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Abstract

The Wiener index is analyzed for random recursive trees and random binary search trees in the
uniform probabilistic models. We obtain the expectations, asymptotics for the variances, and limit
laws for this parameter. The limit distributions are characterized as the projections of bivariate
measures that satisfy certain fixed-point equations. Covariances, asymptotic correlations, and
bivariate limit laws for the Wiener index and the internal path length are given.
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1 Introduction and results

The Wiener index of a connected graph is defined as the sum of the distances between all unordered
pairs of vertices of the graph, where the distance between two vertices is the minimum number of
edges connecting them in the graph. The index was introduced by the chemist H. Wiener about
50 years ago to demonstrate correlations between physico-chemical properties of organic compounds
and the index of their molecular graphs. Therefore, the graphs of most practical interest have natural
restrictions on their degrees corresponding to the valences of the atoms and are typically trees or
have hexagonal or pentagonal cycles. See as general references the monographs of Trinajstić [21] and
Gutman and Polansky [11].

While much effort has been made to calculate the Wiener index of various graphs effectively,
recently the chemical relevance of taking averages over certain classes of trees or graphs was also
noted. Dobrynin and Gutman [8] propose using a normalized Wiener index, where the normalization
is with respect to an average of the Wiener index over some set of (molecular) graphs. This is
appropriate when molecules of a series under consideration have different sizes (numbers of vertices
in their molecular graphs), but the property examined is independent of molecular size and should
be correlated to the Wiener index. Dobrynin and Gutman state, “Until now, however, normalized
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Wiener indices have not been used, because the values 〈W 〉 were not available. [8]” (Here, 〈W 〉
denotes an appropriate average of the Wiener index.)

In combinatorics, mathematicians occasionally considered averages of the Wiener index for com-
binatorial classes of trees such as simply generated families of trees. In particular, exact and asymp-
totic formulæ for ordinary ordered trees, rooted labeled trees, and rooted binary trees are given in
Entringer, Meir, Moon, and Székely [9].

In this note we give a probabilistic analysis for the Wiener index of random recursive trees and
random binary search trees. A tree with n vertices labeled 1, . . . , n is a recursive tree if the vertex
with label 1 is distinguished as the root, and for each k, 2 ≤ k ≤ n, the labels of the vertices in
the path from the root to the vertex labeled k form an increasing sequence. There exist (n − 1)!
recursive trees with n vertices, and a random recursive tree with n vertices is one chosen with equal
probability form this set. For reference see the survey of Smythe and Mahmoud [20]. A binary
search tree is a data structure built up from an ordered set of distinct numbers. The first number
becomes the root of the tree. Then the numbers are successively inserted recursively; each number
is compared with the root. If it is smaller than the root, it goes to the left subtree, otherwise to the
right subtree. There this procedure is recursively iterated until we reach an empty subtree, where the
number is inserted. A random binary search tree with n vertices is one built up from an equiprobable
permutation of the numbers 1, . . . , n. For reference see Knuth [13].

For both tree models we obtain the expectations, asymptotic expressions for the variances, and
limit laws for the Wiener index as well as the covariances and correlations with the internal path
length, and a bivariate limit law for the Wiener index and the internal path length. The internal
path length of a rooted tree is defined as the sum of the distances between all vertices and the root.

The analysis is based on the recursive structure of the trees and makes use of the contraction
method, originally introduced for the probabilistic analysis of recursive algorithms; see the survey
of Rösler and Rüschendorf [19]. The characteristic of the Wiener index problem from the point
of view of the contraction method is that in the natural recurrence we have a certain dependence
between the quantities which can usually not be handled by the method. We resolve this problem by
considering the bivariate recurrence for the joint distribution of the Wiener index and the internal
path length, where the unpleasant dependence can be somehow hidden, resulting in the applicability
of a general transfer theorem of Neininger [16]. From the bivariate asymptotic results we then extract
the asymptotic relations for the Wiener index.

We give the proofs in section two. Section three contains some remarks and states open problems
connected to the present note. In the rest of this section we fix some notation and state our results.

We denote by Hn the n-th harmonic number Hn =
∑n

i=1 1/i, by At the transposed of a vector
or matrix A, by xn ∼ yn asymptotic equivalence of sequences of real numbers, i.e., xn/yn → 1 for
n → ∞. By Xn

L−→ X convergence in distribution of the random variates Xn to X is denoted,
L(X) denotes the distribution of X; E , Var,Cov, and Cor denote the mean, variance, covariance
and correlation. ByM2 we abbreviate the space of all bivariate, centered probability measures with
finite second moments. Finally, we set E(U) := U ln(U) + (1− U) ln(1− U).
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Theorem 1.1 Let (Wn, Pn) denote the vector of the Wiener index and the internal path length of a
random binary search tree with n vertices. Then we have

EWn = 2n2Hn − 6n2 + 8nHn − 10n+ 6Hn, (1)

Var(Wn) ∼ 20− 2π2

3
n4,

Cov(Wn, Pn) ∼ 20− 2π2

3
n3,

Cor(Wn, Pn) ∼
√

20− 2π2

21− 2π2
= 0.4548 . . . ,(

Wn − EWn

n2
,
Pn − EPn

n

)
L−→ (W,P ), (2)

where L(W,P ) is the unique fixed-point of the map T :M2 →M2 given for ν ∈M2 by

T (ν) := L
([

U2 U(1− U)
0 U

](
Z1

Z2

)
+
[

(1− U)2 U(1− U)
0 1− U

](
Z ′1
Z ′2

)
+
(
b∗1
b∗2

))
,

with (
b∗1
b∗2

)
:=
(

6U(1− U) + 2 E(U)
1 + 2 E(U)

)
,

where (Z1, Z2), (Z ′1, Z
′
2), U are independent with L(Z1, Z2) = L(Z ′1, Z

′
2) = ν and U uniform [0, 1]

distributed.

The expression (1) was already given in [12]. For the random recursive tree we have:

Theorem 1.2 Let (Wn, Pn) denote the vector of the Wiener index and the internal path length of a
random recursive tree with n vertices. Then we have

EWn = n2Hn − 2n2 + nHn,

Var(Wn) ∼ 31− 3π2

18
n4,

Cov(Wn, Pn) ∼ 21− 2π2

12
n3,

Cor(Wn, Pn) ∼
√

3(21− 2π2)
2
√

(12− π2)(31− 3π2)
= 0.6342 . . . ,(

Wn − EWn

n2
,
Pn − EPn

n

)
L−→ (W,P ),

where L(W,P ) is the unique fixed-point of the map T defined in Theorem 1.1 with (b∗1, b
∗
2) there

replaced by (
b∗1
b∗2

)
:=
(

3U(1− U) + E(U)
U + E(U)

)
.
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2 Analysis

We use the recursive structure of the trees under consideration in order to setup a recurrence for
the Wiener index. We start with the analysis of the binary search tree. Let In and Jn = n− 1− In
denote the cardinalities of the left and right subtree of the root of a binary search tree containing n
vertices. We denote by (WIn , PIn), (W ′Jn , P

′
Jn

) the pairs of the Wiener index and the internal path
length in the left and right subtree of the root respectively. Thus by direct enumeration we obtain
the recurrence

Wn = WIn +W ′Jn + bn,

where

bn = (PIn + P ′Jn + n− 1) + JnPIn + InP
′
Jn + 2InJn.

While such a decomposition is known to be inferior to other representations from the practical point
of view of figuring out Wn for a given tree, see [6, section 4], the recursive decomposition is the basis
of the present approach. In the random binary search tree Wn and Pn become random variables. It
is known that the cardinality of the left subtree In is uniformly distributed over {0, . . . , n − 1} and
that, conditioned on this cardinality In, the left and right subtree have the distributions of random
binary search trees of cardinalities In and Jn respectively and are (stochastically) independent of
each other. This implies that with two sequences (Wn, Pn), (W ′n, P

′
n) of pairs of Wiener indices

and internal path lengths in random binary search trees such that (Wn, Pn), (W ′n, P
′
n) and In are

independent we obtain the distributional recurrence

Wn
D= WIn +W ′Jn + bn, n ≥ 1, (3)

where D= denotes equality in distribution of the left and right hand side. Note that we have W0 = 0.
We proceed in three steps: First we derive, using (3), the mean of Wn as outlined in [12]. In the

second step we setup a distributional recurrence for the vector (Wn, Pn) and apply the contraction
method in form of a general transfer theorem as given in [16], which is restated for the readers
convenience. This leads to the limit law and the characterization of the limit in form of a fixed-point
equation. The reason why we cannot apply the method directly to the recurrence (3) is that condi-
tioned on In the quantities bn,WIn ,W

′
Jn

are dependent, where independence would be essential for
the application of the method. This dependence is caused by the dependence of the Wiener index
and the internal path length in each subtree. In the last step we derive the second (mixed) moments
from the bivariate fixed-point equation.

Proof of Theorem 1.1. Expectation: Denote αn := EWn and γn := EPn. We have α0 = 0 and
recursively by conditioning on In in (3)

αn = βn +
2
n

n−1∑
k=0

αk, n ≥ 1, (4)

with

βn := E bn =
1
n

n−1∑
k=0

(γk + γn−1−k + n− 1 + 2k(γn−1−k + n− 1− k)) .
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With the well-known formula γn = 2(n+ 1)Hn − 4n, n ≥ 0, we obtain from identities for harmonic
numbers that

βn =
(

2
3
Hn −

14
9

)
(n+ 1)(n+ 2) +

7
3

(n+ 1) +
2
3
, n ≥ 1. (5)

Note that the recurrence (4) initialized by α0 = 0 can be resolved to, Lemma 1 in [12],

αn = βn + 2(n+ 1)
n−1∑
k=1

βk
(k + 1)(k + 2)

, n ≥ 1.

Plugging in the expression for βn leads to the formula for EWn given in (1).
Limit law: We also have

Pn
D= PIn + P ′Jn + n− 1, n ≥ 1,

and obtain as well a distributional recurrence for the bivariate quantities (Wn, Pn):(
Wn

Pn

)
D=
[

1 n− In
0 1

](
WIn

PIn

)
+
[

1 n− Jn
0 1

](
W ′Jn
P ′Jn

)
+
(

2InJn + n− 1
n− 1

)
.

The rescaled quantities X0 := 0 and

Xn :=
(
Wn − EWn

n2
,
Pn − EPn

n

)t
, n ≥ 1,

and the analogously defined X ′n satisfy the recurrence

Xn
D= A

(n)
1 XIn +A

(n)
2 X ′Jn + b(n), n ≥ 1, (6)

where

A
(n)
1 =

[
1/n2 0

0 1/n

] [
1 n− In
0 1

] [
I2
n 0
0 In

]
=

[
(In/n)2 In(n− In)/n2

0 In/n

]
,

A
(n)
2 =

[
(Jn/n)2 Jn(n− Jn)/n2

0 Jn/n

]
,

and b(n) = (b(n)
1 , b

(n)
2 ) with(

b
(n)
1

b
(n)
2

)
=

[
1/n2 0

0 1/n

]([
1 n− In
0 1

](
αIn
γIn

)
+
[

1 n− Jn
0 1

](
αJn
γJn

)

−
(
αn
γn

)
+
(

2InJn + n− 1
n− 1

))
.

For the asymptotic analysis of b(n) we plug in expansions for αn and γn, obtained from expanding
Hn = ln(n) + γ + o(1) for n→∞, where γ denotes Euler’s constant,

αn = 2n2 ln(n) + (2γ − 6)n2 + o(n2),
γn = 2n ln(n) + (2γ − 4)n+ o(n).
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After cancellation of some terms this yields with the convention x ln(x) := 0 for x = 0,

b
(n)
1 =

1
n2

(
2I2
n ln

(
In
n

)
+ 2J2

n ln
(
Jn
n

)
+ 2InJn ln

(
In
n

)
+ 2InJn ln

(
Jn
n

)
+ 6InJn

)
+ o(1),

b
(n)
2 =

1
n

(
2In ln

(
In
n

)
+ 2Jn ln

(
Jn
n

)
+ n

)
+ o(1),

where the o(1)s are random but the convergences hold uniformly. We may take the freedom to model
all quantities on a joint probability space such that In/n→ U for a uniform [0, 1] distributed random
variate, where the convergence holds almost surely and thus in L2. Then, by dominated convergence,
we obtain the following convergences in L2:

A
(n)
1 → A∗1 :=

[
U2 U(1− U)
0 U

]
, (7)

A
(n)
2 → A∗2 :=

[
(1− U)2 U(1− U)

0 1− U

]
,

b(n) → b∗ :=
(

2U ln(U) + 2(1− U) ln(1− U) + 6U(1− U)
2U ln(U) + 2(1− U) ln(1− U) + 1

)
. (8)

The situation is now tailored for the application of Theorem 4.1 in Neininger [16], which says:
Let a sequence (Xn) satisfy a recurrence as (6) such that for some A∗1, A

∗
2, b
∗ we have

(A(n)
1 , A

(n)
2 , b(n))→ (A∗1, A

∗
2, b
∗) in L2, n→∞, (9)

E

∥∥(A∗1)tA∗1
∥∥

op
+ E

∥∥(A∗2)tA∗2
∥∥

op
< 1, (10)

E

[
1{In≤`}∪{In=n}

∥∥∥∥(A(n)
1

)t
A

(n)
1

∥∥∥∥
op

]
→ 0, (11)

E

[
1{Jn≤`}∪{Jn=n}

∥∥∥∥((A(n)
2

)t
A

(n)
2

∥∥∥∥
op

]
→ 0

for all ` ∈ N and n → ∞, where ‖A‖op := sup‖x‖=1 ‖Ax‖ denotes the spectral radius of a matrix
A and 1B the indicator function of a set B. Then (Xn) converges in distribution and with second
moments to a distribution L(X), which is the unique fixed-point of the map T : M2 → M2 given
by T (ν) := L(A∗1Z +A∗2Z

′ + b∗), where (A∗1, A
∗
2, b
∗), Z, Z ′ are independent with L(Z) = L(Z ′) = ν.

Thus the verification of (9)–(11) implies the limit law (2) with the characterization of L(W,P )
as given in the theorem. Condition (9) is satisfied by (7) and (8). Condition (11) holds since
‖(A(n)

r )tA(n)
r ‖op are deterministically bounded, r = 1, 2, and

P ({In ≤ `} ∪ {In = n}) = P ({Jn ≤ `} ∪ {Jn = n}) ≤ `+ 1
n
→ 0

for all ` ∈ N and n→∞.
It remains to check condition (10): Solving the characteristic equation for (A∗1)tA∗1 we obtain that

the eigenvalue λ(U) of (A∗1)tA∗1 being larger in absolute value is given by

λ(U) = U2

(
1 + U2 + (1− U)2

2
+

√
(1 + U2 + (1− U)2)2

4
− U2

)
.
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This implies, since (A∗1)tA∗1 and (A∗2)tA∗2 are identically distributed, that

E

∥∥(A∗1)tA∗1
∥∥

op
+ E

∥∥(A∗2)tA∗2
∥∥

op
= 2Eλ(U)

=
3
10

+
29
60

√
2 +

1
4

ln
(√

2− 1
)

< 1.

Thus condition (10) is fulfilled and the limit law (2) holds.
Second (mixed) moments: Let (W,P ), (W ′, P ′), U be independent with L(W,P ) = L(W ′, P ′)

being the fixed-point of T in M2 and U uniform [0, 1] distributed. Thus we have EW = EP = 0
and (

W
P

)
D=
(
U2W + U(1− U)(P + P ′) + (1− U)2W ′ + 6U(1− U) + 2E(U)

UP + (1− U)P ′ + 1 + 2E(U)

)
.

Using the independence and EW = EP = 0 this yields

E [WP ] = E [U3WP ] + E [(1− U)3W ′P ′]
+ E [U2(1− U)P 2] + E [U(1− U)2(P ′)2]
+ E [(6U(1− U) + 2E(U))(1 + 2E(U))].

Thus, with EP 2 = 7− 2π2/3, we obtain

Cov(W,P ) = E [WP ] =
20− 2π2

3
.

With this we can resolve for EW 2. We have

EW 2 = E [U4W 2] + E [(1− U)4(W ′)2]
+ 2E [U3(1− U)WP ] + 2E [U(1− U)3W ′P ′]
+ E [U2(1− U)2(P + P ′)2] + E [(6U(1− U) + 2E(U))2],

which implies

EW 2 =
20− 2π2

3
.

This yields the correlation of the components W,P of the fixed-point:

Cor(W,P ) =

√
20− 2π2

21− 2π2
.

Since the convergence ((Wn− EWn)/n2, (Pn− EPn)/n)→ (W,P ) holds with second moments, this
implies Var(Wn) ∼ n4Var(W ), Cov(Wn, Pn) ∼ n3Cov(W,P ) and Cor(Wn, Pn) ∼ Cor(W,P ), which
finishes the proof.

For recursive trees the proof given above can easily be adjusted:

Proof of Theorem 1.2. (Sketch.) Consider the random recursive tree of n vertices labeled
1, . . . , n, n ≥ 2. We decompose the tree into the subtree rooted at the vertex labeled 2 and the
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rest of the tree, which is then rooted at the root of the original tree. It is known, see Smythe and
Mahmoud [20] and Dobrow and Fill [5], that the cardinality In of the subtree rooted at the vertex
labeled 2 is uniformly distributed on {1, . . . , n− 1} for n ≥ 2 and that conditioned on its cardinality
this subtree and the rest of the tree are random recursive trees of cardinalities In and Jn := n− In
respectively being independent of each other. Thus with two sequences (Wn, Pn), (W ′n, P

′
n) of pairs

of Wiener indices and internal path lengths in random recursive trees such that (Wn, Pn), (W ′n, P
′
n)

and In are independent, we obtain by enumeration

Wn
D= WIn +W ′Jn + bn, n ≥ 2, (12)

with

bn = JnPIn + InP
′
Jn + InJn

and (W0, P0) = (W1, P1) = (0, 0). Since Pn
D= PIn + P ′Jn + In, n ≥ 2, we have(

Wn

Pn

)
D=
[

1 n− In
0 1

](
WIn

PIn

)
+
[

1 n− Jn
0 1

](
W ′Jn
P ′Jn

)
+
(
InJn
In

)
.

For the calculation of the expectation note that for αn := EWn we have α0 = α1 = 0 and, by
(12) and conditioning on In,

αn = βn +
2

n− 1

n−1∑
k=2

αk, n ≥ 2, (13)

where βn can be calculated as in the binary search tree case to be

βn =
1
3
n(n+ 1)Hn −

4
9
n(n+ 1) +

1
3
n, n ≥ 2.

Recurrence (13), initialized by α0 = α1 = 0, can be resolved to

αn = βn + 2n
n−1∑
k=2

βk
k(k + 1)

, n ≥ 2.

This leads to the expression for EWn stated.
Then we scale as in the binary search tree case and obtain a recurrence for the scaled quantities.

Again the corresponding coefficients A(n)
1 , A(n)

2 converge to the A∗1, A∗2 as defined in (7). Using the
expansions EWn = n2 ln(n) + (γ − 2)n2 + o(n2) and EPn = n ln(n) + (γ − 1)n+ o(1) we obtain the
limit (b∗1, b

∗
2) of the adjusted b(n) as given in Theorem 1.2. The conditions (9)–(11) are satisfied and

the (mixed) second moments can be extracted from the fixed-point equation as shown for the binary
search tree case.

3 Remarks

We conclude with some remarks and open problems:

Internal path length. Our limit laws give in the second components as well the limit law for
the internal path length of the random trees under consideration. These were obtained before in
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Régnier [17] and Mahmoud [14] showing that suitably scaled versions of the internal path length
form a martingale and were rederived with characterizations of the limit distributions in Rösler [18]
and Dobrow and Fill [5], where Rösler used the approach we were following in the present paper,
and Dobrow and Fill used the method of moments.

Random split trees. Devroye [3] introduced a model of a random tree, the random split tree,
which for special choices of its parameters covers many common random tree models. Two important
parameters of this class are the branch factor b ∈ N and the splitter V , which is a random variable
in [0, 1]. For a subclass of this tree class the internal path length Pn satisfies

EPn =
1
µ
n ln(n) + cpn+ o(n)

with µ := bE [V ln(1/V )] and some constant cp ∈ R, see Neininger [15, Chapter 2]. The present
approach may be applicable for the analysis of the Wiener index of trees in this subclass. However,
a necessary relation would be the expansion

EWn =
1
µ
n2 ln(n) + cwn

2 + o(n2),

with

cw = cp −
bEV 2

1− bEV 2
.

Candidates could be random quadtrees, random m-ary search trees or random median-of-(2k + 1)
search trees, where the techniques developed in Flajolet, Labelle, Laforest, and Salvy [10], Chern
and Hwang [2], and Chern and Hwang [1] respectively could prove useful.

Simply generated families of trees. As shown in Entringer, Meir, Moon, and Székely [9] the
mean of the Wiener index of some simply generated families of trees is of the order n5/2, where we
obtained for the recursive and binary search trees n2 ln(n). This behavior is in accordance with the
similar different scalings for the average depth of a vertex or the internal path length being of the
orders

√
n versus ln(n) and n3/2 versus n ln(n) respectively.

Digital tree structures. Trees based on bit comparisons such as digital search trees, tries or
Patricia tries exhibit under various models of randomness the presence of periodic functions in the
moments of many parameters. Does the Wiener index follow this pattern? Do we have asymptotic
normality for the Wiener index in these structures?

Properties of limit distributions. The limit distributions in our theorems are given implicitly as
the fixed-points of the maps T in M2. From the fixed-point equations higher moments may succes-
sively be pumped out. What are further properties of these distributions? Could one approximate
their distribution functions or other characteristics?

Independent toll functions. In Hwang and Neininger [12] recursions of the type (3) have been
analyzed for various types of toll functions bn. There, dependence between bn and In is allowed, but
a general assumption is that, conditioned on In, the quantities WIn , W ′Jn and bn are independent.
Clearly this is not satisfied for the Wiener index recurrence (3) caused by the dependence with the
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internal path length. In the case of conditionally independent bn the growth order n2 ln(n) for E bn,
cf. (5), would imply a variance of the order n4 ln2(n), see [12]. Thus the additional dependence of bn
in the Wiener index example causes the reduced order n4 for the variance.

Random distance in a tree. A quantity related to the Wiener index is the distance of two distinct
vertices chosen uniformly at random in a tree. While the Wiener index is the sum of all the distances
these quantities match (up to scaling) only in the mean since the Wiener index is a sum of dependent
distances. This is similar to the depth of a typical vertex being asymptotically normal distributed
and the internal path length, the sum of all depths, being asymptotically non-normal distributed.
For the distribution of distances of vertices with fixed labels in the random recursive tree and related
results see Dobrow [4] and the references therein.

Molecular graphs. Not much is known about the stochastic behavior of the Wiener index for
subclasses of graphs, which are more closely related to its chemical origin. For a discussions of
random models for hexagonal chains and chemical trees as they arise as graph representations of
certain molecules, see Dobrynin and Gutman [7, 8] and the references therein.
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