

## Algebraische und geometrische Kombinatorik

http://tinygu.de/AGK19

10. Übungsblatt — Abgabe 2. Juli 2019

- **Aufgabe 1.** Es seien  $A=\Bbbk[x,y,z]/I$  und  $B=\Bbbk[w,x,y,z]/J$  standard graduierte Algebren mit  $I=\langle xy,xz^2,z^3\rangle$  und  $J=\langle xz,xw,yz,yw\rangle$ .
  - i) Finden Sie ein System von Parametern für A und B.
  - ii) Bestimmen Sie die Hilbert-Reihen von A und B.
  - iii) Sind A, B Cohen-Macaulay?

(10 Punkte)

**Aufgabe 2.** Eine Funktion  $f: \mathbb{Z}_{\geq 0} \to \mathbb{k}$  ist ein **Quasipolynom vom Grad** d wenn Polynome  $f_0, \ldots, f_{q-1}$  existieren, so dass  $f(n) = f_r(n)$  für  $n \equiv r \pmod q$  und  $d = \max(\deg f_i: i = 0, \ldots, q-1)$ .

Zeigen Sie, dass f ein Quasipolynom vom Grad d ist genau dann, wenn es  $a_1, \ldots, a_{d+1} \in \mathbb{Z}_{>0}$  gibt so dass

$$\sum_{n\geq 0} f(n)t^n = \frac{h(t)}{(1-t^{a_1})\cdots(1-t^{a_{d+1}})}.$$

(10 Punkte)

**Aufgabe 3.** Sei A eine endlich erzeugte k-Algebra.

i) Zeigen Sie für  $f_1,\ldots,f_m\in A$  und  $n_i>0$ , dass die Algebra  $\Bbbk[f_1,\ldots,f_m]$  ein endlich erzeugter Modul über der Algebra  $\Bbbk[f_1^{n_1},\ldots,f_m^{n_m}]$  ist.

Sei  $\theta_1, \ldots, \theta_m$  ein System von Parametern von A.

ii) Zeigen Sie, dass  $\theta_1^{n_1}, \dots \theta_r^{n_m}$  ein System von Parametern von A ist.

(10 Punkte)