

Geometrische und algebraische Methoden in der Kombinatorik

9. Übungsblatt — Abgabe 24. Januar

Aufgabe 1. \blacksquare Sei G = ([d], E) ein Graph und

$$Z_G = \sum_{\substack{i < j \\ ij \in E}} [e_i, e_j]$$

das zugehörige graphische Zonotop.

i) Sei G zusammenhängend und sei $H=\{x\in\mathbb{R}^d:a^tx=b\}$ eine Hyperebene so dass $Z_G\subseteq H$. Zeige, dass H die Hyperebene $\{x:x_1+\cdots+x_d=1\}$ ist. (Daraus folgt dann, dass $\dim Z_G=d-1$ ist.)

Eine Orientierung von G lässt sich kodieren durch eine Menge $\sigma \subseteq E$. Die Orientierung einer Kante $ij \in E$ mit i < j ist $j \to i$ falls $ij \in \sigma$ und $i \to j$ sonst¹.

ii) Zeige, dass wenn $\sigma \subseteq E$ eine azyklische Orientierung ist, dann gibt es Zahlen $l_1, \ldots, l_d \in \mathbb{R}$ so dass für $ij \in E$ mit i < j gilt:

$$ij \in \sigma \iff l_i > l_j.$$

iii) Zeige, dass σ eine azyklische Orientierung ist genau dann, wenn

$$\sum_{\substack{i < j \\ ij \in E \setminus \sigma}} e_j + \sum_{\substack{i < j \\ ij \in \sigma}} e_i$$

eine Ecke von Z_G ist.

Aufgabe 2. \blacksquare Sei $Z = [0, a_1] + \cdots + [0, a_m] \subset \mathbb{R}^d$ ein voll-dimensionales Zonotop.

$$S := \{ p \in Z : p + \varepsilon e_d \not\in Z \text{ für alle } \varepsilon > 0 \}$$

mit $e_d = (0, \dots, 0, 1)$.

- i) Sei $q\in Z+[0,e_d]$. Zeige, dass entweder $q\in Z$ oder $p=p+\lambda e_d$ für ein $p\in S$ und $0<\lambda\leq 1$. (Daraus folgt, dass $\mathrm{vol}(Z+[0,e_d])=\mathrm{vol}(Z)+\mathrm{vol}(S+[0,e_d])$.)
- ii) Sei $\pi: \mathbb{R}^d \to \mathbb{R}^d$ die orthgonale Projektion $\pi(x', x_d) = (x', 0)$. Zeige, dass π eine Bijektion zwischen S und $\pi(S)$ ist. (Mit etwas mehr Arbeit folgt daraus, dass $\operatorname{vol}_d(S + [0, e_d]) = \operatorname{vol}_{d-1}(\pi(S))$.)
- iii) Optional: Sei Z'=Z+[0,a] für ein beliebiges $a\neq 0$. Sei Z'' die orthogonale Projektion von Z auf auf $a^{\perp}=\{x:a^tx=0\}$. Zeige, dass

$$\operatorname{vol}_d(Z') = \operatorname{vol}_d(Z) + ||a|| \cdot \operatorname{vol}_{d-1}(Z'').$$

 $^{^1}$ Anders ausgedrückt: Kanten sind standardmäßig von kleinen Index zu großem Index orientiert und σ merkt sich die Ausnahmen.