

WiSe 2019/20 Prof. Dr. Raman Sanyal Sebastian Manecke

Bewertungen

http://tinygu.de/VL-Bew19

5. Übungsblatt — Besprechung am 20. Januar 2020

- **Exercise 1.** Let S, T be *d*-simplices such that $S \cup T \in \mathcal{T}^d$, the set of all simplices in \mathbb{R}^d . Show that S, T and $S \cap T$ are the parts of an elementary move of $S \cup T$.
- **Exercise 2.** Let $Q \subset \mathbb{R}^d$ be a polyhedron and $p \in \mathbb{R}^d$. Show the following properties of the tangent cone:
 - (a) $T_pQ = \emptyset \iff p \notin Q$.
 - (b) Let $F \subseteq Q$ be a face. Then T_pF is a face of T_pQ .
 - (c) Let Q, Q' be two polyhedra. Then $T_p(Q \cap Q') = (T_pQ) \cap (T_pQ')$.
- **Exercise 3.** i) For $c \in \mathbb{R}^d$ and a polyhedron $Q \subseteq \mathbb{R}^d$, let $Q^c := \{x \in Q : c^t x \ge c^t y \text{ for all } y \in Q\}$ be the (possibly empty) face of Q which maximizes c. Show, that the map $F_c : Q^d \to \operatorname{Ch}(Q^d)$ given by $Q \mapsto [Q^c]$ is a valuation.
 - ii) Let $P, Q \subset \mathbb{R}^2$ be polytopes of dimension ≤ 2 . We write $P \sim Q$ if there are polytopes $R_i \in \mathcal{P}^2$ and $a_i \in \mathbb{Z}$ such that

$$[P] = \sum_{i=1}^{m} a_i[R_i]$$
 and $[Q] = \sum_{i=1}^{m} a_i[t_i + R_i]$

for some $t_i \in \mathbb{R}^2$. Show that $P \sim Q$ if and only if P = Q + t.

- **Exercise 4.** A lattice polytope in the plane is a polytope $P \subset \mathbb{R}^2$ of the form $P = \operatorname{conv}(V)$ for $V \subset \mathbb{Z}^2$. A lattice simplex P of dimension ≤ 2 is unimodular if its vertices are the only lattice points in P.
 - i) Show that for any unimodular lattice simplex $S\subseteq \mathbb{Z}^2$ of dimension $d\leq 2$ one has for all $t\in \mathbb{Z}_{\geq 0}$

$$|tS \cap \mathbb{Z}^2| = \binom{t+1}{d}.$$

- ii) Show that any lattice polygon P has a triangulation into unimodular simplices (that is, points, segments, and triangles).
- iii) Conclude that $E_P(t) := |t \cdot P \cap \mathbb{Z}^2|$ agrees with a polynomial in t of degree ≤ 2 . It is called the **Ehrhart polynomial**.
- iv) Show Pick's Theorem: For any lattice polygon with b lattice points on the boundary and i lattice points in the interior one has

$$vol(P) = i + \frac{b}{2} - 1.$$

First, show that a two dimensional unimodular simplex has volume $\frac{1}{2}$.

v) A unimodular transformation has the form f(x) = Ax + t where $t \in \mathbb{Z}^2$ and $A \in \mathbb{Z}^{2 \times 2}$ such that $\det(A) = \pm 1$. Call two lattice polygons P, P'scissor congruent, if they can be partitioned into relatively open lattice simplices S_1, \ldots, S_m and S'_1, \ldots, S'_m such that $S_i = f_i(S'_i)$ for some unimodular transformation f_i . Show that this is precisely the case if P and P'have the same Ehrhart polynomial.