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Summary: We consider sequences of random variables with distributions that satisfy recurrences
as they appear for quantities on random trees, random combinatorial structures and recursive algo-
rithms. We study the tails of such random variables in cases where after normalization convergence
to the normal distribution holds. General theorems implying subgaussian distributions are derived.
Also cases are discussed with non-Gaussian tails. Applications to the probabilistic analysis of
algorithms and data structures are given.

1 Introduction
A large number of quantities (Xn)n≥0 of recursive combinatorial structures, random trees
and recursive algorithms satisfy recurrences of the form

Xn
d=

K∑
r=1

X(r)

I (n)
r

+ bn, n ≥ n0, (1.1)

with K, n0 ≥ 1, (X(r)
n )n≥0 identically distributed as (Xn)n≥0 for r = 1, . . . , K , a ran-

dom vector I (n) = (I (n)
1 , . . . , I (n)

K ) of integers in {0, . . . , n − 1} and a random bn

such that (X(1)
n )n≥0, . . . , (X(K )

n )n≥0, (I (n), bn) are independent. The symbol
d= denotes

equality in distribution. In applications, the I (n)
r are random subgroup sizes, bn is a toll

function specifying the particular quantity of a combinatorial structure and (X(r)
n )n≥0

are copies of the quantity (Xn)n≥0, that correspond to the contribution of subgroup r.
Typical parameters Xn range from the depths, sizes and path lengths of trees, the num-
ber of various sub-structures or components of combinatorial structures, the number
of comparisons, space requirements and other cost measures of algorithms to param-
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Key words and phrases: tail bound, large deviation principle, recursion, analysis of algorithms, subgaussian
distribution
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132 Neininger

eters of communication models, and many more. Numerous examples that are occur-
ring in these areas will be discussed below; see also the books of Mahmoud (1992),
Sedgewick and Flajolet (1996), Szpankowski (2001), and Arratia, Barbour and Tavaré
(2003).

Stochastic analysis of such quantities has been performed in many special cases,
mainly with respect to the computation of averages and higher moments of Xn , limit laws
and rates of convergences.Techniques in use include moment generating functions, saddle
point methods, the method of moments, martingales, and various direct approaches to
asymptotic normality such as representations as sums of independent or weakly dependent
random variables, Stein’s method and Berry–Esseen methodology.

During the last 15 years an efficient and quite universal probabilistic tool for the
analysis of asymptotic distributions for recurrences as in (1.1), the contraction method,
has been developed. It has been introduced for the analysis of the Quicksort algorithm
in Rösler (1991) and further developed independently in Rösler (1992) and Rachev
and Rüschendorf (1995), see also the survey article of Rösler and Rüschendorf (2001).
It has been applied and extended since then successfully to a large number of prob-
lems.

Recently, fairly general unifying limit theorems for this type of recurrences have
been obtained by the contraction method in Neininger and Rüschendorf (2004a, 2004b).
Typically, the limit distribution of the normalized recurrence is uniquely characterized by
a fixed point equation; we give a general outline below.

In this paper tail bounds for the quantities Xn are studied in cases, where the rescaled
quantities tend to a normal limit. Revisiting all presently known applications of the
contraction method that lead to a normal limit law in the area of analysis of algorithms,
one finds three structurally different cases how a normal limit law has appeared in the
context of the contraction method. For two of these cases we derive Gaussian tail bounds
under general conditions on the expansion of the first moment of Xn . In the third case
we discuss an example that leads to a large deviation principle with a rate function that
increases slower than quadratic at infinity.

For particular examples of recurrence (1.1), where I (n) is explicitly given, sharp
analytic tolls based on the analysis of generating functions usually give precise bounds.
The intention of the present paper is to derive theorems that do not make use of the
particular splitting vector I (n) and are valid for a whole class of problems that are related
by a similar splitting vector. Since our theorems below need assumptions on the expansion
of moments which are often derived via generating functions, analytic and probabilistic
tools may be regarded complementary here.

General bounds on the upper tail for recurrences as (1.1) have been derived in Karp
(1994) which also apply if the recurrence is less explicitly given than in our setting.

The paper is organized as follows. In section 2 we outline the approach of the con-
traction method and discuss three typical situations that lead to normal limit laws. Sec-
tion 3 reviews some technical preliminaries on basic concentration inequalities. The
sections 4–6 contain tail bounds for Xn for the three different cases together with appli-
cations to special examples.

We use L, C, D1, and D2 as generic symbols standing for constants that may change
from one occurrence to another.
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Recursive random variables with subgaussian distributions 133

2 The contraction method
In the framework of the contraction method the quantities Xn in (1.1) are first rescaled
by

Yn := Xn − m(n)

s(n)
, n ≥ 0, (2.1)

where m(n) and s(n) are appropriately chosen, e.g., of the order of mean and standard
deviation of Xn . Then, recursion (1.1) for Xn implies a modified recurrence for the scaled
quantities Yn ,

Yn
d=

K∑
r=1

s(I (n)
r )

s(n)
Y (r)

I (n)
r

+ b(n), n ≥ n0, (2.2)

with

b(n) = 1

s(n)

(
bn − m(n) +

K∑
r=1

m(I (n)
r )

)
(2.3)

and conditions on independenceand distributional copies as in (1.1). Then, the contraction
method aims to provide theorems of the following type: Assuming that the coefficients
in (2.2) are appropriately convergent,

s(I (n)
r )

s(n)
→ A∗

r , b(n) → b∗, (n → ∞) (2.4)

with random A∗
r , b∗, then under appropriate conditions the quantities (Yn) itself converge

in distribution to a limit Y . The limit distribution L(Y ) is obtained as a solution of the
fixed point equation that is obtained from (2.2) by letting formally n → ∞:

Y
d=

K∑
r=1

A∗
r Y (r) + b∗. (2.5)

Here, (A∗
1, . . . , A∗

K , b∗), Y (1), . . . , Y (K ) are independent and Y (r) d= Y for r = 1, . . . , K .
Usually, under constraints on the finiteness of moments of L(Y ) the fixed point equation
(2.5) has a unique solution that is the limit distribution in the corresponding limit law.

This approach has been universally developed in Neininger and Rüschendorf (2004a),
where detailed conditions for convergence of Yn are discussed.

A fixed point of (2.5) is in general not easily accessible. However, for some classes
of problems the normal distribution appears as limit distribution. There are mainly three
structurally different situations, in which the normal distribution appears:

The case
∑

(A∗
r )

2 = 1, b∗ = 0: It is well known that equation (2.5), with
∑K

r=1(A∗
r )

2

= 1 and b∗ = 0 almost surely, has exactly the centered normal distributions as solutions
(excluding the degenerate case where the A∗

r only take the values 0 and 1). This is the
most frequent occurrence of the normal distribution in applications in the analysis of
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134 Neininger

algorithms and combinatorial structures. Various examples can be found in section 5.3
of Neininger and Rüschendorf (2004a). Subgaussian distributions are derived for some
cases in Theorem 4.1.

The case Y
d= Y : A degenerate fixed point equation is one with

∑K
r=1 A∗

r = 1, where the
A∗

r only take the values 0 and 1 almost surely, and b∗ = 0. Any distribution is a solution

to these fixed point equations, hence we call this case Y
d= Y . It appears in particular

for quantities Xn with variances that are slowly varying at infinity. Limit laws for cer-
tain classes of problems where precise expansions of mean and variance are available
are studied together with applications in Neininger and Rüschendorf (2004b). We derive
subgaussian distributions in some cases in Theorem 5.1.

The case of deterministic A∗
r and b∗ d= N : Equation (2.5) with deterministic (A∗

1,

. . . , A∗
K ) with

∑K
r=1 |A∗

r | < 1 and b∗ being normally N (ν, τ2) distributed has the
normal distribution N (µ, σ2) as a solution, where mean µ and standard deviation σ are
determined in terms of ν, τ , and the A∗

r , cf. equations (6.4). The solution N (µ, σ2) is
unique under the constraint of a finite absolute first moment. The occurrence of the normal
limit distribution via this fixed point equation has not yet been systematically studied. In
section 6 a general normal limit law is given in Theorem 6.1, applications are mentioned,
and for a particular case, non-Gaussian tails are explicitly quantified.

3 Technical preliminaries
In this section we recall basic notions, Hoeffding’s Lemma and give a version of Cher-
noff’s bounding argument; for general reference see Petrov (1975).

Definition 3.1 A random variable X is said to have subgaussian distribution if there
exists an L > 0 such that for all λ > 0,

E exp(λX) ≤ exp(Lλ2).

For centered, bounded random variables we have Hoeffding’s Lemma (1963):

Lemma 3.2 (Hoeffding’s Lemma) Let X be a random variable with a ≤ X ≤ b and
E X = 0. Then, for all λ ∈ R, we have

E exp(λX) ≤ exp

(
(b − a)2λ2

8

)
.

We will also need a bound on the moment generating function of centered random
variables that are only bounded from above:

Lemma 3.3 Let X be a random variable with X ≤ b, E X = 0 and Var(X) = σ2 < ∞.
Then, there exists an L ≥ 0 such that for all λ > 0,

E exp(λX) ≤ exp(Lλ2).
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Recursive random variables with subgaussian distributions 135

We may choose

L = sup
x>0

{
b

x
∧ (exb − 1 − xb)σ2

(xb)2

}
< ∞. (3.1)

Proof: The proof resembles ideas from Bennett (1962). We have

exp(λX) = 1 + λX + λ2 X2 exp(λX) − 1 − λX

(λX)2
.

It is easily checked that the function g defined by g(s) := (es − 1 − s)/s2 for s 	= 0 and
g(0) := 1/2 is monotonically increasing. Thus, for λ > 0, we obtain from λX ≤ λb that

exp(λX) ≤ 1 + λX + g(λb)λ2 X2.

Taking expectations yields

E exp(λX) ≤ 1 + g(λb)σ2λ2

≤ exp(g(λb)σ2λ2). (3.2)

On the other hand, for λ > 0, we obtain from X ≤ b that

E exp(λX) ≤ exp(bλ). (3.3)

Combining (3.2) and (3.3) we obtain for all λ > 0,

E exp(λX) ≤ exp
((

b

λ
∧ g(λb)σ2

)
λ2

)
≤ exp(Lλ2),

with L as given in (3.1). That L is finite follows from the fact that b/x is decreasing and
g(xb)σ2 is increasing for x ∈ (0,∞). �

For sequences (Xn) of random variables, we will subsequently obtain subgaussian
distributions for normalizations (Xn − E Xn)/s(n), where the constant L in Definition 3.1
can be chosen uniformly in n. In such cases the following tail bound follows via Chernoff’s
bounding technique:

Lemma 3.4 Let (Xn)n≥0 be a sequence of integrable random variables and s(n) > 0,
L > 0 such that for all λ > 0, n ≥ 0,

exp

(
λ

Xn − E Xn

s(n)

)
≤ exp(Lλ2). (3.4)

Then we have for all t > 0 and n ≥ 0,

P(Xn − E Xn ≥ t|E Xn |) ≤ exp

(
− t2

4L

(
E Xn

s(n)

)2
)

. (3.5)
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136 Neininger

If (3.4) holds for all λ ∈ R and n ≥ 0 then we have for all t > 0 and n ≥ 0,

P(|Xn − E Xn| ≥ t|E Xn |) ≤ 2 exp

(
− t2

4L

(
E Xn

s(n)

)2
)

. (3.6)

Proof: Chernoff’s bounding technique yields for t > 0

P(Xn − E Xn ≥ t|E Xn|) = P
(

exp
(

λ
Xn − E Xn

s(n)

)
≥ exp

(
λt

|E Xn |
s(n)

))
≤ exp(Lλ2 − λt|E Xn|/s(n))

for all λ > 0. This bound is optimized by choosing λ = t|E Xn |/(2Ls(n)). For (3.6) we
apply the same argument as well to −Xn . �

4 The case
∑

(A∗
r)

2 = 1, b∗ = 0
We consider a sequence (Xn)n≥0 of random variables satisfying recurrence (1.1). Then
subgaussian distributions appear in the following situation that is frequent in applications.

Theorem 4.1 Assume that (Xn)n≥0 satisfies (1.1) and that we have

‖X0‖∞, . . . , ‖Xn0−1‖∞ < ∞, sup
n≥n0

‖bn‖∞ < ∞, (4.1)

1 ≤ n −
K∑

r=1

I (n)
r ≤ C almost surely, (4.2)

E Xn = µn + O(1),

with µ 	= 0 and a constant C ≥ 1.
Then, there exists an L > 0 such that for all λ ∈ R, n ≥ 1,

E exp

(
λ

Xn − E Xn√
n

)
≤ exp(Lλ2).

In particular, we have (3.6) with s(n) = √
n ∨ 1.

Proof: We denote

D1 := sup
n≥0

|E Xn − µn|, D2 := sup
n≥n0

‖bn‖∞ (4.3)

and consider the scaled quantities

Yn := Xn − E Xn√
n

, n ≥ 1,
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Recursive random variables with subgaussian distributions 137

and Y0 := (1/ε)(X0 − E X0) for a 0 < ε ≤ 1. Then (1.1) implies

Yn
d=

K∑
r=1

√
I (n)
r ∨ ε

n
Y (r)

I (n)
r

+ b(n), n ≥ n0 (4.4)

with

b(n) := 1√
n

(
bn − µ

(
n −

K∑
r=1

I (n)
r

)
+ Rn

)
(4.5)

with a random Rn satisfying |Rn | ≤ (K + 1)D1.
Since Y0, . . . ,Yn0−1 are centered and bounded random variables, Hoeffding’s Lemma

implies that there exists a Q > 0 such that, for all λ ∈ R and all j = 0, . . . , n0 − 1 the
bound E exp(λY j ) ≤ exp(Qλ2) holds. We show by induction that there exists L ≥ Q
such that for all λ ∈ R and all j ≥ 0,

E exp(λY j ) ≤ exp(Lλ2). (4.6)

The assertion is true for j = 0, . . . , n0 − 1 since L ≥ Q. For the induction step we
assume that (4.6) holds for all j = 0, . . . , n − 1. Denoting by ϒn the distribution of
the vector (I (n), b(n)) we obtain with (4.4), conditioning on (I (n), b(n)), the induction
hypothesis, and the notation j = ( j1, . . . , jK ) that

E exp(λYn) = E exp


λ

K∑
r=1

√
I (n)
r ∨ ε

n
Y (r)

I (n)
r

+ λb(n)




=
∫
E exp

(
λ

K∑
r=1

√
jr ∨ ε

n
Y (r)

jr
+ λβ

)
dϒn(j, β)

≤
∫

exp

(
Lλ2

K∑
r=1

jr ∨ ε

n
+ λβ

)
dϒn(j, β)

= exp(Lλ2)E exp

(
Lλ2

(
K∑

r=1

I (n)
r ∨ ε

n
− 1

)
+ λb(n)

)
.

Hence, for the induction step it is sufficient to show that

sup
n≥n0

E exp

(
Lλ2

(
K∑

r=1

I (n)
r ∨ ε

n
− 1

)
+ λb(n)

)
≤ 1. (4.7)

By (4.2) we obtain

K∑
r=1

I (n)
r ∨ ε

n
− 1 ≤ −1 + Kε

n
≤ − 1

2n
(4.8)
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138 Neininger

for 0 < ε ≤ 1 ∧ (2/K ). By (4.1), (4.2), (4.3) and (4.5) we obtain

‖b(n)‖∞ ≤ 1√
n

(‖bn‖∞ + µC + (K + 1)D1) ≤ M√
n

with

M := D2 + µC + (K + 1)D1.

Moreover, E Yn = 0 implies E b(n) = 0. Hence, Hoeffding’s Lemma implies

E exp(λb(n)) ≤ exp

(
λ2(2‖b(n)‖∞)2

8

)
≤ exp

(
(Mλ)2

2n

)
. (4.9)

Combining (4.8) and (4.9) we obtain with ε as above

E exp

(
Lλ2

(
K∑

r=1

I (n)
r ∨ ε

n
− 1

)
+ λb(n)

)
≤ exp

(
− Lλ2

2n
+ (Mλ)2

2n

)
≤ 1

if L ≥ M2. Hence the induction step is completed by choosing L := M2 ∨ Q. �

We give a couple of applications of Theorem 4.1 on the probabilistic analysis of
algorithms and data structures:

Number of leaves in random binary search trees: The number of leaves Xn in a ran-
dom binary search tree with n elements satisfies recurrence (1.1) with K = 2, n0 = 2,

X0 = 0, X1 = 1, bn = 0 and I (n)
1

d= unif{0, . . . , n − 1}, I (n)
2 = n − 1 − I (n)

1 . It is
well known that for this quantity E Xn = (n + 1)/3 = n/3 + O(1) holds, see Mahmoud
(1986), Devroye (1991) and Flajolet, Gourdon and Martı́nez (1997). Hence, all conditions
of Theorem 4.1 are satisfied and subgaussian distributions are implied. In particular, (3.6)
is implied with s(n) = √

n ∨ 1.

Binary search trees with bounded toll functions: Binary search tree recurrences have
been studied for general toll functions bn in Devroye (2002/03) and Hwang and Neininger
(2002). These are quantities Xn that satisfy recurrence (1.1) with K = 2, n0 = 1, X0 = 0,

and I (n)
1

d= unif{0, . . . , n − 1}, I (n)
2 = n − 1 − I (n)

1 . We consider the case of uniformly
bounded toll functions bn , i.e., supn≥1 ‖bn‖∞ < ∞ and assume that

µ :=
∞∑

k=1

E bk

(k + 1)(k + 2)
	= 0. (4.10)

It is well known that for the binary search tree recurrences we have

E Xn = E bn + 2(n + 1)

n−1∑
k=1

E bk

(k + 1)(k + 2)
,
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see, e.g., Lemma 1 in Hwang and Neininger (2002). Hence, supn≥1 ‖bn‖∞ < ∞, (4.10),
and

∑∞
k=n 1/k2 = O(1/n) imply E Xn = µn + O(1) with µ given in (4.10). Thus,

Theorem 4.1 yields subgaussian distributions for all binary search tree recurrences with
uniformly bounded toll functions satisfying (4.10). Various examples of such quantities
relevant in the analysis of tree traversing algorithms and secondary cost measures of
Quicksort are given in section 6 of Hwang and Neininger (2002).

Size of m-ary search trees: The size Xn of random m-ary search trees, m ≥ 3, satisfies
recurrence (1.1) with K = m, n0 = m, X0 = 0, X1 = · · · = Xm−1 = 1, bn = 1, and
I (n) being a certain mixture of multinomial distributions with

∑
1≤r≤m I (n)

r = n −m +1.
It is known that E Xn = (2(Hm − 1))−1n + O(1) for all 3 ≤ m ≤ 13, see Mahmoud
and Pittel (1989), Lew and Mahmoud (1994), and Chern and Hwang (2001). Here,
Hm denotes the mth harmonic number Hm = ∑

1≤k≤m 1/k. Hence, all conditions of
Theorem 4.1 are satisfied and we obtain subgaussian distributions for the size of random
m-ary search trees for 3 ≤ m ≤ 13. For a discussion of phase changes in m-ary search
trees see Hwang (2003).

Number of leaves in random quadtrees: The number of leaves Xn in a d-dimensional
random (point) quadtree with n elements satisfies recurrence (1.1) with K = 2d , n0 = 2,
X0 = 0, X1 = 1, b0 = 0 and I (n) a mixture of multinomial distributions with∑

1≤r≤2d I (n)
r = n − 1. Various parameters of random quadtrees have systematically

been studied in Flajolet et al. (1995) and in Chern, Fuchs and Hwang (2004). In par-
ticular, we have E Xn = µdn + O(1) for 1 ≤ d ≤ 6 with constants µd > 0. Hence,
Theorem 4.1 can be applied and we obtain subgaussian distributions for the number of
leaves in d-dimensional random quadtrees for d = 1, . . . , 6. The case d = 1 is the binary
search tree case discussed above.

5 The case Y
d= Y

In this section we consider recursions (1.1) with K = 1,

Xn
d= X In + bn, n ≥ n0, (5.1)

with conditions as in (1.1) and the abbreviation In = I (n)
1 . We have subgaussian distribu-

tions for the following logarithmic growth.

Theorem 5.1 Assume that (Xn)n≥0 satisfies (5.1) and that for some η < 1, µ > 0 and
n1 ≥ n0 we have

‖X0‖∞, . . . , ‖Xn0−1‖∞ < ∞, sup
n≥n0

‖bn‖∞ < ∞,

sup
n≥n1

E

(
log

(
In ∨ 1

n

))2

< ∞, (5.2)

E

(
In ∨ 2

n

)k

≤ ηk, k ≥ 1, n ≥ n1, (5.3)

E Xn = µ log n + O(1).
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Then there exists an L > 0 such that for all λ > 0 and n ≥ 2,

E exp
(

λ
Xn − E Xn√

log n

)
≤ exp(Lλ2).

In particular, we have (3.5) with s(n) = √
log n.

Proof: We denote

D1 := |E X0| ∨ sup
n≥1

|E Xn − µ log n|, D2 := sup
n≥n0

‖bn‖∞

and consider the scaled quantities

Yn := Xn − E Xn√
log n

, n ≥ 2,

and Yn := (log 2)−1/2(Xn − E Xn) for n = 0, 1. Then (5.1) implies

Yn
d=

√
log(In ∨ 2)

log n
YIn + b(n), n ≥ n0

with

b(n) := 1√
log n

(bn + µ log((In ∨ 1)/n) + Rn)

with a random Rn satisfying |Rn | ≤ 2D1.
We show that there exists an L ≥ 0 such that E exp(λYn) ≤ exp(Lλ2) for all

λ > 0 and n ≥ 0. We proceed as in the proof of Theorem 4.1 by induction. Note,
that all X0, . . . , Xn1−1 are uniformly bounded, so that the subgaussian distribution for
Y0, . . . , Yn1−1 follows form Hoeffding’s Lemma as in the proof of Theorem 4.1. For the
induction step we argue analogously to the proof of Theorem 4.1 to obtain

E exp(λYn) ≤ exp(Lλ2)E exp
(

Lλ2
(

log(In ∨ 2)

log n
− 1

)
+ λb(n)

)
.

Hence, it is sufficient to show that

sup
n≥n1

E exp
(

Lλ2

log n
log

(
In ∨ 2

n

)
+ λb(n)

)
≤ 1.

By the Cauchy–Schwarz inequality it is sufficient to show

sup
n≥n1

E exp
(

2Qλ2

log n
log

(
In ∨ 2

n

))
E exp(2λb(n)) ≤ 1.

By Lemma 3.3 there exists a Q ≥ 0 such that for all n ≥ n1 and λ > 0,

E exp(2λb(n)) = E exp

(
2λ√
log n

(bn + µ log((In ∨ 1)/n) + Rn)

)
≤ exp(Qλ2/ log n),
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since bn + µ log((In ∨ 1)/n) + Rn is centered, uniformly upper bounded and has uni-
formly bounded variance according to (5.2).

By condition (5.3) we obtain

E exp
(

2Lλ2

log n
log

(
In ∨ 2

n

))
= E

(
In ∨ 2

n

)2Lλ2/ log n

≤ η2Lλ2/ log n

= exp(2L log(η)λ2/ log n).

Now the bound on the moment generating function follows choosing L ≥ Q/(2 log(1/η))

and sufficiently large, so that the initial quantities Y0, . . . , Yn1−1 satisfy the same bound.
�

Conditions (5.2), (5.3) require that In does not have too much mass on small or
large values. This is somehow similar to the conditions (9) in Theorem 2.1 in Neininger
and Rüschendorf (2004b), where a normal limit law for the same type of recurrences is
studied. However, the conditions here in (5.2), (5.3) are more restrictive which makes

the theorem less useful for practical applications. In particular, In
d= unif{0, . . . , n − 1}

does not satisfy (5.2), (5.3). Theorem 5.1 is more tailored for In that have, e.g., Binomial
distributions B(n − 1, p) or distributions with similar tail properties as the Binomials.
A typical application of Theorem 5.1 are depths of random nodes in asymmetric digital
search trees, see, e.g., Louchard, Szpankowski and Tang (1999), where more refined
estimates are given.

6 The case of deterministic A∗
r and b∗ d= N :

In this section we consider (Xn)n≥0 satisfying (1.1) so that after normalization as in (2.1)
we obtain (2.2) with (2.3) and assume that we have the convergences in (2.4),

A(n)
r → A∗

r , b(n) → b∗, (6.1)

with deterministic (A∗
1, . . . , A∗

K ) and b∗ being normallyN (ν, τ2) distributed. It is easily
checked that the arising fixed point equation (2.5) is then solved by a normal distribution
if

∑
A∗

r < 1. This allows to derive the following central limit theorem.

Theorem 6.1 Assume that (Xn)n≥0 satisfies (1.1) with X0, . . . , Xn0−1 being L1 inte-
grable and that there are functions m : N0 → R and s : N0 → R>0 such that we
have the convergences (6.1) weakly and with first absolute moment with deterministic
(A∗

1, . . . , A∗
K ), 0 <

∑K
r=1 A∗

r < 1, and b∗ ∼ N (ν, τ2), ν ∈ R, τ > 0. Then we have

E Xn = m(n) + µs(n) + o(s(n)), (6.2)

Xn − m(n)

s(n)

d−→ N (µ, σ2), (6.3)
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where

µ = ν

1 − ∑K
r=1 A∗

r

,

σ2 = 1

1 − ∑K
r=1(A∗

r )
2

(
τ2 + ν2 + 2νµ

K∑
r=1

A∗
r

)
− µ2 > 0. (6.4)

If X0, . . . , Xn0−1 are moreover square integrable and the convergences (6.1) hold addi-
tionally with second moment, then

Var(Xn) = σ2s2(n) + o(s2(n)).

Proof: The theorem is covered by general theorems of the contraction method. Parts (6.2)
and (6.3) follow applying Theorem 5.1 in Neininger and Rüschendorf (2004a) with the
parameter s there chosen to be s = 1 and noting that the fixed point equation (42) there
is solved by N (ν, σ2) with µ, σ2 as given in (6.4). Part (6.5) follows by applying that
same Theorem 5.1 with s = 2. �

As an exemplary application we discuss the size of a random skip list, see, e.g.,
Pugh (1989), Papadakis, Munro, Poblete (1990), and Devroye (1992). Roughly, to build
a skip list with parameter p ∈ (0, 1), n elements are stored in a level 1 linked list.
Each item of the level i list, i ≥ 1, is included in the level i + 1 list independently
with probability p. Certain pointers are used between the elements to support dictionary
operations making skip lists a practical alternative to search trees. Here, we are only
interested in the total number Xn of elements stored in the lists of all levels i = 1, 2, . . .

We call Xn the size of the random skip list for n elements. It satisfies (1.1) with K = 1,
I (n)
1 ∼ B(n, p), bn = n, n0 = 1, and X0 = 0. To apply Theorem 6.1 we choose

m(n) = (1/(1 − p))n and s(n) = √
n ∨ 1. By the strong law of large numbers we

have

s(I (n)
1 )

s(n)
→ √

p

almost surely, by the central limit theorem we have

1√
n

(
n − m(n) + m(I (n)

1 )
)

=
√

p

1 − p

I (n)
1 − pn√
n p(1 − p)

d−→ N

(
0,

p

1 − p

)
.

Note that both convergences also hold with first and second moment. Thus, Theorem 6.1
can be applied with A∗

1 = √
p and b∗ = N (0, p/(1 − p)), and yields:

Corollary 6.2 The size Xn of a random skip list with n elements and parameter p ∈ (0, 1)

satisfies

E Xn = 1

1 − p
n + o(

√
n), Var(Xn) = p

(1 − p)2 n + o(n) (6.5)
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and

Xn − (1 − p)−1n√
n

d−→ N

(
0,

p

(1 − p)2

)
.

For this particular recurrence a large deviation principle can directly be derived.

Theorem 6.3 The size Xn of a random skip list with n elements and parameter p ∈ (0, 1)

satisfies for all t > (1 − p)−1,

lim
n→∞

1

n
logP(Xn > tn) = −I(t),

and for all t < (1 − p)−1,

lim
n→∞

1

n
logP(Xn < tn) = −I(t).

The rate function is given by

I(t) =
{ (

log 1
p

)
t + (t − 1) log(t − 1) − t log(t) + log p

1−p , t ≥ 1,

+∞, t < 1.

Proof: By construction, each of the n elements in the skip list is stored in a number of
levels that is geometrically G1−p distributed, i.e., P(G1−p = k) = (1 − p)pk−1, k =
1, 2, . . . , and independent of the space requirements of the other elements, see Devroye
(1992). Hence, Xn is distributed as a sum of n independent, identically G1−p distributed
random variables, thus Xn has the negative binomial distribution with parameters n and
1 − p. Cramér’s theorem on large deviations applies. I as given in the theorem is the rate
function of a G1−p distributed random variable. �

From the perspective of the previous proof, Corollary 6.2 is directly implied by the
central limit theorem for sums of independent random variables and it follows that both
error terms in (6.5) are zero. However, since I(t)/t → log(1/p) as t → ∞, this application
exemplifies different tails than the ones obtained in sections 4 and 5. Moreover, it gives an
indication for the tails for slight perturbations of this recurrence, where a representation
as a sum of independent random variables may not exist.

Theorem 6.1 can be applied to a series of problems that have been studied individually
in the literature. In particular, it covers the number of coin flips in the “leader election
problem”, see Prodinger (1993) and Fill, Mahmoud and Szpankowski (1996), the number
of coin flips for a maximum finding algorithm in a broadcast communication model, see
Theorem 22 in Chen and Hwang (2003), the complexity of bucket selection, see Theorem 2
in Mahmoud, Flajolet, Jacquet, and Regniér (2000), and, with a slight modification, the
distance of two randomly chosen nodes in a random binary search tree, see Mahmoud
and Neininger (2003).
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