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↓ 1. Vorlesung, 12.4.2022 ↓
We write N = Z≥0 = {0, 1, . . . }, P = Z>0 = {1, 2, . . . },
[n] = {1, 2, . . . , n} and [a, b] = {a, a+ 1, . . . , b}.

1. A motivation

1.1. Coloring graphs and partially ordered sets. Let G = (V,E) be an undirected graph. A k-
coloring is a map c : V → [k] such that c(u) 6= c(v) for all edges uv ∈ E. Define χG(k) as the number
of k-colorings of G. The function χG : P → Z≥0 was defined by Birkhoff in the hope of proving the
4-color theorem: If G is planar, then χG(4) > 0. The reason why this might be a promising approach
is that χG is a nice function.

Date: June 14, 2022.
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Proposition 1.1 (Birkhoff). Let G be a graph with n nodes. Then there are w0, . . . , wn ∈ Z such that

χG(k) = wnk
n + wn−1k

n−1 + · · ·+ w1k + w0

for all k ∈ P.

We identify χG with this polynomial and write

χG(t) = wnt
n + wn−1t

n−1 + · · ·+ w1t+ w0

where t is an indeterminate.

In order to prove this result, recall the Principle of Inclusion-Exclusion.

Theorem 1.2. Let S be a finite set and Ae ⊆ S subsets indexed by a finite set E. Then∣∣∣S \ ⋃
e∈E

Ae

∣∣∣ = |S|+
∑

∅6=I⊆E
(−1)|I|AI where AI :=

⋂
e∈I

Ae .

This is easily proved by induction on |E| but we will look into conceptual proofs later.

To apply this to our situation, fix k ∈ P and let S = {c : V → [k]}. For an edge e = uv ∈ E define
Ae := {c ∈ S : c(u) = c(v)}. That is, Ae is the set of all labellings c : V → [k] that fail to be a coloring
at the edge e = uv. Thus the k-colorings are precisely S \

⋃
e∈E Ae.

For a fixed I ⊆ E, consider the graph G[I] := (V, I). By construction, AI is the set of c such that
c(u) = c(v) whenever u, v are nodes in the same connected component of (V, I). Define cc(I) to be the
number of connected components of G[I]. Then |AI | = kcc(I). Together this shows

χG(k) = kn +
∑

∅6=I⊆E
(−1)|I|kcc(I) (1.1)

For the Petersen P10 graph this, for example, gives

χP10(t) = t10 − 15t9 + 105t8 − 455t7 + 1353t6 − 2861t5 + 4275t4 − 4305t3 + 2606t2 − 704t

Things to observe:

- the coefficients are integers (clear);
- degχG(t) = |V |, also clear, as cc(I) < |V | for I 6= ∅;
- coefficient of t|V | is 1 (clear);
- there is no constant term (think for a second),
- the coefficients alternate in sign (not clear!).

That’s a fact that we will prove later. For now, let us write χ+
G(t) = (−1)|V |χG(−t) for the polynomial

all whose coefficients are positive. What do the coefficients count with respect to G? How are the
individual coefficients related?

If we plot the coefficients of χ+
P10

, we get

This is not a coincidence. For a random graph with 20 nodes, the picture looks like this. Even stronger,
if we plot the logarithms of the coefficients, we see
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A sequence a = (a0, a1, . . . , am) of positive integers is unimodal if there is an i such that a0 ≤ a1 ≤
· · · ≤ ai ≥ ai+1 ≥ · · · ≥ am. The sequence is a is log concave if a2

i ≥ ai−1ai+1 for all 0 < i < m.

Exercise 1.1. If a sequence a of positive integers is log-concave, then a is unimodal.

What we are seeing in the plots is that the sequence of absolute values of coefficients is log-concave
and hence unimodal. In particular, the individual entries are not independent of each other!

Example 1.1 (Complete graphs). Let Kn be the complete graph on nodes [n]. Coloring the nodes
one at a time, we see that the chromatic polynomial is simply χKn(t) = t(t−1)(t−2) · · · (t−n+1) and
χ+
Kn

(t) = t(t+1) · · · (t+n−1). Recall that every permutation can be uniquely decomposed into cycles.
For example the permutation (τ(1), τ(2), τ(3)) = (3, 2, 1) has cycles (1, 3) and (2). The (unsigned)
Stirling number of the first kind s̄n,k counts the number of permutations with exactly k cycles.
For 0 < k ≤ n, they satisfy the recurrence relation

s̄n,k = s̄n−1,k−1 + (n− 1)s̄n−1,k

and together with s̄n,1 = (n− 1)! and s̄n,0 = 0, ones verifies that

χ+
Kn

(t) = s̄n,nt
n + · · ·+ s̄n,2t

2 + s̄n,1t

Our derivation of χG(t) had 2|E| terms to produce a polynomial with exactly |V | terms. So, there
has to be a better way to compute χG(t). A more insightful way is to observe that every I ⊆ E
defines an equivalence relation on V : call nodes u, v ∈ V equivalent if they are in the same connected
component of G[I]. This gives a decomposition V = V1 ] V2 ] · · · ] Vk into equivalence classes. We
call P (I) = {V1, . . . , Vk} an unordered partition of V and we write Par(G) := {P (I) : I ⊆ E}.
For I = ∅, we obtain P (∅) = {{v} : v ∈ V }. Note that cc(I) = |P (I)|, the number of parts of the
partition. So, as an intermediate step in our computation of (1.1) we get

χG(t) =
∑
I⊆E

(−1)|I|tcc(I) = χG(t) =
∑

P∈Par(G)

t|P |
∑
I⊆E

P (I)=P

(−1)|I| .

More generally, we write Parn for the collection of all unordered partitions of [n]. This is exactly the
unordered partitions that we get for the case G = Kn. An unordered partition P = {P1, . . . , Pk}
refines the unordered partition P ′ = {P ′1, . . . , P ′l } if for every i = 1, . . . , k there is a j = 1, . . . , l such
that Pi ⊆ P ′j . That is, the unordered partitions refining P ′ arise by replacing some P ′j by an unordered
partition of it. We also say that P ′ is a coarsening of P . ‘Refinement’ defines a partial order on Parn.
The following picture shows the partition lattice Par4. The unordered partitions are in black and we
read 23 | 1 | 4 as {{2, 3}, {1}, {4}}. The red lines indicate refinement but only the necessary!
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Observe that {{1, 2, 3}, {4}} = P (I) for three sets I of cardinality 2 and one set I with |I| = 3. This
explains the blue labels 3×2, 1×3. As for the orange numbers, this is

∑
I(−1)|I|, where the sum is over

those I that gives P (I). Thus, in the example above, the sum will be (−1)2+(−1)2+(−1)2+(−1)3 = 2.
The chromatic polynomial for K4 thus gives

χK4(t) = 1t4 − 6t3 + 11t2 − 6t .

The ? is for you to determine. However, we can still compute the orange number. The trick is this:
once we know the orange 1 at the bottom, we can go layer by layer. At every partition P the orange
number is the negative of all the orange numbers of partitions that refine P !

The collection of unordered partitions Par(G) = {P (I) : I ⊆ E} for a given graph G partially ordered
by refinement structurally captures what happens when computing the characteristic polynomial. Such
partially ordered sets, or posets for short give structure and guidance in many situations. As Gian-
Carlo Rota wrote

It often happens that a set of objects to be counted possesses a natural ordering, in
general only a partial order. It may be unnatural to fit the enumeration of such a set
into a linear order such as the integers: instead, it turns out in a great many cases that
a more effective technique is to work with the natural order of the set. One is led in
this way to set up a “difference calculus” relative to an arbitrary partially ordered set.

He wrote this in the introduction to the seminal paper [3] in which he introduced the concept of a
Möbius function. The Möbius function is is related to the number theoretic Möbius function, gives a
vast generalization of the principle of inclusion-exclusion, and is responsible for the orange numbers
above. We will thoroughly study partially ordered sets, their Möbius functions, and how to compute
them. The partially ordered sets that we will be studying are motivated by combinatorics/discrete
math and geometry and will show beautiful connections to geometry/topology and algebra. Here are
some examples:

• Bn = (2[n],⊆), the collection of subsets of an n-set partially ordered by inclusion;
• Parn and Parn the collection of (un)ordered partitions of an n-set ordered by refinement;
• Permutations partially ordered by their inversions;
• (normal) subgroups of a given (finite) group ordered by inclusion;
• Bn(q), the collection of subspaces of Fnq , the n-dim vector space over the finite field Fq, ordered
by inclusion;
• Cliques or stable sets of a graph G, ordered by inclusion;
• cycle-free subsets of edges of a graph G ordered by inclusion;
• Subsets of non-crossing diagonals of a convex n-gon ordered by inclusion.

We will see many more examples and, in particular, distill important types of posets.
↓ 2. Vorlesung, 14.4.2022 ↓

1.2. Simplicial complexes and the Upper Bound Conjecture. The last three examples together
with Bn they stand out: Let E be a finite set. A collection of subsets ∅ 6= ∆ ⊆ 2E is a hereditary set
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system or a simplicial complex if for all τ ∈ ∆ and σ ⊆ τ we have σ ∈ ∆. Every subset of a clique
(or stable set) in a graph is a clique (or stable set). Every subset of a cycle-free subset is cycle-free.
The property of being a clique or cycle-free is inherited under taking subsets. The name ‘simplicial
complex’ comes from a geometric context. A geometric simplex is a point, a segment, a triangle, a
tetrahedron etc. A simplicial complex is a collection of simplices with the property that if simplices
meet, then their intersection is a face of both. We make this more precise later, but for now these two
pictures should convey the idea:

There is a clear IKEA-type gluing description of both simplicial complexes:

A natural complexity measure of a simplicial complex is given by its face vector of f-vector. For
∆, fi(∆) counts the number of faces of dimension i ≥ −1. The empty set (at the bottom) is always a
face of dimension −1. For the left complex ∆1 this gives f(∆1) = (1, 7, 12, 8, 2) for the right complex
f(∆2) = (1, 6, 12, 8). As we will learn, often a better way to represent the information given by the
f-vector is in the form of the h-vector. The following shows how to compute them

The highlighted 6 is obtained as 7− 1 and this gives the complete set of rules to go from the f -vector
to the h-vector and back. Whereas the h-vector on the left-hand side does does not reveal more infor-
mation, the one on the right-hand side looks promising: it is non-negative and symmetric/palindromic.

Exercise 1.2. A simple graph G = (V,E) can be viewed as a simplicial complex ∆ = {∅}∪V ∪E. The
f -vector is just f(∆) = (1, |V |, |E|). Classify when h(∆) is non-negative and when it is palindromic.

For geometrically/topologically interesting classes of simplicial complexes the h-vector will always be
non-negative and palindromic! The vague answer we give here is that the right complex resembles a
sphere whereas the left one does not. In fact, the right complex is the unit sphere in the `1-norm
but we mean that it resembles a sphere in a topological sense, independent of how the complex is
geometrically realized.

Theorem 1.3. Let ∆ be a simplicial complex with h(∆) = (h0, . . . , hd). If ∆ is topologically a sphere,
then h0, . . . , hd ≥ 0 and hi = hd−i.

Thus geometric/topological objects give rise to posets whose invariants (f -vectors, h-vectors) we can
combinatorially interpret. Conversely, we will associate to any poset a geometric/topological object
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whose geometric/topological features will explain certain combinatorial information. For example, for
the partition lattice, we will see that we can associate to it the following simplicial complex

This is a complex glued from 6 triangles with f -vector (1, 6, 11, 6). These are precisely the coefficients
of the chromatic polynomial χ+

K4
(t). We will see that the entries of the f -vector have to satisfy certain

conditions and this automatically gives conditions on the coefficients of χG(t).

A highlight of the course will be a resolution of the Upper Bound Conjecture for spheres. Suppose ∆
is topologically a sphere of dimension d− 1. What is the maximal number of i-dimensional faces, that
is, what is the maximal fi(∆) for a fixed number of vertices f0(∆)? Motzkin constructed geometric
spheres, so-called neighborly spheres, for which he conjectured that they maximize the number of i-
dimensional faces for all i simultaneously among all geometric/convex spheres. McMullen [2] proved
Motzkin’s Upper Bound Conjecture for convex spheres (that is, simplicial polytopes). There, he
introduced the notion of an h-vector. Victor Klee [1] suggested to extend the UBC to all spheres
and Richard Stanley [4] combined ideas from combinatorics, topology, and commutative algebra in a
spectacular way to resolve the UBC for spheres.

Theorem 1.4. Let ∆ be a (d−1)-dimensional simplicial sphere with n vertices and h(∆) = (h0, . . . , hd).
Then hi = hd−i and

hi ≤
(
n− d− 1 + i

i

)
for all i. If equality is attained for i = bd2c, then ∆ is a neighborly sphere.

1.3. Polynomials and Hilbert series. To give an idea of the sort of algebra that we will be using,
recall that a polynomial in a single variable t with coefficients in C is an expression of the form

cdt
d + cd−1t

d−1 + · · ·+ c1t+ c0t
0

The collection of all such polynomials is denoted by C[t]. This is a C-vector space and the fact that
polynomials can be multiplied along the rules titj = ti+j turns C[t] into a or C-algebra.
We may extend this to polynomials in many variables. For n ≥ 1, let x1, . . . , xn indeterminates. For
α = (α1, . . . , αn) ∈ Zn≥0, we write xα = xα1

1 xα2
2 · · ·xαn

n . A multi-variate polynomial is then∑
α∈A

cαx
α

where A ⊂ Zn≥0 is a finite set and cα ∈ C for all α ∈ A. Again, polynomials form a C-vector space
and together with multiplication xα · xβ = xα+β give the ring of polynomials C[x] = C[x1, . . . , xn].
The degree of a monomial is degxα = |α| = α1 + · · · + αn. We write C[x]d for the subvector space
spanned by monomials of degree d. Elementary combinatorics shows that the vector space dimension is
dimCC[x]d =

(
n+d−1

d

)
. The Hilbert series is the generating function that incorporates the dimensions:

H(C[x], z) =
∑
d≥0

dimCC[x]dz
d =

∑
d≥0

(
n+d−1

d

)
zd =

1

(1− z)d+1
.

Now let us consider C[x1, . . . , x6] together with the conditions xα = 0 if xα is divisible by x1x4,
x2x5, or x3x6. For a monomial xα, the support is supp(xα) = {i : αi > 0}. Thinking back to our
example of the octahedron on page 4, we can express this condition as xα = 0 whenever supp(xα) 6∈ ∆.
Thus, we somehow encoded the combinatorics of ∆ into polynomials. Our conditions are compatible
with multiplication and give a new ring C[∆] whose elements can still be expressed by monomials
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in x1, . . . , x6. Moreover, for d ≥ 0, we can define C[∆]d = C-span{xα ∈ C[x]d : supp(xα) ∈ ∆}.
Computing the Hilbert series now yields

H(C[∆], z) =
∑
d≥0

dimCC[∆]dz
d =

1 + 3z + 3z2 + z3

(1− z)4

It is not a coincidence that the numerator polynomial is exactly the h-vector of ∆!

Let us further add the conditions x1 = x4, x2 = x5, x3 = x6. So, every time we see an x4, we may
replace it by x1. In particular, the condition x1x4 = 0 can be read as x2

1 = 0. This gives us a new ring
R obtained from C[x1, x2, x3] with the conditions x2

i = 0. This is quite a simple ring. As a C vector
space R has the basis 1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3 and hence models all subsets of [3]. We can
do this more general, for n ≥ 1, let R be the C-vector space with basis xτ =

∏
i∈τ xi for all subsets

τ ⊆ [n]. If τ = ∅, then xτ = 1. We define a multiplication on R by setting xτ ·xσ = xτ∪σ if τ ∩σ = ∅
and xτ · xσ = 0 if τ ∩ σ 6= ∅. We can write R = R0 ⊕R1 ⊕ · · · ⊕Rn where Ri = C-span{xτ : |τ | = i}.
In particular, dimRi =

(
n
i

)
. Its Hilbert series satisfies

H(R, z) =
∑
d≥0

dimCRiz
i =

d∑
i=0

(
n
i

)
zi = (1 + z)n .

We can now algebraically argue that
(
n
i

)
=
(
n
n−i
)
. We first note that Rn ∼= C. Thus, for any fixed i,

multiplication gives a bilinear form Bi : Ri×Rn−i → C. For fixed f ∈ Ri, the map Rn−i 3 g 7→ B(f, g)
is a linear function on Rn−i. If we can show that f 7→ B(f, ·) is injective, then we have shown dimRi ≤
dimRn−i (why?). Applying the same reasoning to g 7→ B(·, g), then proves dimRi = dimRn−i. That’s
unnecessarily difficult when it comes to binomial coefficients but in general that’s the way to go.

This perspective also suggests a way to show that
(
n
i

)
≤
(
n
i+1

)
for i ≤ bn2 c. We will show that for

ω = x1 + x2 + · · · + xn, the linear map Ri → Ri+1 given by f 7→ ω · f is injective whenever i ≤ bn2 c
and surjective otherwise. Injectivity, of course, then implies

(
n
i

)
= dimCRi ≤ dimCRi+1 =

(
n
i+1

)
.

↓ 3. Vorlesung, 19.4.2022 ↓

2. Partially ordered sets

We start with partially ordered sets.

Definition 2.1. A partially ordered set (or poset) is a pair (P,�) where P is a set and � is a
binary relation satisfying

• a � a for all a ∈ P (Reflexivity)
• a � b and b � c implies a � c for all a, b, c ∈ P (Transitivity)
• a � b and b � a implies a = b for all a, b ∈ P (Anti-symmetry)

We usually call P the poset when � is clear from the context and we write �P to emphasize the
relation to the ground set P . We call two elements a, b ∈ P comparable if a � b or b � a. We say
that b covers a or a is covered by b if a ≺ b and there is no c with a ≺ c ≺ b. In this case we write
a ≺• b.
We can encode � by a directed graph (digraph) on the node set P with a directed edge (a, b) if a ≺• b.
This is an acyclic1 digraph and a � b if there is a path a = a0a1 . . . ak = b such that (ai−1, ai) is a
directed edge for i = 1, . . . , k. We may visualize this digraph by a drawing in the plane for which the
edges (a, b) have positive slope. Thus b � a if there is a path from b to a with monotonically decreasing
y-coordinate. Such as drawing is called a Hasse diagram. Here are three examples:

1No directed cycles
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An element a ∈ P is maximal if there is no b ∈ P with a ≺ b. Minimal elements are defined
accordingly. We write min(P ) and max(P ) for the minimal an maximal elements. The poset has a
maximum if there is m ∈ P with a � m for all a ∈ P . Note that every maximum is maximal but not
necessarily the other way round!

If a maximum exists, it is necessarily unique and denoted by 1̂. All but the right-most poset in the
figure above have a maximum. A minimum, provided it exists, is denoted by 0̂.

For two elements a, b ∈ P , the interval is [a, b]P = {c ∈ P : a � c � b}. This is an induced subposet
of P by restricting � to [a, b]P . Note that [a, b]P = ∅ if a 6� b. Otherwise intervals always have a
minimum and maximum. Note that our posets are not necessarily finite. We call poset locally-finite
if [a, b]P is finite for every a, b ∈ P .
A homomorphism or order-preserving map between to posets (P1,�1) and (P2,�2) and is a map
f : P1 → P2 such that

a �1 b =⇒ f(a) �2 f(b)

is satisfied for all a, b ∈ P1. If f is a bijection and f−1 is also order-preserving, then P1 and P2 are
isomorphic, denoted by P1

∼= P2.

A subset C ⊆ P is called a chain if any two elements in C are comparable. If C is finite then there is
a labelling of the elements C = {a0, a1, . . . , ak} such that a0 ≺ a1 ≺ · · · ≺ ak. Then length of a finite
chain is `(C) = |C| − 1, the number of ‘links’ in a chain. A chain is saturated or unrefineable if for
any three elements a ≺ b ≺ c we have that a, c ∈ C implies b ∈ C. If C is finite, then this is equivalent
to ai−1 ≺• ai for i = 1, . . . , k. The chain C is maximal if there is no chain C ′ with C ⊂ C ′. Thus,
maximal chains are saturated but the converse is not true in general.

The rank r(P ) of a poset P is the maximal length of a chain. For a, b ∈ P , we will write `P (a, b) =
r([a, b]P ). We simply write `(a, b) if P is clear from the context. A poset P is graded if all maximal
chains have the same (finite) length r(P ). If P is graded, then there is a unique function r : P → Z≥0

called the rank function with with r(a) = 0 for all a ∈ min(P ) and r(b) = r(a) + 1 for a ≺• b. If P
is finite, then the distribution of ranks is recorded by the rank-generating function

F (P, t) =
∑
a∈P

tr(a) = p0 + p1t
1 + · · ·+ prt

r ,

where pi = #{a ∈ P : r(a) = i} and r = r(P ).

Example 2.1 (Chains and Anti-chains). The prototypical chain of length n is the set [n] := {1, . . . , n}
together with the natural order. We call Cn = ([n],≤) the chain with n elements. Thus C ⊂ P is
an n-chain if the induced subposet C is isomorphic to [n]. Chains are clearly ranked posets with
rank-generating function

F ([n], q) = 1 + q + q2 + · · ·+ qn−1 =: (n)q .

We call the polynomial (n)q a ‘q-analogue’ of the number n.

The conceptual opposite of a chain is a set A ⊆ P such that any two distinct elements in A are
incomparable. Such a set is called an anti-chain. This is a graded poset with F (A, t) = |A|t0.

Example 2.2 (Boolean lattice). For any set S, the Boolean lattice is the poset on 2S = {T : T ⊆ S}
partially ordered by inclusion. We write Bn = (2[n],⊆) and note that (2S ,⊆) ∼= Bn if |S| = n. The
Boolean lattice has minimum 0̂ = ∅ and maximum 1̂ = S. For A ⊆ B, we observe [A,B] ∼= (2B\A,⊆).
In particular, A ≺• B if |B \A| = 1. Here is B3:
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Hence, Bn is graded with r(A) = |A|. The rank-generating function satisfies

F (Bn, q) =
n∑
i=0

(
n

i

)
tq = (1 + q)n .

There is a close connection between Bn and permutations. A maximal chain in Bn is of the form
∅ = S0 ⊂ S1 ⊂ · · ·Sn−1 ⊂ Sn = [n]. In particular Si \ Si−1 = {ai} for a ai ∈ [n]. Since ai 6= aj for
i 6= j, this defines a permutation i 7→ ai. Hence, maximal chains in Bn are in one-to-one correspondence
with permutations of [n]. In the example, the permutations can be read from the red numbers on the
cover relations.

Example 2.3 (Divisibility). For n ∈ Z>0, define the Dn as the set of a ∈ Z>0 with a divides n. We
partially order Dn by setting a � b if there is a k ∈ Z>0 such that b = ka. It has a minimum 0̂ = 1
and maximum 1̂ = n. Here is D12:

Note that for a ≺ b in Dn, we have [a, b] ∼= Db/a. In particular a ≺• b if and only if b
a is prime. It

follows from the Fundamental Theorem of Arithmetic that Dn is graded. The rank of Dn is r(Dn) =

k1 + k2 + · · · + ks n = pk11 p
k2
2 · · · pkss where p1, . . . , ps are the distinct prime factors. To compute the

rank-generating function, we observe that any a ∈ Dn is of the form a = pl11 p
l2
2 · · · plss for 0 ≤ li ≤ ki

and has rank r(a) = l1 + · · ·+ ls. It is now easy to check that

F (Dn, q) =
s∏
i=1

(ki + 1)q

The above example prompts for a simple construction on posets. For two posets (P1,�1), (P2,�2)
define the direct/Cartesian product as the partial order on P1 × P2 by

(a1, a2) � (b1, b2) =⇒ a1 �1 b1 and a2 �2 b2 .

It is straightforward to verify that (P1 × P2,�) is a graded poset whenever P1 and P2 are. The
rank-generating function satisfies

F (P1 × P2, t) = F (P1, t)F (P2, t)

If n = pk11 p
k2
2 · · · pkss , then

Dn ∼= [k1 + 1]× [k2 + 1]× · · · × [ks + 1] .

By the same token, we get Bn ∼= ([2],≤)n, where we identify subsets A ⊆ [n] with vectors vA ∈ [2]n

with (vA)i = 2 if and only if i ∈ A.
↓ 4. Vorlesung, 21.4.2022 ↓
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Example 2.4 (Lattice of subspaces). Let Fnq be the n-dimensional vector space over Fq, the finite
field with q elements. Write Bn(q) for the collection of vector subspaces of Fnq , partially ordered by
inclusion. This is a finite poset with minimum 0̂ = {0}, where 0 ∈ Fnq is the zero vector and maximal
element 1̂ = Fnq . For two subspaces U ⊆ W , basic linear algebra tells us that the subspaces V ⊆ Fnq
with U ⊆ V ⊆ W are precisely the subspaces of the quotient W/U ∼= Fkq with k = dimW − dimU .
Since the isomorphism retains inclusions, we obtain [U,W ]Bn(q)

∼= Bk(q). From this, we get that Bn(q)
is a graded poset with rank function r(U) = dimU .

The poset Bn(q) is called a ‘q-analogue’ of Bn = (2[n],⊆) for reasons that are difficult to make precise.
In essence, it means that many of its enumerative invariants are polynomials in q whose specializations
q = 1 yield respective invariants for Bn. For example, a 1-dimensional subspace L ⊂ Fnq is the span of
a vector v ∈ Fnq \ {0} and a · v spans L for all a ∈ Fq \ {0}. It follows that that there are qn− 1 choices
of v and

qn − 1

q − 1
= 1 + q + q2 + · · ·+ qn−1 = (n)q

many distinct lines in Fnq . Now a subspace U is covered by W if U ⊂ W and W/U is 1-dimensional.
Hence if we want to construct a maximal chain in Bq(n), we start with V0 = {0}. For i = 1, . . . , n we
now choose a line Vi ⊂ Fnq /Vi−1. Since dimVi = i, we have (i)q many choice. In total, the number of
maximal chains is

(n)q(n− 1)q · · · (2)q(1)q =: (n)q!

Of course, there is no finite field with q = 1 elements but the above formula still makes sense and yields
a q-analogue of the factorial n! = n · (n− 1) · · · 2 · 1.
To count the number of elements of Bn(q) of rank k, that is, the number of k-dimensional subspaces
of Fnq , let us count for a fixed k-subspace U the the number of maximal chains V∗ with Vk = U . This is
easy, because we simply need to count the maximal chains in [U, 1̂] ∼= Bn−k(q) and the maximal chains
in [0̂, U ] ∼= Bk(q). This is this gives exactly (n− k)q(k)q such chains, independent of the actual choice
of U . Thus, the number of k-subspaces is precisely

(n)q
(n− k)q(k)q

=:

(
n

k

)
q

,

which is a q-analog of the binomial coefficient, also called a Gaussian polynomial. Pleasantly, we
obtain

(
n
k

)
for q = 1. The rank-generating function for Bn(q) is thus

F (Bn(q), t) =

n∑
k=0

(
n

k

)
q

tk .

2.1. Lattices. For two elements a, b in a poset P , a least upper bound or supremum is an element
c such that a � c and b � c and for every c′ with these properties satisfies c � c′. Least upper bounds
do not need to exist but if they do, they are unique. We denote them by a ∨ b := c and call a ∨ b the
join of a and b. For example if P = 2[n] then the join of A,B ⊆ [n] is clearly A ∪B and the notation
derives from there. Dually, if the set {c ∈ P : c � a, c � b} has a unique maximum, it is called the
infimum of meet of a and b and is denoted by a ∧ b. This is consistent with A ∧ B = A ∩ B. If
any two elements in P have a meet, then we call (P,�) a meet-semilattice. Likewise, we define
join-semilattices as those posets in which all joins exist. Lastly, if meets and joins exist, we call
(P,�) a lattice.

(Semi)lattices play an important role and most of the examples in the last section are lattices. For
example, in Dn, we have that a ∧ b is the greatest common divisor whereas a ∨ b is the least common
multiple. For Bn(q) it is obvious that U ∩ V is the largest subspace contained in U and V and hence
U ∧ V = U ∩ V . In this case, we can abstractly show that joins have to exist as well.

Lemma 2.2. Let (P,�) be a meet-semilattice with maximum 1̂. Then P is a lattice.

Proof. For a, b ∈ P consider the set S = {p ∈ P : a � c, b � c}. Since 1̂ ∈ S, S is not empty and one
verifies that c =

∧
p∈S p is the join of a and b. �
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The three Hasse diagrams in the previous sections depict two lattices and one semilattice.

Note that we can recover the partial order relation on a lattice (L,�) from either meets or joins:

a � b =⇒ a = a ∧ b =⇒ b = a ∨ b .

On the other hand, meet and join give binary operations ∧ : L× L→ L, ∨ : L× L→ L with certain
properties:

Proposition 2.3. For any a, b, c in a lattice L, the following are satisfied:

(L1) a ∧ a = a = a ∨ a, (Idempotency)
(L2) a ∧ b = b ∧ a, a ∨ b = b ∨ a (Commutativity)
(L3) (a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c) (Associativity)
(L4) a ∧ (a ∨ b) = a and b = b ∨ (a ∧ b) (Absorption)

The following result, whose proof we leave as an exercise, states that L1–L4 characterize lattices.

Theorem 2.4. Let L be a (finite) set with binary operations ∧ and ∨ that satisfy (L1)–(L4) above.
Then a � b :⇔ a = a ∧ b defines a partial order on L for with meets and joins given by ∧ and ∨
respectively.

Exercise 2.1. Proof Theorem 2.4.

↓ 5. Vorlesung, 26.4.2022 ↓

2.2. Distributive lattices. Absorption (L4) is the only condition in which meets and joins interact.
In particular, it is in general not true that meets and joins ’distribute’, that is,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (D1)

or

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) . (D2)

Proposition 2.5. Let (L,�) be a lattice. Then (D1) holds if and only if (D2) holds.

Proof. We only prove (D1) implies (D2): For a, b, c ∈ L

(a ∧ b) ∨ (a ∧ c) D1
= ((a ∧ b) ∨ a) ∧ ((a ∧ b) ∨ c)
L4
= a ∧ ((a ∧ b) ∨ c)
D1
= a ∧ ((a ∨ c) ∧ (b ∨ c))
L3
= (a ∧ ((a ∨ c)) ∧ (b ∨ c)
L4
= a ∧ (b ∨ c) . �

We call a lattice (L,�) a distributive lattice if it satisfies the two equivalent conditions.

Example 2.5 (Young’s lattice). A partition of n ∈ Z≥0 is a sequence λ = (λ1, λ2, . . . , λk) of integers
with λ1 ≥ · · · ≥ λk ≥ 1 such that n = λ1 + · · ·+ λk. We define Yn as the set of partitions of n ∈ Z≥0

and Y =
⋃
n≥n Yn. For n = 0, the only admissible partition is the empty partition λ = (). We turn

Y into a poset by setting λ ≤ µ if λi ≤ µi for all i. Since λ and µ can be of different length, we set
λi := 0 for all i > k. This is a lattice with (λ∨µ)i = max(λi, µi) and (λ∧µ)i = min(λi, µi) – do check
that they define valid partitions!

This explicit description also makes it easy to verify that Y is a distributive lattice. It is less obvious
that Y is graded with r(λ) =

∑
i λi. Thus Yn are the elements of rank n. The rank-generating function

of this infinite lattice is thus F (Y, t) =
∑

n≥0 p(n)tn, where p(n) is the number of partitions of n.
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Of course, the inspiration for distributivity comes from ∪ and ∩. A collection C ⊆ 2E is called a ring
of sets if for any A,B ∈ C we have A∪B,A∩B ∈ C. Every ring of sets (C,⊆) is a distributive lattice.
We can manufacture nontrivial rings of sets (and hence distributive lattices) from arbitrary posets.
Let (P,�) be a poset and I ⊆ P . We call I an order ideal (or down-set) if for all b ∈ I and a � b
we have a ∈ I. For S ⊆ P , we set

P�S := {a ∈ P : a � b for some b ∈ S}
for the ideal generated by S. If S = {b}, then P�b := P�S is called a principal ideal. In general
P�S =

⋃
b∈S P�b. Note that if I is an ideal, then S = max(I) is the unique smallest set (with respect

to inclusion) for which I = P�S . Also note that max(I) is an anti-chain. This gives a one-to-one
correspondence between ideals and anti-chains of P . Here is an example of an ideal together with its
associated anti-chain:

If I, J ⊆ P are ideals, then so is I ∪ J and I ∩ J . For example, if b ∈ I ∩ J , then b ∈ I and b ∈ J .
Hence if a � b, then a ∈ I ∩ J since I and J are ideals. Therefore, the collection

J (P ) := {I ⊆ P : I ideal}
is a ring of sets and hence (J (P ),⊆) is a distributive lattice, called the Birkhoff lattice of P .

Example 2.6 (Boolean lattice). Let A be an anti-chain of size n. Then every subset of A is an order
ideal. Hence J (A) = (2A,⊆) ∼= Bn.

Example 2.7 (Chains). Let C = [n] be the chain of size n. Every order ideal is of the form I = {k ∈
[n] : k ≤ i} for some i = 0, 1, . . . , n. Hence J ([n]) ∼= [n+ 1].

Birkhoff’s fundamental insight was that all distributive lattices arise this way. An element c in a lattice
L is called join-irreducible if c 6= 0̂ and c = a ∨ b implies a = c or b = c. An ideal I of a poset
P is join-irreducible in J (P ) if and only if I is principal. Join-irreducibles are easy to spot in Hasse
diagrams: they are the elements that only cover one other element.

Theorem 2.6. Let (L,�) be a distributive lattice and let P be the induced subposet of join-irreducible
elements of L. Then L ∼= J (P ).

Proof. We define two maps f : L→ J (P ) and g : J (P )→ L by

f(b) = Ib := {a ∈ P : a � b} g(I) =
∨
a∈I

a .

Note that f(a) ⊆ f(b) whenever a � b and g(I) � g(I ′) whenever I ⊆ I ′. Thus both maps are
order-preserving and g(f(b)) = b for all b ∈ L. To show that f(g(I)) = I for every ideal I ⊆ P , let
t := g(I) =

∨
a∈I a. Since a � t for all a ∈ I, we have that I ⊆ It. To show the converse inclusion, let

u ∈ It. We compute
u = u ∧ t = u ∧

∨
a∈I

a
D2
=

∨
a∈I

(u ∧ a) .
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Since u is join-irreducible, we have u = u ∧ a for some a ∈ I. Since this implies u � a, we have u ∈ I.
Hence It ⊆ I. �

↓ 6. Vorlesung, 28.4.2022 ↓
Example 2.8 (Chains). The chain [n + 1] is a distributive lattice. Since i ∧ j = min(i, j) and
i ∨ j = max(i, j), distributivity is trivially satisfied. This also shows that every element i > 1 is join
irreducible, which confirms that [n+ 1] ∼= J ([n]).

Example 2.9 (Divisor lattice and products of chains). Let n = pk11 p
k2
2 · · · pkss . It is straightforward to

verify that a ∈ Dn is join-irreducible if and only if a = plii for some i = 1, . . . , s and 1 < li ≤ ki. This
can also be seen from Dn ∼= [k1 +1]×· · ·× [ks+1]. In particular, if we write P ]Q for the disjoint union
of two posets, then J (P ]Q) = J (P )×J (Q) and we see that Dn ∼= J (P ) for P = [k1]] [k2]]· · ·] [ks].

Example 2.10 (Young’s lattice – continued). Note that a partition λ is join-irreducible if and only if
λ = (a, a, . . . , a) for a ≥ 1 and the number of a is k ≥ 1. We can identify λ with the pair (a, k) ∈ P2.
If µ is also join-irreducible with (b, l), then λ ≤ µ if and only if a ≤ b and k ≤ l. This implies that
Y = J (P× P). This gives a nice way to visualize partitions:

Such an left-bottom-aligned arrangement of boxes is called a Young diagram2 of λ.

Proposition 2.7. Let P be a finite poset. Then J (P ) is a graded poset with rank function r(I) = |I|.
In particular, every finite distributive lattice is graded.

Proof. Let I ⊆ J ⊆ P be ideals in the poset P . The ideals K ∈ [I, J ]J (P ) are in bijection to the
ideals in the induced subposet J \ I. Since the map K 7→ K \ I is also order-preserving, we see that
[I, J ]J (P )

∼= J (J \ I) and the chain follows from induction on |P |. �

In particular, if I ≺• J in J (P ), then J \ I = {t} where t ∈ min(P \ I).

Exercise 2.2. Let (P,�) be a poset. An order filter is a set F ⊆ P such that a ∈ F and a � b implies
b ∈ F . Let L be a distributive lattice and let JI(L) and MI(L) be the collections of join-irreducibles
and meet-irreducibles, respectively.

(a) Show that a distributive lattice L is anti-isomorphic to the ring of sets of order filters of the induced
poset MI(L). Anti-isomorphic here means that a ≺ b implies f(a) � f(b).

(b) Conclude that |JI(L)| = |MI(L)|.
(c) Let j ∈ JI(L). Show that there is a unique meet-irreducible element m ∈ LMI(L) with j 6� m.

Conclude that j 7→ m gives an injective map JI(L) → MI(L). [Hint: Assume that L = JP and
consider complements of join-irreducible ideals.]

2.3. Modular lattices. Let V be a vector space over a (not necessarily finite) field F and let A,B ⊆ V
be two subspaces. The meet and join in the poset with respect to inclusion are A ∧ B = A ∩ B and
A ∨ B = span(A ∪ B) = A + B. For a third subspace Y ⊆ V , the triple A,B, Y do not in general
satisfy the distributive law. For example, take three distinct lines in the plane. However, if A ⊆ B,
then

(A+ Y ) ∩B = (A ∩B) + (Y ∩B) = A+ (Y ∩B)

We call a lattice (L,∧,∨) modular if all a, b, y ∈ L with a � b satisfy
(a ∨ y) ∧ b = a ∨ (y ∧ b) . (M)

2Most of the time Young diagrams are top-left aligned but this just doesn’t work here.
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We can think about this as follows: for a � b, we can define two surjective and order-preserving
(projection) maps L→ [a, b], namely y 7→ (a∨ y)∧ b and y 7→ a∨ (y ∧ b). The lattice is modular if the
projections coincide.

We can also state this in more general terms: for any x, y, z ∈ L

(y ∨ (x ∧ z)) ∧ z = (y ∧ z) ∨ (x ∧ z)

Since x � z if and only if x = x ∧ z, we see that the two conditions are equivalent.

Exercise 2.3. Let P be subspaces of a fixed vector space V , normal subgroups of a fixed group G,
ideals in a fixed ring R. Verify that in all these cases (P,⊆) is a modular lattice.

The exercise shows that modular lattices are important. For now, we show an important application
of the modular property:

Theorem 2.8 (Dedekind’s transposition principle). Let L be a modular lattice and r, s ∈ L. Then
[r, r ∨ s] ∼= [r ∧ s, s] with respect to m(t) := s ∧ t and j(t) := r ∨ t.

Proof. Let t ∈ [r, r ∨ s]. In particular r � t and applying (M) to s yields

j(m(t)) = r ∨ (s ∧ t) ∨ r = (s ∨ r) ∧ t = t ,

where the last equality follows from t ≤ s ∨ r. The argument m(j(t)) = t for all t ∈ [r ∧ s, s] is
similar. �

Corollary 2.9. Let L be modular and r, s ∈ L. Then r and s both cover r∧ s if and only if both r and
s are covered by r ∨ s.

Proof. We have that r covers r ∧ s if and only if {r ∧ s, r} = [r ∧ s, r]. It follows from Theorem 2.8
that [r ∧ s, r] ∼= [s, r ∨ s] and hence [s, r ∨ s] = {s, r ∨ s}. That is, s is covered by r ∨ s. Exchanging
the roles of r and s then proves the claim. �

Corollary 2.10. If L is a finite modular lattice, then L is graded.

Proof. Exercise! �

A function V : L→ C on a lattice L is called a valuation or modular if for all a, b ∈ L

V (a ∨ b) = V (a) + V (b)− V (a ∧ b) .

Corollary 2.11. If L is a modular lattice, then the rank function r is modular.

Proof. The transposition principle implies [a, a ∨ b] ∼= [a ∧ b, b]. In terms of ranks, this implies

r(a ∨ b)− r(a) = r(b)− r(a ∧ b) ,

that is, r is modular. �

We will later introduce another class of lattices, the semimodular lattices, that are very important from
a combinatorial point of view but for now we focus on something more related to inclusion-exclusion.

↓ 7. Vorlesung, 3.5.2022 ↓
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3. Möbius inversion

Let (P,�) be a finite poset and consider two functions f=, f≥ : P → C such that

f≥(b) =
∑
b�P c

f=(c) .

Can we recover f= from f≥ (and the knowledge of P )?

We define the Möbius function of a P as the unique function µP : P × P → Z as follows. If a 6� c,
then set µP (a, c) := 0. If a = c, then set µP (a, a) := 1. If a ≺ c, then we define

µP (a, c) := −
∑
a≺b�c

µP (b, c) . (3.1)

Note that `(a, b) < `(a, c) whenever a ≺ b � c and hence the recursive definition is legitimate. Also
note that the definition of the Möbius function implies that for all a � c, we have∑

a�b�c
µP (a, b) =

∑
a�b�c

µP (b, c) =

{
1 if a = c

0 otherwise
. (3.2)

The second equality follows directly from the definition. This also implies that

µP (a, c) = −
∑
a�b≺c

µP (a, b)

which then implies the first equality in (3.2).

The Möbius function allows us to recover f= from f≥. We claim that

f=(a) =
∑
a�b

µP (a, b)f≥(b) . (3.3)

Indeed, ∑
a�b

µP (a, b)f≥(b) =
∑
a�b

µP (a, b)
∑
b�P c

f=(c) =
∑
a�c

f=(c)
∑
a�b�c

µ(a, b) = f=(a) ,

where the last equality uses (3.2).

To see how that relates to the principle of inclusion-exclusion, let S and E be finite sets and Ae ⊆ S a
subset for each e ∈ E. We can see E as a collection of properties that the objects in S can have. For
a property e ∈ E, we think of Ae as those objects that have at least the property e and for I ⊆ E,
we define f≥(I) := |

⋂
e∈I Ae| as the number of objects that that have at least all the properties in I.

In the introduction, we assumed that E is the set of edges of a finite graph G = (V,E). The set Ae
for e ∈ E was those labellings c : V → [k] that fail to be a k-coloring at least at the edge e, that is,
c(u) = c(v) if e = uv. In this language f=(I) is then the set of labellings that fail to be a k-coloring
precisely at the edges I and hence f=(∅) is the number of k-colorings of G.

It turns out that the Möbius function for the Boolean lattice Bn = (2[n],⊆) is given by

µBn(I, J) = (−1)|J\I|

for all I ⊆ J and hence
f=(I) =

∑
I⊆J

(−1)|J\I|f≥(J) .

The name Möbius function derives from number theory. The number-theoretic Möbius function is the
function µ : P → Z given by µ(p) = −1 if p is a prime, µ(a) = 0 if p2 | a for some prime p and
µ(ab) = µ(a)µ(b) whenever a, b are coprime. The Möbius inversion formula then states that for two
functions f≤, f= : P→ C the following holds

f≤(n) =
∑
d:d|n

f=(d) ⇐⇒ f=(n) =
∑
d:d|n

f≤(d)µ(nd )
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For each fixed n ∈ P, we can view f≤ and f= as functions on Dn. Remembering that [a, b]Dn
∼= Db/a,

we define µDn(a, b) := µ(b/a). Then number-theoretic Möbius inversion yields

f≤(b) =
∑
a�b

f=(a) ⇐⇒ f=(b) =
∑
a�b

f≤(a)µDn(a, b)

for all a, b ∈ Dn.
If (P,�) = ([n],≤) is a chain, then

f≤(k) =
∑
i�k

f=(i) = f=(1) + f=(2) + · · ·+ f=(k)

and hence f=(1) = f≤(1) and for k > 1

f=(k) = f≤(k)− f≤(k − 1) .

From this we deduce

µ[n](i, j) =


1 i = j

−1 i = j − 1

0 otherwise
.

To see the connection to Bn and Dn, recall that
Bn ∼= [2]× · · · × [2]︸ ︷︷ ︸

n

Dn ∼= [k1 + 1]× · · · × [ks + 1]

where n = pk11 · · · pkss . The next proposition now explains the Möbius functions in these cases.

Proposition 3.1. If P = P1 × P2 and (a1, a2), (b1, b2) ∈ P , then
µP ((a1, a2), (b1, b2)) = µP1(a1, b1)µP2(a2, b2) .

Proof. Exercise! �

Let us come back our original motivation and inclusion-exclusion: For finite sets Ae for e ∈ E, define
the intersection poset as the collection

L = L(Ae : e ∈ E) = {AI : I ⊆ E}
where AI :=

⋂
i∈I Ai and A∅ :=

⋃
e∈E Ae. We give L a partial order by reverse inclusion. That is, for

A,B ∈ L
A �L B :⇐⇒ B ⊆ A .

This way 0̂ = A∅ and 1̂ = AE . The reason for doing this is that the map 2E → L given by I 7→ AI is
now order-preserving: I, J ⊆ E

I ⊆ J :=⇒ AI �L AJ

The reverse inclusion does not hold in general. It does, if we restrict to the right sets. For A ∈ L,
define

JA := {e ∈ E : A ⊆ Ae} .
That is, JA is the inclusion-maximal set J with AJ = A. We call JA a closed set. If we restrict to
closed sets, then AI �L AJ implies I ⊆ J .

Corollary 3.2. Let Q = {I ⊆ E : I closed}. Then (Q,⊆) is isomorphic to (L,�).

Theorem 3.3. Let L = L(Ae : e ∈ E) be an intersection poset and S �L T . Then

µL(S, T ) =
∑

JS⊆J⊆E
AJ=T

(−1)J\JS .

Proof. Given f=, f≥ : L → C as before, we can define F=, F≥ : 2E → C by

F=(I) :=

{
f=(AI) if I is closed,
0 otherwise.

and F≥(I) :=
∑
I⊆J

F=(J)
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Note that for any I ⊆ E, we have

F≥(I) =
∑
I⊆J

F=(J) =
∑

AI�LT
f=(T ) = f≥(AI) .

This means that for S ∈ L, we can compute

f=(S) = F=(JS) =
∑
JS⊆J

(−1)|J\JS |F≥(J)

=
∑
S�LT

f≥(T )
∑

JS⊆J⊆E
AJ=T

(−1)|J\JS |

On the other hand, we can use Möbius inversion (3.3) to conclude that for every S ∈ L∑
S�LT

µL(S, T ) f≥(T ) =
∑
S�LT

( ∑
JS⊆J⊆E
AJ=T

(−1)|J\JS |
)
f≥(T )

Since f= was chosen arbitrarily and the Möbius function is unique, this yields the claim. �

↓ 8. Vorlesung, 5.5.2022 ↓

3.1. The incidence algebra. In order to handle Möbius functions, we introduce an algebraic frame-
work. Let (P,�) be a finite poset. We write CP = {f : P → C} to the collection of all maps from P

to C. This is trivially a C vector space. (After all, CP ∼= C|P |.)
We define I(P ) as the collection of all maps α : P × P → C with

a 6�P b =⇒ α(a, b) = 0

This is also a C-vector space: if α, β ∈ I(P ) and a, b ∈ C, then clearly aα + bβ ∈ I(P ). We can let
α ∈ I(P ) act on CP by defining for f ∈ CP

(αf)(b) :=
∑
c∈P

α(b, c)f(c) =
∑
b�P c

α(b, c)f(c) .

This action suggests a multiplicative structure on I(P ): for α, β ∈ I(P ), define α ∗ β : P × P → C by

(α ∗ β)(a, c) :=
∑
b∈P

α(a, b)β(b, c) =
∑
a�b�c

α(a, b)β(b, c) .

We see that (α ∗ β)(a, c) = 0 whenever a 6� c and hence α ∗ β ∈ I(P ). We leave it to the reader to
verify that ∗ is associative and distributive and hence gives (I(P ),+, ∗) the structure of a C-algebra.
The element δ ∈ I(P ) with δ(a, b) = 1 if and only if a = b and = 0 otherwise serves as the unit in I(P ).
Hence, I(P ) is a unital and in general noncommutative algebra.

The zeta function is ζP ∈ I(P ) defined as

ζP (a, b) =

{
1 if a � b
0 otherwise.

The zeta function allows us to write

f≥(b) = (ζP f)(b) =
∑
c∈P

ζP (b, c)f(c) =
∑
b�c

f(c) .

Proposition 3.4. Let α ∈ I(P ). Then there is β ∈ I(P ) with α ∗ β = β ∗ α = δP if and only if
α(a, a) 6= 0 for all a ∈ P .

Proof. If α ∗ β = δP , then 1 = δ(a, a) = (α ∗ β)(a, a) = α(a, a)β(a, a) and hence α(a, a) 6= 0 for all
a ∈ P . Conversely, we define β by induction on `(a, c) = r([a, c]P ). For `(a, c) = 0 and hence a = c,
we define β(a, a) = 1

α(a,a) . For a ≺ c, define

β(a, c) :=
−1

α(a, a)

∑
a≺b�c

α(a, b)β(b, c) . �
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It follows that β is unique and we write α−1 := β. In particular, ζP is invertible and its inverse is the
Möbius function µP = ζ−1

P . That is,

f≥ = ζP f= ⇐⇒ f= = µP f≥ .

The zeta function has many more uses than just to introduce the Möbius function and some interesting
counting problems can be modelled with it. Let (P,�) be a finite fixed poset. The order polynomial
of (P,�) is the function

ΩP (n) := |{φ : P → [n] : φ order-preserving}| .

Proposition 3.5. Let (P,�) be a poset with d = |P | elements. Then ΩP (n) agrees with a polynomial
of degree d.

Exercise 3.1 outlines a simple proof of this result but we take the more scenic route.

Exercise 3.1. Let (P,�) be a finite poset.

(a) Show that every order preserving map φ : P → [n] factors P
s
� R

i
↪→ [n], where R is a subposet of

[n], s is surjective and i is injective.
(b) Count the number of k-element subposets of [n].
(c) Conclude that

ΩP (n) =

|P |∑
k=0

ck

(
n

k

)
and give an interpretation for ck.

Let φ : P → [2] be order-preserving and let I := φ−1(1). It is straightforward to verify that I ⊆ P is
an ideal of P . Indeed, if b ∈ I and a � b, then φ(a) ≤ φ(b) = 1 and hence a ∈ I. (By the same token
φ−1(2) is a filter.) A multichain of length k in a poset Q is sequence

x0 � x1 � · · · � xk .

Proposition 3.6. There is a bijection between order-preserving maps φ : P → [k] and multichains of
length k − 2 in J (P ).

Proof. For a given φ : P → [k] define Iφj := {a ∈ P : φ(a) ≤ j} for j = 1, . . . , k − 1. This gives a
multichain I1 ⊆ I2 ⊆ · · · ⊆ Ik−1 and each Ij is an order ideal.

Conversely, I1 ⊆ I2 ⊆ · · · ⊆ Ik−1 be a multi-chain of order ideals of length k − 2 and set Ik := P . We
define φ : P → [k] by setting φ(b) := j if j ≥ 1 is the smallest index for which b ∈ Ij . If a � b then
a ∈ Ij and hence φ(a) ≤ j. This means φ is order preserving and Iφj = Ij . �

Thus, counting order-preserving maps into a chain on k elements, we need to count multichains in
J (P ). This can be done using the zeta function.

Proposition 3.7. Let (P,�) be a finite poset with zeta function ζ = ζP . Then for any a, c ∈ P and
n ≥ 0, ζn(a, c) is the number of multichains

a = a0 � a1 � · · · � a2 � an = c .

Proof. We prove the claim by induction on n. For n = 0 there is only one such multichain if a = c and
ζ0(a, c) = δ(a, c). For n = 1, the unique multichain is a = a0 � a1 = c, provided a � c and ζ(a, c)1 = 1
in this case. For n+ 1, we compute

ζn+1(a, c) = (ζn ∗ ζ)(a, c) =
∑
a�b�c

ζn(a, b)

By induction, ζn(a, b) counts the number of multichains of length n ending in b, which we can extend
to c with one more element. �

Exercise 3.2. Define η : P × P → C by η(a, b) := 1 if a ≺ b and := 0 otherwise. Show that for
a, c ∈ P and n ≥ 0, ηn(a, c) counts the number of chains

a = a0 ≺ a1 ≺ · · · ≺ a2 ≺ an = c .
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Proposition 3.8. Let (P,�) be a finite poset and a ≺P c. The function

n 7→ ζnP (a, c)

agrees with a polynomial of degree `(a, c).

Proof. Let η ∈ I(P ) be as defined in Exercise 3.2. We observe that ζ = δ + η and hence

ζn(a, c) = (δ + η)n =
n∑
k=0

(
n

k

)
ηk(a, b) ,

where the last equation follows from the fact that δ ∗ η = η ∗ δ. According to Exercise 3.2, we have for
d := `(a, c) that ηd 6= 0 and ηj = 0 for all j > d. That means

ζn(a, c) = η0(a, c)

(
n

0

)
+ η1(a, c)

(
n

1

)
+ · · ·+ ηd(a, c)

(
n

d

)
is a finite sum and since

(
n
k

)
= 1

k!n(n− 1) · · · (n− k + 1) is a polynomial of degree k, this finishes the
proof. �

Proof of Proposition 3.5. ΩP (n) = ζnJ (P )(∅, P ) is a polynomial of degree `(∅, P ) = r(J (P )) = |P |.
�

↓ 9. Vorlesung, 10.5.2022 ↓
We make a definition of what we learnt in the last two propositions: Let (P,�) with 0̂ and 1̂. We
define the zeta polynomial

ZP (n) := ζnP (0̂, 1̂) = #{0̂ = a0 � a1 � · · · � an = 1̂ multichain in P of length n} .

This is agrees with a polynomial in n of degree |P |. Proposition 3.6 now shows that ΩP (n) = ZJ (P )(n).

An interesting observation is that, as a polynomial ZP (t) ∈ Z[t], we can also evaluate it at nonpositive
integers.

Proposition 3.9.
ZP (−n) = ζ−nP (0̂, 1̂) = µnP (0̂, 1̂) .

Proof. Let d = r(P ) length of longest chain. Then3

µn = ζ−n = (δ + η)−n = (δ − η + η2 − · · ·+ (−1)dηd)n =
d∑

k=0

(−1)kCkη
k .

Now Ck is the number of sequences (c1, c2, . . . , cn) ∈ Z≥0 with
∑

i ci = k. Such a sequence is called a
composition of k into n parts and is counted by

(
n+k−1

k

)
. This is a polynomial in n of degree k.

Now, observe(
−n
k

)
=

1

k!

k−1∏
i=0

(−n− i) = =
(−1)k

k!

k−1∏
i=0

(n+ k − 1− i) = (−1)k
(
n+ k − 1

k

)
. (3.4)

This means that the polynomial for µn(0̂, 1̂) agrees with ZP (−n). �

Can we interpret ZP (−n) for n > 0?

We record a simple observation that will be important later.

Corollary 3.10 (Philip Hall’s theorem). Let (P,�) be a poset and a, b ∈ P . For i ≥ 0, let ci be the
number of chains in (a, b)P = [a, b]P \ {a, b} of length −1 ≤ i ≤ d := `(a, b). We set c−1 := 1 for the
unique chain in (a, a)P = ∅ with zero elements. Then

µP (a, b) = c−1 − c0 + · · ·+ (−1)dcd−2 .

3If a is an unipotent element of a ring, then 1 − a is nilpotent and (1 − (1 − a))
∑k

i=0(1 − a)i = 1 − (1 − a)k+1 = 1

and hence a−1 =
∑k

i=0(1− a)i.
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Proof. We note that

µ(a, b) = ζ−1(a, b) = (δ + η)−1(a, b) =

d∑
i=0

(−1)iηi(a, b) .

Exercise 3.2 shows ηi(a, b) is the number of chains of a = a0 ≺ a1 ≺ · · · ≺ ai−1 ≺ ai = b. Every such
chain of length i yields a chain in (a, b)P and vice versa and hence ci = ηi+2(a, b). �

3.2. Lattices and their Möbius algebras. In this section, we make use of the extra structure a
lattice to compute Möbius functions.

A group is a set S together with ◦ : S × S → S such that

(G1) a ◦ (b ◦ c) = (a ◦ b) ◦ c for all a, b, c ∈ S; (Associativity)
(G2) There is an element e ∈ S such that e ◦ a = a ◦ e = a for all a ∈ S; (Unit)
(G3) For every a ∈ S there is a b ∈ S such that a ◦ b = e. (Inverses)

If we require only (G1) and (G2), then (S, ◦) is a monoid. If (S, ◦) only satisfies (G1), then the pair
is called a semigroup. There is a simple way to turn a semigroup into an algebra. For every a ∈ S,
let ta be a symbol. Let C[S] be the vector space of finite formal linear combinations of (ta)a∈S , that
is, elements look like ∑

a∈S
cat

a ,

where ca ∈ C and {a ∈ S : ca 6= 0} is finite. The ta form a basis. A multiplication on C[S] is a bilinear
map · : C[S]× C[S]→ C[S] that we only need to define on a basis: ta · tb := ta◦b. More concretely,(∑

a∈S
cat

a
)
·
(∑
b∈S

dbt
b
)

:=
∑
z∈S

gzt
z for gz :=

∑
a,b∈S
a◦b=z

cadb

It follows from (G1) that the bilinear map · : C[S]× C[S]→ C[S] is associative and distributive. If S
is a monoid with neutral element e, then te is the multiplicatively neutral element in C[S]. If (S, ◦) is
commutative/abelian, then C[S] is commutative.

Example 3.1. The natural numbers (N,+) form a monoid under addition. Thus C[N] is the set of
linear combinations c0t

0 + c1t
1 + · · ·+ cdt

d and multiplication titj = ti+j . Thus C[N] is the polynomial
ring with variable t over C.

Let (L,�) be a meet-semilattice. Then ∧ : L× L→ L is associative and hence (L,∧) is a semigroup.
We call C[L] the Möbius algebra of L. The Möbius algebra is commutative and if L has a maximal
element 1̂ (and hence is a lattice), then C[L] has a unit t0̂.

Note that as a vector space C[L] ∼= CL. The standard basis of CL is given by ea for a ∈ L. We can
give CL a simple algebra structure by defining

eaeb :=

{
ea if a = b,

0 otherwise.

In particular e2
a = ea for all a ∈ L. Two C-algebras A,B are isomorphic if there is a vector space

isomorphism f : A→ B such that f(aa′) = f(a)f(a′) for all a, a′ ∈ A4.

Theorem 3.11 (Solomon). Let (L,�) be a finite lattice, then C[L] ∼= CL as C-algebras.

For the proof, define f : C[L]→ CL by

f(tb) = fb :=
∑
a�b

ea ∈ CL

on basis elements and extend it to C[L] by linearity. Note that for a, b ∈ L

eafb = ζ(a, b)ea .

4Check that for all b, b′ ∈ B it holds that f−1(bb′) = f−1(b)f−1(b′)!
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Proof. For b, c ∈ L, we compute

f(tb)f(tc) = fb · fc =
(∑
x�b

ex

)(∑
y�c

ey

)
=
∑
x�b
y�c

exey =
∑
z�b∧c

ez = fb∧c = f(ta · tb) ,

where the third equality follows from eaeb = δ(a, b)ea and the fourth from the definition of meets. This
means that f is a linear map that respects products.

To see that f is an isomorphism, use that dimC[L] = |L| = dimCL and only check that f is injective.
Let k ≥ 2 be minimal such that there are a1, . . . , ak ∈ L and α1, . . . , αk ∈ C such that 0 = α1fa1 +
α2fa2 + · · ·+ αkfak . Minimality implies that α1, . . . , αk 6= 0 and ai 6= aj for i 6= j. Assume that ak is
maximal among a1, . . . , ak, that is ak 6� ai for i 6= k. Then

0 = ea1(α1fa1 + α2fa2 + · · ·+ αkfak) = α1ea1fa1 + α2ea1fa2 + · · ·+ αkea1fak = αkeak

This means αk = 0, which contradicts the assumption that k was minimal. �

↓ 10. Vorlesung, 12.5.2022 ↓
We can also provide an explicit description of f−1(ea) for all a ∈ L. For c ∈ L define

mc :=
∑
b�c

µP (b, c)tb

Then
f(mc) =

∑
b�c

fbµP (b, c) =
∑
a�b

µP (b, c)
∑
a�b

ea =
∑
a�c

( ∑
a�b�c

µP (b, c)
)
ea = ec .

In particular, by Möbius inversion
tb =

∑
a�b

mb . (3.5)

Since f is an algebra isomorphism, we get

ma ·mb =

{
ma if a = b

0 otherwise.
(3.6)

A basis of an algebra with these properties under multiplication is called a complete system of or-
thogonal idempotents.

We can use this algebra to prove Möbius function identities such as

Proposition 3.12 (Weisner’s theorem). Let L be a finite lattice and b ≺ 1̂. Then∑
s:s∧b=0̂

µ(s, 1̂) = 0 .

The result implies
µ(0̂, 1̂) = −

∑
0̂≺s
s∧b=0̂

µ(s, 1̂)

This is similar to (3.1) but has in general fewer terms.

Proof. Let us compute tbm1̂ in two different ways. By (3.5)

tbm1̂ =
(∑
a�b

ma

)
m1̂ =

∑
a�b

(mam1̂) = 0 ,

where the last equality follows from (3.6) and the fact that b ≺ 1̂. On the other hand,

tbm1̂ = tb
(∑
s�1̂

µ(s, 1̂)ts) =
∑
s�1̂

µ(s, 1̂)tb∧s =
∑
r∈L

crt
r

where cr =
∑

s:s∧b=r µ(s, 1̂). Hence c0̂ = 0. �

A crosscut in a finite lattice L is a set K ⊆ L such that 1̂ 6∈ K and for every a ∈ L \ 1̂, there is b ∈ K
with a � b.
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Theorem 3.13 (Crosscut theorem). Let (L,�) be a finite lattice and K a crosscut. Then

µL(0̂, 1̂) =
∑
k≥0

(−1)kNk ,

where Nk is the number of k-element subsets K ′ ⊆ K with
∧
K ′ = 0̂.

Proof. Consider the expression
∏
b∈K(t1̂ − tb) =

∑
x∈L cxt

x. It is not hard to see that

c0̂ =
∑
k≥0

(−1)kNk .

On the other hand, we have for all b ∈ L

t1̂ − tb =
∑
a�1̂

ma −
∑
a�b

ma =
∑
a6�b

ma .

It follows then from (3.6) that∏
b∈K

(t1̂ − tb) =
∏
b∈K

∑
a6�b,∀b∈K

ma = m1̂ =
∑
a�1̂

µ(a, 1̂) .

Comparing coefficients we see that c0̂ = µ(0̂, 1̂). �

An element a ∈ P is an atom if it covers 0̂. Likewise, a is a coatom if a is covered by 1̂.

Corollary 3.14. Let L be a lattice. If 0̂ is not the meet of coatoms, then µ(0̂, 1̂) = 0. Dually, if 1̂ is
not the join of atoms, then µ(0̂, 1̂) = 0.

For the second statement, we use the following if (P,�) is a poset, we define (P,�′) the dual poset
with a �′ b if and only if b � a. It follows that (P,�′) is a (distributive) lattice if and only if (P,�)
is. Meets and joins switch places as do atoms and coatoms.

Proof. We simply observe that the collection of coatoms is a crosscut for L and the result follows from
the Crosscut theorem. �

Let us go back to distributive lattices and the Birkhoff lattice.

Corollary 3.15. Let (L,�) be a distributive lattice and a � b. Then

µ(a, b) =

{
(−1)`(a,b) if [a, b] is isomorphic to a Boolean lattice,
0 otherwise.

Proof. Recall that if (L,�) is a distributive lattice, then (L,�) ∼= (J (P ),⊆) for some poset P . We
argued that if I ⊆ I ′ are ideals, then [I, I ′] ∼= J (I ′ \ I). Hence [I, I ′] is isomorphic to a Boolean lattice
if and only if I ′ \ I is an anti-chain. It follows that µJ (P )(I, I

′) = (−1)|I
′\I|.

So, we only need to argue the second case. By [I, I ′] ∼= J (I ′\I), it suffices to show that µJ (P )(0̂, 1̂) = 0
if P is not an anti-chain. Let M be the minimal elements of P . Then I ⊂ P is an atom in J (P ) if and
only if I = {m} for some m ∈ M . Thus, a join of atoms is a subset of M . If P is not an anti-chain
that M is a proper subset of P = 1̂J (P ) and hence µ(0̂, 1̂) = 0 by the Corollary above. �

↓ 11. Vorlesung, 17.5.2022 ↓
This allows us to interpret ZL(−n) when L is a distributive lattice.

Corollary 3.16. Let (L,�) be a distributive lattice of rank d. Then (−1)dZL(−n) is the number of
multichains

0̂ = a0 � a1 � · · · � an = 1̂

such that [ai−1, ai] is a Boolean lattice for all i = 1, . . . , n.
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Proof. We compute

ZL(−n) = µnL(0̂, 1̂) =
∑

0̂=a0�···�an=1̂

µL(a0, a1)µL(a1, a2) · · ·µL(an−1, an)

By Corollary 3.15, we know that the product of Möbius function evaluations is = 0 unless [ai−1, ai]

is Boolean for all i = 1, . . . , n. In this case, we know that µ(ai−1, ai) = (−1)`(ai−1,ai). Since every
distributive lattice is graded, this means `(ai−1, ai) = r(ai)− r(ai−1) and hence

(−1)r(a1)−r(a0)(−1)r(a2)−r(a1) · · · (−1)r(an)−r(an−1) = (−1)r(an)−r(a0) = (−1)d . �

A map φ : P → [n] is strictly order preserving if φ(a) < φ(b) for all a �P b and a 6= b.

Theorem 3.17. Let (P,�) be a finite poset with d elements. Then (−1)dΩP (−n) is the number of
strictly order preserving maps φ : P → [n].

If P = [d] is a chain on d elements, then

ΩP (n) =

(
n+ d− 1

d

)
is the number of d-multisubsets of [n]. Now (3.4) yields that

(−1)dΩP (n) = (−1)d
(
n+ d− 1

d

)
=

(
n

d

)
and every d-subset of [n] naturally corresponds to a strictly order preserving map [d] ↪→ [n].

Proof. We recall that
ΩP (n) = ζnJ (P )(∅, P ) = ZJ (P )(n)

and hence by Corollary 3.16 that (−1)dΩP (−n) is the number of multichains of ideals ∅ = I0 ⊆ I1 ⊆
· · · ⊆ In = P such that Ii \ Ii−1 is an anti-chain. From Proposition 3.6 we get that these are precisely
the order-preserving maps φ : P → [n] such that φ−1(j) ⊆ P is an anti-chain for all j. That is, if
φ(a) = φ(b) if and only if a = b or a and b are incomparable. �

3.3. Interlude: Valuations on distributive lattices. For a general poset P , for which we don’t
have meets, we cannot define Möbius algebras from the semigroup perspective but we can mimic quite
a bit. Let us define C[P ] as the C-vector space spanned by symbols tb for b ∈ P . As before, define the
map f : C[P ]→ CP by

f(b) := fb =
∑
a�b

ea

The map f is still an isomorphism of vector spaces. To make it an algebra map, we need to define a
suitable multiplication on C[P ] so that it fits. Observe that

fbfc =
∑

a�b,a�c
ea

but in the absence of meets, this is all we can do. Using Möbius inversion, we can write this expression
in terms of the f -basis:

fbfc =
∑
x∈P

( ∑
a�b,a�c

µP (x, a)
)
fx

Thus, if we define a multiplication on C[P ] by

tbtc =
∑
x∈P

( ∑
a�b,a�c

µP (x, a)
)
tx

then f : C[P ]→ CP is an isomorphism of algebras. In particular, the elements

mc :=
∑
b�c

µP (b, c)tb

for c ∈ P still form a complete set of orthogonal idempotents. We can use this for studying valuations
on (distributive) lattices.
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Recall that a valuation on a lattice is a map V : L→ C such that

V (a ∨ b) = V (a) + V (b)− V (a ∧ b) (3.7)

for all a, b ∈ L. Valuations originate from a geometric context: Let C be a ring of sets, for example
of Rd. A valuation now is a function V : C → C such that V (A ∪ B) = V (A) + V (B) − V (A ∩ B).
For example the volume is a valuation and so are all measures and integrals. But valuations differ
from general measures as we only require finite additivity. In this subsection, we want to make the
combinatorics of valuations on lattices more transparent.

For a fixed lattice L, let Vals(L) ⊆ CL be vector subspace of valuations, that is, all functions V : L→ C
satisfying (3.7). We can view this subspace from a different perspective. Let C[L] be the Möbius algebra
of L and let IVals ⊆ C[L] be the vector subspace spanned by all

ta∨b − ta − tb + ta∧b

for a, b ∈ L. Then a function V : L→ C is a valuation if and only if V (r) = 0 for all r ∈ IVals.

Proposition 3.18. Let V : L → C be a valuation, then V : C[L]/IVals → C defined on generators
ta by V (ta) := V (a) is a linear function. Conversely, if V : C[L]/IVals → C is a linear function,
then V (a) := V (ta) is a valuation. This shows that Vals(L) is isomorphic to the vector space dual to
C[L]/IVals.

It turns out that many lattices do not have many valuations. For example,

Exercise 3.3. Let L be a modular lattice and V : L → C a valuation. Show that there are α, β ∈ C
such that V (a) = αr(a) + β for all a ∈ L.

However, if L is distributive, then there is more structure.

Let (R,+, ·) be a commutative ring. A subset ∅ 6= I ⊆ R is an ideal if (I,+) is a subgroup and rf ∈ I
for all f ∈ I and r ∈ R. That is, for all f, g ∈ I and r ∈ R, we have f −g ∈ I and rf ∈ I. If T : R→ S
is a ring map, then kerT = {r ∈ R : T (r) = 0} is an ideal. If I ⊆ R is an ideal, then the collection of
cosets R/I := {r + I : r ∈ R} inherits a ring structure

(r + I)(r′ + I) := rr′ + I .

In particular, if T : R→ S is surjective, then R/ ker(T ) ∼= S.

Proposition 3.19. If L is distributive, then IVals ⊆ C[L] is an ideal.

Proof. We only need to verify that tc(ta∨b − ta − tb + ta∧b) ∈ IVals.

tc(ta∨b − ta − tb + ta∧b) = tc∧(a∨b) − tc∧a − tc∧b + tc∧(a∧b) = ta
′∨b′ − ta′ − tb′ + ta

′∧b′ ∈ IVals ,

where the last equality follows from distributivity (plus associativity and idempotency) and a′ := c∧a
and b′ := c ∧ b. �

Note that in C[L]/IVals, we have

ta∨b = ta + tb − ta∧b = 1− (1− ta)(1− tb) .

If we iterate this, we obtain a version of inclusion-exclusion:

ta1∨···∨ak = 1− (1− ta1) · · · (1− tak) =
∑

∅6=I⊆[k]

(−1)|I|
∏
i∈I

tai . (3.8)

Theorem 3.20. Let L be a finite distributive lattice and P ⊆ L its poset of join irreducibles, then

C[L]/IVals ∼= C[P ∪ 0̂] ∼= C[P ]⊕ C

Proof. As usual, we identify L = J (P ) and hence every element of L is an order ideal J ⊆ P . Define
the map V : J (P )→ C[P ] by V (J) :=

∑
a∈P t

a. It is then clear that V is a valuation:

V (J ∪ J ′) =
∑

a∈J∪J ′
ta =

∑
a∈J

ta +
∑
a∈J ′

ta −
∑

a∈J∩J ′
ta .
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It follows from Proposition 3.18 that V extends to a surjective linear map V : C[L]/IVals → C[P ].
Using, for example (3.8), one sees that V is a map of algebras. Since C[L]/IVals is generated by
join-irreducibles and hence at most |P |-dimensional, this shows that the map is an isomorphism. �

↓ 12. Vorlesung, 19.5.2022 ↓

4. Semimodular lattices and matroids

In this section, we will consider a very important class of posets that occur in many many different
guises (many of them not as posets) in combinatorics.

To motivate, let us come back to the partition lattice from our first week: For n ≥ 1, the partition
lattice Parn is the collection of all unordered partition of [n] into non-empty sets, partially ordered by
refinement: If P = {P1, . . . , Pk} and P ′ = {P ′1, . . . , P ′l } are partitions, then P � P ′ if for every Pi there
is P ′j such that Pi ⊆ P ′j . This is a poset with minimal element 0̂ = {{i} : i = 1, . . . , n} and maximal
element 1̂ = {[n]}. It’s not hard to see that Parn is graded with rank function r(P ) = n− k, where k
is the number of parts of the partition.

What is also not hard to see is that Parn is a lattice. For partitions P, P ′ define P ′′ as the collection of
all non-empty and distinct Pi ∩ P ′j . This is a partition of [n] that refines both P and P ′ and, in fact,
the coarsest common refinement. This means that Parn is a meet-semilattice with maximum 1̂ and
hence Parn is a lattice (Lemma 2.2). The actual join of two partitions is more cumbersome to describe.
It’s easier to remember that we defined partitions in terms of subsets of edges of the complete graph.
Joins there are easy.

We wish to compute the Möbius function. For that, let us first look at intervals. Let P � P ′ with
P ′ = {P ′1, . . . , P ′l }. For 1 ≤ j ≤ l, let Lj := {i : Pi ⊆ P ′j}. Every partition P ′′ ∈ [P, P ′′] arises from
merging some Pi with i contained in the same Lj . In fact, every P ′′ ∈ [P, P ′] corresponds to a unique
sequence (S1, . . . , Sl), where Si is a partition of Lj . The following figure illustrates this fact.

We record:

Proposition 4.1. Let P � P ′ be partitions of [n] and let Lj be as above. Define nj = |Lj |. Then

[P, P ′] ∼= Parn1 × · · · × Parnl
.

It follows from Proposition 3.1 that is suffices to understand understand µParn(0̂, 1̂).

Theorem 4.2. Let n ≥ 1. Then

µParn(0̂, 1̂) = (−1)n−1(n− 1)!

Proof. We prove the result by induction on n. For n = 1, we have that Par1 is a single element and
the claim holds. For n > 1, we compute µParn(0̂, 1̂) using Weisner’s theorem (Proposition 3.12). We
pick the coatom P ′ = {[n − 1], {n}}. Let P = {P1, . . . , Pk} 6= 0̂ be another partition. In order to
have P ∧ P ′ = 0̂ = {{i} : i ∈ [n]}, we need for all s, t ∈ [n − 1] with s 6= t that s, t are not contained
in the same part of P . But then P = {{1}, . . . , {i, n}, . . . , {n}}. For every such P , we have that
[P, 1̂] ∼= Parn−1. From Proposition 3.12, we obtain

µParn(0̂, 1̂) = −(n− 1)µParn−1(0̂, 1̂)

which proves the claim. �

The proof gives and idea how to compute the Möbius function of Par(G), the collection of partitions
of V induced by a graph G. However, the interesting to notice is that (−1)n−1(n − 1)! has many
interpretations and we will explore what this is for general graphs and, in fact, an important class of
lattices.

Notice that Parn is a type of lattice that we have not encountered yet. For starters, it’s not modular:
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However, the other implication works:

Proposition 4.3. Let P, P ′ ∈ Parn be partitions such that P, P ′ cover P ∧P ′, then P and P ′ is covered
by P ∨ P ′

Proof. In the end, this reduces to P = {A′ ∪A′′, B′, B′′} and P ′ = {A′, A′′, B′ ∪B′′} so that P ∧ P ′ =
{A′, A′′, B′, B′′}. But then P ∨ P ′ = {A′ ∪A′′, B′ ∪B′′}. �

We call a finite lattice L upper semimodular if for all s, t ∈ L such that s and t cover s∧ t, we have
that s ∨ t covers both s and t.

Proposition 4.4. Let L be a finite lattice. Then L is upper semimodular if and only if L is graded
and for all s, t ∈ L

r(s ∨ t) ≤ r(s) + r(t)− r(s ∧ t) .

Proof. Assume that L is graded and the rank function satisfies the stated submodular inequality.
Assume that s, t both cover s∧ t, then r(t) = r(s∧ t) + 1 and r(s) < r(s∨ t) ≤ r(s) + r(t)− r(s∧ t) =
r(s) + 1. Hence s is covered by s ∨ t. The same argument shows that t is covered by s ∨ t.
If not every semimodular lattice is graded, then there is one with r(L) minimal. In particular [t, 1̂] is
a graded semimodular lattice for all 0̂ ≺ t. Assume that C,C ′ are maximal chains of different length
and let s, s′ be the atoms contained in C and C ′, respectively. Then s and s′ both cover 0̂ and hence
t := s ∨ s′ covers both s and s′.

Now every chain in [s, 1̂] is of the same length |C|−1 and |C|−1 = 1+ `(t, 1̂). But the same argument
also shows that |C ′| = 1 + `(t, 1̂). A contradiction. Thus every semimodular lattice is graded.

Let s, t ∈ L and pick saturated chains s ∧ t = s0 ≺• s1 ≺• · · · ≺• sm = s and s ∧ t = t0 ≺• t1 ≺• · · · ≺•
tn = t. Consider the elements si ∨ tj . By induction on i+ j − 1, submodularity implies that

si ∨ tj = (si−1 ∨ tj) ∨ (si ∨ tj−1)

is either equal to si−1 ∨ tj or covers it and hence r(si ∨ tj)− r(si−1 ∨ tj) ≤ 1.
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For fixed j this implies

r(s ∨ tj)− r(tj) = r(s ∨ tj)− r((s ∧ t) ∨ tj) =

m∑
i=1

r(si ∨ tj)− r(si−1 ∨ tj) ≤ m

and for j = n, this becomes

r(s ∨ t)− r(t) ≤ m = r(s)− r(s ∧ t) . �

Note that modular lattices are semimodular and the result above yields a proof of Corollary 2.10.
Conversely, call a lattice L lower semimodular if the dual lattice L′ is upper semimodular. Then L
is modular if and only if L is lower and upper semimodular.

Corollary 4.5. A graded lattice L is modular if and only if r(s ∨ t) = r(s) + r(t) − r(s ∧ t) for all
s, t ∈ L.

We also notice that Parn is atomic: Every unordered partition of [n] is a join of partitions of the form
{{1}, . . . , {i, n}, . . . , {n}}. This is best viewed from the graph perspective: The atoms correspond to
edges of Kn.

↓ 13. Vorlesung, 24.5.2022 ↓

Definition 4.6 (Geometric lattice). A geometric lattice is a finite, atomic, and (upper) semimodular
lattice.

A lattice L is complemented if for every a ∈ L there is a b ∈ L such that a ∧ b = 0̂ and a ∨ b = 1̂. If
b is unique for every a, then L is uniquely complemented. If every interval of L is complemented,
then L is called relatively complemented.

Proposition 4.7. Let L be a finite semimodular lattice. Then L is relatively complemented if and only
if L is atomic (every element is a join of atoms).

Proof. Homework! �

4.1. Matroids. Geometric lattices are a cryptomorphism5 for matroids. That is, matroids viewed
from the perspective of lattice theory. A matroid is a pair M = (E, I) where E is a finite set and
I ⊆ 2E is a collection of subsets such that

(I1) ∅ ∈ I, (non-empty)
(I2) if J ∈ I and I ⊆ J , then I ∈ I, (hereditary)
(I3) if I, J ∈ I and |I| < |J |, then there is e ∈ J \ I with I ∪ e ∈ I. (independence augmentation)

We call I the independent sets of M .

Example 4.1 (Linear/Vector matroids). Let A ∈ Cd×n be a matrix with columns a1, . . . , an. Define

I := {{i1, . . . , ik} ⊆ [n] : ai1 , . . . , aik linearly independent}
Then M(A) = ([n], I) is a matroid, called a linear matroid or vector matroid. Clearly ∅ ∈ I and
I is hereditary. For I, J ∈ I with |I| < |J | and define U = span{ai : i ∈ I} and V = {ai : i ∈ J}.
Then dimU = |I| < |J | = dimV and, since {ai : i ∈ J} is a basis for V , there is e ∈ J with ae 6∈ U .
Thus {ai : i ∈ I ∪ e} is linearly independent and I ∪ e ∈ I. Thus I satisfies (I1)–(I3).

5A cool word used a lot by Rota and, supposedly, coined originally by Birkhoff.
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Matroids are a combinatorial abstraction of linear (in)dependence. This example also reinforces the
following terminology. An inclusion-maximal set B ∈ I is called a basis of M . The rank of a set
X ⊆ E is

rM (X) := max{|I| : I ∈ I, I ⊆ X} . (4.1)
The rank of the matroid is r(M) = r(E). The rank of M is thus the cardinality of some basis. The
augmentation property directly implies that every basis has the same number of elements.

Proposition 4.8. Let B,B′ ∈ I be two bases, then |B| = |B′|.

We write B ⊆ I for the collection of bases of M . A first glimpse at the many facets of matroids is a
characterization in terms of bases.

Proposition 4.9. Let B ⊆ 2E a non-empty collection of subsets. Then B is the set of basis of a
matroid M if and only if

(B1) for B,B′ ∈ B and e ∈ B \B′ there is f ∈ B′ \B such that (B \ e) ∪ f ∈ B.

Proof. Try yourself (or look it up). �

Let G = (V,E) be a graph and define I := {I ⊆ E : (V, I) cycle-free}. Then I trivially satisfies (I1)
and (I2). The last condition is less obvious. We get around it by using bases. The collection B ⊆ I
of inclusion-maximal sets are precisely the edge-sets of spanning forests, that is, every connected
component of (V,B) is a tree.

Proposition 4.10. Let B,B′ ⊆ E be a spanning forests and e ∈ B \ B′. Then there is f ∈ B′ \ B
with (B \ e) ∪ f is a spanning forest.

Proof. Let us assume that G is connected and B,B′ are trees. Now (V,B \ e) has two connected
components with nodes V1 and V2. Since (V,B′) is a spanning tree, there is an edge f = v1v2 ∈ B′
with v1 ∈ V1 and v2 ∈ V2. It follows that (V, (B \ e) ∪ f) is connected and hence a spanning tree. �

A set C ⊆ E is a circuit ofM if C is minimally dependent, that is, dependent but C \e is independent
for all e ∈ C. Let C be the collection of circuits of M .

Proposition 4.11. C is the collection of circuits of a matroid if and only if

(C1) ∅ 6∈ C,
(C2) if C1 ⊆ C2 for C1, C2 ∈ C, then C1 = C2;
(C3) if C1, C2 ∈ C are distinct and e ∈ C1 ∩ C2, then there is a circuit C3 with C3 ⊆ (C1 ∪ C2) \ e.

Condition (C3) is quite easily seen for graphical matroids and linear matroids. The independent sets
can be easily recovered from C:

I = {I ⊆ E : C 6⊆ I for all C ∈ C} .

Again it’s doable but fiddly to prove that (C1)–(C3) characterizes the circuits of a matroid.

Note that for our graphical matroids, we do not need that the graph G is simple. A loop of G is
an edge of the form uu. Two edges are parallel if they connect the same nodes. This terminology
extends to matroids. An element e ∈ E is a loop if {e} is a circuit. Two distinct elements e, f ∈ E
are called parallel {e, f} is a circuit. Being parallel is an equivalence relation on E. A matroid M is
called simple if it has no loops and parallel elements. Note that we can always simplify a matroid by
removing loops and picking an element from each equivalence class of parallel elements. An element
e ∈ E is a coloop if e is contained in every basis of M . For graphic matroids, such edges are also
called bridges – removing a bridge increases the number of connected components.

We want to introduce one more important class of matroids. Let S be a finite set and A1, . . . , Am ⊆ S.
A transversal or system of distinct representatives is a choice of distinct elements s1, . . . , sm ∈ S
such that si ∈ Ai. Alternatively, T ⊆ S is a transversal if there is a bijection f : [m] → T such that
f(i) ∈ Ai for i = 1, . . . ,m. A subset P ⊆ S is a partial transversal if there is J ⊆ [m] such that P is
a transversal for (Ai)i∈J .



ALGEBRAIC AND GEOMETRIC COMBINATORICS 29

Proposition 4.12. Let A1, . . . , Am ⊆ S. The collection of partial transversals are the independent
sets of a matroid.

Such matroids are called transversal matroids.

For the proof, another perspective is useful: Consider the bipartite graph G on nodes [m]]S and edges
(i, s) ∈ E if s ∈ Ai. A matching in G is a collection of pairwise disjoint edges. A transversal is then
a matching (i, si) that covers all nodes in [m]. A partial transveral is a set T that can be matched.

Proof. Let T, T ′ be two partial transversals represented as matchings, that is T, T ′ ⊆ E and assume
that |T | < |T ′|. Think about the elements in T and T ′ as red and blue edges in G. Note that
(T \ T ′) ∪ (T ′ \ T ) is a disjoint union of cycles and paths in which the edges alternate in color. Since
|T | < |T ′| there are more blue edges than red ones and hence there is a path of odd length with one
more blue edge than red edge. There is one more element s ∈ S covered by the red edges than by the
blue edges. We claim that T ∪ e is also a partial transversal. To see this, simply flip the colors of this
path:

This proves the claim. �

↓ 14. Vorlesung, 31.5.2022 ↓
Matroids can also be characterized via their rank function and this is the path that leads us back to
posets. The rank function of M is a function r : 2E → Z such that

(R1) 0 ≤ r(X) ≤ |X|; (nonnegative+subcardinal)
(R2) r(X) ≤ r(Y ) whenever X ⊆ Y ; (monotone)
(R3) r(X ∪ Y ) ≤ r(X) + r(Y )− r(X ∩ Y ). (submodular)

The first two properties follow directly from (4.1). Only the last property needs a justification: Let
I ⊆ X ∩ Y be an inclusion-maximal independent set so that r(X ∩ Y ) = |I|. Using the augmentation
property, we can extend I to a maximal independent J ⊆ X ∪ Y . We compute

r(X ∪ Y ) = |J | = |J ∩X|+ |J ∩ Y | − |J ∩ (X ∩ Y )| ≤ r(X) + r(Y )− r(X ∩ Y ) .

(R3) is reminiscent of the dimension formula from linear algebra: If U, V are vector subspaces of some
fixed vector space, then

dim(U + V ) = dim(U) + dim(V )− dim(U ∩ V )

For vector matroids, we deal with vectors and not subspaces:

r(X) = dim span{ae : e ∈ X}

Hence, even if X and Y span the same subspace, they might be disjoint and hence r(X ∪Y ) = r(X) =
r(Y ) < r(X) + r(Y )− r(X ∩ Y ).

We can recover M from its rank function as the independent sets are precisely those I ⊆ E for which
r(I) = |I|.

Theorem 4.13. A function r : 2E → Z is the rank function of a matroid if and only if (R1)–(R3) are
satisfied.

For the proof, we need the following lemma.

Lemma 4.14. Let r be a function that satisfies (R2) and (R3). Let X,Y ⊆ E be disjoint such that
r(X ∪ e) = r(X) for all e ∈ Y . Then r(X ∪ Y ) = r(X).
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Proof. Induction on |Y | = k. For k ≤ 1, this is clear. For k > 1 fix f ∈ Y and set A := X ∪ (Y \ f)
and B := X ∪ f . By induction and assumption r(A) = r(X) = r(B). Now

r(X) ≤ r(X ∪ Y ) = r(A ∪B) ≤ r(A) + r(B)− r(A ∩B) = r(X) + r(X)− r(X) ,

which proves the claim. �

Proof of Theorem 4.13. Let r be a function satisfying (R1)–(R3) and define I := {I ⊆ E : r(I) = |I|}.
We need to show that M = (E, I) is a matroid with r = rM .

Since 0 ≤ r(∅) ≤ |∅|, we have ∅ ∈ I. Let I ∈ I. For e ∈ I define I ′ := I \ e. Now

|I| = r(I) = r(I ′ ∪ e) ≤ r(I ′) + r(e)− r(∅) ≤ r(I ′) + 1 .

This implies |I ′| = |I| − 1 ≤ r(I ′) ≤ |I ′| and thus I ′ ∈ I.
Let I, J ∈ I with |I| < |J | and assume that I ∪ e 6∈ I for all e ∈ J \ I. That is, r(I ∪ e) = r(I) for
all e ∈ J \ I. It follows from the previous lemma that r(I ∪ J) = r(I). But |J | = r(J) ≤ r(I ∪ J) =
r(I) = |I|.
Hence M is a matroid. Let X ⊆ E and I ⊆ X inclusion-maximal with I ∈ I. Then rM (X) = |I| =
r(I) ≤ r(X). Since I is inclusion-maximal, this means that r(I ∪ e) = r(I) for all e ∈ X \ I. By the
previous lemma, this implies r(I) = r(X) and hence rM (X) = r(X) for all X. �

We call F ⊆ E a flat if rM (F ) < rM (F ∪ e) for all e ∈ E \ F . This also defines as closure operator
clM : 2E → 2E by clM (X) := {e ∈ E : rM (X ∪ e) = rM (X)}. For a linear matroid M the closure of
S ⊆ E is

cl(S) = {e ∈ E : ae ∈ span(af : f ∈ S)} .

In general, a closure operator is a map cl : 2E → 2E such that for all A ⊆ B ⊆ E

(C1) A ⊆ cl(A),
(C2) cl(A) ⊆ cl(B),
(C3) cl(cl(A)) = cl(A).

We state (but don’t proof) that closure operators give yet another characterization of matroids.

Theorem 4.15. A closure operator cl satisfies cl = clM for some matroid if and only if for all A ⊆ E
and distinct x, y 6∈ cl(A)

(C3) x ∈ cl(A ∪ y) if and only if y ∈ cl(A ∪ x).

The lattice of flats L(M) ⊆ 2E is the collection of flats of M partially ordered by inclusion. This is
a partially ordered set with maximum 1̂ = E and minimum 0̂ = cl(∅) = {e ∈ E : e loop}.

Example 4.2 (Graphical matroids). ?? Let G = (V,E) be a graph and M(G) the graphical matroid
with rank function r. The rank of X ⊆ E is the maximal number of edges of a cycle-free subset. Let
G′ = G[X] be the edge-induced subgraph. If G′ has node set V ′ and c′ connected components, then
r(X) = |V ′| − c′. If e = uv ∈ E is an edge, then e ∈ cl(X) if and only if there is a path from u to v in
G′.

The previous example also gives intuition to the following useful characterization of closures.

Proposition 4.16. Let X ⊆ E and e ∈ E \ X. Then e ∈ cl(X) if and only if there is a circuit
C ⊆ X ∪ e with e ∈ C.

Proof. If r(X ∪ e) = r(X), then for every independent subset I ⊆ X with |I| = r(X), we have that
I ∪ e 6∈ I and hence contains a circuit C ⊆ I ∪ e ⊆ X ∪ e with e ∈ C. Conversely, suppose that there
is such a circuit. Then, by definition of circuit, r(C) = |C| − 1 and since C \ e ⊆ X, we get from (C2)
e ∈ cl(C \ e) ⊆ cl(X). �

Proposition 4.17. L(M) is a geometric lattice.
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Proof. Let F, F ′ ∈ L(M) be flats. We claim that F ∩F ′ is a flat, which is then automatically the meet
of F and F ′. If F ∩ F ′ is not a flat, then there is e ∈ cl(F ∩ F ′) \ (F ∩ F ′). By Proposition 4.16, this
means that there is a circuit e ∈ C ⊆ (F ∩F ′)∪ e. But then C ⊆ F ∪ e and hence e ∈ cl(F ) = F . The
same holds for F ′, which then means e ∈ F ∩ F ′. A contradiction.

As for the join, we claim F ∨ F ′ = cl(F ∪ F ′). Indeed, cl(F ∪ F ′) is closed and if F ′′ is any closed set
containing F and F ′, then cl(F ∪ F ′) ⊆ cl(F ′′) = F ′′.

Let F ∈ L(M) be a flat and let I = {b1, . . . , bk} ⊆ F be an inclusion-maximal independent set. In
particular, every bi is not a loop and Bi := cl({bi}) is an atom of L(M). Since

B1 ∨B2 ∨ · · · ∨Bk = cl({b1, . . . , bk}) = F

this shows that L(M) is atomic.

To show that L(M) is semimodular, it suffices to show that rM is the rank function of L(M). But this
is easy: for 0̂ = cl(∅), we have r(0̂) = rM (∅) = 0. If F ⊆ F ′ are flats such that F is covered by F ′,
then necessarily cl(F ∪ e) = F ′ for all e ∈ F ′ \ F and

r(F ) < r(F ′) = r(F ∪ {e}) ≤ r(F ) + 1 . �

The proof already hints at the fact that every geometric lattice gives rise to a matroid: Let E be the
set of atoms of a geometric lattice L and define for A ⊆ E

f(A) := rL

(∨
a∈A

a
)

This definition implies that 0 ≤ f(A) ≤ f(A ∪ B) for all A ⊆ B ⊆ E and hence f satisfies (R1).
Submodularity implies f(A) ≤ |A| as well as (R3). Hence f is the rank function of a matroid M . One
further checks that L and L(M) are isomorphic. This establishes the following.

Theorem 4.18. There is a one-to-one correspondence between simple matroids and geometric lattices.

↓ 15. Vorlesung, 2.6.2022 ↓
This let’s us see the partition lattices associated to a graph G in a different light.

Proposition 4.19. Let G = (V,E) be a graph. The partition lattice Par(G) associated to G is iso-
morphic to the lattice of flats of the graphic matroid M(G).

Proof. For a set X ⊆ E, we defined P (X) = {V1, . . . , Vk} where V1, . . . , Vk are the node sets of
the connected components of G[X]. By our characterization of flats in Example ??, it follows that
P (X) = P (cl(X)). Thus, P is a surjective map from L = L(M(G)) to Par(G). To see that it is also
injective, we note that the flat that maps to {V1, . . . , Vk} ∈ Par(G) is given by F =

⋃k
i=1(

(
Vi
2

)
∩ E).

Both maps are order preserving and hence give the isomorphism. �

4.2. Characteristic polynomials. There are two basic operations on matroids that turn out to be
quite important. Let M = (E, I) be a matroid. The first one is a little underwhelming at first sight.
For S ⊆ E, we define the restriction of M to S as M |S = (S, I ′) with

I ′ := {I ∈ I : I ⊆ S} .
It is trivial to check that M |S is a matroid. For T ⊆ E, we define the deletion of T from M as
M \ T = M |E\T . In particular, if T = {e}, then M \ e is the matroid on E \ e with independent sets
I ∈ I with e 6∈ I. If e is not a coloop, then M \ e is a matroid of rank r(M).

If M is the graphical matroid for the graph G = (V,E), then M \ e is the graphical matroid for
the graph G \ e. If M is the linear matroid for A = (af )f∈E , then M \ e is the linear matroid for
A \ e = (af )f∈E\e.

For e ∈ E not a loop, we define the contraction of M at e as M/e = (E \ e, I ′′) with

I ′′ := {I \ e : e ∈ I ∈ I} .
If e is a loop, then M/e is simply the removal of e from the ground set. For T ⊆ E, we can define the
contractionM/T recursively asM/T = (M/e)/T ′ for e ∈ T and T ′ := T \e. The rank function is then
rM/T (X) = rM (X ∪ T )− rM (T ). Thus, if e is not a loop, then M/e is a matroid of rank r(M)− 1.
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If M(G) is a graphical matroid, then M(G)/e = M(G/e), where G/e is the usual contraction of an
edge. IfM is the linear matroid associated to A = (af )f∈E ∈ Rd, then a subset I ⊆ E\e is independent
if and only if the vectors af with f ∈ I∪e are linearly independent. Let π be the orthogonal projection
of Rd onto the hyperplane {x ∈ Rd : 〈ae, x〉 = 0} ∼= Rd−1. It is not difficult to check that M/e is the
linear matroid for A′ = (a′f = π(af ))f∈E\e.

The operations of deletion and contraction facilitate inductive arguments on matroids. For example:

Proposition 4.20. For a matroid M let b(M) be the number of bases. For e ∈ E, we have

b(M) = b(M \ e) + b(M/e) .

Proof. Every basis of M either contains e or not. The bases that contain e are precisely the bases of
M/e. The bases that do not contain e are precisely the bases of M \ e. �

Recall that for a simple graph, we wrote χG(k) for the number of proper k-colorings. For any edge
e ∈ E, we then have

χG(k) = χG\e(k)− χG/e(k) .

Indeed, if e = uv, then χG\e(k) counts all proper k-colorings of G plus those that give u and v the
same color. But those are precisely the proper k-colorings of G/e. Note that we can delete any parallel
edges of G/e without changing the chromatic polynomial. This way, we will never encounter loops.

Also notice that the recursion completely determines χG(k). In every step, we loose (at least) an edge
or an edge and a node. Therefore, we end up either with a graph on d nodes and no edges, in which
case χG(k) = kd.

We take the opportunity to extend the definition of chromatic polynomials from graphs to matroids.
For a matroid M = (E, I) we define the characteristic polynomial χM (t) ∈ Z[t] recursively as
follows: If M has loops, then χM (t) := 0. If M has no loops, then set χM (t) = 1 if r(M) = 0 and
χM (t) = t− 1 if r(M) = 1. For higher rank and number of elements, we let e ∈ E not be a coloop and
define

χM (t) = χM\e(t)− χM/e(t) .

If e, f are parallel elements, then f is a loop in M/e and hence χM (t) = χM\e(t). Thus, we can always
assume that M is simple and, in particular, pass to the simplification of M/e in each step.

A matroid M = (E, I) is a direct sum of matroids Mi = (Ei, Ii) for i = 1, 2 if E = E1 ] E2 and

I = {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2} .

We write M = M1 ⊕M2. We call M connected if M is not the direct sum of two matroids. That
is, if for every two elements e, f ∈ E there is a circuit C containing both. It is easy to see that
χM1⊕M2(t) = χM1(t)χM2(t). Note that a graphical matroid M(G) is connected if and only if G is
2-connected, that is, every two edges lie on a common cycle.

Proposition 4.21. Let M = (E, I) be a simple matroid. Then

χM (t) =
∑
X⊆E

(−1)|X|tr(M)−rM (X) .

Proof. We can prove the claim by induction on n = |E|. If n = 0 then r(M) = 0 and χM (t) = 1. For
the right-hand side the only summand is X = ∅ that gives (−1)0t0−0 = 1.

For n > 0, let e ∈ E not a coloop. Then the right-hand side splits into∑
e6∈X

(−1)|X|tr(M)−rM (X)+
∑
e∈X

(−1)|X|tr(M)−rM (X) =
∑

X⊆E\e

(−1)|X|tr(M\e)−rM\e(X)−
∑

X⊆E\e

(−1)|X|tr(M)−r(X∪e) .

By induction and the fact that there is a basis without e, the first sum is χM\e(t). For the second
summand, we note that since e is not a loop, we have r(M/e) = r(M)− 1 and rM/e(X) = rM (X ∪ e)
for X ⊆ E \ e. Hence, the second summand is χM/e(t) by induction. �
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The connection to chromatic polynomials is simple: If G = (V,E) is a connected graph, then χG(t) =
tχM(G)(t). Indeed, if r(M) = |V | − 1 and hence the starting conditions for the recursion differ by a
factor t.

In the same way as we computed the Moebius function of the intersection lattice in Theorem 3.3,
we can use it to relate the characteristic polynomial of a matroid to the characteristic polynomial of
the lattice of flats. Let (P,�) be a graded poset of rank d with 0̂. We define the characteristic
polynomial of P as

χP (t) :=
∑
a∈P

µP (0̂, a)td−rP (a)

Proposition 4.22. Let M be a simple matroid with lattice of flats L = L(M). Then χM (t) = χL(t).

Proof. Since M is simple, we have that 0̂ = ∅ is a flat and by Exercise 4.1 below, we have for F ∈ L

µL(0̂, F ) =
∑

X⊆E,cl(X)=F

(−1)|X|

Together with Proposition 4.21 and the fact that the rank function of L is the rank function of M ,
this proves the claim. �

Exercise 4.1. Let cl : 2E → 2E a closure operator, that is, a set map that satisfies (C1)–(C3) above.
Let L = {cl(X) : X ⊆ E} ⊆ 2E be the subposet of closed sets. Adapt the ideas in the proof of
Theorem 3.3 to show that for A,B ∈ L with A ⊂ B

µL(A,B) =
∑

A⊂X,cl(X)=B

(−1)|X\A|

4.3. Hyperplane arrangements. There is no general interpretation for χM (k) for (positive) integers
k. In a very nice geometric setting, there is a neat interpretation. Let E be a finite set and ae ∈ Cd
be nonzero vectors. For each e ∈ E define the linear hyperplane

He := {x ∈ Cd : 〈ae, x〉 = 0} .
This is a linear subspace of dimension d− 1 and H = {He : e ∈ E} is called a hyperplane arrange-
ment. Let us consider the intersection poset of the arrangement: Recall that this is the set

L(H) :=
{⋂
e∈I

He : I ⊆ E
}

of distinct intersection of the hyperplanes in H, partially ordered by reverse inclusion. The maximal
element is 1̂ =

⋂
e∈E He and minimal element 0̂ = Cd. We call H essential if 1̂ = {0}.

In the case of hyperplane arrangements, L(H) is a graded lattice of rank d− dim 0̂ with rank function
rL(U) = d− dimU for U ∈ L(H). In fact, we know this lattice already.

Proposition 4.23. Let A = (ae)e∈E ∈ (Cd \ 0) and let H be the associated hyperplane arrangement.
Then L(H) ∼= L(M(A)).

Proof. For X ⊆ E, let HX :=
⋂
e∈X He. Then X 7→ φ(X) := HX is an order-preserving surjective

map φ : 2E → L(H). Moreover, φ(X ∪ e) = φ(X) if and only if ae ∈ span(af : f ∈ X) and
hence φ(X) = φ(cl(X)). This means that φ is a bijective and order-preserving map. The inverse
φ(U) = {e ∈ E : U ⊆ He} for U ∈ L(H). �

For L(H), the characteristic polynomial takes the form

χL(H)(t) =
∑

U∈L(H)

µL(H)(0̂, U)tdimU−dim 0̂ .

We define the characteristic polynomial of the arrangement H by

χH(t) = tdim 0̂χL(H)(t) =
∑

U∈L(H)

µL(H)(0̂, U)tdimU .

If H is essential, then χH(t) = χL(H)(t) = χL(M(A))(t) = χM(A)(t).
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Now let us assume that ae ∈ Qd are rational vectors. In fact, since we only worry about linear
(in)dependence, we might scale and assume ae ∈ Zd. If q is a prime such that ae 6∈ qZd for all e ∈ E,
then He defines a hyperplane in Fdq and we denote the arragement in Fdq by Hq. Note that L(H) and
L(Hq) might differ for certain primes. This comes from the fact that for X ⊆ E, the rank of the
collection (ae : e ∈ X) might be different over different Fq. However, one can prove that there are
only finitely many primes q for which L(H) 6∼= L(Hq). We say that H has good reduction over Fq if
L(H) ∼= L(Hq).

Proposition 4.24 (Finite field trick). Let H be an arrangement with good reduction over Fq. Then

χH(q) =

∣∣∣∣∣Fdq \ ⋃
e∈E

He

∣∣∣∣∣ .
Proof. We can compute the number on the right by simple inclusion-exclusion over H. For this we
observe that U ∈ L(H) with dimU = k satisfies U ∼= Fkq and |U | = qk. Let M = M(A) be the
associated vector matroid. Hence the right-hand side is computed by∑
X⊆E

(−1)|X|qdimHX =
∑
X⊆E

(−1)|X|qd−rM (X) = = qd−r(M)
∑
X⊆E

(−1)|X|qr(M)−rM (X) = qd−r(M)χM (q) .

�

Let G = (V,E) be a graph with V = [d]. For every edge e = ij associate the hyperplane He = {x ∈
Rd : xi = xj}. The graphical hyperplane arrangement is then HG = {He : e ∈ E}. For sufficiently
large6 primes q, the finite field trick then yields

χHG
(q) = |{x ∈ Fdq : xi 6= xj for all ij ∈ E}| .

This is exactly the number of colorings of G with q colors. That is χHG
(q) = χG(q). If G is connected,

then
⋂
e∈E He is 1-dimensional and hence χG(q) = qχM(G)(q) as we knew before.

↓ 16. Vorlesung, 7.6.2022 ↓

4.4. R-labellings and broken circuits. Consider what deletion-contraction is on the level of geo-
metric lattices: Let (L,�) be a geometric lattice and a ∈ L an atom. Then L′ = L�a is the geometric
lattice corresponding to the contraction and L′′ := (L \L�a)∪ 1̂ is the geometric lattice corresponding
to the deletion. It follows that

χL(t) = χL′′(t)− χL′(t)
From this one can prove that the coefficients alternate in sign. However, we look at in from the
perspective of partition lattices (Theorem 4.2).

Proposition 4.25. Let (L,�) be a semimodular lattice and a ∈ L an atom. Then

µL(0̂, 1̂) = −
∑
t

µ(0̂, t)

where the sum is over all coatoms t ∈ L with t 6∈ L�a.

Proof. We want to use the dualized version of Weisner’s theorem (Proposition 3.12): For a � 0̂

µL(0̂, 1̂) = −
∑
t6=1̂
a∨t=1̂

µ(0̂, t) .

Let a ∈ L be an atom and t 6= 0̂ with a ∨ t = 1̂. From semimodularity, we get

r(1̂) = r(a ∨ t) ≤ r(t) + r(a)− r(a ∧ t) = r(t) + 1− 0

using the fact that a is an atom. Thus, r(t) ≥ r(1̂)− 1 and t is a coatom of L. For a cotom t we have
a ∨ t = 1̂ if and only if a 6� t, which proves the claim. �

Corollary 4.26. Let L be a semimodular lattice and x � y, then (−1)r(y)−r(x)µL(x, y) > 0.

6It is easily proved that HG has good reduction over all primes!
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Proof. Since every interval of a semimodular lattice is semimodular, we only need to prove it for x = 0̂
and y = 1̂. If r(1̂) = r(0̂) + 1, then L = {0̂, 1̂} and µ(0̂, 1̂) = −1. We can use the previous result to get

(−1)r(1̂)µL(0̂, 1̂) =
∑
t

(−1)r(1̂)−1µ(0̂, t)

Since t is a coatom and hence of rank r(t) = r(1̂)− 1 and, by induction, (−1)r(t)µ(0̂, t) > 0. �

Let P be a graded poset and let Cov(P ) ⊂ P × P be the set of cover relations of P . An R-labelling
is a map λ : Cov(P ) → Z such that for every a ≺ b there is a unique saturated chain a = a0 ≺• a1 ≺
• · · · ≺• ak = b such that λ(a0, a1) ≤ λ(a1, a2) ≤ · · · ≤ λ(ak−1, ak). We call such a saturated chain an
increasing chain.

Corollary 4.27. Let P be a graded poset with R-labelling and a � b. Then (−1)r(b)−r(a)µP (a, b) is the
number of saturated chains a = a0 ≺• a1 ≺• · · · ≺• ak = b such that

λ(a0, a1) > λ(a1, a2) > · · · > λ(ak−1, ak) .

In preparation of the proof, assume that P is of rank n and let S = {s1 < s2 < · · · < sk} ⊆ [n − 1].
Define αP (S) to the be number of chains a1 ≺ a2 ≺ · · · ≺ ak such that rP (ai) = si. That is, αP (S)
counts the number of rank-selected chains in P . The collection αP = (αP (S))S is called the flag
f-vector of P .

Define the order complex

∆(P ) = {{x1, . . . , xk} : 0̂ ≺ x1 ≺ · · · ≺ xk ≺ 1̂}

Philip Hall’s theorem (Corollary 3.10) states

µP (0̂, 1̂) =
∑

C∈∆(P )

(−1)|C|

For a chain C ∈ ∆(P ), let r(C) = {r(c) : c ∈ C} ⊆ [n − 1] be the rank set of C. By grouping chains
according to r(C), we infer that

µP (0̂, 1̂) =
∑
S

(−1)|S|αP (S) .

For example, consider the poset

we get
S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

αP (S) 1 2 2 2 3 4 3 5

This presentation is quite reminiscent of inclusion-exclusion and we define

βP (S) :=
∑
T⊆S

(−1)|S\T |αP (T )

so that
αP (S) :=

∑
T⊆S

βP (T ) .
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We call βP = (βP (S))S the flag h-vector of P . In particular

µP (0̂, 1̂) = (−1)n−1βP ([n− 1])

Again, for our example, we get we get
S ∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

βP (S) 1 1 1 1 0 1 0 0

For a maximal chain C = {0̂ = a0 ≺• a1 ≺• · · · ≺• an = 1̂} let
λ(C) = (λ(a0, a1), λ(a1, a2), . . . , λ(an−1, an))

We say that C has a descent at s ∈ [n− 1] if λ(as−1, as) > λ(as, as+1). We set Des(C) ⊆ [n− 1] the
descents of C.

Theorem 4.28. Let (P,�) be a graded poset of rank n with R-labelling λ. Then βP (S) is the number
of maximal chains of P with descent set S.

For our example, here are the maximal chains with their labellings and descents:

S = {1, 3} : ∅ 1−→ {1} 0−→ {0, 1} 3−→ {0,1,3} 2−→ {0, 1, 2, 3}

S = {1} : ∅ 1−→ {1} 0−→ {0, 1} 2−→ {0, 1, 2} 3−→ {0, 1, 2, 3}

S = {2} : ∅ 1−→ {1} 3−→ {1,3} 0−→ {0, 1, 3} 2−→ {0, 1, 2, 3}

S = {3} : ∅ 0−→ {0} 1−→ {0, 1} 3−→ {0,1,3} 2−→ {0, 1, 2, 3}

S = ∅ : ∅ 0−→ {0} 1−→ {0, 1} 2−→ {0, 1, 2} 3−→ {0, 1, 2, 3}

Proof. We claim that αP (S) is the number of maximal chains with Des(C) ⊆ S. If this is true, then
by inclusion-exclusion ∑

T⊆S
(−1)|S\T |αP (T )

is the number of chains with descent set precisely S. But this is βP (S) and will then prove the claim.

Let 0̂ = a0 ≺ a1 ≺ a2 ≺ · · · ≺ ak ≺ ak+1 = 1̂ be a chain with S = {r(a1), r(a2), . . . , r(ak)}. For every
i = 0, . . . , k, there is a unique maximal chain Ci ⊆ [ai, ai+1] that is increasing with respect to λ. We
define the chain C = C0a1C1a2C2 . . . ak−1Ck−1akCk+1. This is a maximal chain and since we padded
with increasing chains, the only descents can occur at the elements ai. Hence Des(C) ⊆ S. �

Let us consider some examples of posets with natural R-labellings.

Example 4.3 (Boolean lattices). Let P = 2[n] for some n ≥ 1. Now, I ≺• I ′ if I ′ \ I = {i}. Define
λ(I, I ′) := i. It is clear that λ is an R-labelling: for any A ⊂ B with B \ A = {i1 < i2 < · · · < ik}
define Aj := A ∪ {i1, . . . , ij} for j = 0, . . . , k.

In this case, the maximal chains are precisely all permutations π of [n]. A descent of a maximal chain is
a descent of π. In particular, π = nn−1 . . . 2 1 is the unique permutation with Des(π) = [n−1]. This
again shows µBn(∅, [n]) = (−1)n. In particular, βP (S) is the number of permutations with descents
precisely at S. There is no closed formula known but for S = {1 ≤ s1 < s2 < · · · < sk < n}

αP (S) =

(
n

s1

)(
n− s1

s2 − s1

)
· · ·
(
n− s2

s3 − s2

)
· · ·
(
n− sk
n− sk

)
=

(
n

s1, s2 − s1, . . . , n− sk

)
This also means

A(n, k) =
∑
|S|=k

βP (S)

is the number of permutations of [n] with exactly k descents. These are the famous Eulerian numbers.

Example 4.4 (Distributive lattices). Let L = J (P ) be a distributive lattice. Let ` : P → [n] be a
linear extension of P , that is, a bijection with `(a) < `(b) if a ≺P b.
The elements in L are ideals of P and I ≺• I ′ in L if I ′\I = {a} for some minimal element P \I. Define
λ(I, I ′) := `(a). It is straightforward to verify that λ is an R-labelling. For every order ideal I ( P ,
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there is a unique a ∈ P \ I with `(a) minimal and I ∪ a an ideal. Since ` is strictly order-preserving,
we have `(a) > `(b) for all b ∈ I.
This is precisely what we did in the example above: The underlying poset P is

Example 4.5 (Modular lattices). Let (P,�) be a modular lattice of rank n. Pick a maximal chain
0̂ = t0 ≺• t1 ≺• · · · ≺• tn = 1̂. For any cover relation s ≺• t, define

λ(s, t) := min{i : s ∨ ti = t ∨ ti} .
Since tn = 1̂, λ(s, t) ≤ n is well-defined. We leave it as an exercise to verify that λ is an R-labelling
and give a concrete example instead.

Example 4.6 (Lattice of subspaces). Let Bn(q) be the lattice of subspaces of V := Fnq . Let e1, . . . , en
be the standard basis of V and for i = 0, . . . , n define Vi := 〈e1, . . . , ei〉 as the subspace spanned by
e1, . . . , ei. Since Bn(q) is a modular lattice, we can use the previous example to get an R-labelling but
we can be more explicit.

Any subspace U ⊆ V is given by the rowspan of a k × n matrix MU ∈ Fk×nq . Let us consider MU in
reduced row echelon form. There are 1 ≤ j1 < j2 < · · · < jk ≤ n such that ji is the first nonzero entry
in the i-th row. The entry (i, ji) is equal to 1 and is the only nonzero entry in the column ji. For
example 0 1 5 0 0 2 0

0 0 0 0 1 6 0
0 0 0 0 0 0 1


If U ′ is a subspace such that U ≺• U ′, then there is a vector u ∈ V \ U such that U ′ = U + 〈u〉. The
vector u is not unique but we can make it unique given MU by assuming that uji = 0 and the first
nonzero entry of u is 1. For example 

0 0 1 8 0 0 0
0 1 5 0 0 2 0
0 0 0 0 1 6 0
0 0 0 0 0 0 1


If the first nonzero entry of u is at position k, then we define λ(U,U ′) := k.

To see that this defines an R-labelling, let U ⊂ U ′ be to general subspaces. Pick a basis u1, . . . , ul for
U and complete to a basis ul+1, . . . , um for U ′. Use u1, . . . , ul to compute the canonical form MU and
assume that ul+1, . . . , um are also in canonical form with respect toMU . Now compute the reduced row
echelon form of M ′ = (ul+1, . . . , um). We can assume that ul+1, . . . , um are the rows of M ′ in the right
order with pivot h1 < h2 < · · · < hm−l+1. The unique increasing chain is then Ui := U + 〈ul+1, . . . , uj〉
for j = l, . . . ,m. For example, 

0 0 1 8 0 0 0
0 0 0 0 0 1 0
0 1 5 0 0 2 0
0 0 0 0 1 6 0
0 0 0 0 0 0 1


A maximal chain Ui of Bq(n) is uniquely determined by an invertible n× n-matrix M . The subspace
Ui is spanned by the last i rows. We can put M into canonical form by performing row operations
but we are not allowed to permute rows. The pivots determine a permutation matrix from which the
descents can be directly read off. This also allows us to determine βP (S) directly. Just count the
number of entries above the pivots. Here are the six possibilities for n = 3:1

1
1

1
1

1 ∗

 1
1 ∗

1


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1

1 ∗ ∗

 1
1 ∗

1 ∗

 1
1 ∗

1 ∗ ∗


The number of such matrices with all descents is thus q(

n
2), which fits with our previous computation

of µBn(q)(0̂, 1̂) = (−1)nq(
n
2).

Example 4.7 (Semimodular lattices). For a semimodular lattice (L,�), let P be the poset of join-
irreducibles and pick a linear extension ` : P → [k]. For a cover relation s ≺• t in L, define

λ(s, t) := min{`(a) : a ∈ P, s ∨ a = t} .
Since every element in L is a join of elements in P , this is well-defined. One can check that this gives
an R-labelling on L.

In the case that (L,�) is a geometric lattice, the R-labelling becomes much simpler. We do the
construction on the level of matroids and closed sets. Let M be a simple matroid of rank r on ground
set E. Let L ⊆ 2E be the lattice of flats. Let F ⊂ F ′ be two flats with r(F ′) = r(F ) + 1. Then
F ′ = cl(F ∪ e) for all e ∈ F ′ \ F . Let us fix any bijection ` : E → [n] for n = |E|. Hence, we can write
E = {e1, . . . , en} so that `(ei) = i. For a cover relation F ≺• F ′, we define

λ(F, F ′) := min(F ′ \ F ) ,

that is e = λ(F, F ′) is the smallest (in the fixed total order) element in F ′ that brings F to F ′.

Here is our running example:

with lattice of flats and cover relations labelled by λ

Proposition 4.29. λ is an R-labelling.

Proof. Let F ⊂ F ′ be two flats. We show the existence of a unique increasing chain by induction on
k = r(F ′)− r(F ). If k = 1, F ⊂ F ′ is a cover relation and we are good.

For k > 1, pick e = min(F ′ \ F ) and let F1 = cl(F ∪ e). Then F ≺• F1 is a cover relation and
λ(F, F1) = e. By induction, there is a unique increasing chain F1 ≺• F2 ≺• · · · ≺• Fk = F ′. Note that
λ(Fi, Fi+1) ∈ F ′ \F1 = F ′ \ (F ∪ e) and by choice of e, we have λ(Fi, Fi+1) > e for all i = 1, . . . , k− 1.
Thus setting F0 = F , we obtain that F0 ≺• F1 ≺• · · · ≺• Fk is an increasing chain.

To see that the chain is unique, let F ′0, . . . , F ′k be another increasing chain. Then F1 6= F ′1 and hence
λ(F, F ′1) = f 6= e. But e ∈ F ′ \ F ′1. Hence, there is a maximal j with e 6∈ F ′j . But then e ∈ Fj+1 and
λ(F ′j , F

′
j+1) = e < f and the chain is not increasing. �
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The R-labelling for a matroid with totally ordered ground set is quite natural: Every flat is the closure
of some set of elements. The R-labelling suggests a canonical representation: For a flat F ∈ L(M) of
rank k define the saturated chain C = {∅ = F0 ≺• F1 ≺• · · · ≺• Fk = F} by Fi := cl(Fi−1 ∪ ai), where
ai = min(F \ Fi−1). The sequence (a1, . . . , ak) is precisely the R-labelling λ(C). This is the unique
increasing chain that leads from ∅ to F .

Conversely, if ∅ = F0 ≺• F1 ≺• · · · ≺• Fk is any saturated chain in L(M) with λ(C) = (a1, a2, . . . , ak).
Then Fi = cl({a1, . . . , ai}). This implies that {a1, . . . , ak} is an independent set and in particular
ai 6= aj for i 6= j. But not every independent set can occur.

To see what kind of sequences can occur, let C be the circuits of M and C ∈ C. We call C \min(C)
a broken circuit. The broken circuit complex of M is the collection BC(M) ⊆ 2E of sets not
containing a broken circuit

BC(M) := {S ⊆ E : C \min(C) 6⊆ S for all C ∈ C} .
Note that BC(M) is hereditary: if S ∈ BC(M) and S′ ⊆ S, then S′ ∈ BC(M). In particular, if S does
not contain a broken circuit, it also does not contain a circuit. Hence BC(M) ⊆ I(M).

Proposition 4.30. Let C = {∅ = F0 ≺• F1 ≺• · · · ≺• Fk} be a saturated chain with λ(C) =
(a1, a2, . . . , ak). Then {a1, . . . , ak} ∈ BC(M).

Proof. Assume that S = {a1, . . . , ak} contains the broken circuit C \ min(C) and set b = min(C).
Since C ⊆ cl(S) ⊆ Fk, there is minimal j such that C ⊆ Fj . Thus, C \ b was not a subset of
Fj−1 and hence aj = λ(Fj−1, Fj) is the last element to complete the broken circuit in Fj . But
λ(Fj−1, Fj) = min(Fj \ Fj−1) but b < aj . �

The broken circuit complex allows us to give an interpretation for the coefficients of the characteristic
polynomial of a simple matroid or, equivalently, of a geometric lattice. If M is of rank r, we write

χM (t) = w0t
r + w1t

r−1 + · · ·+ wr .

The coefficients wi =
∑

a∈L,r(a)=i µL(0̂, a) are called the Whitney numbers of the first kind. From
Corollary 4.26 we know that (−1)iwi ≥ 0. The next result gives a combinatorial interpretation.

Theorem 4.31. LetM be a simple matroid of rank r with characteristic polynomial χM (t) =
∑

iwit
r−i.

Then
(−1)iwi = #{S ∈ BC(M) : |S| = i} .

Proof. We already did most of the leg work. Fix a rank k. Then wk =
∑

F (−1)kµ(∅, F ), where the
sum is over all flats F or rank k. From Corollary 4.27, we know that for a fixed F , (−1)kµ(∅, F ) is
the number of saturated chains λ(C) = {∅ = F0 ≺• F1 ≺• · · · ≺• Fk = F} for which λ(C) = (a1 > a2 >
· · · > ak) is decreasing. The ordered sequence uniquely determines the chain and Proposition 4.30
shows that {a1, a2, · · · , ak} ∈ BC(M). What is left to show is that any S ∈ BC(M) comes from a
decreasing chain.

Let S ∈ BC(M) and assume that S = {a1 > a2 > · · · > ak}. Define Fi = cl({a1, . . . , ai}) for
i = 0, . . . , k. Since S is an independent set, F0, F1, . . . , Fk is a saturated chain. Let λ(Fi, Fi+1) =
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min(Fi+1 \ Fi) = b. If b 6= ai+1, then, since a1, . . . , ai+1 is independent, there is a circuit C ⊆
{a1, . . . , ai+1, b}. Since b < ai+1, we have min(C) = b and hence C \min(C) ⊆ {a1, . . . , ai+1, b} ⊆ S,
which contradicts that S ∈ BC(M). �

For our running example, we can use deletion-contraction to compute

χM (t) = t3 − 5t2 + 8t− 4 .

This is confirmed by looking at the broken circuit complex.

5. Simplicial complexes and some topology

Let V be a finite set. An abtract simplicial complex is a non-empty collection ∆ ⊆ 2V such that

σ ∈ ∆, τ ⊆ σ =⇒ τ ∈ ∆

That is, ∆ is a non-empty hereditary set system. We’ll see in a second why we call them now simplicial
complexes. Here is an example

If {v} ∈ ∆ for all v ∈ V , then we call V the vertices of ∆. The dimension of σ ∈ ∆ is dimσ := |σ|−1.
In particular, every simplicial complex has a face of dimension −1 = dim∅. The dimension of ∆ is
dim ∆ := max{dimσ : σ ∈ ∆} and any σ ∈ ∆ with dimσ = dim ∆ is called a facet of ∆. We call ∆
pure if every inclusion-maximal σ ∈ ∆ is of the same dimension.

Example 5.1 (Graphs). Every simple undirected graph G = (V,E) with E ⊆
(
V
2

)
can be viewed as

a simplicial complex {∅} ∪ V ∪ E. The complex is pure if and only if G has no edges or no isolated
nodes.

For every simplicial complex ∆ of dimension d and k ≤ d, we define the k-skeleton as the subcomplex

skelk(∆) := {σ ∈ ∆ : dimσ ≤ k}

In particular skel0(∆) are the vertices of ∆ and G(∆) = skel1(∆) is the graph of ∆. We call ∆
connected if G(∆) is connected.

Example 5.2 (Order complexes). Let (P,�) be a poset. The collection ∆(P ) of all chains not
containing 0̂ and 1̂ (provided P has them) is a simplicial complex. The complex is pure if and only if
every maximal chain has the same length. That is, if P is graded.

Example 5.3 (Independence and broken circuit complexes). Let M = (E, I) be a matroid. Then
I ⊆ 2E is a simplicial complex of dimension r(M) − 1. The basis exchange property guarantees that
I is pure.

The broken circuit complex BC(M) ⊆ I is a subcomplex.

Exercise 5.1. Show that the broken circuit complex is pure.

A convex polytope P ⊂ Rd is the convex hull of finitely many points V ⊂ Rd, P = conv(V ). P
is a k-dimensional simplex if V = {v0, . . . , vk} are affinely independent. A 0-simplex is a point, a
1-simplex is a segment, a 2-simplex is a tetrahedron, etc. Note that for V ′ ⊆ V , we have that conv(V ′)
is a simplex of dimension |V ′| − 1 and is called a face of P . A collection T of simplices in some Rn
is called a geometric simplicial complex if for every P ∈ T and F ⊆ P face, we have F ∈ T .



ALGEBRAIC AND GEOMETRIC COMBINATORICS 41

Moreover, we require that for P = conv(V ), P ′ = conv(V ′) ∈ T , we have P ∩ P ′ = conv(V ∩ V ′). The
support of T is the underlying pointset

|T | :=
⋃
P∈T

P .

Proposition 5.1. If T is a geometric simplicial complex, then {V : conv(V ) ∈ T } is an abstract
simplicial complex.

Let e1, . . . , en be the standard basis of Rn. The standard (n − 1)-simensional simplex is ∆n−1 =
conv(e1, . . . , en). For any set I ⊆ [n], define ∆I := conv(ei : i ∈ I).

Proposition 5.2. Let ∆ ⊆ 2[n] be an abstract simplicial complex. Then

{∆σ : σ ∈ ∆}

is a geometric simplicial complex.

Note that the two propositions give an equivalence between geometric and abstract simplicial complexes
in the sense that the abstract simplicial complex obtained from the geometric simplicial complex
associated to ∆ is ∆ up to relabelling vertices. From now we will essentially focus on abstract simplicial
complexes, keeping the idea in mind that we can make them geometric whenever necessary.

Two subsets Xi ⊂ Rni , i = 1, 2 are homeomorphic if there is a continuous and bijective function
f : X1 → X2 such that f−1 is also continuous. In this case we write X1

∼= X2.

Proposition 5.3. If T , T ′ are two geometric simplicial complexes such that their underlying abstract
simplicial complexes are isomorphic, then T ∼= T ′.

Proof. For a geometric simplicial complex T with underlying abstract simplicial complex ∆ ⊆ 2[n],
we can construct a homeomorphism from the canonical realization as a subcomplex of ∆n−1. To that
end, we note that for two simplices P, P ′ of the same dimension, there is an affine homeomorphism
f : P → P ′. This local homeomorphism can be extended to the whole complex ∆. �

We will need the following a number of times.

Proposition 5.4. Let ∆ be a simplicial complex, viewed as a poset under inclusion. Then the order
complex ∆(∆) is homeomorphic to ∆.

Proof. We only need to show that if ∆ = 2[n] is a simplex, then ∆(∆) is homeomorphic to ∆. Picture
of barycentric subdivision. �

We can use simplicial complexes to combinatorially model complex topological spaces:

A particularly important topological space is the sphere Sd−1 = {x ∈ Rd : ‖x‖ = 1}. We call ∆ a
simplicial sphere if |∆| ∼= Sd−1. If P = conv(V ) is any polytope (not necessarily a simplex), then ∂P
is homeomorphic to a sphere. In fact, in dimensions d ≤ 2, one can prove that all simplicial d-spheres
are boundaries of (simplicial) polytopes. This drastically changes for d ≥ 3.

Theorem 5.5. For d ≥ 3 is is undecidable to check if a d-dimensional complex ∆ is a simplicial
d-sphere.
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5.1. Simplicial homology. Simplicial homology are (effectively) computable invariants of a simplicial
complex that help us distinguish topologically different complexes.

Let V be a totally ordered set, such that V = [n]. This allows us to write every k-simplex σ ∈ ∆
uniquely as [i0, i2, . . . , ik], where i1 < i2 < · · · < ik.

Let A be an abelian group, f r example, A ∈ {Z,Q,R,Fq}. For k ∈ Z, we define the k-th chain group
Ck(∆;A) the abelian group of expressions of the form∑

σ∈∆,dimσ=k

aσσ ,

that is, Ck(∆;A) ∼= Afk where fk is the number of k-simplices of ∆. If A = F is a field, then Ck(∆;A)
is simply an F-vector space with basis σ for every k-simplex σ ∈ ∆. Note that Ck(∆;A) = 0 for k < −1
and k > dim ∆. For k = −1, we have C−1(∆) = A with basis element ∅.

We define the k-th boundary map ∂k : Ck(∆;A)→ Ck−1(∆;A) on basis elements

∂k[i0, i1, . . . , ik] :=
k∑
j=0

(−1)j [i0, . . . , ij−1, ij+1, . . . , ik]

EXAMPLE

Lemma 5.6. ∂k−1 ◦ ∂k = 0 for all k.

Proof. We simply compute

∂k−1∂k[i0, i1, . . . , ik] =

k∑
j=0

(−1)j∂k−1[i0, . . . , ij−1, ij+1, . . . , ik]

=
∑
r<s

(−1)r(−1)s[i0, . . . , îr, . . . , îs, . . . , ik]

+
∑
r>s

(−1)r−1(−1)s[i0, . . . , îs, . . . , îr, . . . , ik] = 0 . �

The chain complex of ∆ over A is (Ck, ∂k)k∈Z. We call Zk = ker ∂k ⊆ Ck the k-cycles of ∆ and
Bk = im∂k+1 the k-boundaries of ∆. The k-th (reduced) homology group of ∆ is

H̃k(∆) := Zk(∆;A)/Bk(∆;A)

Theorem 5.7 (Fundamental theorem of algebraic topology). Let ∆,∆′ be simplicial complexes. If
∆ ∼= ∆′ then H̃k(∆;A) ∼= H̃k(∆

′;A) for all k ∈ Z.
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