

Algebraische und topologische Methoden in der Diskreten Mathematik http://tinygu.de/AlgTopDM20

3. Übungsblatt — Besprechung 11. Januar 2020 per Email an manecke@math.uni-frankfurt.de Falls Sie einen Hinweis zu einer Aufgabe benötigen, fragen Sie uns.

Aufgabe 1. i) Sei

$$M \; \coloneqq \; \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right) \; ,$$

wobei $A\in\mathbb{R}^{m\times m},D\in\mathbb{R}^{n\times n}$ und D invertierbar ist. Zeigen Sie, dass für $D'\coloneqq A-BD^{-1}C$ gilt:

$$\det M = \det D \cdot \det D'.$$

Hinweis: Finden Sie Matrizen X und Y, so dass

$$M \ = \ X \cdot \left(\begin{array}{c|c} D' & 0 \\ \hline 0 & D \end{array} \right) \cdot Y \, .$$

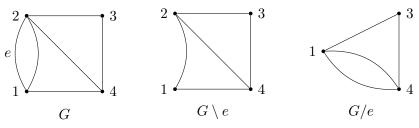
ii) Sei $K_{m,n}$ der vollständig bipartite Graph. Bestimmen Sie $\chi(L_0(K_{m,n});t)$ und $\kappa(K_{m,n})$.

Aufgabe 2. Zeigen Sie das folgende Lemma aus der Vorlesung:

Sei G=(V,E) ein einfacher Graph mit |V|=n und sei $I\subseteq E$, |I|=n-1.

- (a) Wenn (V,I) einen Kreis hat, dann ist $\det M_0(G,\sigma)_{ullet,I}=0.$
- (b) Wenn (V,I) ein Baum ist, dann ist $\det M_0(G,\sigma)_{ullet,I}=\pm 1.$

Aufgabe 3. Sei G ein Graph, evtl. mit Mehrfachkanten, aber ohne Schleifen. Sei e eine Kante von u nach v in G. Die **Löschung** $G \setminus e$ erhält man aus G durch Entfernen von e. Die **Kontraktion** G/e entsteht, in dem man den Knoten v löscht und alle Kanten von v nach v' mit $v' \neq u$ in G durch Kanten von u nach v' ersetzt. Beachten Sie, dass $G \setminus e$ und G/e wieder Graphen ohne Schleifen sind, wie das folgende Beispiel illustriert:



- i) Zeigen Sie, dass $\kappa(G) = \kappa(G \setminus e) + \kappa(G/e)$.
- ii) Die Laplace Matrix $L(G) \in \mathbb{R}^{V \times V}$ von G ist wieder wie folgt gegeben

$$L(G)_{u,v} \coloneqq \begin{cases} \# \text{ Kanten inzident zu } v & \text{falls } u = v \\ -\# \text{ Kanten von } u \text{ to } v & \text{falls } u \neq v \end{cases}$$

Zeigen Sie direkt, dass $\det L_0(G) = \det L_0(G \setminus e) + \det L_0(G/e)$ und folgern sie das Matrix-Tree Theorem.

Hinweis: Nehmen Sie an, dass u der "letzte" und v der "vorletzte" Knoten ist

Aufgabe 4. (Herausforderung) Sei $p \geq 5$ und sei G_p der Graph mit Eckenmenge \mathbb{Z}_p und Kanten $\{i,i+1\}$ sowie i,i+2 für $i \in \mathbb{Z}_p$; G_p hat also 2p Kanten. Zeigen Sie, dass $\kappa(G_p) = p \cdot F_p^2$, wobei F_p die p-te Fibonacci Zahl ist $(F_1 = F_2 = 1, F_{p+2} = F_{p+1} + F_p$ für $p \geq 1)$.