1. Formelblatt

1.1
$$a^x a^y = a^{x+y}$$
 $a^x b^x = (ab)^x$ $a^{xy} = (a^x)^y$ $a^{-x} = \frac{1}{a^x}$ $\sqrt[q]{a} = a^{\frac{1}{q}}$

1.2
$$\log_b(xy) = \log_b x + \log_b y$$
 $\log_b x^y = y \log_b x$ $\log_c x = \log_c b \cdot \log_b x$

1.3 (Komplexe Zahlen \mathbb{C}) (a) Imaginäre Einheit: $i^2 = -1$

(b)
$$(x+iy) + (a+ib) = (x+a) + i(y+b)$$
, $(x+iy) - (a+ib) = (x-a) + i(y-b)$

(c)
$$(x+iy)(a+ib) = (ax-yb) + i(bx+ay)$$
, $\frac{x+iy}{a+ib} = \frac{ax+by}{a^2+b^2} + i\frac{ay-bx}{a^2+b^2}$

- (d) Betrag: Ist z = x + iy, so ist $|z| = \sqrt{x^2 + y^2}$
- (e) konjugiert komplexe Zahl: $\overline{x+iy} = x iy$. Es gilt z.B. $z \cdot \overline{z} = |z|^2$
- **1.4** (Geometrische Summe) Für $x \neq 1$ und $n \in \mathbb{N}_0$ gilt $\sum_{i=0}^n x^i = \frac{x^{n+1} 1}{x 1}$.
- **1.5** Für $n \in \mathbb{N}$ sei $n! = 1 \cdot 2 \cdots n$ die Fakultät von n. Weiter sei 0! = 1.
- **1.6** (Dreiecksungleichung) Für alle $x, y \in \mathbb{R}$ gilt $|x + y| \le |x| + |y|$.
- **1.7** (Bernoullische Ungleichung) Für $x \ge -1$ und $n \in \mathbb{N}$ gilt $(1+x)^n \ge 1 + nx$.
- **1.8** Eine Folge (a_n) ist konvergent gegen den Grenzwert a ($\lim_{n\to\infty} a_n = a$), wenn für alle $\varepsilon > 0$ alle a_n mit $n \ge n_0$ in der ε -Umgebung $U_{\varepsilon}(a) = \{x : |a-x| < \varepsilon\}$ liegen. Eine Folge heißt divergent, wenn sie nicht konvergiert.
- 1.9 Eine unbeschränkte Folge ist divergent.
- 1.10 (Monotonieprinzip) Ist eine Folge monoton und beschränkt, so ist sie konvergent.
- **1.11** Der Wert $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2.71828182845904...$ heißt *Eulersche Zahl*.

1.12
$$\sin(-x) = -\sin x$$
 $\sin(x \pm 2\pi) = \sin x$ $\sin^2 x + \cos^2 x = 1$ $\cos(-x) = \cos x$ $\cos(x \pm 2\pi) = \cos x$ $\tan x = \frac{\sin x}{\cos x}$
$$\frac{x}{\sin x} = 0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3} \quad \frac{\pi}{2} \quad \frac{2\pi}{3} \quad \frac{3\pi}{4} \quad \frac{5\pi}{6} \quad \pi \quad \frac{3\pi}{2} \quad 2\pi$$

$$\sin x \quad 0 \quad \frac{1}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{\sqrt{3}}{2} \quad 1 \quad \frac{\sqrt{3}}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{1}{2} \quad 0 \quad -1 \quad 0$$

$$\cos x \quad 1 \quad \frac{\sqrt{3}}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{1}{2} \quad 0 \quad -\frac{1}{2} \quad -\frac{\sqrt{2}}{2} \quad -\frac{\sqrt{3}}{2} \quad -1 \quad 0 \quad 1$$

- **1.13** Sei $z = x + iy \in \mathbb{C}$. Es ist $e^z = e^x(\cos y + i\sin y)$.
- **1.14** $z=x+iy\in\mathbb{C}$ hat die Polarkoordinaten r und $\varphi\in]-\pi,\pi]$ mit $x=r\cos\varphi$ und $y=r\sin\varphi$ und es gilt $z=re^{i\varphi}$ sowie $z^n=r^ne^{in\varphi}$ für $n\in\mathbb{Z}$.
- **1.15** $e^{2\pi i}=1$, also $e^{z+2\pi i}=e^z$, d.h. $f(z)=e^z$ ist periodisch mit der Periode $2\pi i$.