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↓ 1. Vorlesung, 22.4.2025 ↓
We write N = Z≥0 = {0, 1, . . . }, P = Z>0 = {1, 2, . . . },
[n] = {1, 2, . . . , n} and [a, b] = {a, a+ 1, . . . , b}.

1. A motivation

1.1. Coloring graphs and partially ordered sets. Let G = (V,E) be an undirected graph. A k-
coloring is a map c : V → [k] such that c(u) 6= c(v) for all edges uv ∈ E. Define χG(k) as the number
of k-colorings of G. The function χG : P → Z≥0 was defined by Birkhoff in the hope of proving the
4-color theorem: If G is planar, then χG(4) > 0. The reason why this might be a promising approach
is that χG is a nice function.

Proposition 1.1 (Birkhoff). Let G be a graph with n nodes. Then there are w0, . . . , wn ∈ Z such that

χG(k) = wnk
n + wn−1k

n−1 + · · ·+ w1k + w0

for all k ∈ P.

We identify χG with this polynomial and write

χG(t) = wnt
n + wn−1t

n−1 + · · ·+ w1t+ w0

where t is an indeterminate.

In order to prove this result, recall the Principle of Inclusion-Exclusion.

Theorem 1.2. Let S be a finite set and Ae ⊆ S subsets indexed by a finite set E. Then∣∣∣S \ ⋃
e∈E

Ae

∣∣∣ = |S|+
∑

∅6=I⊆E
(−1)|I|AI where AI :=

⋂
e∈I

Ae .
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This is easily proved by induction on |E| but we will look into conceptual proofs later.

To apply this to our situation, fix k ∈ P and let S = {c : V → [k]}. For an edge e = uv ∈ E define
Ae := {c ∈ S : c(u) = c(v)}. That is, Ae is the set of all labellings c : V → [k] that fail to be a coloring
(at least) at the edge e = uv. Thus the k-colorings are precisely S \

⋃
e∈E Ae.

For a fixed I ⊆ E, consider the graph G[I] := (V, I). By construction, AI is the set of c such that
c(u) = c(v) whenever u, v are nodes in the same connected component of G[I]. Define cc(I) to be the
number of connected components of G[I]. Then |AI | = kcc(I). Together this shows

χG(k) = kn +
∑

∅6=I⊆E
(−1)|I|kcc(I) . (1.1)

For the Petersen P10 graph this, for example, gives

χP10(t) = t10 − 15t9 + 105t8 − 455t7 + 1353t6 − 2861t5 + 4275t4 − 4305t3 + 2606t2 − 704t

Things to observe:

- the coefficients are integers (clear);
- degχG(t) = |V |, also clear, as cc(I) < |V | for I 6= ∅;
- coefficient of t|V | is 1 (clear);
- there is no constant term (think for a second),
- the coefficients alternate in sign (not clear!).

That’s a fact that we will prove later. For now, let us write χ+
G(t) = (−1)|V |χG(−t) for the polynomial

all whose coefficients are positive. What do the coefficients count with respect to G? How are the
individual coefficients related?

If we plot the coefficients of χ+
P10

, we get

This is not a coincidence. For a random graph with 20 nodes, the picture looks like this. Even stronger,
if we plot the logarithms of the coefficients, we see

A sequence a = (a0, a1, . . . , am) of positive integers is unimodal if there is an i such that a0 ≤ a1 ≤
· · · ≤ ai ≥ ai+1 ≥ · · · ≥ am. The sequence is a is log-concave if a2i ≥ ai−1ai+1 for all 0 < i < m.

Exercise 1.1. If a sequence a of positive integers is log-concave, then a is unimodal.

What we are seeing in the plots is that the sequence of absolute values of coefficients is log-concave
and hence unimodal. In particular, the individual entries are not independent of each other!

Example 1.1 (Complete graphs). Let Kn be the complete graph on nodes [n]. Coloring the nodes
one at a time, we see that the chromatic polynomial is simply χKn(t) = t(t−1)(t−2) · · · (t−n+1) and
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χ+
Kn

(t) = t(t+1) · · · (t+n−1). Recall that every permutation can be uniquely decomposed into cycles.
For example the permutation (τ(1), τ(2), τ(3)) = (3, 2, 1) has cycles (1, 3) and (2). The (unsigned)
Stirling number of the first kind s̄n,k counts the number of permutations with exactly k cycles.
For 0 < k ≤ n, they satisfy the recurrence relation

s̄n,k = s̄n−1,k−1 + (n− 1)s̄n−1,k ,

and together with s̄n,1 = (n− 1)! and s̄n,0 = 0, ones verifies that

χ+
Kn

(t) = s̄n,nt
n + · · ·+ s̄n,2t

2 + s̄n,1t . �

Our derivation of χG(t) had 2|E| terms to produce a polynomial with exactly |V | terms. So, there
has to be a better way to compute χG(t). A more insightful way is to observe that every I ⊆ E
defines an equivalence relation on V : call nodes u, v ∈ V equivalent if they are in the same connected
component of G[I]. This gives a decomposition V = V1 ] V2 ] · · · ] Vk into equivalence classes. We
call P (I) = {V1, . . . , Vk} an unordered partition of V and we write Par(G) := {P (I) : I ⊆ E}.
For I = ∅, we obtain P (∅) = {{v} : v ∈ V }. Note that cc(I) = |P (I)|, the number of parts of the
partition. So, as an intermediate step in our computation of (1.1) we get

χG(t) =
∑
I⊆E

(−1)|I|tcc(I) = χG(t) =
∑

P∈Par(G)

t|P |
∑
I⊆E

P (I)=P

(−1)|I| .

More generally, we write Parn for the collection of all unordered partitions of [n]. This is exactly the
unordered partitions that we get for the case G = Kn. An unordered partition P = {P1, . . . , Pk}
refines the unordered partition P ′ = {P ′1, . . . , P ′l } if for every i ∈ [k] there is a j ∈ [l] such that
Pi ⊆ P ′j . That is, the unordered partitions refining P ′ arise by replacing some P ′j by an unordered
partition of it. We also say that P ′ is a coarsening of P . ‘Refinement’ defines a partial order on Parn.
The following picture shows the partition lattice Par4. The unordered partitions are in black and we
read 23 | 1 | 4 as {{2, 3}, {1}, {4}}. The red lines indicate refinements but only the necessary ones!

Observe that {{1, 2, 3}, {4}} = P (I) for three sets I of cardinality 2 and one set I with |I| = 3. This
explains the blue labels 3×2, 1×3. As for the orange numbers, this is

∑
I(−1)|I|, where the sum is over

those I that gives P (I). Thus, in the example above, the sum will be (−1)2+(−1)2+(−1)2+(−1)3 = 2.
The chromatic polynomial for K4 thus gives

χK4(t) = 1t4 − 6t3 + 11t2 − 6t .

The ? is for you to determine. However, we can still compute the orange number. The trick is this:
once we know the orange 1 at the bottom, we can go layer by layer. At every partition P the orange
number is the negative of all the orange numbers of partitions that refine P !

The collection of unordered partitions Par(G) = {P (I) : I ⊆ E} for a given graph G partially ordered
by refinement structurally captures what happens when computing the characteristic polynomial. Such
partially ordered sets, or posets for short give structure and guidance in many situations. As Gian-
Carlo Rota wrote
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It often happens that a set of objects to be counted possesses a natural ordering, in
general only a partial order. It may be unnatural to fit the enumeration of such a set
into a linear order such as the integers: instead, it turns out in a great many cases that
a more effective technique is to work with the natural order of the set. One is led in
this way to set up a “difference calculus” relative to an arbitrary partially ordered set.

He wrote this in the introduction to the seminal paper [3] in which he introduced the concept of a
Möbius function. The Möbius function is is related to the number theoretic Möbius function, gives a
vast generalization of the principle of inclusion-exclusion, and is responsible for the orange numbers
above. We will thoroughly study partially ordered sets, their Möbius functions, and how to compute
them. The partially ordered sets that we will be studying are motivated by combinatorics/discrete
math and geometry and will show beautiful connections to geometry/topology and algebra. Here are
some examples:

• Bn = (2[n],⊆), the collection of subsets of an n-set partially ordered by inclusion;
• Parn and Parn the collection of (un)ordered partitions of an n-set ordered by refinement;
• Permutations partially ordered by their inversion sets;
• (normal) subgroups of a given (finite) group ordered by inclusion;
• The collection Bn(q) of linear subspaces of Fnq , the n-dim vector space over the finite field Fq,
ordered by inclusion;
• Cliques or stable sets of a graph G, ordered by inclusion;
• Cycle-free subsets of edges of a graph G ordered by inclusion;
• Subsets of non-crossing diagonals of a convex n-gon ordered by inclusion.

We will see many more examples and, in particular, distill important types of posets.

↓ 2. Vorlesung, 24.4.2025 ↓

1.2. Simplicial complexes and the Upper Bound Conjecture. The last three examples together
with Bn they stand out: Let E be a finite set. A collection of subsets ∅ 6= ∆ ⊆ 2E is a hereditary
set system or a simplicial complex if for all τ ∈ ∆ and σ ⊆ τ we have σ ∈ ∆.

Example 1.2. Let G = (V,E) be a graph. A set K ⊆ V is a clique if for any distinct u, v ∈ K,
uv ∈ E. A set S ⊆ V is stable if for any distinct u, v ∈ K, uv 6∈ E. A subset F ⊆ F is cycle-free if
G[F ] does not contain cycles. Every subset of a clique (or stable set) in a graph is a clique (or stable
set). Every subset of a cycle-free subset is cycle-free. �

The property of being a clique or cycle-free is inherited under taking subsets. The name ‘simplicial
complex’ comes from a geometric/topological context. A geometric simplex is a point, a segment, a
triangle, a tetrahedron etc. A simplicial complex is a collection of simplices with the property that if
simplices meet, then their intersection is a face of both. We make this more precise later, but for now
these two pictures should convey the idea:

There is a clear IKEA-type gluing description of both simplicial complexes:
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A natural complexity measure of a simplicial complex is given by its face vector of f-vector. For
∆, fi(∆) counts the number of faces of dimension i ≥ −1. The empty set (at the bottom) is always a
face of dimension −1. For the left complex ∆1 this gives f(∆1) = (1, 7, 12, 8, 2) for the right complex
f(∆2) = (1, 6, 12, 8). As we will learn, often a better way to represent the information given by the
f-vector is in the form of the h-vector. The following shows how to compute them

The highlighted 6 is obtained as 7− 1 and this gives the complete set of rules to go from the f -vector
to the h-vector and back. Whereas the h-vector on the left-hand side does does not reveal more infor-
mation, the one on the right-hand side looks promising: it is non-negative and symmetric/palindromic.

Exercise 1.2. A simple graph G = (V,E) can be viewed as a simplicial complex ∆ = {∅}∪V ∪E. The
f -vector is just f(∆) = (1, |V |, |E|). Classify when h(∆) is non-negative and when it is palindromic.

For geometrically/topologically interesting classes of simplicial complexes the h-vector will always be
non-negative and palindromic! The vague answer we give here is that the right complex resembles a
sphere whereas the left one does not. In fact, the right complex is the unit sphere in the `1-norm
but we mean that it resembles a sphere in a topological sense, independent of how the complex is
geometrically realized.

Theorem 1.3. Let ∆ be a simplicial complex with h(∆) = (h0, . . . , hd). If ∆ is topologically a sphere,
then h0, . . . , hd ≥ 0 and hi = hd−i.

Thus geometric/topological objects give rise to posets whose invariants (f -vectors, h-vectors) we can
combinatorially interpret. Conversely, we will associate to any poset a geometric/topological object
whose geometric/topological features will explain certain combinatorial information. For example, for
the partition lattice, we will see that we can associate to it the following simplicial complex

This is a complex glued from 6 triangles with f -vector (1, 6, 11, 6). These are precisely the coefficients
of the chromatic polynomial χ+

K4
(t). We will see that the entries of the f -vector have to satisfy certain

conditions and this automatically gives conditions on the coefficients of χG(t).

A highlight of the course will be a resolution of the Upper Bound Conjecture for spheres. Suppose ∆
is topologically a sphere of dimension d− 1. What is the maximal number of i-dimensional faces, that
is, what is the maximal fi(∆) for a fixed number of vertices f0(∆)? Motzkin constructed geometric
spheres, so-called neighborly spheres, for which he conjectured that they maximize the number of i-
dimensional faces for all i simultaneously among all geometric/convex spheres. McMullen [2] proved
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Motzkin’s Upper Bound Conjecture for convex spheres (that is, simplicial polytopes). There, he
introduced the notion of an h-vector. Victor Klee [1] suggested to extend the UBC to all spheres
and Richard Stanley [4] combined ideas from combinatorics, topology, and commutative algebra in a
spectacular way to resolve the UBC for spheres.

Theorem 1.4. Let ∆ be a (d−1)-dimensional simplicial sphere with n vertices and h(∆) = (h0, . . . , hd).
Then hi = hd−i and

hi ≤
(
n− d− 1 + i

i

)
for all i. If equality is attained for i = bd2c, then ∆ is a neighborly sphere.

1.3. Polynomials and Hilbert series. To give an idea of the sort of algebra that we will be using,
recall that a polynomial in a single variable t with coefficients in C is an expression of the form

cdt
d + cd−1t

d−1 + · · ·+ c1t+ c0t
0

The collection of all such polynomials is denoted by C[t]. This is a C-vector space and the fact that
polynomials can be multiplied along the rules titj = ti+j turns C[t] into a or C-algebra.
We may extend this to polynomials in many variables. For n ≥ 1, let x1, . . . , xn indeterminates. For
α = (α1, . . . , αn) ∈ Zn≥0, we write xα = xα1

1 xα2
2 · · ·xαn

n . A multi-variate polynomial is then∑
α∈A

cαx
α

where A ⊂ Zn≥0 is a finite set and cα ∈ C for all α ∈ A. Again, polynomials form a C-vector space
and together with multiplication xα · xβ = xα+β give the ring of polynomials C[x] = C[x1, . . . , xn].
The degree of a monomial is degxα = |α| = α1 + · · · + αn. We write C[x]d for the subvector space
spanned by monomials of degree d. Elementary combinatorics shows that the vector space dimension is
dimCC[x]d =

(
n+d−1

d

)
. The Hilbert series is the generating function that incorporates the dimensions:

H(C[x], z) =
∑
d≥0

dimCC[x]dz
d =

∑
d≥0

(
n+d−1

d

)
zd =

1

(1− z)d+1
.

Now let us consider C[x1, . . . , x6] together with the conditions xα = 0 if xα is divisible by x1x4,
x2x5, or x3x6. For a monomial xα, the support is supp(xα) = {i : αi > 0}. Thinking back to our
example of the octahedron on page 4, we can express this condition as xα = 0 whenever supp(xα) 6∈ ∆.
Thus, we somehow encoded the combinatorics of ∆ into polynomials. Our conditions are compatible
with multiplication and give a new ring C[∆] whose elements can still be expressed by monomials
in x1, . . . , x6. Moreover, for d ≥ 0, we can define C[∆]d = C-span{xα ∈ C[x]d : supp(xα) ∈ ∆}.
Computing the Hilbert series now yields

H(C[∆], z) =
∑
d≥0

dimCC[∆]dz
d =

1 + 3z + 3z2 + z3

(1− z)4

It is not a coincidence that the numerator polynomial is exactly the h-vector of ∆!

Let us further add the conditions x1 = x4, x2 = x5, x3 = x6. So, every time we see an x4, we may
replace it by x1. In particular, the condition x1x4 = 0 can be read as x21 = 0. This gives us a new ring
R obtained from C[x1, x2, x3] with the conditions x2i = 0. This is quite a simple ring. As a C vector
space R has the basis 1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3 and hence models all subsets of [3]. We can
do this more general, for n ≥ 1, let R be the C-vector space with basis xτ =

∏
i∈τ xi for all subsets

τ ⊆ [n]. If τ = ∅, then xτ = 1. We define a multiplication on R by setting xτ ·xσ = xτ∪σ if τ ∩σ = ∅
and xτ · xσ = 0 if τ ∩ σ 6= ∅. We can write R = R0 ⊕R1 ⊕ · · · ⊕Rn where Ri = C-span{xτ : |τ | = i}.
In particular, dimRi =

(
n
i

)
. Its Hilbert series satisfies

H(R, z) =
∑
d≥0

dimCRiz
i =

d∑
i=0

(
n
i

)
zi = (1 + z)n .

We can now algebraically argue that
(
n
i

)
=
(
n
n−i
)
. We first note that Rn ∼= C. Thus, for any fixed i,

multiplication gives a bilinear form Bi : Ri×Rn−i → C. For fixed f ∈ Ri, the map Rn−i 3 g 7→ B(f, g)
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is a linear function on Rn−i. If we can show that f 7→ B(f, ·) is injective, then we have shown dimRi ≤
dimRn−i (why?). Applying the same reasoning to g 7→ B(·, g), then proves dimRi = dimRn−i. That’s
unnecessarily difficult when it comes to binomial coefficients but in general that’s the way to go.

This perspective also suggests a way to show that
(
n
i

)
≤
(
n
i+1

)
for i ≤ bn2 c. We will show that for

ω = x1 + x2 + · · · + xn, the linear map Ri → Ri+1 given by f 7→ ω · f is injective whenever i ≤ bn2 c
and surjective otherwise. Injectivity, of course, then implies

(
n
i

)
= dimCRi ≤ dimCRi+1 =

(
n
i+1

)
.

↓ 3. Vorlesung, 29.4.2025 ↓

2. Partially ordered sets

We start with partially ordered sets.

Definition 2.1. A partially ordered set (or poset) is a pair (P,�) where P is a set and � is a
binary relation satisfying

• a � a for all a ∈ P (Reflexivity)
• a � b and b � c implies a � c for all a, b, c ∈ P (Transitivity)
• a � b and b � a implies a = b for all a, b ∈ P (Anti-symmetry)

We usually call P the poset when � is clear from the context and we write �P to emphasize the
relation to the ground set P . We call two elements a, b ∈ P comparable if a � b or b � a. We say
that b covers a or a is covered by b if a ≺ b and there is no c with a ≺ c ≺ b. In this case we write
a ≺• b. Note that our posets are not necessarily finite and cover relations need not exist.

For two elements a, b ∈ P , the interval is [a, b]P = {c ∈ P : a � c � b}. This is an induced subposet
of P by restricting � to [a, b]P . Note that [a, b]P = ∅ if a 6� b. We call poset locally-finite if [a, b]P
is finite for every a, b ∈ P . If P is locally-finite, we can encode � by a directed graph (digraph) on
the node set P with a directed edge (a, b) if a ≺• b. This is an acyclic1 digraph and a � b if there is a
path a = a0a1 . . . ak = b such that (ai−1, ai) is a directed edge for i = 1, . . . , k. We may visualize this
digraph by a drawing in the plane for which the edges (a, b) have positive slope. Thus b � a if there
is a path from b to a with monotonically decreasing y-coordinate. Such as drawing is called a Hasse
diagram. Here are three examples:

An element a ∈ P is maximal if there is no b ∈ P with a ≺ b. Minimal elements are defined
accordingly. We write min(P ) and max(P ) for the minimal an maximal elements. The poset has a
maximum if there is m ∈ P with a � m for all a ∈ P . Note that every maximum is maximal but not
necessarily the other way round!

If a maximum exists, it is necessarily unique and denoted by 1̂. All but the right-most poset in the
figure above have a maximum. A minimum, provided it exists, is denoted by 0̂. Note that if [a, b]P 6= ∅,
then a and b are minimum and maximum, respectively.

A homomorphism or order-preserving map between to posets (P1,�1) and (P2,�2) and is a map
f : P1 → P2 such that

a �1 b =⇒ f(a) �2 f(b)

is satisfied for all a, b ∈ P1. If f is a bijection and f−1 is also order-preserving, then P1 and P2 are
isomorphic, denoted by P1

∼= P2.

1No directed cycles



8 RAMAN SANYAL

A subset C ⊆ P is called a totally ordered, linearly ordered or simply a chain if any two elements
in C are comparable. If C is finite then there is a labelling of the elements C = {a0, a1, . . . , ak} such
that a0 ≺ a1 ≺ · · · ≺ ak. Then length of a finite chain is `(C) = |C| − 1, the number of ‘links’ in
a chain. A chain is saturated or unrefineable if for any three elements a ≺ b ≺ c we have that
a, c ∈ C implies b ∈ C. If C is finite, then this is equivalent to ai−1 ≺• ai for i = 1, . . . , k. The chain C
is maximal if there is no chain C ′ with C ⊂ C ′. Thus, maximal chains are saturated but the converse
is not true in general.

The rank r(P ) of a poset P is the maximal length of a chain. For a, b ∈ P , we will write `P (a, b) =
r([a, b]P ). We simply write `(a, b) if P is clear from the context. A poset P is graded if all maximal
chains have the same (finite) length r(P ). If P is graded, then there is a unique function r : P → Z≥0
called the rank function with with r(a) = 0 for all a ∈ min(P ) and r(b) = r(a) + 1 for a ≺• b. If P
is finite, then the distribution of ranks is recorded by the rank-generating function

F (P, t) =
∑
a∈P

tr(a) = p0 + p1t
1 + · · ·+ prt

r ,

where pi = #{a ∈ P : r(a) = i} and r = r(P ).

Example 2.1 (Chains and Anti-chains). The prototypical chain of length n is the set [n] := {1, . . . , n}
together with the natural order. We call Cn = ([n],≤) the chain with n elements. Thus C ⊂ P is
an n-chain if the induced subposet C is isomorphic to [n]. Chains are clearly ranked posets with
rank-generating function

F ([n], q) = 1 + q + q2 + · · ·+ qn−1 =: (n)q .

We call the polynomial (n)q a ‘q-analogue’ of the number n.

The conceptual opposite of a chain is a set A ⊆ P such that any two distinct elements in A are
incomparable. Such a set is called an anti-chain. This is a graded poset with F (A, t) = |A|t0. �

Example 2.2 (Boolean lattice). For any set S, the Boolean lattice is the poset on 2S = {T : T ⊆ S}
partially ordered by inclusion. We write Bn = (2[n],⊆) and note that (2S ,⊆) ∼= Bn if |S| = n. The
Boolean lattice has minimum 0̂ = ∅ and maximum 1̂ = S. For A ⊆ B, we observe [A,B] ∼= (2B\A,⊆).
In particular, A ≺• B if |B \A| = 1. Here is B3:

Hence, Bn is graded with r(A) = |A|. The rank-generating function satisfies

F (Bn, q) =

n∑
i=0

(
n

i

)
tq = (1 + q)n .

There is a close connection between Bn and permutations. A maximal chain in Bn is of the form
∅ = S0 ⊂ S1 ⊂ · · ·Sn−1 ⊂ Sn = [n]. In particular Si \ Si−1 = {ai} for a ai ∈ [n]. Since ai 6= aj for
i 6= j, this defines a permutation i 7→ ai. Hence, maximal chains in Bn are in one-to-one correspondence
with permutations of [n]. In the example, the permutations can be read from the red numbers on the
cover relations. �

Example 2.3 (Divisibility). For n ∈ Z>0, define the Dn as the set of a ∈ Z>0 with a divides n. We
partially order Dn by setting a � b if there is a k ∈ Z>0 such that b = ka. It has a minimum 0̂ = 1
and maximum 1̂ = n. Here is D12:
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Note that for a ≺ b in Dn, we have [a, b] ∼= Db/a. In particular a ≺• b if and only if b
a is prime. It

follows from the Fundamental Theorem of Arithmetic that Dn is graded. The rank of Dn is r(Dn) =

k1 + k2 + · · · + ks n = pk11 p
k2
2 · · · pkss where p1, . . . , ps are the distinct prime factors. To compute the

rank-generating function, we observe that any a ∈ Dn is of the form a = pl11 p
l2
2 · · · plss for 0 ≤ li ≤ ki

and has rank r(a) = l1 + · · ·+ ls. It is now easy to check that

F (Dn, q) =
s∏
i=1

(ki + 1)q . �

The above example prompts for a simple construction on posets. For two posets (P1,�1), (P2,�2)
define the direct/Cartesian product as the partial order on P1 × P2 by

(a1, a2) � (b1, b2) :⇐⇒ a1 �1 b1 and a2 �2 b2 .

It is straightforward to verify that (P1 × P2,�) is a graded poset whenever P1 and P2 are. The
rank-generating function satisfies

F (P1 × P2, t) = F (P1, t)F (P2, t)

If n = pk11 p
k2
2 · · · pkss , then

Dn ∼= [k1 + 1]× [k2 + 1]× · · · × [ks + 1] .

By the same token, we get Bn ∼= ([2],≤)n, where we identify subsets A ⊆ [n] with vectors vA ∈ [2]n

with (vA)i = 2 if and only if i ∈ A.

Example 2.4 (Lattice of subspaces). Let Fnq be the n-dimensional vector space over Fq, the finite
field with q elements. Write Bn(q) for the collection of vector subspaces of Fnq , partially ordered by
inclusion. This is a finite poset with minimum 0̂ = {0}, where 0 ∈ Fnq is the zero vector and maximal
element 1̂ = Fnq . For two subspaces U ⊆ W , basic linear algebra tells us that the subspaces V ⊆ Fnq
with U ⊆ V ⊆ W are precisely the subspaces of the quotient W/U ∼= Fkq with k = dimW − dimU .
Since the isomorphism retains inclusions, we obtain [U,W ]Bn(q)

∼= Bk(q). From this, we get that Bn(q)
is a graded poset with rank function r(U) = dimU .

The poset Bn(q) is called a ‘q-analogue’ of Bn = (2[n],⊆) for reasons that are difficult to make precise.
In essence, it means that many of its enumerative invariants are polynomials in q whose specializations
q = 1 yield respective invariants for Bn. For example, a 1-dimensional subspace L ⊂ Fnq is the span of
a vector v ∈ Fnq \ {0} and a · v spans L for all a ∈ Fq \ {0}. It follows that that there are qn− 1 choices
of v and

qn − 1

q − 1
= 1 + q + q2 + · · ·+ qn−1 = (n)q

many distinct lines in Fnq . Now a subspace U is covered by W if U ⊂ W and W/U is 1-dimensional.
Hence if we want to construct a maximal chain in Bq(n), we start with V0 = {0}. For i = 1, . . . , n we
now choose a line Vi ⊂ Fnq /Vi−1. Since dimVi = i, we have (i)q many choice. In total, the number of
maximal chains is

(n)q(n− 1)q · · · (2)q(1)q =: (n)q!

Of course, there is no finite field with q = 1 elements but the above formula still makes sense and yields
a q-analogue of the factorial n! = n · (n− 1) · · · 2 · 1.
To count the number of elements of Bn(q) of rank k, that is, the number of k-dimensional subspaces
of Fnq , let us count for a fixed k-subspace U the number of maximal chains V∗ with Vk = U . This is
easy, because we simply need to count the maximal chains in [U, 1̂] ∼= Bn−k(q) and the maximal chains
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in [0̂, U ] ∼= Bk(q). This is this gives exactly (n− k)q(k)q such chains, independent of the actual choice
of U . Thus, the number of k-subspaces is precisely

(n)q
(n− k)q(k)q

=:

(
n

k

)
q

,

which is a q-analog of the binomial coefficient, also called a Gaussian polynomial. Pleasantly, we
obtain

(
n
k

)
for q = 1. The rank-generating function for Bn(q) is thus

F (Bn(q), t) =
n∑
k=0

(
n

k

)
q

tk . �

2.1. Lattices. For two elements a, b in a poset P , a least upper bound or supremum is an element
c such that a � c and b � c and for every c′ with these properties satisfies c � c′. Least upper bounds
do not need to exist but if they do, they are unique. We denote them by a ∨ b := c and call a ∨ b the
join of a and b. For example if P = 2[n] then the join of A,B ⊆ [n] is clearly A ∪B and the notation
derives from there. Dually, if the set {c ∈ P : c � a, c � b} has a unique maximum, it is called the
infimum of meet of a and b and is denoted by a ∧ b. This is consistent with A ∧ B = A ∩ B. If
any two elements in P have a meet, then we call (P,�) a meet-semilattice. Likewise, we define
join-semilattices as those posets in which all joins exist. Lastly, if meets and joins exist, we call
(P,�) a lattice.

(Semi)lattices play an important role and most of the examples in the last section are lattices. For
example, in Dn, we have that a ∧ b is the greatest common divisor whereas a ∨ b is the least common
multiple. For Bn(q) it is obvious that U ∩ V is the largest subspace contained in U and V and hence
U ∧ V = U ∩ V . In this case, we can abstractly show that joins have to exist as well.

Lemma 2.2. Let (P,�) be a meet-semilattice with maximum 1̂. Then P is a lattice.

Proof. For a, b ∈ P consider the set S = {p ∈ P : a � c, b � c}. Since 1̂ ∈ S, S is not empty and one
verifies that c =

∧
p∈S p is the join of a and b. �

The three Hasse diagrams in the previous sections depict two lattices and one semilattice.

Note that we can recover the partial order relation on a lattice (L,�) from either meets or joins:

a � b =⇒ a = a ∧ b =⇒ b = a ∨ b .
On the other hand, meet and join give binary operations ∧ : L× L→ L, ∨ : L× L→ L with certain
properties:

Proposition 2.3. For any a, b, c in a lattice L, the following are satisfied:

(L1) a ∧ a = a = a ∨ a, (Idempotency)
(L2) a ∧ b = b ∧ a, a ∨ b = b ∨ a (Commutativity)
(L3) (a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c) (Associativity)
(L4) a ∧ (a ∨ b) = a and b = b ∨ (a ∧ b) (Absorption)

The following result, whose proof we leave as an exercise, states that L1–L4 characterize lattices.

Theorem 2.4. Let L be a (finite) set with binary operations ∧ and ∨ that satisfy (L1)–(L4) above.
Then a � b :⇔ a = a ∧ b defines a partial order on L for with meets and joins given by ∧ and ∨
respectively.

Exercise 2.1. Proof Theorem 2.4.
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