

Algebraische und geometrische Kombinatorik

http://tinygu.de/AGK19

6. Übungsblatt — Abgabe 4. Juni 2019

Bitte auch die zweite Seite beachten!

Aufgabe 1. Seien $a_1, \ldots, a_m \in \mathbb{R}^d$ Vektoren und

$$\mathcal{L} = \{U_I := \operatorname{span}\{a_i : i \in I\} : I \subset [m]\}$$

ein lattice of flats aus der Vorlesung.

- i) Was sind die Atome von \mathcal{L} ? Zeigen, dass \mathcal{L} ein atomarer Verband ist.
- ii) Zeigen Sie, dass \mathcal{L} ein relativ komplementierter Verband ist.
- iii) Sei (L, \preceq) ein semimodularer Verband. Zeigen Sie, dass L genau dann atomar ist, wenn L relativ komplementiert ist.

Ein semimodularer Verband, der eine dieser Äquivalenzen aus iii) erfüllt, heißt auch **geometrischer** Verband.

iv) Bonus: Sei (L, \preceq) ein geometrischer Verband mit Atomen $E = \{t_1, \ldots, t_m\}$. Zeigen Sie, dass

$$\mathcal{I} \; := \; \left\{ I \subseteq E : \bigvee I \neq \bigvee J \text{ für alle } J \subsetneq I \right\}$$

die unabhängigen Mengen eines Matroids M auf E sind.

(10+5 Punkte)

- **Aufgabe 2.** Sei (L, \preceq) ein Verband. Ein Element $a \in L \setminus \{\widehat{0}\}$ ist **join-reduzibel** falls es $s, t \in L \setminus \{a\}$ gibt mit $a = s \vee t$. Ansonsten heißt a **join-irreduzibel**.
 - i) Bestimmen Sie die join-irreduzibeln Elemente eines lattice of flats aus Aufgabe 1.

Seien $x_1, x_2, \ldots, x_k \in L$ die join-irreduzibeln Elemente, sodass aus $x_i \prec x_j$ folgt i < j.

ii) Sei \mathcal{L} ein geometrischer Verband aus Aufgabe 1 und für $a \prec \bullet b$ definiere

$$\lambda(a,b) := \min\{i : a \lor x_i = b\}.$$

Zeigen Sie, dass λ ein eine R-Beschriftung definiert.

Hinweis: Ohne den Zusatz *semimodular* gilt die Aussage im Allgemeinen nicht und *atomar* ist auch sehr hilfreich.

(10 Punkte)

Erinnerung: Sei Poset (L, \preceq) und $a, b \in L$.

Ein **Supremum** (engl. **join**) von a und b ist ein Element $z \in L$ mit $a \leq z$, $b \leq z$ und für alle z' mit $a, b \leq z'$ gilt $z \leq z'$. Wenn z existiert, dann ist z eindeutig und wird mit $a \vee b$ bezeichnet.

Ein **Infimum** (engl. **meet**) von a und b ist ein Element $w \in L$ mit $w \leq a$, $w \leq b$ und für alle w' mit $w' \leq a, b$ gilt $w' \leq w$. Wenn w existiert, dann ist w eindeutig und wird mit $a \wedge b$ bezeichnet.

Falls für alle $a,b\in L$ Supremum und Infimum existiert, dann heißt (L,\preceq) Verband (engl. lattice¹

Ein Verband heißt (oberhalb) **semimodular** falls für $a,b \in L$ mit $a \wedge b \prec \bullet a$ und $a \wedge b \prec \bullet b$ folgt, dass $a \prec \bullet a \vee b$ und $b \prec \bullet a \vee b$.

Ein **Atom** in einem Verband (L, \preceq) ist $x \in L$ mit $\widehat{0} \prec \bullet x$. Der Verband L heißt **atomar** falls jedes $y \in L$ von der Form $y = x_1 \lor x_2 \lor \cdots \lor x_k$ für Atome x_1, \ldots, x_k ist.

Ein Verband (L, \preceq) heißt **relativ komplementiert** falls für alle $a \prec b \prec c$ es ein $t \in L$ gibt mit $a = b \land t$ und $c = b \lor t$.

¹Vorsicht! Lattice übersetzt sich auch zu 'Gitter'. Das führt manchmal zu Verwirrung. Z.B. ist subgroup lattice in der Gruppentheorie der Untergruppenverband und nicht das Untergruppengitter.