition B (see Proposition 3.1). Let Y be an integral scheme of finite type over a field
and let X be an integral variety over a field. Let f, g : Y → X be two maps inducing the same
map |Y | → |X|, with image of positive dimension. Then, there exist a, b ≥ 0 such that

F aX ◦ f = F bX ◦ g.
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In the case of varieties over finite fields, Proposition B has been proven earlier by Stix [Sti02,
§2]. The method of [Sti02] applies in the more general case only partially, and at one point we
need to make Y to be of finite type over an uncountable field in order to reduce the problem to
the case of curves.

We also describe a proof for the implication (a′′) ⇒ (b) §4 as Proposition 4.3 for the conve-
nience of the reader. We again reduce to the case of curves, and use Artin–Schreier theory to
conclude. This step is similar to the proof of [Tam02, Proposition 1.24] by Tamagawa.

Before we embark on the proof, we discuss examples illustrating that the assumptions integral,
affine and finite type in Theorem A are actually necessary.

Example 1.2. Let Y = X = Spec Fp[u, v]/(uv). Let f : X → X be defined by f(u, v) = (u, vp),
i.e., identity on one component C = {v = 0} and Frobenius on the other D = {u = 0}, and let
g = idX . Since restriction

H1(X,Fp) ↪→ H1(C,Fp)⊕H1(D,Fp)

is injective, and Frobenius acts trivially on cohomology, we find that f∗ = g∗ on H1(X,Fp).
But assertion (c) of Theorem A does not hold.

Example 1.3. The case X = Y = P1
k over a field k of characteristic p > 0 illustrates that the

assumption that X is affine cannot be dropped easily. Indeed, P1
k has étale fundamental group

π1(P1
k) = π1(k) and many nontrivial separable k-linear endomorphisms which all induce the

identity on π1(P1
k).

Example 1.4. Let X = A1
k with k algebraically closed and let Y = Spec(Osh

X,0) be the strict

henselisation in 0 ∈ A1
k. Then π1(Y ) = 1 and so the distinct maps Y → X by composing the

standard map with a translation of A1
k all induce the same map π1(Y )→ π1(A1

k).

2. Preliminaries on base fields

2.1. Reminder on inverse perfection. Recall that for an Fp-algebraR, the inverse perfection
is the ring

Rperf = lim←−
F

R = lim
(
· · · → R

F−→ R
F−→ R

F−→ R
)

where F : R→ R is the Frobenius. The ring Rperf is perfect (Frobenius is an isomorphism) and
inverse perfection Rperf is right adjoint to the inclusion of perfect Fp-algebras.

Lemma 2.1. Inverse perfection has the following effect on fields.

(1) If R is a reduced Fp-algebra, then Rperf =
⋂
n≥0R

pn.

(2) For a field K the inverse perfection Kperf is a field.
(3) The natural map Kperf → K(T )perf is an isomorphism.
(4) If L/K is a finite purely inseparable field extension, then Kperf → Lperf is an isomor-

phism.
(5) Let L/K be a finitely generated field extension. Then Lperf/Kperf is a finite separable

extension.

Proof. (1) is obvious, and (2) follows from (1).
(3) If f ∈ K(T ) is a pn-th power for all n, then for all discrete valuations v of K(T ) we have

v(f) ∈ Z is arbitary p-divisible, hence v(f) = 0. It follows that f ∈ K. If f = gp
n
, then also

g ∈ K, hence f is also a pn-th power for all n as an element of K. This proves the claim.
(4) For large enough n we have Lp

n ⊆ K. Assertion (4) follows immediately from (1).
(5) By (3), it suffices to treat the case where L/K is a finite extension. By (4) we may even

assume that L/K is finite and separable. Let x ∈ Lperf and, for all n ≥ 0, let Pn(T ) be the
minimal polynomial over K of yn ∈ L where (yn)p

n
= x.
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Let Qn(T ) be the polynomial Pn(T ) with coefficients raised to pn-th powers. Then Qn(x) =
(Pn(yn))p

n
= 0, and since Lp

n
/Kpn is isomorphic to L/K as field extension via the n-th power

of Frobenius, the polynomial Qn(T ) is the minimal polynomial of x ∈ Lp
n

over Kpn . This
means that for m ≥ n the polynomial Qm(T ) divides Qn(T ) in Kpn , but since both polynomials
are monic of the same degree, they are in fact equal. This means that Qn(T ) is independent
of n, and hence has coefficients in Kperf . As Q0(T ) = P (T ), this polynomial is separable and
of degree bounded by [L : K]. It follows that Lperf is a separable extension of Kperf with all
elements of degree bounded by [L : K]. This shows that [Lperf : Kperf ] ≤ [L : K] is finite. �

Notation 2.2. For a scheme X over Fp we write

kX := H0(X,OX)perf .

The ring kX is functorial in X and the canonical map X → Spec(kX) is the universal map to
affine schemes Spec(R) with R a perfect Fp-algebra.

2.2. Reminder on the field of constants. A variety over a field k is a scheme X together
with a separated morphism X → Spec(k) of finite type. The field k is not unique, but there is
usually a universal one.

Proposition 2.3. Let X be an integral variety over a field k. Then there is a field LX ⊆
H0(X,OX) such that, for every field L, every map X → Spec(L) uniquely factors over the
map induced by an inclusion L ↪→ LX . In particular, LX is the unique maximal subfield of
H0(X,OX) containing all other subfields and is functorial in X.

Moreover, LX is a finite extension of k, and if X is normal then X is geometrically integral
as a variety over LX .

Proof. The proof is essentially identical to the proof in the affine case [Tam97, Lemma 4.2] by
Tamagawa. We omit the details. �

If X is not normal, then it might not be geometrically irreducible over LX . A concrete
example is Spec(A) where A = {f ∈ C[x] : f(0) ∈ R}.

2.3. Inverse perfection as a field of constants. If the base field is perfect, then we can use
the inverse perfection to detect the maximal field of constants.

Definition 2.4. A variety over a perfect field is a scheme X such that there is a perfect
field k and a separated map of finite type X → Spec(k).

Lemma 2.5. Let X be an integral scheme over Fp. Then the following are equivalent.

(a) X is a variety over a perfect field.
(b) The ring kX is a perfect field and the map X → Spec(kX) is separated of finite type.

If both properties hold, then kX is the unique maximal subfield LX of H0(X,OX).

Proof. Assertion (b) clearly implies (a). So we prove the converse and assume that we have a
perfect field k and a separated map of finite type X → Spec(k).

Denote by k(X) the function field of X. The inclusions k ↪→ H0(X,OX) ↪→ k(X) yield
inclusions

k = kperf ↪→ kX ↪→ k(X)perf .

By Lemma 2.1 (5) applied to k(X)/k the extension kX/k is contained in a finite (separable)
extension. So kX is perfect and (b) holds.

We now assume that both properties hold and keep the notation above. Proposition 2.3
shows that LX is a finite extension of k, and hence is perfect. In particular, LX is contained in
H0(X,OX)perf = kX . The converse inclusion is obvious. �

Remark 2.6. Let X be a variety over a perfect field k. Any open subscheme U ⊆ X is a variety
over a perfect field. Note that the field extension kX → kU can be nontrivial if X is not normal.
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3. Topological coincidence of maps, revisited

The goal of this section is to prove the following rigidity property of maps between integral
varieties. In case the base fields have characteristic 0, the Frobenius maps have to be interpreted
as the identity, and some steps in the proof can be left out. We mainly deal with the case of
base fields of characteristic p.

Proposition 3.1. Let Y be an integral scheme of finite type over a field, and let X be an
integral variety over a field. Let f, g : Y → X be two maps inducing the same map |Y | → |X|,
with image of positive dimension.

Then, there exist a, b ≥ 0 such that F aX ◦ f = F bX ◦ g.

Take note that we do not assume that X and Y are defined over the same field. If both
X and Y are of finite type over Fp, the proposition follows from [Sti02, Proposition 2.3].
Since we did not succeed to reduce to this case, we give a completely independent proof in the
complementary case that instead exploits passing to uncountable fields. Surprisingly, this second
proof strategy below needs the additional assumption that LX is infinite, hence complementing
[Sti02, Proposition 2.3]. Below we give a complete proof in both cases.

3.1. Reduction to functions. Before embarking on the technical heart of the proof of Propo-
sition 3.1, we will perform a few easy reductions.

Lemma 3.2. In the situation described in Proposition 3.1.

(1) Let h : Y ′ → Y be a dominant map with Y ′ an integral scheme of finite type over some
field, and suppose that fh (and equivalently gh) still has image of positive dimension.

If the assertion of Proposition 3.1 holds for fh, gh : Y ′ → X, then it holds for
f, g : Y → X as well.

(2) Let i : X → X ′ be a locally closed immersion with X ′ an integral variety. If the assertion
of Proposition 3.1 holds for if, ig : Y → X ′, then it holds for f, g : Y → X as well.

(3) Let U ⊆ X be a dense open subvariety such that the intersection of U with the image of
f (and equivalently for g) still has positive dimension. Denote the preimage f−1(U) =
g−1(U) by V and the restrictions of f and g by fU , gU : V → U . If the assertion of
Proposition 3.1 holds for fU , gU : V → U , then it holds for f, g : Y → X as well.

Proof. Since X is separated, the equality of f ′h = g′h implies that f ′ agrees with g′ for
any f ′, g′ : Y → X and part (1) follows. Part (2) similarly follows from the fact that i is a
monomorphism. For (3), let j : U → X and h : V → Y be the inclusions. The assertion for
(fU , gU ) : V → U implies the assertion for (jfU , jgU ) = (fh, gh) : V → X, which implies the
assertion for (f, g) : Y → X by (1). �

Proposition 3.3. In Proposition 3.1, we may assume that Y is an integral normal variety over
an uncountable algebraically closed field K = kY and X = A1

k with k a field.

Proof. The proof proceeds in three steps. We first pick an uncountable algebraically closed field
K that is an extension of LY and consider the normalization Y ′0 of an irreducible component
Y0 of the base change YK = Y ⊗LY

K. Note that Y ′0 is also integral and of finite type over the
perfect field K. The composition with the projection

h : Y ′0 → Y0 ↪→ YK = Y ⊗LY
K → Y

is schematically dominant. By choosing Y0 appropriately, we may also assume that for the maps
f and g for which we are trying to prove the claim of Proposition 3.1, the compositions fh and
gh have still an image of positive dimension. Now apply Lemma 3.2(1).

In the second step we consider an affine open U in X that contains two points of f(Y ) = g(Y )
that show this image has dimension > 0. By Lemma 3.2(3) we may replace X by U (and Y by
f−1(U) = g−1(U); this keeps the properties of Y we already adjusted) and thus assume X is an
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affine variety over a field k. We now choose a closed embedding ι : X ↪→ An
k , and Lemma 3.2(2)

lets us assume X = An
k .

In the third step we choose good coordinates on An
k so that we may reduce to the coordinate

projections.1 We set B = H0(Y,OY ) and have kY =
⋂
n≥0B

pn = K by Lemma 2.5. Let

x1, . . . , xn be the linear standard coordinates on An
k , and we set fi = f∗(xi) and gi = g∗(xi).

Then not all fi are contained in K because otherwise the map f : Y → An
k would factor

over a point Spec(K) and not have image of positive dimension. After replacing f by a map
f ′ : Y → An

k with f = F aAn
k
◦ f ′ we may assume that there is an index j with fj ∈ B \ Bp.

Indeed, if all fi ∈ Bp, then the map f∗ : k[x1, . . . , xn] → B has image contained in Bp (as k
maps into K = Kp) and so f factors as f = f ′ ◦ FY . But then also f = FAn

k
◦ f ′.

As Bp ⊆ B is a proper subgroup, we may replace (by a linear coordinate change xi 7→ xi+xj
of coordinates of An

k) any fi ∈ Bp by fi + fj to assume that for all i = 1, . . . , n we have
fi ∈ B \Bp.

Now we turn our attention to g. By factoring over a suitable power of Frobenius, again for
one index j we have gj ∈ B \ Bp. Since we prepared the coordinates of An

k carefully with
respect to f , we are guaranteed that with the same index j we have fj , gj ∈ B \Bp. Note that
fj(Y ) = gj(Y ) in A1

k does not factor over a closed point because otherwise fj and gj would be
p-th powers.

We are now modifying the coordinates on An
k yet again by a transformation of the form

xi 7→ xi + hi(xj) for all i 6= j. We pick polynomials hi ∈ k[T ] such that fi + hi(fj) and
gi + hi(gj) are not contained in Bp. The polynomials hi that are unsuitable here are contained
in two proper affine linear subspaces. More precisely, we consider the maps of k-vector spaces

ϕ : k[T ]→ B/Bp, h(T ) 7→ h(fj) +Bp,

ψ : k[T ]→ B/Bp, h(T ) 7→ h(gj) +Bp,

and need to show that there is an hi such that ϕ(hi) /∈ −fi + Bp and ψ(hi) /∈ −gi + Bp. The
subgroup

ker(ϕ) = {h ∈ k[T ] ; h(fj) ∈ Bp}
is in fact a normal subring of k[T ], because B is normal. It contains k[T p] but not T , because
fj /∈ Bp. It follows that ker(ϕ) = k[T p], and similarly ker(ψ) = k[T p]. Since we established that
ker(ϕ) = ker(ψ) has codimension ∞ in k[T ], we always find a polynomial hi avoiding the two
forbidden affine subspaces.2

We have now achieved that the maps f, g : Y → An
k are coordinatewise not p-th powers.

In particular, the coordinate functions fi, gi are not constant since otherwise k(fi) or k(gi) are
contained in K, the maximal subfield of B = H0(Y,OY ), and thus p-th powers contrary to our
preparations. Since |f | = |g| also implies |fi| = |gi|, we may apply now Proposition 3.1 to these
coordinate functions and deduce that there are ai, bi ≥ 0 with

F ai
A1

k
◦ fi = F bi

A1
k
◦ gi.

After canceling powers of Frobenius we may assume that min{ai, bi} = 0 for each i. But since
neither fi nor gi is a p-th power, we obtain ai = bi = 0 for all i. It follows that f = g. �

3.2. Reduction to smooth curves. We are going to reduce further to “generically étale”
maps from a connected smooth affine curve to the affine line.

Lemma 3.4. In Proposition 3.1, in addition to the reduction of Proposition 3.3, we may assume
that Y is a connected smooth affine curve.

1The reduction to coordinate projections is obvious in characteristic 0.
2Unless k = F2, the precise form of ker(ϕ) and ker(ψ) is not important, only that these are proper subspaces.
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Proof. We need to argue that Proposition 3.1 holds in the scenario of Proposition 3.3. So let Y
be an integral variety over an uncountable algebraically closed field K, and let f, g : Y → A1

k
be maps with |f | = |g| having image of dimension > 0. For a, b ≥ 0, let

Za,b ⊆ Y

be the equalizer of F aX ◦ f and F bX ◦ g, a closed subscheme of Y . We need to show that there
are suitable a, b with Za,b = Y .

We first note that, f, g having image of dimension > 0, implies that the generic point and
at least one closed point of A1

k is in the image. In particular, the induced map of f and g on
closed points Y (K) ⊆ |Y | → |A1

k| is non-constant.
For every y ∈ Y (K), pick an integral curve Cy ⊆ Y passing through y and another point

z, depending on y, with f(y) 6= f(z), see [Mum08, Lemma, p. 56]. Let Dy be an affine open
subset of the normalization of Cy such that the image of the induced map γ : Dy → Y contains
y and z. Thus γf and γg are not constant, and by the assumed case of the result applied to
fγ, gγ : Dy → A1

k, we see that Cy(K) ⊆ Za,b(K) for some a, b ≥ 0. In particular, y ∈ Za,b. Since
this holds for all y ∈ Y (K), by the Lemma 3.5 below there is a nonempty open U ⊆ Y contained
in some Za,b. Since Za,b is closed and Y is reduced, we have Y = Za,b and Proposition 3.1 holds
for f, g : Y → A1

k. �

Lemma 3.5. Let Y be an integral scheme of finite type over an uncountable algebraically closed
field K and let {Zi}i∈I be a countable family of constructible subsets of Y such that

Y (K) =
⋃
i∈I

Zi(K).

Then there exists an i ∈ I such that Zi contains a dense open subset of Y .

Proof. This fact is well-known, though we do not know of a reference; here is a sketch of the
proof. We may first replace Y by a dense affine open. Then Noether normalization allows us to
reduce to the case Y ' An

K . We argue by induction on n, the case n = 0 being obvious. Suppose
that n > 0 and that none of the Zi is dense. Then each of their closures contains at most a finite
number of hyperplanes. By uncountability of K, there exists a hyperplane An−1

K ' H ⊆ An
K not

contained in the closure of any Zi, contradicting the induction assumption for the intersections
H ∩ Zi whose K-points cover H(K). �

In the curve case, we can factor out powers of Frobenius to assume that f and g are both
“generically étale.” To make this precise, we need to introduce some notation. Consider the
situation of Lemma 3.4: Y = Spec(B) is a connected smooth affine curve over the big field K
and we have two nonconstant maps f, g : Y → X = A1

k. Let f0, g0 : k → K be the induced field
extensions, see the functoriality of the field of constants in Proposition 2.3. Focusing on f , it
corresponds to a map k[x]→ B inducing f0 on k and mapping x 7→ f ′. Geometrically, the map
f ′ : Y → A1

K appears in the factorization

Y
f ′ //

f ##

XK = A1
K

f0
��

X = A1
k

(3.1)

where by abuse of notation we also denote the projection XK → X of the base change along
f0 : k → K by f0. Thus f ′ is not constant, and since Bperf = K there exists an integer a ≥ 1
and an element f ′new ∈ B\Bp such that f ′ = (f ′new)p

a
. Since Y is a connected smooth curve, the

fact that f ′new is not a p-th power means that df ′new 6= 0, so that the induced map f ′new : Y → A1
K

is generically étale. We write fnew : Y → A1
k for the composition with f0 : A1

K → A1
k, and find
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f = F a
A1

k
◦ fnew. We may therefore for our purposes replace f with fnew and hence assume

that in addition f ′ : Y → A1
K is generically étale. Doing the same with g, we conclude that

Proposition 3.1 follows from the assertion below.

Proposition 3.6. Let Y be a connected affine smooth curve over kY = K and let f, g : Y → A1
k

be two maps inducing the same map |Y | → |A1
k| such that the induced maps f ′, g′ : Y → A1

K
are generically étale.

Then, there exist a, b ≥ 0 such that F a
A1

k
◦ f = F b

A1
k
◦ g.

We are going to prove Proposition 3.6 in the following two sections depending on the cardi-
nality #k.

Remark 3.7. In fact, in view of our reduction to the generically étale case, the conclusion of
Proposition 3.6 should be f equals g. This is indeed what we prove below when #k is infinite.
However, when #k is finite, we again trade in generically étale for another desirable property,
namely that f and g agree on the field of constants. We decided to weaken the assertion of
Proposition 3.6 in favour of a more transparent structure of our reduction steps in the proof.

3.3. Infinite base field. We first assume that #k is infinite. By Lemma 3.2(1), we may shrink
Y further to an open subscheme so that both maps f ′, g′ : Y → A1

K are étale.
Let U ⊆ A1

k be the image of f and equally g. We verify that U is an open subset of A1
k:

factoring f into f ′ : Y → A1
K and f0 : A1

K → A1
k, the set U = f0(f ′(Y )) is the image of

f ′(Y ) ⊆ A1
K , which is the complement of a finite subset. Then f−1

0 (U) and g−1
0 (U) are open

subschemes of A1
K which receive the maps f ′ and g′.

We claim that for y1, y2 ∈ Y (K) we have f ′(y1) = f ′(y2) if and only if g′(y1) = g′(y2). In
other words, the étale equivalence relation

R(f ′) = Y ×f ′,A1
K ,f
′ Y ⊆ Y ×K Y

agrees with the analogous equivalence relation R(g′). Note that Y/R(f ′) ' f ′(Y ) canonically
induced by f ′, and similarly for g′.

Indeed, it suffices to check this for y1 and y2 belonging to an infinite subset Z ⊆ Y (K).
Consider Z to be the set of all y ∈ Y (K) whose image in A1

k (via f or g) is a k-rational point.
The set Z is infinite by our assumption that A1(k) = k is infinite(!). Now, the preimage of any
k-rational point under the projections f0, g0 : A1

K → A1
k is a singleton. This shows that for

y1, y2 ∈ Z we have

f ′(y1) = f ′(y2) ⇐⇒ f(y1) = f(y2) ⇐⇒ g(y1) = g(y2) ⇐⇒ g′(y1) = g′(y2),

where the equivalence in the middle makes use of |f | = |g|.
Therefore f ′ and g′ define the same étale equivalence relation on Y , which implies that there

exists a K-linear isomorphism

ϕ : f ′(Y )
f ′←− Y/R(f ′) = Y/R(g′)

g′−→ g′(Y ).

Then, we have the diagram

f ′(Y )
f0

##
' ϕ

��

Y

f ′ ;; ;;

g′ ## ##

U

g′(Y )
g0

;;

where the left triangle commutes by construction and the right triangle commutes on the level
of topological spaces as a consequence of |f | = |g|.
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Let ϕ : P1
K → P1

K be the unique extension of ϕ to smooth compactifications. For α ∈ U(k)
the preimage under f0 (resp. g0) is a singleton, more precisely only the point [f0(α) : 1] (resp.
the point [g0(α) : 1]), hence we have

ϕ([f0(α) : 1]) = [g0(α) : 1], for α ∈ U(k). (3.2)

By a change of coordinates defined over k we may assume that 0 and 1 belong to U . Then (3.2)
yields in particular that ϕ fixes 0 = [0 : 1] and 1 = [1 : 1]. After a further change of coordinates
by t 7→ t/(t − 1), now 0 and ∞ = [1 : 0] are preserved. In this coordinate the map ϕ must be
of the form, for some λ ∈ K,

ϕ(t) = λ · t, t ∈ K ∪ {∞}.
Now (3.2) implies

λ = g0(α)/f0(α) for all α ∈ U(k), α 6= 0.

As U(k) contains all but finitely many elements of k× and k is an infinite field, we find elements
α1, α2 ∈ U(k) with α1α2 ∈ U(k). Then we conclude λ = 1 from

λ2 =
g0(α1)

f0(α1)
· g0(α2)

f0(α2)
=
g0(α1α2)

f0(α1α2)
= λ.

Thus ϕ is the identity g′ = ϕ ◦ f ′ equals f ′. Moreover, also f0 = g0 holds for the cofinite set
U(k) ∩ k×, and thus for all of k. This completes the proof of Proposition 3.6 if #k is infinite.

3.4. Finite base field: intersection theory. We will now deal with the case X = A1
k with

k = kX a finite field of cardinality q. We use f0 to identify k with a subfield of K = kY . Then,
as K only contains a unique subfield of cardinality q, we have g0(k) = k, and so there is some
b ≥ 0 such that f0 = g0 ◦ F b. We may replace g by the composition F b ◦ g, and thus assume
that f0 = g0 at the expense of giving up that g′ is actually generically étale (f ′ still is). We
thus have achieved that in the factorization of f and g as in (3.1) both K-varieties denoted XK

and the projections XK → X agree. Since we will be mostly working with the K-linear maps
now, we rename pr := f0 = g0 and denote f ′ by f (resp. g′ by g). So we are left to prove the
following.

Proposition 3.8. Let k be a finite field contained in an algebraically closed field K. Let
Y be a connected affine smooth curve of finite type over K and let f, g : Y → A1

K be two
maps of K-schemes inducing the same map |Y | → |A1

k| after composition with the projection
pr: A1

K → A1
k = X, and with image in |A1

k| of positive dimension. We further assume that f
is generically étale.

Then, there exist a, b ≥ 0 such that F aX ◦ f = F bX ◦ g.

Proof. Let ηY (resp. ηXK
and ηX) denote the generic point of Y (resp. XK and X). Let k̄ denote

the algebraic closure of k inside K. Then the maps of topological spaces to be considered factor
as

|Y | = {ηY } ∪ Y (K)
|f |,|g|−−−→ |XK | = {ηXK

} ∪K |pr|−−→ |X| = {ηX} ∪ k̄/Gal(k̄/k)

where by k̄/Gal(k̄/k) we denote the set of Galois orbits of Gal(k̄/k) acting on k̄. The fibre of
pr in a Galois orbit agrees with precisely this orbit.

For every d ≥ 1 there is a unique subfield kd ⊆ K of order qd. The set Gd := pr(kd) in |X|
consists of precisely those Galois orbits of length dividing d. Since kd = pr−1(Gd) and since
|pr ◦ f | agrees with |pr ◦ g|, the preimages with respect to f, g

|f |−1(kd) = |pr ◦ f |−1(Gd) = |pr ◦ g|−1(Gd) = |g|−1(kd)

agree and will be denoted by Sd. Let

Md =

{
m ∈ Z ; −d

2
< m ≤ d

2

}
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be a minimal set of representatives of Z/dZ in terms of absolute value. It follows that for every
y ∈ Sd there is an m ∈Md with{

f(y) = g(y)q
m

if m ≥ 0,

f(y)q
−m

= g(y) if m ≤ 0,
(3.3)

because Gal(kd/k) is generated by the q-power Frobenius.
For m ≥ 0, let Γm ⊆ P1

K × P1
K denote the graph of Frobenius Fm : P1

K → P1
K , given by

[u : v] 7→ [uq
m

: vq
m

]. For m < 0, we denote by Γm the image of Γ−m under the transposition
of factors of P1

K ×P1
K .

Let Y denote the smooth projective completion of Y , and let f̄ and ḡ denote the extensions
of f and g to maps f̄ , ḡ : Y → P1

K . Define Zm as the fibre product

Zm

��

� � // Y

h=(f̄ ,ḡ)
��

Γm
� � // P1

K ×P1
K .

If Zm = Y , then g = Fm ◦ f for m ≥ 0 or F−m ◦ g = f for m < 0, so Proposition 3.8 is proven.
We argue by contradiction and assume that for all m ∈ Z the subscheme Zm has dimension 0.
Intersection theory on P1

K ×P1
K computes the degree deg(Zm) = dimK H0(Zm,OZm

) as

deg(Zm) = degP1
K×P

1
K

(
[Γm] · [Y ]

)
=

{
qm deg(f) + deg(g) if m ≥ 0,

deg(f) + q−m deg(g) if m ≤ 0.

Here the Chow ring CH∗(P1
K×P1

K) = Z[α, β]/(α2, β2) is generated by the classes α = [P1
K×{0}]

and β = [{0} ×P1
K ] with deg(αβ) = 1, and the cycle classes of Γm and Y are

[Y ] = deg(f)α+ deg(g)β and [Γm] =

{
α+ qmβ if m ≥ 0,

q−mα+ β if m ≤ 0.

By (3.3) we have

Sd ⊆
⋃

m∈Md

Z̄m(K).

Now, since f is generically étale, there is a fixed B, uniform in d, taking into account the
ramification and boundary of f : Y → A1

K in comparison with f̄ : Y → P1
K , such that

deg(f) · qd −B ≤ #Sd.

Combining the above we obtain the inequality

deg(f) · qd −B ≤ #Sd ≤
∑
m∈Md

degZm ≤ d · qd/2
(

deg(f) + deg(g)
)
.

Letting d tend to infinity leads to a contradiction, and that concludes the proof of Proposition 3.8
and thus also, finally, the proof of Proposition 3.1. �

4. Artin–Schreier theory

The goal of this section is to prove the implication (a′′)⇒(b) of Theorem A, thus completing
its proof. We first deal with the case of a “formal punctured disc”.
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4.1. Local curve case. Temporarily, let K be a perfect field of characteristic p > 0. The field
K((t)) of formal Laurent series is endowed with the discrete valuation v : K((t)) → Z ∪ {∞}
normalized so that v(t) = 1. We write d : K((t)) → Ω for the universal continuous derivation,
so that Ω = K((t))dt. We extend the valuation v to differentials by setting v(dt) = 1. We then
have v(z) ≤ v(dz) for all z.

Proposition 4.1. Let f, g ∈ K((t)) with v(f) < 0 and g /∈ K, and suppose that for every n ≥ 1
there exists an hn ∈ K((t)) such that

fn − gn = hn − hpn.

Then there exist integers a, b ≥ 0 such that fp
a

= gp
b
.

Proof. Since K is perfect, an element z of K((t)) is a p-th power if and only if dz = 0. Repeatedly
taking p-th roots of f or g, we may therefore assume that df and dg are nonzero. Note that we
keep the assumption of the lemma by taking p-th roots because if for example f = (f1)p, then

fn1 − gn = fn1 − (fn1 )p + fn − gn = (fn1 + hn)− (fn1 + hn)p.

After these preparations, our goal is now to show that f = g. Possibly exchanging f and g, we
may assume that v(f) ≤ v(g). Set ε = g/f , so that v(ε) ≥ 0. We need to show that ε = 1, so
suppose otherwise.

The basic idea is to differentiate both sides of

fn(1− εn) = fn − gn = hn − hpn
and look at valuations, making use of the fact that d(hpn) disappears. This forces the valuation
of d(fn − gn) to be much less negative than the valuation of fn − gn forcing a number (that
grows linearly with n) of certain initial coefficients of fn and gn to agree.

The actual argument below does not refer to coefficients. Rather, we need to consider n
coprime to p and such that εn 6= 1. All values of n from now on will be assumed to satisfy these
assumptions. Since we assumed ε 6= 1, the set of such n is infinite, and it makes sense to talk
about asymptotics as n� 0. We use the notation O(1) to denote a bounded function in n.

Lemma 4.2. Consider values of n ≥ 0 which are coprime to p and such that εn 6= 1. Then:

(a) v(1− εn) = O(1),
(b) v(fn − gn) = nv(f) +O(1),
(c) v(fn − gn) < 0 for n� 0,
(d) v(fn − gn) = pv(hn) for n� 0,
(e) v(d(fn − gn)) ≥ v(hn).

Proof. Assertion (a) follows from

1− εn =
∏
ξn=1

(1− ξε).

and (1 − ξε)(0) = 1 − ξε(0) 6= 0 unless ξ = ε(0)−1. So in fact v(1 − εn) takes at most two
values. Part (b) follows since fn − gn = fn(1− εn), and part (c) holds since v(f) < 0, so that
nv(f) +O(1) < 0 for n� 0.

For (d), note that (c) implies that v(hn − hpn) < 0 for n� 0. But then v(hn) is negative and
v(hn − hpn) = pv(hn) by the triangle inequality. For (e), we write

d(fn − gn) = d(hn − hpn) = dhn,

and v(dh) ≥ v(h) holds for any h. �

Now, we combine parts (d) and (e) of the lemma to obtain the inequality:

v (d(fn − gn)) ≥ v(hn) =
1

p
v(fn − gn) =

n

p
v(f) +O(1). (4.1)
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On the other hand, we have

d(fn − gn) = nfn−1xn, xn := (1− εn)df − fεn−1dε

and
v (d(fn − gn)) = (n− 1)v(f) + v(xn) = nv(f) + v(xn) +O(1). (4.2)

Combining (4.1) and (4.2) we obtain

v(xn) ≥ cn+O(1), c = −
(

1− 1

p

)
v(f) > 0. (4.3)

In the rest of the proof, we shall estimate v(xn) from above for certain values of n, obtaining
a contradiction with (4.3), showing that ε = 1. We first note that

xn =
d(fn − gn)

nfn−1
= df − εn−1dg.

Case 1. Suppose that v(ε) > 0. Then for n� 0 we have

v(xn) = v(df − εn−1dg) = v(df) = O(1),

contradicting (4.3).

Case 2. Suppose that ε is a root of unity. Then xn takes only finitely many values and so
v(xn) = O(1) is bounded, again contradicting (4.3).

Case 3. Suppose that v(ε) = 0, but ε is not a root of unity. For n prime to p

v(xn+p − xn) = v
(
(εn−1 − εn+p−1)dg

)
= (n− 1)v(ε) + v(1− εp) + v(dg) = O(1).

On the other hand, (4.3) implies the following contradiction

v(xn+p − xn) ≥ min{v(xn+p), v(xn)} ≥ cn+O(1). �

4.2. Concluding the proof. The goal of this section is to prove the implication (a′′) ⇒ (b)
of Theorem A, concluding its proof.

Proposition 4.3. Let Y be an integral Fp-scheme of finite type over a field, and let X be a
quasi-affine Fp-scheme of finite type over a field. Let f, g : Y → X be a pair of maps whose
image has positive dimension. Suppose that the two maps

f∗, g∗ : H1(X,Fp)→ H1(Y,Fp)

are equal. Then f and g induce the same map |f | = |g| : |Y | → |X| on the underlying sets.

Proof. If h : Y ′ → Y is a surjective map of integral Fp-schemes respectively of finite type over a
field, then we may replace f and g by fh and gh. We apply this reduction to the normalization
of a suitably chosen irreducible component of the base change of Y to an algebraically closed
field K.

Next, we choose an embedding i : X ↪→ X ′ into an affine variety X ′. Because the map |i| is a
monomorphism |X| ↪→ |X ′|, we may replace X by X ′, compose f and g by i, and thus assume
that X is affine from the start.

The map |Y | → |X| associated to f (resp. g) is determined by the restriction to closed points
Y (K) = |Y |0 of |Y |. Indeed, for any y ∈ |Y | let Zy ⊆ Y denote the Zariski closure of y in Y .
Then f(y) is the generic point of the Zariski closure of f(|Zy| ∩ |Y |0) in |X|.

Because f(Y ) and g(Y ) have positive dimension, both f and g are not constant when re-
stricted to closed points |Y |0.

For every closed point y ∈ Y pick an affine irreducible curve Cy ⊆ Y passing through y and
points z1, z2 depending on y with f(y) 6= f(z1) and g(y) 6= g(z2), see [Mum08, Lemma, p. 56]3.

3Note that the proof of [Mum08, Lemma, p. 56] only constructs a curve passing through two points. But the
proof immediately generalizes to any finite set of closed points.
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Thus f and g restricted to Cy are nonconstant maps fy := f |Cy and gy := g|Cy . If we assume
Proposition 4.3 in the case of dim(Y ) = 1, then the restrictions |fy| = |gy| agree. As the union
of these curves Cy with y ranging over all closed points of Y covers |Y |0, the two maps |f | and
|g| agree on all of |Y | and the proof is achieved. This reduces the proof to the case dim(Y ) = 1
with Y affine. By replacing Y by its normalization, we may assume that Y is smooth because
normal curves over K are smooth, K being algebraically closed.

Let Y = Spec(B) and X = Spec(A), and the maps f and g are given by homomorphisms
f, g : A→ B. By assumption, neither f nor g is constant, hence their image is not contained in
K =

⋂
n≥0B

pn . Let n be maximal with f(A) ⊆ Bpn , in other words we can factor f = FnX ◦ f ′
with f ′(A) 6⊆ Bp. Since FX acts as identity on |X|, we may replace f by f ′ and similarly for g
in order to reduce to the case where f(A) and g(A) are not contained in Bp. The result then
follows from the more precise proposition below. �

Proposition 4.4. Let Y = Spec(B) be an affine smooth connected curve over the algebraically
closed field K of characteristic p > 0. Let X = Spec(A) be an affine Fp-scheme of finite type
over a field. Let f, g : A → B be a pair of maps such that their respective images as maps
f, g : Y → X have positive dimension, and such that f(A) and g(A) are not contained in Bp.
Suppose that the two maps

f∗, g∗ : H1(X,Fp)→ H1(Y,Fp)

are equal. Then f equals g.

Proof. For each t ∈ A we may compose f and g with the map t : X → A1
Fp

. The assumptions

of the proposition are preserved by tf and tg if

t ∈ S := A \
(
f−1(Bp) ∪ g−1(Bp)

)
.

Note that if for example tf is constant, then Fp[t] → B, t 7→ f(t) factors over a subfield of B,
hence over the maximal such K ⊆ B. In that case t would be a p-th power in B. So asking
t ∈ S also guarantees that tf and tg are both not constant.

If the proposition holds for all such compositions tf, tg : Y → A1
Fp

, then f(t) = g(t) for all

t ∈ S. Since S is the complement in A by two proper Fp-subvector spaces, the set S generates A
as an Fp-algebra. This reduces the proof of the proposition to the case X = A1

Fp
= Spec

(
Fp[t]

)
.

By assumption all Fp-torsors C → A1
Fp

pull back with f∗ and g∗ to isomorphic torsors. We

apply this to the Artin-Schreier torsor and also its pullback via t 7→ tn, i.e, the torsor tn = x−xp.
That isomorphism of torsors is expressed by the existence of hn ∈ B for each n ≥ 1 such that

fn − gn = hn − (hn)p. (4.4)

We factor f, g : Y → A1
Fp

as K-linear maps ϕ, γ : Y → A1
K followed by the projection A1

K →
A1

Fp
. Still dϕ = ϕ∗dt and dγ = γ∗dt are non-zero and (4.4) holds for f = ϕ and g = γ in B.

We now compactifiy Y to a smooth projective curve Y and extend the maps to ϕ, γ : Y → P1
K .

Since ϕ is not constant, we may look at the local field K((T )) at a closed point y ∈ Y where ϕ

has a pole. Here Proposition 4.1 applies and yields a, b ≥ 0 with fp
a

= gp
b
. Since df and dg are

both non-zero, we may cancel powers of p on both sides until none remain and so f = g. �
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